
Backend as a service in web development

Bachelor thesis

Degree Programme in
Computer Applications

spring, 2023

Samu Uunonen

Computer Applications Tiivistelmä

Tekijä Samu Uunonen Vuosi 2023

Työn nimi Backend as a Service in web development

Ohjaaja Lasse Seppänen

TIIVISTELMÄ

Opinnäytetyö esittelee Backend palveluiden mahdollisuuksia web kehityksessä. Tutkimuksen

tavoitteena oli selvittää palveluntarjoajien eroavaisuuksia yrityksen ja ohjelmistokehittäjän

näkökulmista. Opinnäytetyössä kehitettiin demo sovellusta missä backendinä käytettiin Firebase ja

Amplify palveluita. Työ on tehty tekijän omasta kiinnostuksesta aiheeseen ja ulkoista

toimeksiantajaa ei ole.

Teoreettisessa osuudessa määritellään työn kannalta keskeisiä käsitteitä. Tietopohja koostuu

tietoturvasta, web kehityksestä ja pilvipalveluista. Tutkimusaineisto kerättiin kehittämällä demo

sovellus ja tutkimalla palveluntarjoajien dokumentaatioita.

Tutkimuksessa havaittiin, että Backend palveluiden välillä on eroavaisuuksia. Erot ovat jopa niin

suuria, että yrityksiä suositellaan tutkimaan tarkasti mikä palvelu soveltuu parhaiten omaan

käyttötarkoitukseen.

Avainsanat Backend, Pilvipalvelut, Serverless

Sivut 36 sivua ja liitteitä 1 sivua

Degree Programme in Computer Applications Abstract

Author Samu Uunonen Year 2023

Subject Backend as a Service in web development

Supervisors Lasse Seppänen

ABSTRACT

The thesis presents the Backend service’s possibilities to the web development. The goal of the

research was to investigate differences between the service providers in business and developer’s

perspective. Demo application was developed where the Firebase and Amplify services were used

as a backend. The thesis has been made by the author’s personal interest on the topic, without

external principle.

The theoretical part of the thesis describes the key terms that contain privacy, web development

and cloud computing. Research material was collected by developing the demo application and by

investigating the documentation of the services.

The research results showed that the services have big differences. It is recommended to

investigate precisely what service is suitable for that specific purpose.

Keywords Backend, Cloud, Serverless

Pages 36 pages and appendices 1 pages

Glossary

API Application programming interface

AWS Amazon Web Services

BaaS Backend as a service

Backend Part of the website or application that user does not see.

CLI Command Line Interface

FaaS Functions as a Service

Frontend Part of the website or application that user interacts with.0

JSON JavaScript Object Notation

PaaS Platform as a Service

SDK Software Development Kit

UI User interface

Contents

1 Introduction ... 1

2 Finnish ICT job market ... 2

3 Privacy .. 3

3.1 General Data Protection Regulation .. 3

3.2 Privacy frameworks .. 3

4 Web Development ... 4

4.1 Frontend development ... 4

4.2 Backend development .. 4

4.3 Full stack development ... 5

5 Cloud computing .. 6

5.1 Cloud Service Models ... 6

5.2 Serverless computing ... 6

5.3 Cloud security ... 8

6 Backend as a Service .. 10

6.1 Authentication .. 10

6.2 Database ... 11

6.3 Serverless functions .. 11

6.4 Hosting .. 12

6.5 Storage .. 12

7 Development work... 14

7.1 Demo application ... 14

7.2 Version control ... 15

8 Firebase .. 16

8.1 Configuring the application and development environment......................... 16

8.2 Authentication .. 17

8.3 Database ... 19

8.4 Storage .. 21

8.5 Hosting .. 22

8.6 Cloud Functions .. 23

8.7 Analytics.. 23

8.8 Privacy... 24

8.9 Pricing ... 24

8.10 Evaluate of the Firebase ... 24

9 AWS Amplify... 26

9.1 Configuring the application and development environment......................... 26

9.2 Authentication .. 26

9.3 Database ... 29

9.4 Storage .. 31

9.5 Lambda Functions... 32

9.6 Hosting .. 32

9.7 Analytics.. 32

9.8 Privacy... 33

9.9 Pricing ... 33

9.10 Evaluate of the Amplify .. 33

10 Results .. 35

11 Summary .. 36

References... 37

Figures and Program codes

Figure 1. Vendor lock-in explained in cloud computing. (Cloudflare, n.d-b.) 8

Figure 2. Execute intensive tasks in the cloud instead of a user’s device. (Firebase, n.d-f.) 12

Figure 3. Demo application page structure. ... 15

Figure 4. Email templates settings in Firebase console. ... 19

Figure 5. Deployment process in Firebase CLI. ... 23

Figure 6. Configure sign up in Amplify Studio. .. 28

Figure 7. Visual editor for data modeling in Amplify. ... 30

Figure 8. Amplify code snippet to insert data. .. 31

Program code 1. Firebase-config.js ... 17

Program code 2. Create user function code for Firebase. .. 18

Program code 3. Firestore rules file. ... 20

Program code 4. Insert data into Firestore database. .. 20

Program code 5. Read data from Firestore database. .. 21

Program code 6. Save file to Firebase Storage. .. 21

Program code 7. Initialize Amplify in the root of the application. 26

Program code 8. Create user function with Amplify. ... 29

Annexes

Annex 1 Material management plan

1

1 Introduction

Developing a web application requires lots of time and work. Every entrepaneur know that these

two things are not infinite. Web development project consists of backend and frontend

development. The workload is not always divided half between the backend and frontend, the

proportion of the work backend requires varies, but it is a big part of the development work. By

outsourcing parts of the work, the amount of the developers in the team can be decreased or

same team can get more features done with the same resources. Nowadays there are multiple

ways to outsource the development work, from offshore developers to services that handles one

or more tasks from application. Software developers are an expensive and difficult resource to

find, because the world’s demand exceeds the supply. Every company in the world are trying to

solve this problem.

Cloud computing has reduced an infrastructure management work from the development teams.

Backend as a service is a cloud computing service. It is one way to outsource part of the backend

development. Other company has built a universal backend product that can be integrated into

any application. Backend services usually has managed database and authentication, which are

essential part of almost every web application. The thesis will lead reader into world of serverless

computing with Firebase and Amplify backend services. Both services are inspected through the

demo application and their documentations.

• What are the things to consider when setting up a software business on a backend service?

• What are the differences between BaaS providers from a business and developer

perspective?

2

2 Finnish ICT job market

Numbers differs based on the source, but it seems clear that there is a massive need for software

developers in Finland. Software development requires specific skills and lack of developers is a

dangerous situation. The country cannot digitalize as much it wants and cannot attract foreign

investments to Finland because lack of the skillful workforce. According to Finnish Ministry of

Economic Affairs and Employment’s Työvoimatiekartat report, software designers were fourth

most wanted high paying employees in Finland. The estimate is that 426 software designer job

openings are unfulfilled in 2022, and it does not include software architects or software

developers. In Finnish Business and Policy Forum EVA’s analysis Ahopelto (2018) states that the

software field has job openings immediately for 7000-9000 new employees in Finland, and by

2024 it could increase to 40,000. In 2021 software companies employed 56,000 people. One of the

suggested solutions to fix the shortage is to increase the starting places in the universities for ICT

sector, which has been decreasing in the 2010s. However, the analysis claims that even doubling

the number of students in the universities will not be enough to fill the demand. Other solutions

presented in EVA’s analysis are to increase amount of labor immigration and to persuade more

women into the ICT sector. Attracting the coders from the other countries is not an easy job

because many other countries are struggling with the same issue. Finnish companies lack the skills

to find employees outside of Finland. (Ahopelto, 2018, pp. 1–10; Larja & Peltonen, 2023, pp. 16–

17)

3

3 Privacy

Data privacy is a relatively new concept as it started to exist after the internet started to spread

exponentially. Every action that is made with digital devices leaves a digital trail. These trails are

used to profile users and convert it into a source of revenue. Outside of the internet, private

information is always shared in specific contexts. On the internet people usually understand that

information shared with someone else is out of their personal control. Users cannot know how

their data will be used. (Sharma, 2020, pp. 1–4)

3.1 General Data Protection Regulation

General Data Protection Regulation or shorter GDPR sets requirements on how to collect, store

and manage personal data. It applies to applications that process data in the European Union (EU),

even when the actual processing takes place outside of the EU. Data is considered personal data

when it includes name, address, income, ip address or any other data where a person can be

identified with. The process contains two main profiles, the data controller and -processor. The

controller decides why and how the data is processed, usually that is the owner of the product.

The processor holds and processes the data on behalf of a controller. (Your Europe, n.d.)

3.2 Privacy frameworks

When reading the Privacy clauses from the cloud services, the reader often runs into the terms

Privacy Shield Framework and Standard Contractual Clauses. The Privacy Shield Framework was a

data privacy framework for transferring personal data from the European Union and Switzerland

to the United States. On 16 July 2020, the Court of Justice of the European Union issued that the

Privacy Shield Framework is not a valid mechanism to follow when transferring personal data from

the European Union to the United States. The Standard Contractual Clauses are agreements

between the EU and a party who wants to transfer data from the EU to non-EU countries. It

replaced The Privacy Shield Framework. The level of personal data protection must be checked on

a case-by-case basis to make sure it meets the EU requirements. (Privacy Shield, n.d;

Tietosuojavaltuutetun toimisto, n.d.)

4

4 Web Development

Web development is a high-level term that includes many smaller parts that are introduced in this

chapter.

4.1 Frontend development

HTML, CSS, and JavaScript are the foundation of the frontend development. HTML stands for

Hypertext Markup Language and is the foundation of the website. HTML is the structure of the

content and presents the content to the users. The content between the HTML tags has a specific

meaning. CSS adds the style, and it stands for Cascading Style Sheets. It works by referring to the

HTML tags of the site. (Wellens, 2015, pp. 3-10)

JavaScript is a programming language to add the functionalities to the site. Today it can be used to

build both frontend and backend of the application. With the Webpack solution for managing

dependencies in JavaScript applications, frameworks such as React have changed the way web

applications are developed. (Brown, 2019, p. 2)

React is a JavaScript library designed to build user interfaces. It is based on reusable components

that can present mutable data. Every element of the application is a component, even the

application itself. React does not force developers to use any specific presentational pattern. In

Model-View-Controller or Model-View-View Model pattern context, it is implementing the View

part. (Chiarelli, 2018, pp. 6–7)

4.2 Backend development

Backend development or server-side development is the part of the application that user cannot

see. It consists of everything that happens on the server, from API designing to data modeling. The

main job of API is to communicate with the frontend and fetch the requested data, modify it, and

send it to the frontend. Backend development can be done with multiple programming languages,

such as Java, Python, PHP, and JavaScript. Database and server management are key parts of any

5

application’s backend. Database is used to store data and it has two types, relational and non-

relational. Non-relational database stores data in flexible formats, while in relational database

data is stored in tables. Web servers store the code and process the application. Servers handle

communication between the user and application with HTTP, which stands for HyperText

Transform Protocol. (Gallardo, 2023)

4.3 Full stack development

Full stack refers to an end-to-end application that includes both frontend and backend. Today full

stack web applications can be pure JavaScript applications. One example of a many full

development stacks is MERN, that is a shortener from MongoDB, Express, React and Node. It is a

combination of four JavaScript based technologies. MongoDB is a NoSQL database. Express and

Node are backend technologies and frontend is created with React. (Komanduri & Hoque, 2018,

pp. 6-9).

Communication between the different services can be done by utilizing SDKs and APIs. SDK stands

for Software Development Kit. It is a set software tools for a specific platform. By using SDK

developers can create fast integrations between the services. Usually, an SDK includes at least one

API, that stands for Application Programming Interface. API facilitates communication between

two platforms. By using APIs developers can easily connect the application with third-party

applications. (IBM, 2021)

6

5 Cloud computing

Cloud computing is a cost effective and scalable way to use computing resources. Cloud computing

enables users to use computing resources without owning physical hardware. Instead of building

on-site data centers and servers, the cloud computing provider takes care of the hardware, and

the user only buys the needed resources monthly or as pay-as-you-go pricing model. Cloud

computing may improve security and reliability of the services as computing resources are

outsourced to professionals who manage the cloud computing services. (Microsoft Azure, n.d.)

5.1 Cloud Service Models

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) are

the major cloud service models. All cloud service models provide cloud computing services. IaaS

contains only the hardware resources. IaaS is a cost-effective option for purchasing and

maintaining hardware. Extended to IaaS, PaaS contains operating systems, databases, and

development tools. It is possible to run and develop scalable applications in PaaS infrastructure.

SaaS is a ready to use software product which has all features built. (IBM, n.d; Microsoft Azure,

n.d-a)

5.2 Serverless computing

The old applications are usually built in a monolithic way which means that the whole application

is a single unit. Microservice applications are divided into smaller units, where each unit performs

a single service. Serverless application is built into multiple units that performs only one specific

task. According to Chowhan, the name Serverless is misleading because serverless applications still

require a server to run. Cloud infrastructure is extended with the abstraction that gives developers

capability to deploy and run applications without managing servers. Serverless infrastructure can

be defined as an outsourced server management. Serverless applications usually consist of

multiple functions that work together with other services. Architecture that is combined from

multiple functions is called FaaS that is shortened from Functions as a Service. FaaS is an event

7

driven architecture where functions are triggered by events. Trigger events can be for example API

request, scheduled event, and database event. (Chowhan, 2018, p. 8-11)

The benefits of serverless computing are reduced costs, faster development, and scalability.

According to Chowhan, serverless applications are cheaper to operate because of the shared

infrastructure. Computing is shared with the cloud provider’s other customers. Every customer is

billed by the running time, which can be charged in as low as millisecond intervals. Applications

that utilize serverless architecture run in a fully managed infrastructure with automatic

provisioning and scaling by the cloud provider. Developers focus only on writing the code.

(Chowhan, 2018, pp-17-20)

The drawbacks of serverless computing are the lack of infrastructure control, cold start, and

vendor lock-in. As mentioned, the serverless application runs in fully managed infrastructure

where developers do not have access. Cold start means the function takes longer to respond to an

event if it has been inactive for a while. Vendor lock-in means that changing to a different vendor

is so expensive, that business is locked with a certain vendor. As the Chowhan (2018, p. 23)

summarized: “One of the biggest fears with serverless applications concerns vendor lock-in.” Even

though the Figure 1 is not specific to serverless but to the whole cloud computing, companies who

use more than one cloud solution have more flexibility with the services. Businesses who rely on

multiple vendors can transform their solutions if circumstances change. Businesses who are

relying on one vendor are not as flexible. The risks of vendor lock-in are that quality-of-service

declines, vendor changes the product, increases prices, or goes out of business. (Chowhan, 2018,

pp. 22–25; Cloudflare, n.d-a.)

8

Figure 1. Vendor lock-in explained in cloud computing. (Cloudflare, n.d-b.)

5.3 Cloud security

Security in cloud computing consists of data integrity and privacy in an end-to-end perspective.

Security containers are one approach to addressing security concerns in cloud environments.

Security container is a virtual environment that is created through the segmentation of the

network in a cloud computing environment. This environment allows elements with similar

security characteristics to share a common boundary of trust. This means that the computing

elements within the container are trusted to communicate with each other and share data, while

outsiders are prevented from accessing this data. The use of security containers enables

organizations to secure their data by limiting access to authorized users and restricting

unauthorized access to sensitive information. (Ruparelia, 2016, pp. 99-107)

According to Ruparelia (2016), three security procedures are typically used to secure access into a

security container: identification, authentication, and authorization. Identification is the process of

identifying a user or computing element attempting to access the security container.

Authentication is the process of verifying the identity of the user or computing element. This is

9

typically done using a username and password, biometrics, or some other form of authentication

factor. Authorization is the process of granting or denying access to the security container based

on the identity and permissions of the user or computing element. (Ruparelia, 2016, pp. 105-107)

Network segmentation is the process of dividing a network into smaller segments. Each segment

has own set of security policies and controls. Segmentation is generally used to create a security

container, which contains the elements that share the same security attributes. The network layer

is the most common layer where segmentation occurs because it is the mode of transport for

information. Virtual networks are created within the physical network and each container uses the

virtual networks inside it to prevent outsiders from accessing its internal data. Data integrity is

protected by encrypting the network channel that is used to transport the data. Encryption can be

done with the use of certificates that allow communication over a trusted channel. Encrypted

channels are known as a Secure Socket Layer (SSL). SSL is using a handshake protocol that uses

public and private keys to encrypt the channel. Receiving device decrypts the channel that was

encrypted by the sending device with encryption keys. (Ruparelia, 2016, pp. 105–112)

10

6 Backend as a Service

BaaS stands for Backend as a Service, and it is an extended cloud service model from PaaS with

pre-built backend features for mobile and web applications. Backend features are for example

database, user management and file storage. BaaS is like a serverless architecture, where

infrastructure management is taken care of by the service provider. When the development team

decides to use BaaS in the project, they decide to outsource the backend development to the

service provider. This increases the speed of the development work because developers can focus

on building the front-end features. (Dudjak & Martinović, 2020, p. 208)

Backend service providers have created documented APIs and SDKs that enable fast

implementation of ready-made code functions. APIs and SDKs are used to provide interaction

between the backend and frontend. Essentially BaaS is a third-party software product that

developers can buy to utilize it in their own application. Usually, the service has a free tier that

makes it free to start, and payments start occurring when the application usage increases. Usually

pricing is pay-as-you-go based on the features that are used. The application’s time to market can

be reduced by using backend service. Time to market is reduced because most of the backend has

already been coded with someone else and the infrastructure is taken care by the BaaS company.

Especially when the SDKs have been built for the development platform that the team is using, for

example React. Security and performance have been taken care of by the professionals because

BaaS company sells reliability, performance, and security. (Arkhipov, 2023)

6.1 Authentication

In computer world authentication identifies user’s identity and control access to application or

resource. Popular method to identify user is a combination of password and email, where both

act as a credentials. This is called a single-factor authentication, and it can be extended into multi-

factor authentication when an additional authentication factor is required. The additional factor

for the authentication could be a pin code that is shared between the system and user.

Passwordless authentication removes the need of passwords. It can work by sending a pin code via

email or by utilising facial recognition. (Auth0, n.d-a.)

11

OAuth 2.0 stands for open authorization and is one of the popular authorization protocols on the

web. It is designed to grant access to a set of resources, for example APIs or user data. OAuth 2.0

is based on Access Tokens which data contains authorization to access resources. JSON stands for

JavaScript Object Notation, and it is often used format in the tokens. JSON Web Token is a digitally

signed JSON object (Jwt, n.d.). SAML (Security Assertion Markup Language) is designed to

authenticate a user. It is popular among enterprises and governments, because of its cross-domain

single sign-on compatibility. OpenID Connect (OIDC) is a protocol that utilizes mechanisms of

OAuth 2.0. While OAuth 2.0 is an authorization protocol, OIDC is an identity authentication

protocol. In addition to user’s requests, contact information or other data can also be shared on

requests. OIDC is based on JSON Web Tokens and can be used for single sign-on. It is a simpler

alternative to SAML protocol and is suitable for all kinds of applications. (Auth0, n.d-b; Auth0, n.d-

c; Auth0, n.d-d)

6.2 Database

Database is the part of an application where information is stored. In BaaS, the service provider

takes care of the database management and developers can focus on stored data. Database can

be Relational, Object-oriented, Distributed, Data warehouse, NoSQL, Graph, Open source, Cloud,

Multimodel, Document/JSON or Self-driving. (Oracle, n.d.)

6.3 Serverless functions

Serverless functions allow developers to develop backend functionality without maintaining a

server. It requires low maintenance and automatically scales up computing resources when

needed. Functions can be triggered with HTTP requests or database updates. Custom backend

logic may be required when the Backend Service’s features are not enough for the use case, or the

task is too intensive to be handled in the frontend. Performance is a key reason to handle features

in server instead of the user’s device. Figure 2 has an example of an intensive task, where an

image file is resized in the cloud instead of a device. Another reason could be security, in some

cases it is safer to run code on the server side instead of the client side. The application logic never

12

leaves the server and cannot be accessed from the client side. (Firebase, n.d-f; Amazon Web

Services, Inc, n.d-i)

Figure 2. Execute intensive tasks in the cloud instead of a user’s device. (Firebase, n.d-f.)

6.4 Hosting

Web hosting is a service that essentially is a server where a website or application is stored. Server

transfers all necessary files to the client’s browser to make content visible for the user.

Maintenance and configuration of the server is handled by the hosting service provider. Service

can include additional features such as security and backup. Hosting should not be mixed up with

domain that is a unique address for the web application. Custom domain can be set in hosting

service. (Amazon Web Services, Inc., n.d-g.)

6.5 Storage

Storage is a part of computing that store data and files. Cloud storages has three main types:

object stroage, file storage and block storage. Object storage is good for large amount of

13

unstructured data. Data is stored to bucket instead of organized files and folders. Applications ofte

use Object storage. File storage stores data in hierarchical folder and file format. It is common in

Network File Systems. Block storage store data in blocks with unique identifier and it is used in

databases. (Amazon Web Services, Inc., n.d-g.)

14

7 Development work

The purpose of the development work is to use backend services in practical and experimental

ways. The goal is to find out what kind of differences platforms have in developers or business

point of view. Part of the work is to get familiar with service by studying its documentation. The

other part is to try key features of the service in the demo application. The key features are

Authentication, Database and Storage. In the development work, following aspects are inspected:

• What programming languages are supported by SDKs?

• Documentation quality, does it contain code examples?

• What kind of development environment is available?

• Learning curve and complexity of the service.

• Dashboard quality, is it possible to configure services without coding skills?

• State of privacy from EU user point of view.

According to Zhang (2023) Amazon Web Services and Google Cloud Platform are in the top 10

largest cloud service providers (Zhang, 2023). That is the reason why Google owned Firebase and

AWS owned Amplify were selected for this thesis.

7.1 Demo application

Demo application is a small web application with user authentication. In the application users can

save and view data and image files. Authentication, Database, Storage and Hosting are the

features that are used from the backend service. The frontend part of the application is coded

with React and Bootstrap UI components, but this work is not focused on the frontend. As can be

seen from Figure 3, the application has 4 pages: login, join, browse, and save. Login page contains

the login form, join page contains the create account form. Browse foods page contains all items

saved by the user and is used to browse and access their saved items. Save food page contains a

form to save new items, where user adds food information which are name, description, and

image file.

15

Figure 3. Demo application page structure.

7.2 Version control

The source code is saved into GitHub repository. All code is in one repository, and each

implementation is separated into its own branch. Master branch contains the base structure of the

application where backend will be implemented.

16

8 Firebase

Firebase is a development platform where developers can build mobile and web applications. It is

backed by Google Cloud. Firebase includes fully managed backend infrastructure, monitoring, and

user engagement products. (Firebase, n.d-i.)

To create a Firebase project, Google account is required because Firebase is based on Google

Cloud services. Project is created in the Firebase console. To be able to use Firebase features in

the application, an app must be created within the project in the console for a specific platform.

The project can contain multiple apps, which makes it possible to use the same backend with

multiple platform applications. Available app platforms are iOS, Android, Web, Unity, and Flutter.

All features are disabled by default and must be activated before access. Project is in free tier,

until it is manually changed into pay as you go Spark plan.

8.1 Configuring the application and development environment

First the Firebase SDK needs to be installed into the app. Most of the SDKs are available for iOS+,

Android, Flutter, C++, Unity, and JavaScript. Firebase features are initialized in the firebase-config

file, which is a normal JavaScript file. The configuration details can be copied from the Firebase

console after the web application is created, or later from the project settings. In the Program

code 1, configuration details are imported as environment variables from the .env file. In the code

the following features are initialized: firebase app, authentication, database, storage, and local

emulators. At the end of the code, the emulators are initialized only in the development

environment. When deployed to the production environment, emulator code will not run.

Authentication, Firestore database and Storage are initialized in the firebase-config file. Every

Firebase service that will be used in the application has to be initialized in this file. (Program code

1)

17

Program code 1. Firebase-config.js

import { initializeApp } from "firebase/app";

import { getAuth, connectAuthEmulator } from "firebase/auth";

import { connectFirestoreEmulator, getFirestore } from

"firebase/firestore";

import { connectStorageEmulator, getStorage } from "firebase/storage";

const firebaseConfig = {

 apiKey: import.meta.env.VITE_FIREBASE_API_KEY,

 authDomain: import.meta.env.VITE_FIREBASE_AUTH_DOMAIN,

 projectId: import.meta.env.VITE_FIREBASE_PROJECT_ID,

 storageBucket: import.meta.env.VITE_FIREBASE_STORAGE_BUCKET,

 messagingSenderId: import.meta.env.VITE_FIREBASE_MESSAGE_SENDER_ID,

 appId: import.meta.env.VITE_FIREBASE_APP_ID,

};

// Initialize Firebase

const app = initializeApp(firebaseConfig);

export const auth = getAuth(app);

export const db = getFirestore(app);

export const storage = getStorage(app);

// Connect to emulators

if (import.meta.env.DEV) {

 connectFirestoreEmulator(db, "localhost", 8080);

 connectStorageEmulator(storage, "localhost", 9199);

 connectAuthEmulator(auth, "http://localhost:9099");

}

8.2 Authentication

Firebase Authentication utilizes standard protocols as OAuth 2.0 and OpenID Connect. It provides

SDKs with methods to create and manage users with email and password. It has built-in features

to send reset and verify emails. Authentication with social sign-in is provided with Google, Apple,

Facebook, Twitter and GitHub accounts. Phone number authentications allows users to identify

without password by sending a one time code via SMS message. Anonymous auth allows users to

sign-in via temporary anonymous account, and if the user later wants to sign up, temporary

account can be upgraded to regular account. Firebase Authentication can be upgraded with

Identity Platform that allows multi-factor authentication and support for SAML. FirebaseUI Auth is

a drop-in authentication solution with a full pre-built authentication flow. It includes all sign-in

methods mentioned above. Pre-built user interface can be customized to match application’s

style. (Firebase, n.d-a)

18

Sign in providers are selected in the Firebase console by enabling them from the list of providers.

After the methods are selected, the code snippets for user management can be copied and pasted

from the Firebase documents. Documents offers ready to use code snippets for all authentication

functionalities. All that remains to do is to insert the code into the application and define what to

do with the response. (Program code 2)

Program code 2. Create user function code for Firebase.

 const createUser = async (credentials) => {

 createUserWithEmailAndPassword(

 auth,

 credentials.email,

 credentials.password

)

 .then((userCredential) => {

 setUser(userCredential.user.uid);

 localStorage.setItem("user", userCredential.user.uid);

 })

 .catch((error) => {

 console.error(error.message);

 });

 };

Email templates can be set from the console. Firebase Authentication has templates for email

verification, password reset, email change etc. Content of templates cannot be modified, but

language can be selected from multiple langauges including Finnish. (Figure 4)

19

Figure 4. Email templates settings in Firebase console.

8.3 Database

Firebase offers two NoSQL databases, Realtime Database and Cloud Firestore. Realtime Database

stores data in a JSON tree format. Firestore stores data as collections of documents which offers a

possibility to create more complex queries. Support for offline persistence is a built-in feature in

both databases. Offline support caches the data from application if the device is offline and when

the device is online, data will be synchronized to database. Databases are secured with the

Security Rules, which manage access to data. Security Rules are integrated with Firebase

Authentication. Rules can be set from the project’s firestore.rules file or from the Firebase

console. (Firebase, n.d-d; Firebase n.d-e.)

20

Firestore does not require a data modelling, but it can be done with the security rules. The rules

file has a specific language that resembles JavaScript. The Program code 3 contains a function that

validates the data types before it is inserted to the database. Function is used within the write

operations. Both read and write operations in foods collection require that user is authorized.

Program code 3. Firestore rules file.

rules_version = '2';

service cloud.firestore {

 match /databases/{database}/documents {

 function isAuthorized(request, resource) {

 return request.auth.uid == resource.data.uid ||

 request.auth.uid == request.resource.data.uid;

 }

 match /foods/{document} {

 function validateFoods(data) {

 return data.name is string &&

 data.description is string &&

 data.photo is string &&

 data.uid is string;

 }

 allow read: if isAuthorized(request, resource);

 allow write: if isAuthorized(request, resource) &&

 validateFoods(request.resource.data)

 }

 }

}

When initializing the database in the Firebase console, the region must be selected. The region

selection is permanent and cannot be changed. The Demo application uses a Firestore database,

and the region is Europe-west, that is a multi-region option. The region will be the same for both

Database and Storage and the selection is permanent for the project. Using the Firestore database

is straightforward. In Program code 4, data is written into the foods collection of the database. If

the collection does not exist, it is created automatically. Response from the successful write

operation contains the document identifier that is automatically created if not defined.

Program code 4. Insert data into Firestore database.

 const saveFood = async (food) => {

 const docRef = await addDoc(collection(db, "foods"), food);

 food.id = docRef.id;

 setFoods([...foods, food]);

 };

21

Response from a database read is a snapshot of the results. Snapshot is an array that contains

documents from the query. It is possible to chain multiple filters in one query. Filter can be based

on property value, like in the Program code 5or query based on array value. Addition to filters,

result can be sorted by a property value. Results can be paginated with the query cursors. Firebase

has made it easy for developers by providing code snippets for all Firestore features in

documentation.

Program code 5. Read data from Firestore database.

 const loadFoods = useCallback(async () => {

 if (user) {

 const q = query(collection(db, "foods"), where("uid", "==", user));

 const querySnapshot = await getDocs(q);

 const loadedFoods = [];

 querySnapshot.forEach((doc) => {

 loadedFoods.push({ ...doc.data(), id: doc.id });

 });

 setFoods(loadedFoods);

 }

 }, [user]);

8.4 Storage

Firebase Storage is object storage and can be used to store photos, videos, and other files. Files

can be uploaded, downloaded, and removed with the SDK. Firebase Authentication is integrated

with the Storage. Similar security rules that are used for the Firestore are used to manage access

to resources. (Firebase, n.d-g.)

The uploading process can be followed in the application, it allows a functionality to display a

progress bar while the uploading process is in progress. When the uploading task is completed, the

download URL can be saved into the database. With the download URL, the file can be accessed

without first downloading it programmatically. The download URL can be set to the html image tag

as a source, and the image will be loaded. (Program code 6)

Program code 6. Save file to Firebase Storage.

 const handleSave = async (e) => {

 e.preventDefault();

 const name = e.target.name.value;

 const description = e.target.description.value;

22

 const photo = e.target.photo.files[0];

 // Save image file to storage

 const fileRef = ref(storage, name);

 const uploadTask = uploadBytesResumable(fileRef, photo);

 uploadTask.on(

 "state_changed",

 (snapshot) => {

 const progress =

 (snapshot.bytesTransferred / snapshot.totalBytes) * 100;

 console.log("Upload is " + progress + "% done");

 },

 (error) => {

 console.error(error);

 },

 () => {

 getDownloadURL(uploadTask.snapshot.ref).then(async (downloadURL) =>

{

 console.log("File available at", downloadURL);

 // Save to database

 saveFood({ name, description, photo: downloadURL, uid: user })

 .then(() => {

 navigate("/foods/browse");

 })

 .catch((error) => console.error(error));

 });

 }

);

 };

8.5 Hosting

With Firebase Hosting developers can server static and dynamic content or microservices. All

connections are secured with SSL. It has a feature to preview the content in temporary URL and

use GitHub integration for automated deployments. Firebase has a default domain generated, but

custom domains can be set. (Firebase, n.d-c.)

Deploying to Hosting is done with the automated deployments from GitHub repository, or with

the CLI. With the firebase deploy command, CLI let the developer choose what services are

deployed. It automatically detects what services have been updated from the current deployment.

As can be seen in Figure 5. Deployment process in Firebase CLI., firebase deployment runs multiple

checks during the process. It is checking the security rules, indexes and all changes that have been

made to the files that are deployed.

23

Figure 5. Deployment process in Firebase CLI.

8.6 Cloud Functions

Firebase Cloud Functions is a serverless framework that allows to extend the backend with custom

functions. Functions can be fired by event trigger, call from the app, scheduled and HTTPS

requests. Event can be a database, storage, or authentication event. It is possible to modify

documents from other collections based on recently saved documents in database. Moreover, it is

possible to modify the user data after the user account is created. (Firebase, n.d-f.)

8.7 Analytics

Firebase has built-in Google Analytics that can be utilized to track app usage and user

engagement. When analytics is set up in the application, it automatically captures certain default

events and user properties. It is also possible to create custom events to get insight from the

24

application. Analytics SDK automatically captures events and captured data is available in the

Firebase console. (Firebase, n.d.)

8.8 Privacy

Firebase acts as a data processor, and the main company Google operates as a data controller.

Developers can select a geographical region where most of the services are running, and data is

stored. Firebase Authentication service is processing data in the United States, but the data

handling is GDPR compliant via the Standard Contractual Clauses agreed with the EU. Storage,

databases, and functions are geographical region-specific services. (Firebase, n.d-h)

8.9 Pricing

Firebase has two pricing tiers. The free tier is called a Spark plan, that has limited features and

usage. Spark plan does not include Cloud Functions. If a user wants to use the Cloud Functions, the

payment plan must be upgraded to a Blaze plan which is a pay as you go solution. Blaze plan

includes all firebase features, and some of the features are completely free. The key features

mentioned above in the Firebase chapter have free quota from the Spark Plan and above that cost

is per usage.

The free quota is generous with the free 50,000 monthly active users for the Authentication

service. The Firestore database have 50,000 reads, 20,000 writes and deletes per day for free.

(Firebase, n.d-b)

8.10 Evaluate of the Firebase

Firebase has a user-friendly dashboard that non-programmers should be able to use. Firebase is a

well-productized service that suits well to web development. The development environment helps

the development work as the modifications can be tested locally with the Firebase. All the main

services can be used with the development environment. It is much safer to develop new features

while not connected to the cloud service. A mistake in the code can cause expenses in the cloud

25

environment, but locally it does not matter. Firebase is a GDPR compliant service, and it is an

option for the EU companies. If it is crucial for the use case to handle all data within the EU region,

Firebase is not the appropriate option. This is because the most sensitive data, which is user data,

is processed in the United States.

For a junior level developer, the service is easy to use, and the documentation is at first class level.

Documentation has detailed instructions for every feature of every service. Documentations

contain a wide range of code snippets and explanations of how to use services. The learning curve

for the basic usage is low, but for advanced usage it might take some time. For experienced

developers the service should be easy to use.

26

9 AWS Amplify

AWS Amplify is a full stack platform to develop web and mobile applications. It is based on

Amazon Web Services and has access to more than 175 AWS services. Amplify Studio is a visual

interface where developers can build backend features and UI components. The UI components

still require a developer to add them into the application. (Amazon Web Services, Inc., n.d-e.)

Amplify project requires Amazon Web Services account. Amplify Studio is used to build the

backend of the application. The features can be activated from the studio one-by-one. The initial

phase was quick since there are not many configurations to do.

9.1 Configuring the application and development environment

Amplify creates the amplify folder into project that contains the configuration files. Everything is

set up automatically by pulling the latest version of the app from the cloud. As can be seen from

Program code 6, Amplify does not require much code to begin. Only one line of code in addition to

import statements in the root route of the application is enough to start (Program code 7). Some

of the Amplify features can be used locally without an AWS account, however it cannot be

counted as a development environment, because it is an offline mode. Application is always

connected to cloud if all services are in use, even though it could use some features in an offline

mode.

Program code 7. Initialize Amplify in the root of the application.

import { Amplify } from 'aws-amplify';

import awsconfig from './aws-exports';

Amplify.configure(awsconfig);

9.2 Authentication

Amplify authentication is based on Amazon Cognito service. Cognito supports OAuth 2.0, SAML

and OpenID Connect protocols. Pre-built and customizable user interface for sign-up and sign-in

27

processes. Email and password sign-in method is extended with Facebook, Google, Amazon, and

Apple sign-in. Cognito comes with security services such as bot detection that protects

applications from automated accounts. (Amazon Web Services, Inc., n.d-h; Amazon Web Services,

Inc, n.d-a)

Amplify application has email login as a default login method. As can be seen in the Figure 6,

additional attributes can be set for the user. Additional attributes are for example: birthdate,

gender, picture, and nickname. After the authentication is deployed, attributes cannot be

changed. Password policy can be set from the studio, settings include length, and forcing users to

use lowercase and uppercase character, numbers, and symbols. Account verification mechanism

can be set to use email or SMS. The verification messages are fully customizable.

28

Figure 6. Configure sign up in Amplify Studio.

29

In demo application users are authenticated with email and password. When the user is

successfully authenticated, the user identifier is saved into the browser’s local storage. Saving the

user into local storage is not necessary with Amplify, because the user with attributes is

automatically saved into local storage by the SDK. (Program code 8)

Program code 8. Create user function with Amplify.

const createUser = async (credentials) => {

 try {

 const response = await Auth.signUp(credentials);

 if (response?.userSub) {

 setUser(response.username);

 localStorage.setItem("user", response.username);

 }

 } catch (error) {

 console.error(error);

 }

 };

9.3 Database

Amplify Datastore is a NoSQL database based on Amazon DynamoDB. It is an on-device storage

engine that automatically synchronizes data between applications and database in the cloud.

DynamoDB supports both key-value and document data models with flexible schemas. Developers

can use visual data modeling tools to define data models. (Amazon Web Services, Inc., n.d-b.)

Database requires a data model before inserting data. It can be written as a GraphQL schema, or

by using the Visual editor. GraphQL is a query language with capability to query data from many

resources in one request (GraphQL, n.d). Figure 7 presents the Foods data model. It is simple to

set the properties and types with the Visual editor. The types are validated before inserting the

data, and invalid values are not accepted. When the data model is saved, Amplify automatically

builds a UI form component for the data model, which can speed up the development process if

used correctly. The demo application does not utilize this feature due to the focus on the backend

integrations.

30

Figure 7. Visual editor for data modeling in Amplify.

After deploying the data model, Amplify offers a code snippet for operations to the data model.

Code snippets are available as JavaScript, Java, Kotlin, Swift and Flutter. It is easy to copy and

paste the code to the application. Figure 8 shows a create operation, which can be changed to also

update, delete, and read operations. Also, the data model can be changed to any model data

model in the project. As can be seen from Figure 8, database operation uses the Foods model. The

model validates the data before inserting it into the database, and prevents insertion if data is not

valid. By default, the database is in offline mode, but with a single line of code it is turned into

online mode.

31

Figure 8. Amplify code snippet to insert data.

9.4 Storage

Amplify has built-in support for Amazon S3 object storage. S3 storage stores data as objects that

consists of a file and optional metadata. Permissions can be set to the individual file. (Amplify Dev

Center, n.d-a.)

Access rules for storage can be set from the Studio UI. In the demo application rule is set to the

mode where only authenticated users can upload and view content. Amplify does not provide

direct URL to the file that is saved into storage. Files must be downloaded programmatically when

needed.

32

9.5 Lambda Functions

Amplify uses AWS Lambda serverless computer service to run functions. Lambda function can be

triggered by HTTP requests, updates on objects in S3 storage or table updates in database. With

Lambda functions developers can extend pre-built backend functionalities from Amplify or create

completely custom backend services (Amazon Web Services, Inc., n.d-i.)

9.6 Hosting

Amplify Hosting service is designed for modern web applications. It has support for modern web

frameworks such as React, Angular, Vue and more. With CI/CD workflows developers can build

automated workflows to deploy code from git repository. Free SSL certificates are granted for

custom domains. (Amazon Web Services, n.d-d.)

Deploying the demo application into the Hosting service cannot be done in the CLI. The choices are

to deploy from the code repository or upload the project’s build files to the AWS console. The

second approach was used to deploy the demo application. While running the hosted application,

an access denied error occurs from Amplify when the page is refreshed. The origin of the error has

not been identified by the author. By default, the hosting service uses a default domain name

generated by Amplify, which can be upgraded to a custom domain.

9.7 Analytics

Amplify has built-in support for Amazon Pinpoint service. Amazon Pinpoint is an AWS service that

can be used to engage with customers across multiple messaging channels (Amazon Pinpoint,

n.d.). Usage of the application can be tracked with the analytics by saving the events. Automatic

tracking is an option that can be used for session, page view or page event tracking. Analytic

features provide a wide range of tools to track users in the application. All features of Analytics are

not compatible with the JavaScript SDK, and some are compatible only with the mobile

environments. (Amplify Dev Center, n.d-b)

33

9.8 Privacy

Amplify acts as a data processor, and the main company Amazon Web Services operates as a data

controller. Developers can select a geographical region where the services are running, and data is

stored. Amazon claims that all their services are GDPR compliant via the Standard Contractual

Clauses agreed with the EU. (Amazon Web Services, Inc., n.d-f.)

9.9 Pricing

Amplify has a pay as you go pricing model. Prices are the same as when bought separately from

AWS without using Amplify. The main services, like authentication, database and storage have a

free tier. Authentication has 50,000 monthly users included in the free tier and Database offers

resources that are enough to handle 200M requests per month for free. (Amazon Web Service,

Inc, n.d-k; Amazon Web Service, Inc, n.d-l)

9.10 Evaluate of the Amplify

Amplify has a simple dashboard but overall, the service is not well productized. It seems like

independent services have been glued together. While this study does not review the UI builder, it

has a potential to be a useful feature that increases the speed of development. The entire backend

can be built with the Studio by a non-programmer person. Pulling the code into the codebase was

easy, as was the configuration of the application, but from this stage upon programming skills are

required. Amplify advertises that applications can be built in a few hours, which is a believable

claim. But for more than basic usage, the learning curve is quite steep at least for developers who

are new to AWS. The documentation is decent, but information is scattered around the AWS. The

information can be found from that specific service’s documentation from AWS, Amplify’s

documentation or from the Studio. Documentation contains code snippets of how to use the

services, but only for the basic scenarios. The code snippets in the Amplify Studio are helpful in the

development process because they are available when needed. The lack of the development

environment is a disadvantage for Amplify service. If the application is developed in the cloud

34

environment, it can cause unexpected expenses. Database has the offline mode that should be

used during the development, but otherwise application is connected to the cloud.

35

10 Results

The research shows that Backend services have all the core parts of the modern web application.

The demo application is built successfully with both backend services introduced in this thesis. A

few key differences have been identified between the services. The largest difference between

Amplify and Firebase is that Firebase is better productized. The impression of Amplify is that

independent services have been glued together, which can be seen especially in the

documentation where information is scattered. Firebase gives the impression that it is designed

for the backend service. Some users may find an advantage that all AWS services are in the reach

of Amplify. Another advantage for Amplify is that it is a Full stack platform, that includes the UI

builder which can be used to build Form components that match to the application’s data models.

Another difference that should be noticed is that Firebase has the development environment and

Amplify does not. Both services are GDPR compliant, but Firebase is not an option if it is important

that data is handled in the EU region. Firebase handles the Authentication data in the United

States.

Based to the development experience, backend services are a solid option to build web

applications. The development is faster because a large part of the application is outsourced to

backend service. However, the savings come with the drawbacks that are deep vendor lock-in and

that application cannot be very complicated because of the universal nature of the services causes

limited backend features. Backend features can be extended with the serverless functions, but it is

probably better to build a custom backend if the application needs complicated backend features.

Both reviewed services in the thesis have non-relational databases which may not be ideal for

every use case. The demo application project shows that using backend services requires very little

configuration on infrastructure and for that reason is a very fast way to build applications.

36

11 Summary

The goal of this thesis was to find out if backend services are a relevant choice for web

applications. Services were tested with the small demo application, which does not utilize every

feature that services offers. However, it was enough to test the core features which were

Authentication, Database and Storage. The development work showed that backend services are a

fast way to develop a web application. Firebase and Amplify have a few differences therefore it is

recommended to investigate multiple services before selecting one. Due to the vendor lock it is

difficult to change the service later. Backend services are especially suitable for small companies

who do not have the resources to hire large development teams. Due to the free tiers of the

services, it is possible to test the application on the market without running costs. Backend

services can be utilized with a decent learning curve even by an inexperienced developer. It is a

good solution for a small software company who lacks the resources to hire multiple developers.

During the process of writing the thesis my knowledge was expanded on serverless computing and

backend services. Backend services will be in the author’s toolbox for the upcoming projects. The

demo applications built during the thesis are deleted from the hosting services. Applications

served their purpose and won’t be developed further.

37

References

Ahopelto, T. (2018). Nollaksi vai ykköseksi (No. 62; EVA Analyysi). Elinkeinoelämän valtuuskunta.

Amazon Pinpoint. (n.d.). What Is Amazon Pinpoint? Retrieved 16 April 2023, from

https://docs.aws.amazon.com/pinpoint/latest/userguide/welcome.html

Amazon Web Services, Inc. (n.d-a.). AWS Amplify Dev Center Docs Authentication Social Sign-In.

Retrieved 2 February 2023, from

https://docs.amplify.aws/lib/auth/social/q/platform/js/

Amazon Web Services, Inc. (n.d-b.). App Data Modeling - Aws Amplify Datastore - Aws. Retrieved 6

February 2023, from https://aws.amazon.com/amplify/datastore/?nc=sn&loc=3&dn=2

Amazon Web Services, Inc. (n.d-c.). AWS Amplify Features. Retrieved 1 February 2023, from

https://aws.amazon.com/amplify/features/

Amazon Web Services, Inc. (n.d-d.). Aws Amplify Hosting. Retrieved 6 February 2023, from

https://aws.amazon.com/amplify/hosting/

Amazon Web Services, Inc. (n.d-e.). Aws Amplify. Retrieved 12 February 2023, from

https://aws.amazon.com/amplify/

Amazon Web Services, Inc. (n.d-f.). Gdpr - Amazon Web Services(Aws). Retrieved 20 February

2023, from https://aws.amazon.com/compliance/gdpr-center/

Amazon Web Services, Inc. (n.d-g.). What Is Cloud Storage? Retrieved 23 February 2023, from

https://aws.amazon.com/what-is/cloud-storage/

Amazon Web Services, Inc. (n.d-h.). What Is Web Hosting? - Web Hosting Service Explained.

Retrieved 4 March 2023, from https://aws.amazon.com/what-is/web-hosting/

Amazon Web Services, Inc. (n.d-i.). Serverless Computing - Aws Lambda Features. Retrieved 4

March 2023, from https://aws.amazon.com/lambda/features/

Amazon Web Services, Inc. (n.d-k.). Amazon Dynamodb Pricing | Nosql Key-Value Database |

Amazon Web Services. Retrieved 23 April 2023, from

https://aws.amazon.com/dynamodb/pricing/

Amazon Web Services, Inc. (n.d-l.). Pricing | Amazon Cognito | Amazon Web Services(Aws).

Retrieved 23 April 2023, from https://aws.amazon.com/cognito/pricing/

Amplify Dev Center. (n.d-a.). Storage Concepts. Retrieved 3 March 2023, from

https://docs.amplify.aws/lib/storage/overview/q/platform/js/

https://docs.aws.amazon.com/pinpoint/latest/userguide/welcome.html
https://docs.amplify.aws/lib/auth/social/q/platform/js/
https://aws.amazon.com/amplify/datastore/?nc=sn&loc=3&dn=2
https://aws.amazon.com/amplify/features/
https://aws.amazon.com/amplify/hosting/
https://aws.amazon.com/amplify/
https://aws.amazon.com/compliance/gdpr-center/
https://aws.amazon.com/what-is/cloud-storage/
https://aws.amazon.com/what-is/web-hosting/
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/cognito/pricing/
https://docs.amplify.aws/lib/storage/overview/q/platform/js/

38

Amplify Dev Center. (n.d-b.). Analytics. Retrieved 23 April 2023, from

https://docs.amplify.aws/lib/analytics/personalize/q/platform/js/

Arkhipov, A. (2023, March 17). TechMagic. Top Benefits of Backend as a Service.

https://www.techmagic.co/blog/backend-as-a-service/

Auth0. (n.d-a.). What Is Authentication? Definition and Uses. Retrieved 4 March 2023, from

https://auth0.com/intro-to-iam/what-is-authentication

Auth0. (n.d-b.). What Is OAuth 2.0 and What Does It Do for You? Retrieved 4 March 2023, from

https://auth0.com/intro-to-iam/what-is-oauth-2

Auth0. (n.d-c.). What Is SAML 2.0 and How Does It Work for You? Retrieved 4 March 2023, from

https://auth0.com/intro-to-iam/what-is-saml

Auth0. (n.d-d.). What Is OpenID Connect and What Do You Use It For? Retrieved 4 March 2023,

from https://auth0.com/intro-to-iam/what-is-openid-connect-oidc

Cloudflare. (n.d-a.). What Is Vendor Lock-in? | Vendor Lock-in and Cloud Computing. Retrieved 10

March 2023, from https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-

lock-in/

Cloudflare. (n.d-b.). Vendor lock-in explained in cloud computing. [Figure] Retrieved 10 March

2023, from https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-lock-in/

Chiarelli, A. (2018). Beginning react: Simplify your frontend development workflow and enhance

the user experience of your applications with react. Packt Publishing Ltd.

Firebase. (n.d-a.). Firebase Authentication. Retrieved 2 February 2023, from

https://firebase.google.com/docs/auth

Firebase. (n.d-b.). Firebase Pricing. Retrieved 2 February 2023, from

https://firebase.google.com/pricing

Firebase. (n.d-c.). Firebase Hosting. Retrieved 3 February 2023, from

https://firebase.google.com/docs/hosting

Firebase. (n.d-d.). Firebase Realtime Database. Retrieved 6 February 2023, from

https://firebase.google.com/docs/database

Firebase. (n.d-e.). Firestore. Retrieved 6 February 2023, from

https://firebase.google.com/docs/firestore

Firebase. (n.d-f.). Cloud Functions for Firebase. Retrieved 6 February 2023, from

https://firebase.google.com/docs/functions

https://docs.amplify.aws/lib/analytics/personalize/q/platform/js/
https://www.techmagic.co/blog/backend-as-a-service/
https://auth0.com/intro-to-iam/what-is-authentication
https://auth0.com/intro-to-iam/what-is-oauth-2
https://auth0.com/intro-to-iam/what-is-saml
https://auth0.com/intro-to-iam/what-is-openid-connect-oidc
https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-lock-in/
https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-lock-in/
https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-lock-in/
https://firebase.google.com/docs/auth
https://firebase.google.com/pricing
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/database
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/functions

39

Firebase. (n.d-f.). Execute intensive tasks in the cloud instead of a user’s device. [Figure] Retrieved

6 February 2023, from https://firebase.google.com/docs/functions

Firebase. (n.d-g.). Cloud Storage for Firebase. Retrieved 6 February 2023, from

https://firebase.google.com/docs/storage

Firebase. (n.d-h.). Privacy and Security in Firebase. Retrieved 6 February 2023, from

https://firebase.google.com/support/privacy

Firebase. (n.d-i.). Firebase. Retrieved 12 February 2023, from https://firebase.google.com/

Firebase. (n.d-j.). Google Analytics for Firebase. Retrieved 17 April 2023, from

https://firebase.google.com/docs/analytics

Gallardo, E. (2023, January 6). What Is Back-End Development? https://builtin.com/software-

engineering-perspectives/back-end-development

GraphQL. (n.d.). A Query Language for Your API. Retrieved 6 February 2023, from

https://graphql.org/

IBM. (n.d.). IaaS vs. PaaS vs. SaaS. Retrieved February 1, 2023, from

https://www.ibm.com/topics/iaas-paas-saas

IBM. (2021, July 13). Sdk vs. Api: What’s the Difference? https://www.ibm.com/cloud/blog/sdk-vs-

api

Jwt. (n.d.). Json Web Tokens Introduction. Retrieved 4 March 2023, from http://jwt.io/

Komanduri, S. K., & Hoque, S. (2018). Full-stack react projects: Modern web development using

react 16, node, express, and mongodb. Packt Publishing.

Larja, L., & Peltonen, J. (2023). Työvoiman saatavuus, työvoimapula ja kohtaanto-ongelmat vuonna

2022 (No. 113/2023).

Metwalli, S. (2022, December 22). What Is Front-End Development? https://builtin.com/software-

engineering-perspectives/front-end-development

Microsoft Azure. (n.d.). What Is Cloud Computing? A Beginner’s Guide. Retrieved February 1, 2023,

from https://azure.microsoft.com/en-us/resources/cloud-computing-

dictionary/what-is-cloud-computing

Oracle. (n.d.). What Is a Database? Retrieved 6 February 2023, from

https://www.oracle.com/database/what-is-database/

Privacy Shield. (n.d.). Privacy Shield Program Overview. Retrieved 12 February 2023, from

https://www.privacyshield.gov/Program-Overview

https://firebase.google.com/docs/functions
https://firebase.google.com/docs/storage
https://firebase.google.com/support/privacy
https://firebase.google.com/
https://firebase.google.com/docs/analytics
https://builtin.com/software-engineering-perspectives/back-end-development
https://builtin.com/software-engineering-perspectives/back-end-development
https://graphql.org/
https://www.ibm.com/topics/iaas-paas-saas
https://www.ibm.com/cloud/blog/sdk-vs-api
https://www.ibm.com/cloud/blog/sdk-vs-api
http://jwt.io/
https://builtin.com/software-engineering-perspectives/front-end-development
https://builtin.com/software-engineering-perspectives/front-end-development
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://www.oracle.com/database/what-is-database/
https://www.privacyshield.gov/Program-Overview

40

React – A JavaScript library for building user interfaces. (n.d.). Retrieved 3 February 2023, from

https://reactjs.org/

Ruparelia, N. (2016). Cloud computing. MIT Press.

Sharma, S. (2020). Data privacy and GDPR handbook. John Wiley & Sons, Inc.

Tietosuojavaltuutetun toimisto. (n.d.). Tietosuojavaltuutetun toimisto. Retrieved 12 February

2023, from https://tietosuoja.fi/komission-hyvaksymat-vakiolausekkeet

Wellens, P. (2015). Practical web development: Learn CSS, JavaScript, PHP, and more with this vital

guide to modern web development. Packt Publishing.

Your Europe. (n.d.). Data Protection under GDPR. Retrieved 6 February 2023, from

https://europa.eu/youreurope/business/dealing-with-customers/data-protection/data-

protection-gdpr/index_en.htm

Zhang, M. (2023, January 1). Dgtl Infra. Top 10 Cloud Service Providers Globally in 2023.

https://dgtlinfra.com/top-10-cloud-service-providers-2022/

https://reactjs.org/
https://tietosuoja.fi/komission-hyvaksymat-vakiolausekkeet
https://europa.eu/youreurope/business/dealing-with-customers/data-protection/data-protection-gdpr/index_en.htm
https://europa.eu/youreurope/business/dealing-with-customers/data-protection/data-protection-gdpr/index_en.htm
https://dgtlinfra.com/top-10-cloud-service-providers-2022/

Annex 1 / 1

Annex 1: Material management plan

Code from the development work will be saved into the public GitHub repository. The

development diary is stored on the author’s personal Google Drive. The diary is kept at Google

Drive for at least one year after the completion of the thesis. Projects created in Firebase and

Amplify are terminated.

	1 Introduction
	2 Finnish ICT job market
	3 Privacy
	3.1 General Data Protection Regulation
	3.2 Privacy frameworks

	4 Web Development
	4.1 Frontend development
	4.2 Backend development
	4.3 Full stack development

	5 Cloud computing
	5.1 Cloud Service Models
	5.2 Serverless computing
	5.3 Cloud security

	6 Backend as a Service
	6.1 Authentication
	6.2 Database
	6.3 Serverless functions
	6.4 Hosting
	6.5 Storage

	7 Development work
	7.1 Demo application
	7.2 Version control

	8 Firebase
	8.1 Configuring the application and development environment
	8.2 Authentication
	8.3 Database
	8.4 Storage
	8.5 Hosting
	8.6 Cloud Functions
	8.7 Analytics
	8.8 Privacy
	8.9 Pricing
	8.10 Evaluate of the Firebase

	9 AWS Amplify
	9.1 Configuring the application and development environment
	9.2 Authentication
	9.3 Database
	9.4 Storage
	9.5 Lambda Functions
	9.6 Hosting
	9.7 Analytics
	9.8 Privacy
	9.9 Pricing
	9.10 Evaluate of the Amplify

	10 Results
	11 Summary
	References

