
A QUANTITATIVE STUDY ON THE PERFORMANCE AND SCALABILITY

OF JAMSTACK IN COMPARISON TO A MONOLITHIC WEB

ARCHITECTURE

Bachelor’s thesis

Häme University of Applied Sciences (HAMK)

Bachelor’s Programme in Information and Communication Technology

Spring, 2023

Sam Whitley

Information and Communication Technology Abstract
Author Sam Whitley Year 2023
Subject A Quantitative Study on the Performance and Scalability

of Jamstack in Comparison to a Monolithic Web Architecture
Supervisor Petri Kuittinen

Although the monolithic web architecture is still widely used and dominant today,

developers are always actively seeking ways to deliver static content in ways that give

greater performance, while using fewer moving parts and which requires far less

maintenance. This is where the Jamstack web architecture comes in. Not only does it

promise faster site performance, but also increased security and scalability, as well as

making it more fun to develop and create for. Whilst this has been proven many of times

already in different publications, the real question still looms: How much faster and scalable

is Jamstack?

The aim of this research study was not only limited to gathering more quantitative data on

the performance and scalability of the Jamstack web architecture, but also to compare it to

the monolithic web architecture of WordPress and analysis how much better the Jamstack

architecture is in terms of performance and scalability.

To test and evaluate the performance and scalability of the two web architectures, a total of

eight Linux-based virtualised environments were tested, half of which were created using

Jamstack and the other WordPress. These environments were then deployed on different

virtualisation technologies, WSL2 and VM, using the different web servers, such as Apache

and NGINX, from the software stacks of LAMP and LEMP.

In summary, the research findings suggest that the Jamstack web architecture provided clear

performance benefits when serving its content statically, especially under heavier loads,

compared to the monolithic web architecture of WordPress.

Keywords Comparison, Jamstack, monolithic web architecture, performance, scalability
Pages 52 pages and appendices 53 pages

Tieto- ja viestintätekniikan koulutus (AMK-tutkinto) Tiivistelmä
Tekijä Sam Whitley Vuosi 2023
Työn nimi Kvantitatiivinen tutkimus Jamstackin suorituskyvystä ja

skaalautuvuudesta verrattuna monoliittiseen verkkoarkkitehtuuriin
Ohjaaja Petri Kuittinen

Vaikka monoliittinen verkkoarkkitehtuuri on edelleen laajalti käytössä ja hallitseva,

ohjelmistokehittäjät etsivät aina aktiivisesti tapoja tuottaa staattista sisältöä entistä

suorituskykyisemmällä tavalla, jossa käytetään vähemmän liikkuvia osia ja paljon vähemmän

ylläpitoa. Jamstack-verkkoarkkitehtuuri palvelee juuri tätä asiaa. Se lupaa paitsi nopeampaa

sivuston suorituskykyä, myös turvallisuuden ja skaalautuvuuden parantamista sekä

mukavampaa kehittämistä ja luomista. Vaikka tämä on todistettu jo lukemattomia kertoja eri

julkaisuissa, todellinen kysymys on edelleen: Kuinka paljon nopeampi ja skaalautuva

Jamstack on?

Tämän tutkimuksen tavoitteena ei ollut ainoastaan kerätä lisää kvantitatiivista tietoa

Jamstack-verkkoarkkitehtuurin suorituskyvystä ja skaalautuvuudesta, vaan myös verrata sitä

WordPressin monoliittiseen verkkoarkkitehtuuriin ja analysoida, kuinka paljon parempi

Jamstack-verkkoarkkitehtuuri on suorituskyvyn ja skaalautuvuuden kannalta.

Näiden kahden verkkoarkkitehtuurin suorituskyvyn ja skaalautuvuuden testaamiseksi ja

arvioimiseksi testattiin yhteensä kahdeksan Linux pohjaista virtualisoitua ympäristöä, joista

puolet luotiin Jamstackilla ja puolet WordPressillä. Nämä ympäristöt otettiin sitten käyttöön

eri virtualisointitekniikoilla, WSL2:lla ja VM:llä, ja niissä käytettiin eri verkkopalvelimia, kuten

Apachea ja NGINXiä, LAMP ja LEMP ohjelmistopinoista.

Yhteenvetona tutkimustuloksista voidaan todeta, että Jamstack-verkkoarkkitehtuuri tarjosi

selkeitä suorituskykyetuja, erityisesti raskaammissa kuormituksissa, verrattuna WordPressin

monoliittiseen verkkoarkkitehtuuriin.

Avainsanat Jamstack, monoliittinen verkkoarkkitehtuuri, suorituskyky, skaalautuvuus,
vertailu

Sivut 52 sivua ja liitteitä 53 sivua

Acknowledgements

I would like to take this opportunity to thank my thesis supervisor, Petri Kuittinen, for his

help and guidance throughout the entire thesis process. He has provided me with advice and

feedback and has always promptly responded to my gruelling long essay-like messages,

never leaving any of my questions or messages go unanswered. Furthermore, where credit is

due, I would also like to credit and thank him for suggesting the topic on the Jamstack

architecture.

-Sam Whitley

List of Acronyms

API: Application Programming Interface

CDN: Content Delivery Network

CLI: Command Line Interface

CMS: Content Management System

CrUX: Chrome User Experience Report

CSS: Cascading Style Sheets

CSV: Comma Separated Values

DOM: Document Object Model

FCP: First Contentful Paint

FID: First Input Delay

GPSI: Google PageSpeed Insights

HAR: HTTP Archive

HTML: HyperText Markup Language

JSON: JavaScript Object Notation

LAMP: Linux, Apache, MySQL, PHP

LEMP: Linux, NGINX, MySQL/MariaDB, PHP/Perl/Python

PHP: Hypertext Preprocessor

PHP-FPM: FastCGI Process Manager

PLT: Page Load Time

REST: Representational State Transfer

SPSS: Statistical Package for the Social Sciences

SQL: Structured Query Language

SSG: Static Site Generator

STDOUT: Standard Output

TTFB: Time to First Byte

VM: Virtual Machine

VU: Virtual User

W3Tech: World Wide Web Technologies

WSL: Windows Subsystem for Linux

Contents

1 Introduction ... 1

1.1 Previous Studies ... 1

1.2 Objectives and Questions .. 2

1.3 Scope and Limitations .. 2

2 Jamstack .. 3

2.1 Definition .. 3

2.2 Advantages ... 4

2.3 Disadvantages .. 5

2.4 Current State .. 5

3 Monolithic Architecture .. 6

3.1 Definition .. 7

3.2 Advantages ... 7

3.3 Disadvantages .. 8

3.4 WordPress .. 9

3.5 Current State of WordPress ... 9

4 Methodology ... 10

4.1 Research Approaches ... 10

4.1.1 Research Approach Selection... 12

4.2 Research Design ... 12

4.3 Reliability and Validity .. 13

4.4 Hardware and Software Configurations .. 15

4.5 Research Tools Used .. 20

4.5.1 Sitespeed.io .. 21

4.5.2 Grafana k6 .. 22

4.5.3 Python .. 24

4.5.4 Microsoft Excel ... 25

5 Results and Analysis .. 26

5.1 Performance Results .. 26

5.1.1 Page Load Time Results .. 28

5.1.2 Timing Metrics .. 29

5.2 Scalability Results ... 34

5.2.1 Smoke Test ... 36

5.2.2 Average-Load Test .. 39

5.2.3 Stress Test .. 43

5.2.4 Spike Test ... 46

6 Conclusion ... 50

References .. 53

Figures, Tables, and Equations

Figure 1. Jamstack Architectural Process .. 4

Figure 2. The Growth of the Jamstack ... 6

Figure 3. Monolithic Web Architecture Process .. 7

Figure 4. Testing Environments Flowchart .. 12

Figure 5. Requests and Sizes per Content Type .. 14

Figure 6. Sitespeed.io Performance Test ... 21

Figure 7. Example Sitespeed.io Desktop Command .. 22

Figure 8. Max Traffic Generation Capability of Several Load Testing Tools 23

Figure 9. Most Popular Technologies (Professional Developers) 24

Figure 10. CSV Output Python Script ... 25

Figure 11. Sitespeed.io – Page Load Time (Desktop and Mobile) [Median] 29

Figure 12. Sitespeed.io – Timing Metrics (Desktop) [Median, p50] 32

Figure 13. Sitespeed.io – Timing Metrics (Mobile) [Median, p50] 33

Figure 14. Example Grafana k6 Command .. 34

Figure 15. Smoke Test [Success Rate] ... 38

Figure 16. Average-Load Test [Success Rate] .. 42

Figure 17. Stress Test [Success Rate] ... 45

Figure 18. Spike Test [Success Rate] .. 49

Table 1. Usage Statistics of CMSs .. 9

Table 2. The Differences Between Quantitative and Qualitative Research 11

Table 3. Measures Taken to Ensure Reliability and Validity.. 15

Table 4. Hardware Specifications .. 16

Table 5. Testing Environments .. 16

Table 6. LAMP and LEMP Configuration [WSL2 and VM] .. 17

Table 7. Sitespeed.io Runtime Settings [Desktop] .. 17

Table 8. Sitespeed.io Runtime Settings [Mobile] .. 18

Table 9. Grafana k6 Load Test Types ... 19

Table 10. Grafana k6 Version .. 19

Table 11. Grafana k6 Script Configurations ... 20

Table 12. Sitespeed.io’s Metric Documentation ... 30

Table 13. Smoke Test [Requests]... 37

Table 14. Smoke Test [Other Stats] ... 37

Table 15. Smoke Test [Checks] .. 38

Table 16. Average-Load Test [Requests] ... 41

Table 17. Average-Load Test [Other Stats] .. 41

Table 18. Average-Load Test [Checks] ... 42

Table 19. Stress Test [Requests] .. 44

Table 20. Stress Test [Other Stats] .. 44

Table 21. Stress Test [Checks] ... 45

Table 22. Spike Test [Requests] ... 48

Table 23. Spike Test [Other Stats] ... 48

Table 24. Spike Test [Checks] .. 49

Equation 1. Median of Desktop and Mobile Page Weight

Equation 2. Example Data List and Median Formula

Equation 3. Percentage Change Formula

Equation 4. Percent and Factor Formula

Equation 5. Relative Standard Deviation (RSD) Formula

Equation 6. Standard Deviation (SD) Formula

Equation 7. Excel Standard Deviation (SD) Formula

Equation 8. Example Excel Relative Standard Deviation (RSD) Formula

Appendices

Appendix A. Mathematical Formulas

Appendix B. Sitespeed.io – Timing Metric Summary

Appendix C. Sitespeed.io – Waterfall Graphs

Appendix D. Grafana k6 – Check Examples

Appendix E. Grafana k6 – Load Testing Scripts

Appendix F. Grafana k6 – Smoke Test Results

Appendix G. Grafana k6 – Average-Load Test Results

Appendix H. Grafana k6 – Stress Test Results

Appendix I. Grafana k6 – Spike Test Results

1

1 Introduction

Web development has definitely come a long way since Web 1.0, the early stages of the

World Wide Web's evolution when, back then, websites consisted mainly of just plain static

pages (Sharma, 2022). As of the year 2023, web development has seen significant

advancements. For example, web browsers have become more powerful, JavaScript has

matured, and WebAssembly has gained more importance (Biilmann & Hawksworth, 2019, p.

v). Unfortunately, these advancements have also raised the user expectations for faster sites

and application responses, requiring developers as well as businesses to move away from

the monolithic architecture and explore new approaches to developing sites and

applications that perform as fast as possible, while ensuring the security and scalability of

them. (Biilmann & Hawksworth, 2019, p. v; Vistola, 2021) One such approach that has gained

momentum in recent years is Jamstack, which aims to not only make sites perform faster,

but to also make them more secure, scalable, as well as fun to develop and create for.

(Biilmann & Hawksworth, 2019, p. vi)

1.1 Previous Studies

Several publications have emerged that compare multiple user-centric performance metrics

of Jamstack sites. In the article A Look at Jamstack’s Speed by the Numbers (2019), Artem

Denysov, collected and analysed user-centric performance metrics of different content

managements systems (CMSs) and a content delivery network (CDN) hosted Jamstack site

from the Chrome User Experience Report (CrUX) and The HTTP Archive, such as Time to First

Byte (TTFB), First Contentful Paint (FCP), and First Input Delay (FID). According to the article,

the results indicated that Jamstack sites generally outperformed CMSs due to the benefits

such as statically serving pages with a CDN, as well as the reduced TTFB time, which are

known for offering better performance. (Denysov, 2019)

Another publication, a Finnish bachelor’s thesis by Markus Matilainen (2020), on the other

hand, compared the page load times of three sites. The first site used WordPress, the second

used WordPress with Gatsby, and the third used a Netlify CMS with Gatsby. The author of

2

the thesis used different performance testing tools such as Lighthouse, Pingdom, and

GTmetrix to measure the page load times. According to the thesis, it was revealed that using

a static website considerably improved the page load times compared to only using CMSs.

Furthermore, the performance results on the mobile version of the site were even more

evident compared to its desktop counterpart. (Matilainen, 2020)

1.2 Objectives and Questions

The objective of this research study was to gather more numerical data, also known as

quantitative data, on the performance and scalability of the Jamstack architecture and

compare it to the monolithic architecture of WordPress by utilising various open-source

performance testing tools, like Grafana k6 and Sitespeed.io in combination with the different

web servers from software stacks such as LAMP (Linux, Apache, MariaDB, and PHP) and

LEMP (Linux, NGINX, MariaDB, and PHP). More specifically, this research study hopes to

answer the following research questions bellow:

Question 1: How does the performance of the Jamstack web architecture compare to the

monolithic web architecture of WordPress in terms of different user-centric performance

metrics?

Question 2: How does the scalability of the Jamstack web architecture compare to the

monolithic web architecture of WordPress in handling different patterns of traffic?

1.3 Scope and Limitations

The scope of this research study was only limited in comparing the performance and

scalability of Jamstack and the monolithic web architecture, WordPress. It will not cover any

other web architecture(s) or any other aspects of web development, such as security, cost

(whether it be direct or indirect costs), or the developer experience. Instead, it will solely

focus on the certain user and server-centric metrics, like the browser and visual metrics,

which are metrics used in measuring “how quickly the site can load and display all of its

visual elements on the screen” (Walton, 2022), as well as HTTP and iteration metrics, which

3

are Grafana k6’s built-in metrics used in measuring “how a system performs under different

test conditions”. (Grafana k6, 2023c)

2 Jamstack

This chapter hopes to provide readers with a brief overview of the Jamstack architecture and

the technologies surrounding it. It will cover different aspects such as its definition,

advantages and disadvantages, as well as its current state. By the end of this chapter,

readers should have a general understanding of some of the inner workings of Jamstack and

the reasons for its increasing adoption and popularity amongst web developers.

For any readers interested in delving deeper into the meaning or the technologies behind

Jamstack, it is recommended to read either the "Modern Web Development on the

Jamstack" or "The Jamstack Book". These books provide a comprehensive understanding of

Jamstack by presenting multiple practical examples of building various Jamstack websites, as

well as including a case study that demonstrates a company’s migration from a monolithic

architecture to the Jamstack architecture.

2.1 Definition

Jamstack (formerly stylised as JAMstack) is a modern approach to web architecture that

focuses on delivering fast, secure, and scalable static sites and applications with dynamic-like

content. (Wallis, 2022) This approach is originally based on three technologies: JavaScript,

APIs, and Markup, which forms the acronym of “Jam” in Jamstack. (Biilmann & Hawksworth,

2019, p. vii) At its core, Jamstack emphasises decoupling the web experience layer (client-

side) from the data and business logic (server-side), a shift from a monolithic architecture

model where these abstraction layers are tightly coupled together. (Biilmann & Hawksworth,

2019, p. 1; Jamstack.org, n.d.) Furthermore, Jamstack also emphasises in pre-rendering its

static files and assets using a Static Site Generator (SSG) and serving them directly from a

Content Delivery Network (CDN). (Biilmann & Hawksworth, 2019, p. viii)

4

Figure 1 below shows an example of a Jamstack architectural process. The figure, which was

adapted from Bejamas, a software company specialised in Jamstack development,

demonstrates how a Jamstack website functions. In the figure, it is shown that pre-built

markup and optimised assets are served faster because there is no need to query the

database as the files are already complied and served to the browser from a CDN. This

drastically reduces the cumbersome Jamstack workflow hindrances and excess maintenance.

(Kostrzewa, 2020)

Figure 1. Jamstack Architectural Process (Kostrzewa, 2020)

Note. Figure 1 was created by Sam Whitley using the free online graphic tool Canva
(https://www.canva.com/). The design was adapted from Bejamas, originally created by
Denis Kostrezewa. Copyright 2023 by Bejamas.io (https://bejamas.io/blog/jamstack/).

2.2 Advantages

As previously mentioned, Jamstack offers many advantages in addition to the faster

performance, improved security, and scalability benefits. For example, hosting is more

affordable and, in some cases, free (e.g., GitHub Pages) due to requiring far less server-side

processing than its monolithic counterparts. This, in turn, should allow front end developers

to focus more on the front-end aspects of development, leading to a quicker, more focused,

and more cost-effective development process. Ultimately, this results in a better developer

experience and more efficient development. (WTF Is Jamstack?, n.d.; Wallis, 2022; Falconer,

2022)

https://www.canva.com/
https://bejamas.io/blog/jamstack/

5

2.3 Disadvantages

With its advantages, Jamstack also has its disadvantages. According to The Jamstack Book,

written by Raymond Camden and Brian Rinaldi, while there are improved Jamstack tools

(tools such as Next.js, Nuxt, and Gatsby) and services that allow users to make almost any

kind of site, there might be certain situations where the Jamstack approach may not make

much sense. For example, websites that rely heavily on user-generated content or where the

content is continuously updated, might not be ideal for Jamstack, as it can be overly

complex, difficult to implement, or it may even negate some of the overall performance

benefits of Jamstack. Similarly, dashboard applications that rely heavily on server-side

processing by utilizing different application programming interfaces (APIs) to populate charts

and data tables might make perfect sense for Jamstack. However, this may put unnecessary

load on the user and may not be an optimal solution. (Camden & Rinaldi, 2022, p. 9)

2.4 Current State

In recent years, Jamstack has become increasingly popular as developers, as well as

companies, are seeking greater reliability, scalability, and security from their websites. Major

brands such as PayPal, Nike, and Shopify have adopted the architecture by migrating several

of their websites to Jamstack. In addition, large companies like Microsoft and Cloudflare

have launched their own Jamstack offerings, such as Microsoft Azure’s Static Web Apps

service and Cloudflare's Cloudflare Pages. (Kostrzewa, 2020; Biilmann, 2021; Krzywda, 2021)

According to an annual report called The Web Almanac, which is a comprehensive yearly

report on the state of the web, has revealed that the Jamstack adoption has seen a steady

increase in recent years. For example, from 2020 to 2022 the report shows that desktop

Jamstack websites have experienced a 58.8% increase from 1.7% to 2.7%. Mobile Jamstack

sites, on the other hand, saw an increase of 111.8% from 1.7% to 3.6%, as shown in Figure 2.

Figure 2 illustrates the percentage of Jamstack sites on desktop and mobile from 2020 to

2022. (Voss & Alam-Naylor, 2022)

6

Figure 2. The Growth of the Jamstack (Voss & Alam-Naylor, 2022)

Note. Adapted from “The Web Almanac 2022, Part III Chapter 19, Jamstack” by The HTTP
Archive. Copyright 2023 by Web Almanac. Licensed under Apache 2.0.
(https://almanac.httparchive.org/en/2022/jamstack#the-growth-of-the-jamstack)

3 Monolithic Architecture

This chapter will provide readers with a brief overview of the monolithic architecture. It will

cover aspects such as its definition, advantages and disadvantages, the monolithic content

management system (CMS), WordPress, as well as the current state of WordPress.

For readers interested in delving deeper into the monolithic web architecture or how it

compares to newer web architectures, like the microservices architecture, it is

recommended to read either the article “Microservices vs monolithic architecture” written

by Chandler Harris or the article “Monolithic architecture” written by Rahul Awati and Ivy

Wigmore.

It should also be noted that while Jamstack websites do not fall under the microservices

architecture, they do fall under the micro frontend architecture category, which is a

combination of microservices and the frontend. (Dziuba, 2021a; Dziuba, 2021b) According to

Anna Dziuba, VP of Delivery at Relevant Software, each static page with HTML and JavaScript

1.7%
2.2%

2.7%

1.7%
2.1%

3.6%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

01/08/2020 01/07/2021 01/06/2022

Pe
rc

en
ta

ge
 o

f s
ite

s

Date

Desktop Mobile

https://almanac.httparchive.org/en/2022/jamstack#the-growth-of-the-jamstack

7

is considered a micro frontend that can be utilized by any REST API, even those built upon

the microservices architecture. (Dziuba, 2021a)

Figure 3 below shows an example of a monolithic web architecture process. The figure,

which was adapted from Bejamas, a software company specialised in Jamstack

development, demonstrates how a monolithic website functions using a LAMP stack as the

example. When a user requests a page, the server first queries a database and then

combines the results with the data from the page’s markup and plugin to generate an HTML

document in the browser. (Kostrzewa, 2020)

Figure 3. Monolithic Web Architecture Process (Kostrzewa, 2020)

Note. Figure 3 was created by Sam Whitley using the free online graphic tool Canva
(https://www.canva.com/). The design was adapted from Bejamas, originally created by
Denis Kostrezewa. Copyright 2023 by Bejamas.io (https://bejamas.io/blog/jamstack/).

3.1 Definition

A monolithic architecture is a traditional software program model that is self-contained and

independent from other applications. (Harris, n.d.) In this context, the term “monolithic”

means that something is composed all-in-one piece, according to Awati & Wigmore, 2022.

Additionally, the same term can also refer to something either being too large or unable to

be changed. (Awati & Wigmore, 2022; Cambridge Dictionary, n.d.)

3.2 Advantages

The monolithic architecture offers several advantages over other traditional web

architectures, including Jamstack, which explains why many applications, as well as websites,

https://www.canva.com/
https://bejamas.io/blog/jamstack/

8

are still reliant and created on this development model. For instance, organizations that opt

for this kind of architectural approach often experience faster development speeds since the

application is built on a single code base, which refers to the application's source code.

Another advantage of the architecture is its ease of deployment, as one executable file or

directory can make deploying an application much easier. (Awati & Wigmore, 2022; Harris,

n.d.; Sheldon, 2023)

In addition to all of this, the monolithic architecture can even sometimes offer faster

performance due to the centralized code bases and repositories where one application

programming interface (API) can often perform the same function as numerous APIs

perform with a microservice approach. Because of this, end-to-end testing is more simplified

since a monolithic application is one simple, centralized unit compared to a distributed

application. Finally, since the application’s code is in one place, it is easier to debug

something by following requests. (Harris, n.d.)

3.3 Disadvantages

Netflix, the popular streaming service, is a prime example of how a monolithic application

can be quite effective, as mentioned in the previous chapter. However, this type of

architecture can lead to several disadvantages in the long term. As a monolithic application

becomes larger in scale it often experiences slower and much more complex development.

For example, making minor changes even to a single function in a code will require compiling

and testing the entire platform, which counteracts the agile approach some developers

favour. Additionally, individual components cannot be scaled, which might present

scalability challenges. Another disadvantage could be that an error in any module could

affect the entire application's availability, reducing its reliability. Finally, changes in the

framework or language would also affect the entire application, making those changes often

expensive and time-consuming, which might present a barrier to technology adoption.

(Harris, n.d.)

9

3.4 WordPress

WordPress is a popular open-source content management system (CMS) that is used in

creating, modifying, and maintaining websites. (Domantas, 2023) Based on PHP and MySQL,

it was initially released in 2003 as a blogging tool by Matt Mullenweg and Mike Little.

(Javatpoint, n.d.) Since then, WordPress has grown into the most widely used content

management system to date with a CMS market share of close to two-thirds (63.3%) of

websites that are used today, as shown in Table 1. (W3Techs, 2023b)

Table 1 illustrates the percentages of websites using various content management systems

(CMSs). 31.8% of websites do not utilize any content management systems which W3Techs

tracks. WordPress accounts for 43.2% of all websites, giving it a market share of 63.3% in

terms of share of website management systems. W3Techs reports are updated on a daily

basis. (W3Techs, 2023b)

Table 1. Usage Statistics of CMSs (W3Techs, 2023b)

CMS CMS Market Share Website Share

WordPress 63.3% 43.2%

None N/A 31.8%
Shopify 5.5% 3.8%
Wix 3.7% 2.5%
Squarespace 3.1% 2.1%
Joomla 2.7% 1.8%
Drupal 1.8% 1.2%
Adobe Systems 1.7% 1.1%
Google Systems 1.2% 0.8%
PrestaShop 1.1% 0.7%
Bitrix 1.1% 0.7%

Note. Data adapted from “Usage Statistics of Content Management Systems” by World Wide
Web Technology Surveys, 27th March 2023. Copyright 2023 by Q-Success DI Gelbmann
GmbH. (https://w3techs.com/technologies/overview/content_management)

3.5 Current State of WordPress

Since its release exactly 20 years ago in 2003, WordPress has evolved from being a simple

blogging tool to a fully-fledged CMS, with the capability of being used as an e-commerce

website. Because of this, WordPress’ versatility in having the ability to create different types

https://w3techs.com/technologies/overview/content_management

10

of sites, such as blogs and e-commerce sites, has caused its CMS market share to increase

throughout the years from 54.3% in 2012 to an impressive 63.3% in 2023, with no signs of

slowing down according to W3Techs’ yearly trends on CMSs. Another reason for its

continued growth could be the introduction of their REST API, which allows developers to

use it in a headless way, as a backend, whilst separating the frontend where only the

frontend-focused technologies can be used. (Moreira, 2020; W3Techs, 2023a)

Although there have been other content management systems, such as Shopify, that briefly

saw its CMS market share increase from 0.3% in 2014 to 6.6% in 2022; it is highly unlikely for

Shopify or any other CMS to surpass, let alone compete against WordPress in terms of

market share in the near future. (W3Techs, 2023a)

WordPress is widely used by many, as prominent big-name brands, such as Microsoft

(Microsoft News Center), Sony (Sony Music), and CNN (CNN Press Room) have been using

WordPress to run most of their blogs, as well as websites. (Ahmed, 2023; WPBeginner, 2023;

Dodson, 2016)

4 Methodology

This chapter aims to provide readers with an overview of the methodology used during the

research study. It will cover different aspects such as the research approaches, research

design, reliability and validity, hardware and software configurations, as well as the tools

used.

4.1 Research Approaches

A research approach is an approach used in collecting, analysing, and interpreting data.

There are primarily three research approaches to choose from, which are quantitative

research, qualitative research, or “mixed methods research”. (Budert-Waltz, 2021)

Quantitative research involves collecting and analysing the numerical data to describe,

predict, or control a phenomenon. The analysis of numerical data is complex and should be

11

addressed systemically. (Budert-Waltz, 2021) Quantitative research also relies on using

deductive reasoning, which is a logical approach that starts with one or more general

statements and works its way towards reaching a logical conclusion. (Budert-Waltz, 2021;

Sirisilla, 2023)

Qualitative research, on the other hand, involves collecting, analysing, as well as interpreting

comprehensive narrative and visual data to gain insights into a particular phenomenon.

Qualitative research encompasses many aspects of a phenomenon while striving to study

them as they exist naturally. (Budert-Waltz, 2021) Qualitative research also relies on using

inductive reasoning, referred as induction, which involves the construction or evaluation of

prepositions from specific examples. (Budert-Waltz, 2021; Sirisilla, 2023)

Finally, the “mixed methods research” combines both quantitative and the qualitative

approaches bringing together both data types into one study. “Mixed methods research”

builds on the relationship and the strength that exists between quantitative and qualitative

research methods, providing greater insight into the phenomenon being researched.

(Budert-Waltz, 2021)

Table 2. The Differences Between Quantitative and Qualitative Research (Streefkerk, 2023)

Quantitative Research Qualitative Research

Focuses on testing hypotheses and
theories

Focuses on exploring ideas and formulating a
theory or hypothesis

Analysed through math and statistical
analysis

Analysed by summarizing, categorizing, and
interpreting

Mainly expressed in numbers, graphs,
and tables

Mainly expressed in words

Requires many respondents Requires few respondents

Closed (multiple choice) questions Open-ended questions

Key terms: testing, measurement Key terms: understanding, context, complexity

Note. Adapted from “Qualitative vs. Quantitative Research | Differences, Examples &
Methods” by Raimo Streefkerk, 2023. (https://www.scribbr.com/methodology/qualitative-
quantitative-research/)

https://www.scribbr.com/methodology/qualitative-quantitative-research/
https://www.scribbr.com/methodology/qualitative-quantitative-research/

12

4.1.1 Research Approach Selection

The quantitative research approach was chosen as the objective of the research study was to

gather more numerical data, also known as quantitative data, on the performance and

scalability of both web architectures; Jamstack and the monolithic web architecture

WordPress.

4.2 Research Design

To ensure a fair and accurate comparison between the two architectures, Simply Static, a

static site generator (SSG), was used to generate a static site from the WordPress site. The

generated static site then served as a foundation and was deployed to the rest of the

Jamstack environments using ZIP. Additionally, the WordPress plugin called All-in-One WP

Migration was also used to migrate one WordPress site to all the other WordPress sites,

whilst ensuring that every site across all environments, including Jamstack, were identical

one-to-one copies of one another. Finally, all environments were hosted locally on a virtual

machine (VM), as well as on a Windows Subsystem for Linux (WSL2). This was done to

eliminate any sort of external factors, such as network latency or any fluctuations in the

internet speed as that could affect the test results.

Figure 4. Testing Environments Flowchart (Whitley, 2023d)

Note. Figure 4 was created by Sam Whitley using the free online graphic design tool Canva
(https://www.canva.com/).

https://www.canva.com/

13

4.3 Reliability and Validity

In research, especially quantitative research, the researcher should always consider using

reliability and validity when creating their research design, planning their methods, and

writing their results. Neglecting to do so can not only lead to various types of bias in the

research findings but can negatively affect the work in question. (Middleton, 2023)

Reliability refers to the consistency of the measure. A high precision indicates that the

measurement method produces similar results under the same circumstances. In other

words, if a researcher measures, for example, an item or person multiple times, they want to

obtain reproducible, comparable values. (Frost, n.d.) Validity, however, is a broader concept

than reliability and refers to whether the measurements reflect on what they claim to

measure. Researchers, for example, must always question themselves whether their results

reflect what they think they measure, whether something else entirely has occurred, and

ensure that an instrument measures exactly what it is intended. (Frost, n.d.) Even though

reliability and validity are somewhat closely related, they refer to distinct concepts, for

example, a measurement can be reliable without being valid, and likewise, if a measurement

is valid, then it is usually also reliable. (Middleton, 2023)

To ensure the reliability of all tests conducted during the research study, each test was

conducted for a prolonged amount of time on all WordPress and Jamstack sites. For

instance, when using Sitespeed.io, 100 iterations of each test was ran, meaning each website

was tested precisely 100 times. The tests conducted on desktop typically took around 10

seconds per iteration, or roughly 16 minutes and 40 seconds to complete 100 iterations.

Mobile tests, on the other hand, took twice as long, or 20 seconds per iteration, and 33

minutes and 20 seconds to complete 100 iterations. Furthermore, these tests were

conducted on four WordPress environments and four Jamstack environments, with the only

difference between them being that each environment utilized a different virtualization

technology (WSL2 or VM) and web server (Apache or NGINX).

Regarding the validity of all tests conducted during the research study, the website page

weight (meaning the size of a page) was set at 2.1 MB. This decision was based on a report

on page weights by The HTTP Archive, 2023, which showed that this value is the closest to

14

the p50 (median) transfer size value for all desktop and mobile pages worldwide, which is

2199.45 kB. This value was calculated (as an average) of the median desktop page weight of

2340.6 kB and the median mobile page weight of 2058.3 kB, calculated in Equation 1.

Furthermore, this can be viewed in more detail in Figure 5.

Figure 5. Requests and Sizes per Content Type (Whitley, 2023a)

Note. This is a clustered column chart that comprises of two charts, content size and transfer
size. Each column displays a data measurement unit, which represents each content type's
size. Furthermore, the chart legend (located at the top part of the chart) displays a numerical
value after each content name, which indicates the number of requests.

Equation 1. Median of Desktop and Mobile Page Weight

𝑀𝑒𝑑𝑖𝑎𝑛 (𝑝50) = [(2340.6 𝑘𝐵) + (2058.3 𝑘𝐵) / 2 = 2199.45 𝑘𝐵]

Even though the reliability and validity of the research study have been assessed, it is

important to note that other factors, such as hardware and network configurations, could

still impact the test results. Several steps have been taken to mitigate these possibilities,

which are listed below in Table 3.

114.9 KB
17.1 KB

434.8 KB

73.5 KB
246.5 KB

79.0 KB

1.8 MB 1.8 MB

129.5 KB 129.5 KB

Content Size (2.7 MB) (40) Transfer Size (2.1 MB) (40)

HTML (1) CSS (13) JavaScript (10) Image (12) Font (4)

15

Table 3. Measures Taken to Ensure Reliability and Validity

Aspect Measures Taken by the Author

k6/Results

Ensured that all of the test results, even the questionable ones, were
valid. For example, specific tests, such as the average-load tests on
WSL2 LAMP and LEMP produced questionable results. To ensure the
validity of this, the author verified that all of the packages and services
were running on the same version (besides for the web server) and ran
those tests again, which resulted in the same outcome.

k6/Smoke Test
Ensured that all the testing environments did not throw any errors
when under minimal load.

Server/
Database

Ensured that all WordPress websites used the same SQL database, in
this case, MariaDB.

Sitespeed.io/
Browser

Ensured that Sitespeed.io tested each page with a fresh browser profile
(caching disabled), for every iteration.

Sitespeed.io/
Setup

Ensured that a test was performed on the host OS (the author’s
primary OS), under the same circumstances and on the same day.
During the tests, no other programs were running nor did the author
use the computer during that time.

Website/
Content Type

Ensured that each page content type, including third-party resources,
like Google Web Fonts, have been hosted locally.

Website/HTTP
Protocol

Ensured that all tests used the same HTTP protocol, in this case,
HTTP/1.1. Chrome and Firefox only support HTTP/2 for HTTPS
connections according to Hogan & Garnett, 2021.

Website/IP
Address

Ensured that all tests used a local IP address, rather than the loopback
address, also known as localhost.

Website/Page
Weight

Ensured that each environment had the same exact page weight. Also
ensured that the page weight is close as possible to the median
according to The HTTP Archive, 2023.

Note. Table 3 outlines the measures taken to ensure the reliability as well as the validity of
all of the test results.

4.4 Hardware and Software Configurations

This chapter will provide readers with all of the hardware and software configurations used

to run all the performance and scalability tests conducted during this research study. This

includes the computer hardware specifications, software stack configurations for the WSL2

16

and VM testing environments, Sitespeed.io and Grafana k6 settings, as well as several

commands used to run the tests.

Table 4. Hardware Specifications

Component Specification

CPU AMD Ryzen 9 5900X 3.7 GHz 12-Cores

GPU Gigabyte GeForce RTX 2070 SUPER 8GB WINDFORCE OC 3X

Motherboard Asus ROG STRIX B550-F GAMING (WI-FI)

Operating System Microsoft Windows 11 Education 64-bit (10.0.22621, Build 22621)

RAM Kingston FURY Renegade DDR4-3600 C16 32GB (2x16GB)

Storage Western Digital Black SN850 1TB

Note. All the tests performed on Sitespeed.io and k6 were conducted locally on the author's
personal computer using a wired Ethernet connection.

Table 5. Testing Environments

Environment ID Environment Name

L1 WordPress with LAMP Stack (VM)

L2 WordPress with LAMP Stack (WSL2)

L3 Jamstack (Netlify Local Development Environment)

L4 Jamstack with LAMP Stack (WSL2)

L5 Jamstack with LAMP Stack (VM)

L6 WordPress with LEMP Stack (VM)

L7 Jamstack with LEMP Stack (VM)

L8 WordPress with LEMP Stack (WSL2)

L9 Jamstack with LEMP Stack (WSL2)

Note. All the local testing environments (L1 through L9) were set up on the author's personal
computer in a VM or on a WSL2 environment. Environment L3 was scrapped due to the lack
of a suitable WordPress counterpart. The "L" in the environment ID is an abbreviation for
"Local".

17

Table 6. LAMP and LEMP Configuration [WSL2 and VM]

Name LAMP Stack Configuration LEMP Stack Configuration

Database MariaDB 10.10.3 MariaDB 10.10.3

Kernal/
Architecture

WSL2: Linux 5.15.90.1-microsoft-
standard-WSL2 x86_64
VM: Linux 5.10.0-21-amd64 x86_64

WSL2: Linux 5.15.90.1-microsoft-
standard-WSL2 x86_64
VM: Linux 5.10.0-21-amd64 x86_64

Operating
System

Debian GNU/Linux 11
(Bullseye)

Debian GNU/Linux 11
(Bullseye)

PHP PHP 8.1.15 PHP 8.1.15

Web Server Apache 8.2.15 NGINX 1.23.3

WordPress WordPress 6.1.1 WordPress 6.1.1

Note. Apart from the web server and kernel/architecture, both LAMP and LEMP stack
configurations are identical on both WSL2 and VM environments.

Table 7. Sitespeed.io Runtime Settings [Desktop] (Whitley, 2023b)

Details Configuration/Version

Browser Chrome 112.0.5615.49

Browsertime 17.8.0

Connectivity No connectivity settings

Number of runs 100

OS Windows 11

Sitespeed.io 27.3.0

User Agent
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36

View port 1366x708

Note. Please be aware that all the desktop performance tests were run only using the
Chrome browser. All the tests were executed for 100 iterations (number of runs), taking an
average time of ≈1000 seconds (equivalent to 16 minutes and 40 seconds) for each
environment.

18

Table 8. Sitespeed.io Runtime Settings [Mobile] (Whitley, 2023c)

Details Configuration/Version

Android version 12

Browser Chrome 112.0.5615.48

Browsertime 17.8.0

Connectivity No connectivity settings

Number of runs 100

OS Android

Phone model GM1913

Sitespeed.io 27.3.0

User Agent
Mozilla/5.0 (Linux; Android 12; GM1913) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/112.0.0.0 Mobile Safari/537.36

View port 412x797

Note. Please be aware that all mobile performance tests were run on a physical Android
phone using only the Chrome browser. All tests were executed for 100 iterations (number of
runs), taking an average time of ≈2000 seconds (equivalent to 33 minutes and 20 seconds)
for each environment.

19

Table 9. Grafana k6 Load Test Types (Grafana k6, 2023b)

Test Type Description

Smoke Test
Smoke tests ensure that the script works and that the system is
performing as expected under minimal load.

Average-Load Test
Average-load tests assesses how the system is performing under
expected normal conditions.

Stress Test
Stress tests assesses how well the system is performing under
extreme loads when exceeding the expected averages.

Spike Test
Spike tests validate the behaviour and survival of the system when
subjected to a sudden, short, and massive increase in activity.

Note. Adapted from “Test Types, Load Test Types” by Grafana k6, 2023. Copyright 2023 by
Grafana Labs (https://k6.io/docs/test-types/load-test-types/). All the Grafana k6 test scripts
were modified from the pre-existing example and tutorial scripts available on the Grafana k6
website in the documentation section (https://k6.io/docs/examples/).

Table 10. Grafana k6 Version (Whitley, 2023)

Name Version

Grafana k6
v0.43.1 (2023-02-27T10:53:03+0000/v0.43.1-0-gaf3a0b89,
go1.19.6, windows/amd64)

Note. All of the tests were performed on the author's personal computer.

20

Table 11. Grafana k6 Script Configurations

Script
Script Configuration

All Scripts

All of the scripts are configured to make a single HTTP GET request every second. It then
ensures that each check returns a 200-status code and that the content type is text/HTML.
Additionally, it also checks that the homepage body includes the text “Lorem ipsum
dolor”; dummy text to ensure that the page has loaded correctly. Examples of these
checks can be found in Appendix D. At the end of each test, the script outputs the results
into three locations: standard output (stdout), to an easy-to-read HTML report that
aggregates the test results (the same as stdout), and onto a CSV file that includes all of the
granular data (detailed data) from each test.

smokeTest.js
This script uses three virtual users (VUs) during the test, which it
loops for one minute.

averageLoadTest.js

This script utilizes a stage array that starts by ramping up the
number of VUs to 100 over the next five minutes. It then maintains
100 VUs for 30 minutes before then ramping back down to zero VUs
over the next five minutes.

stressTest.js

This script works similarly to the averageLoadTest.js script, but with
a longer ramp-up duration of 10 minutes as well as an increased
number of VUs from 100 to 200. It then maintains 200 VUs for 30
minutes before ramping back down to zero VUs over the next five
minutes.

spikeTest.js
This script works by ramping up the number of VUs to 2000 over
the next two minutes, before ramping back down to zero in the
next minute.

Note. All the Grafana k6 test scripts were modified from all the pre-existing example and
tutorial scripts available on Grafana k6’s website in the documentation section
(https://k6.io/docs/examples/).

4.5 Research Tools Used

This chapter will provide readers with an overview of the tools used in the research study. It

will briefly describe each tool on how it was used, and why it was chosen.

https://k6.io/docs/examples/

21

4.5.1 Sitespeed.io

Sitespeed.io is an open-source web performance testing tool that helps users monitor and

enhance their website’s performance. (Sitespeed.io, 2023) It comprises of multiple open-

source tools, such as Coach, which identifies performance issues with the website;

Browsertime, which automates the execution of JavaScript in the browser to gather

performance metrics; and PageXray, which converts HAR files into a more readable and

user-friendly JSON format. (Hedenskog, 2021) Additionally, it also supports several third-

party plugins from Google, such as GPSI (Google PageSpeed Insights) and Google Lighthouse.

(Hedenskog, 2017) Figure 6 is a screenshot of Sitespeed.io running a performance test on

one of the local virtual machines for one iteration.

Figure 6. Sitespeed.io Performance Test (Whitley, 2023)

Mozilla Firefox 106.0

Microsoft Edge 106.0.1370.52

[2023-03-27 18:05:25] INFO: Versions OS: linux 5.10.0-21-amd64 nodejs:

v16.16.0 sitespeed.io: 26.1.0 browsertime: 16.17.0 coach: 7.1.2

[2023-03-27 18:05:25] INFO: Running tests using Chrome – 100 iterations(s)

[2023-03-27 18:05:26] INFO: Testing url http://192.168.100.157/ iteration 1

[2023-03-27 18:05:35] INFO: Take after page complete check screenshot

[2023-03-27 18:05:35] INFO: Take cumulative layout shift screenshot

[2023-03-27 18:05:36] INFO: Take largest contentful paint screenshot

[2023-03-27 18:05:39] INFO: Get visual metrics from the video

[2023-03-27 18:05:40] INFO: http://192.168.100.157/ 41 requests, TTFB: 221ms,

firstPaint: 400ms, firstVisualChange: 467ms, FCP:, DOMContentLoaded: 618ms,

LCP: 461ms, CLS: 0.0024, TBT: 0ms, Load: 626ms, speedIndex: 582ms,

visualComplete85: 600ms, lastVisualChange: 600ms

[2023-03-27 18:05:42] INFO: HTML stored in /sitespeed.io/sitespeed-

results/192.168.100.157/2023-03-27-18-05-25

Note. The tool shown in Figure 6 is a standard output (stdout) of Sitespeed.io, created by
Peter Hedenskog (https://github.com/sitespeedio/sitespeed.io).

The command shown in Figure 7 runs a 100-iteration test of environment L1. The command

also includes two parameters: the ‘name’ parameter, which gives the test a name, and the

‘urlAlias’ parameter, which gives an alias to an URL and is mainly used to help distinguish

between tests when reviewing the HTML reports.

http://192.168.100.157/
http://192.168.100.157/
https://github.com/sitespeedio/sitespeed.io

22

Figure 7. Example Sitespeed.io Desktop Command (Whitley, 2023)

1 sitespeed.io http://192.168.100.157/ --video --visualMetrics --cpu

--visualElements -n 100 --name L1Desktop --urlAlias L1Desktop

Note. The tool shown in Figure 7 is a command from Sitespeed.io, created by Peter
Hedenskog (https://github.com/sitespeedio/sitespeed.io).

In this research study, the open-source tool Sitespeed.io was used to measure the web

performance of both the WordPress and Jamstack sites. Sitespeed.io was chosen over other

performance testing tools, such as Pingdom or GTmetrix, because of its ease of use, feature-

rich nature, open-source status and, most importantly, its ability to conduct all of the tests

locally.

Because of its ease of use, Sitespeed.io allows users to run automated tests with a single

command, as shown above in Figure 7. As previously mentioned in the reliability and validity

chapter, depending on the platform in question, each test iteration can take anywhere from

10 to 20 seconds, and a full 100-iteration test can take between 17 to 33 minutes. After a

test, Sitespeed.io generates a static HTML report that displays a large amount of numerical

data on the different timing metrics. In addition, Sitespeed.io’s other tools, such as

Browsertime, the Coach, and PageXray, generate JSON and HAR files, which can be used to

compare metrics from different tests using a website such as compare.sitespeed.io.

(Hedenskog, 2022) Finally, the numerical data generated by Sitespeed.io was then imported

into Excel, where it was visualised into several different figures and tables.

4.5.2 Grafana k6

Grafana k6 is an open-source load testing tool that was developed back in 2017 by Load

Impact, which was then later acquired by Grafana in 2021. (Grafana k6, n.d.; Gustafsson,

2021) The tool allows users to test the performance and reliability of various services, such

as websites, microservices, and APIs using a range of use cases that include load testing,

browser testing, chaos and resilience testing, as well as performance and synthetic

monitoring. (Grafana k6, n.d.) Although Grafana k6, similar to Sitespeed.io, supports browser

testing through the xk6-browser extension, Sitespeed.io was chosen because it appeared to

provide more numerical data compared to the xk6-browser extension. (Grafana k6, 2023a)

https://github.com/sitespeedio/sitespeed.io

23

While there are several other popular alternatives to Grafana k6, such as the widely used

open-source testing tool Apache JMeter, Grafana k6 was still chosen because it was newer,

used a CLI (Computer Language Interface), as well as had better resource utilization

according to Figure 8, were Grafana Labs compares Grafana k6 with several other open-

source load testing tools. (van der Hoeven, 2021)

Figure 8. Max Traffic Generation Capability of Several Load Testing Tools (Lönn, 2020)

Note. Data adapted from “Open-Source Load Testing Tool Review 2020” by Ragnar Lönn at
Grafana Labs, 2020. Copyright 2020 by Grafana Labs.
(https://k6.io/blog/comparing-best-open-source-load-testing-tools/)

In this research study, Grafana k6 was used to perform several different types of load tests,

which consisted of smoke testing, load testing, stress testing, and spike testing. Each test

was implemented using JavaScript and was always designed with a specific testing objective

in mind, which can be viewed in greater detail in Appendix E. All tests were conducted on

the main page of the site (index.html) across all testing environments. At the end of each

test, summarized results were outputted to multiple locations, including “stdout” (standard

output) and as a HTML report generated using the k6-reporter, an extension created by Ben

Coleman (benc-uk). The HTML report displayed results such as request groups, checks, HTTP

metrics, and other statistics in a clear and easy-to-understand fashion. (Coleman, 2021)

18
10

0

16
30

0

16
30

0

11
30

0

90
0

0

70
0

0

47
0

0

29
0

0

24
0

0

32
1

17
6

97

15 26

67

18
3

53
3

36
3

17
9

8

92

13

0

150

300

450

600

0

5000

10000

15000

20000

Hey Apache
Bench

Vegeta k6 Tsung Jmeter Gatling Locust Siege Artillery Drill

Max RPS Memory Usage (MB)

https://k6.io/blog/comparing-best-open-source-load-testing-tools/

24

4.5.3 Python

Python, one of the world's most popular programming languages has been employed in

developing numerous technologies, such as Netflix's recommendation algorithm and

software for autonomous vehicles. As a general-purpose programming language, Python is

used in a range of applications, such as in data science, web and software development and

automation. (Coursera Inc, 2022)

According to a recent developer survey conducted in May 2022 by Stack Overflow, Python

was named the fourth most used programming language by professional developers with

43.51% votes, while JavaScript topped the list with 67.90% votes for the tenth consecutive

time, as shown in Figure 9. (Stack Overflow, 2022)

Figure 9. Most Popular Technologies (Professional Developers) (Stack Overflow, 2022)

Note. Adapted from “Stack Overflow Developer Survey 2022” by Stack Overflow, 2022.
Copyright 2023 by Stack Overflow. (https://survey.stackoverflow.co/2022/#most-popular-
technologies-language-prof)

In this research study, Python, along with the data analysis and manipulation library Pandas,

was used to analyse the data, briefly visualise it, and output the resulting data from Grafana

k6 to a new CSV file, which can then be imported into Excel for further analysis and to create

67.90%

54.93%

52.64%

43.51%

40.08%

33.40%

29.72%

29.47%

21.42%

20.17%

16.70%

12.07%

11.83%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%

JavaScript

HTML/CSS

SQL

Python

TypeScript

Java

C#

Bash/Shell

PHP

C++

C

PowerShell

Go

https://survey.stackoverflow.co/2022/#most-popular-technologies-language-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-language-prof

25

the final charts for the thesis. Furthermore, Python was also used to split the CSV data into

multiple files by column name to bypass GitHub’s 100 MB single file upload size limit.

Figure 10 illustrates a Python script that reads a CSV file generated by Grafana k6. It then

parses the data based on the metric name in question, in this case, ‘http_req_duration’,

‘time’, and ‘metric_value’ and resamples it to 30-second intervals. Finally, the data was then

visualized through the print function and adjustments to the resampling time interval were

made before outputting the data back into a CSV format.

Figure 10. CSV Output Python Script

1 import matplotlib.pyplot as plt

2 import os

3 from datetime import datetime

4

5 df = pd.read_csv('test_results.csv', index_col=0,

6 parse_dates=['timestamp'], date_parser=lambda x:

7 pd.to_datetime(float(x), unit='s'))

8

9 http_req_duration = df[df.index == 'http_req_duration']

10 http_req_duration.insert(0, 'metric_name', 'http_req_duration')

11 http_req_duration = http_req_duration.set_index('timestamp')

12 http_req_duration.loc[:, 'time'] = http_req_duration.index.time

13 http_req_duration = http_req_duration[['metric_name', 'time',

14 'metric_value']]

15 data_df = http_req_duration.resample('30s').mean(numeric_only=True)

16 data_df['metric_name'] = 'http_req_duration'

17 data_df = data_df[['metric_name', 'metric_value']]

18 print(data_df)

19 data_df.to_csv('testOutput.csv')

Note. The Python code in Figure 10 was created based on the tutorials and documentation
from the following sources: Data Independent, Robin Horn, Pandas’ library documentation,
and Python’s documentation.

4.5.4 Microsoft Excel

Microsoft Excel, released back in 1985, is a widely used spreadsheet software created by the

Microsoft Corporation for organizing and manipulating data into columns and rows. (The

Editors of Encyclopaedia Britannica, 2022; Techopedia, 2020) With Excel, users can perform

various different mathematical functions on the data using numerous formulas to then

https://dataindependent.com/pandas/
https://youtu.be/YvfKNUVtFU4
https://pandas.pydata.org/docs/
https://docs.python.org/3/contents.html

26

visualize it through different charts. (The Editors of Encyclopaedia Britannica, 2022;

Techopedia, 2020)

The research study utilised the spreadsheet software Excel in gathering and analysing the

data from the performance testing tools Sitespeed.io and Grafana k6. In addition, Excel was

then used to visualise that data through various tables and figures.

Initially, it was originally planned to use the statistical analysis software SPSS (Statistical

Package for the Social Sciences) or R (the programming language) for data analysis and

visualization for the research study. However, this plan was later abandoned due to the high

cost of the SPSS license and the steep learning curve associated with R.

5 Results and Analysis

This chapter will provide readers with a summary of the performance and scalability metrics

obtained from Sitespeed.io’s and Grafana k6’s test results. It includes tables and figures

comparing both the web architectures performance and scalability, together with a brief

analysis of several of the results obtained. For readers interested in viewing additional

metrics, such as descriptive statistics tables, these can be found in the appendix section. In

addition, miscellaneous data, such as result outputs (outputs like CSV, stdout, HTML

reports), Excel files, and scripts, are available in the author’s GitHub repository

(https://github.com/Sam-Whitley/thesis).

5.1 Performance Results

As briefly mentioned in previous chapters, Sitespeed.io was used to test the performance

differences between the two web architectures, Jamstack and the monolithic web

architecture, WordPress, to determine how much of a performance difference there was

between the two from a numerical perspective. To test this, a total of eight environments

were used, half of which were WordPress environments, whereas the other half were

Jamstack environments. These environments were then further divided into two separate

technology virtualization groups, WSL2 and VM, alongside with different web servers, such

27

as Apache and NGINX. This approach was chosen to not only help ensure the accuracy and

reliability of the test results, but to also make a fair and accurate comparison between the

two architectures using different environments with different virtualization groups and web

servers. Furthermore, all the Jamstack and WordPress sites were exact one-to-one copies of

each other. This was done again by first migrating a WordPress site to all other WordPress

sites using the All-in-One WP Migration WordPress plugin, which exports and imports the

WordPress site’s database, media files, plugins, and themes. Next, a static site generator like

Simply Static was then used to convert the existing WordPress site into a static site. The

resulting static site was then exported as a ZIP file and imported into the different Jamstack

environments, where it was statically hosted using either Apache or NGINX.

Once each of these environments were set up, the performance tests were run using Git

Bash, an application for Windows that emulates the Git command line experience.

(Atlassian, n.d.) Git Bash was used because Sitespeed.io’s commands did not work on either

Command Prompt or PowerShell command-line interfaces (CLIs). The command, as shown in

Figure 7, was used to run the desktop performance tests. When running the mobile tests

however, slight modifications were made to the command, which was the removal of the

‘visualMetrics’ and ‘video’ flags, as these options did not work for some reason, even after

much troubleshooting.

These web performance tests were divided into two categories and were conducted over a

two-day period. The first category that was tested was the desktop performance of the sites,

which was run on the 12th of April 2023 and was completed in roughly three hours and 28

minutes, taking an average of 26 minutes per environment. The second category, on the

other hand, tested the mobile version performance of the sites and was run on the following

day, the 13th of April 2023 and was completed in about four hours and 48 minutes, taking an

average of 36 minutes per environment. After the completion of all of the performance

tests, the test results were then outputted as a CLI output (output of the command) and a

HTML report, from which the most important metric data were chosen for this thesis, while

the unused metrics were uploaded to the author’s GitHub repository.

28

5.1.1 Page Load Time Results

After analysing Figure 11, which showed the Page Load Time results of both the desktop and

mobile WordPress and Jamstack sites, it was clearly evident that the Jamstack (LEMP WSL2)

site had the quickest performance out of all the desktop tests, with a median value of 146

milliseconds. Meanwhile, the Jamstack (LEMP VM) site had the fastest performance out of

all the mobile tests, with a median value of 424 milliseconds, which was 278 milliseconds

(2.90 times) slower compared to the desktop site. Both these Jamstack environments (LEMP

WSL2 and LEMP VM) had similar performance when calculating their desktop and mobile

site tests together, with only a single millisecond difference between the two. In contrast,

the WordPress (LAMP VM) site was the slowest among both the desktop and mobile tests,

with a median value of 512 milliseconds on the desktop site. Whereas the mobile site had a

median value of 828 milliseconds, which was 316 milliseconds (1.62 times) slower compared

to the desktop site.

Furthermore, when calculating the median value of the Page Load Time for all WordPress

desktop sites using the median formula in Equation 2, located in Appendix A, the result was

360.50 milliseconds. Whereas for Jamstack desktop sites the median value was 176.00

milliseconds, which meant that desktop Jamstack sites were 184.50 milliseconds (2.05 times)

quicker than WordPress desktop sites. Similarly, when calculating the median Page Load

Time for all the WordPress mobile sites, the value was 737.50 milliseconds, whereas for

Jamstack mobile sites it was 439.00 milliseconds, meaning that Jamstack sites were 298.50

milliseconds (1.68 times) quicker than WordPress mobile sites.

Upon further analysis of Figure 11, it became clear that both the desktop and mobile tests

followed a similar pattern where the web server, NGINX, performed the quickest compared

to Apache. In contrast, the Page Load Times on the desktop sites were faster than those on

mobile sites. Interestingly enough, WordPress on WSL2 was the quickest compared to a VM,

both for desktop and mobile sites. However, this was quite the opposite when compared to

Jamstack, where the Jamstack VMs actually performed quicker than WSL2s, again both for

the desktop and mobile sites.

29

Figure 11. Sitespeed.io – Page Load Time (Desktop and Mobile) [Median] (Whitley, 2023a)

Note. The following results were generated by Sitespeed.io. Lower is better. Page Load Time
(PLT) refers to “the time it takes to load a page, from initiation of the page view to the load
completion in the browser”. (Sitespeed.io, 2022a) The test consisted of 100 iterations,
meaning the page was tested 100 times for each environment.

5.1.2 Timing Metrics

Before proceeding to examine Figure 12, as well as Figure 13, it is important to understand

how to read and interpret the following figures in question. Each test environment in the

figures has a set of two chart types: Scatter (a marker with a horizontal line) and Clustered

Column (a vertical bar with either a lighter grey or darker grey colour). Each scatter marker

represents a timing metric, either it being Time to First Byte (TTFB), First Contentful Paint

(FCP), Last Visual Change (Page Load Time on the mobile figure), or Fully Loaded. The vertical

bar, on the other hand, represents the different phases in the loading of a page. The first

lighter grey bar measures “the amount of time between the moment a user requests a web

page to the moment the first byte of the response arrives” (Wagner, 2017, p. 27), while the

darker grey bar represents the area between TTFB and Fully Loaded. Below in Table 12 is a

brief description of each timing and visual metric used in Figure 12 and Figure 13 according

to Sitespeed.io’s metric documentation.

512

345 376
309

199 153
226

146

828
717 758

644

446 424
493

432

0

100

200

300

400

500

600

700

800

900

WordPress
(LAMP VM)

WordPress
(LEMP VM)

WordPress
(LAMP WSL2)

WordPress
(LEMP WSL2)

Jamstack
(LAMP VM)

Jamstack
(LEMP VM)

Jamstack
(LAMP WSL2)

Jamstack
(LEMP WSL2)

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Desktop Mobile

30

Table 12. Sitespeed.io’s Metric Documentation (Sitespeed.io, 2022a)

Metric Description

Time to First Byte
(TTFB)

Measures “the time it takes for the network and the server
to generate and send the HTML. It was collected using the
Navigation Timing API”. (Sitespeed.io, 2022a)

First Contentful Paint
(FCP)

Measures “the time from navigation to when the browser
renders the first bit of content from the DOM (Document
Object Model)”. (Sitespeed.io, 2022a)

Last Visual Change
(Visually Complete)

Measures “the time when something changes for the last
time within the viewport”. (Sitespeed.io, 2022a)

Page Load Time
[Only in Figure 13]

Measures “the time it takes for a page to load from
initiation of the page view to load completion in the
browser”. (Sitespeed.io, 2022a)

Fully Loaded
Measures “the time when all of the assets on the page are
downloaded. The value comes from the latest response in
the HAR (HTTP Archive) file”. (Sitespeed.io, 2022a)

Note. Adapted from “Metrics Collected by Sitespeed.io”
(https://www.sitespeed.io/documentation/sitespeed.io/metrics/)

After analysing the Fully Loaded timing metric of the desktop results in Figure 12, it is still

evident that the Jamstack (LEMP VM) site performed the quickest, while the WordPress

(LAMP VM) site performed the slowest. This is also apparent in the mobile tests shown in

Figure 13, were the Jamstack (LEMP VM) site performed the quickest, albeit only by a

millisecond compared to Jamstack (LEMP WSL2), while the WordPress (LAMP VM) site once

again performed the slowest. The slow performance that is seen with WordPress sites in

both Figure 12 and Figure 13 is caused by the long Time to First Byte (TTFB), which is likely

caused by a slow server response time due to the fact that monolithic sites have to always

generate the HTML on the server for each request, while Jamstack sites are pre-rendered,

meaning the server only has to serve those static files. (Falconer, 2022)

When calculating the Time to First Byte metric of all the WordPress and Jamstack desktop

sites, the median value for all WordPress desktop sites was 191 milliseconds, while for

Jamstack desktop sites it was only 6.5 milliseconds, meaning that Jamstack desktop sites

were significantly faster compared to WordPress desktops sites with a difference of 184.50

31

milliseconds (29.38 times). Similarly for mobile sites, the median value for all WordPress

mobile sites was 249 milliseconds, while for Jamstack mobile sites it was only 37.50

milliseconds, meaning that Jamstack mobile sites were 211.50 milliseconds (6.64 times)

faster compared to WordPress mobile sites, which is significantly less compared to the

difference between WordPress and Jamstack desktop sites.

Upon closer analysis of Figure 12, it is apparent that there are some interesting results when

examining the time between the TTFB and Fully Loaded metrics of all WordPress and

Jamstack desktop sites. When calculated together, the median value for all WordPress sites

was 157.50 milliseconds, while Jamstack sites were slightly slower with a median value of

175.50 milliseconds. One possible explanation for this can be found in the waterfall chart for

Jamstack (LEMP WSL2) and WordPress (LEMP WSL2) in Appendix C. When comparing these

waterfall figures, which are generated from Sitespeed.io’s HAR (HTTP Archive format)

comparison website, it is apparent that WordPress loads several of its website contents,

such as its CSS, JavaScript, and font files, faster compared to Jamstack by a margin of five to

almost 30 milliseconds per content request. However, Jamstack can quickly recoup for this

performance loss with its faster TTFB load time.

Furthermore, the next figure, Figure 13, shows a somewhat similar situation to that of Figure

12 when examining the time between TTFB and the Fully Loaded metrics of all WordPress

and Jamstack mobile sites. Although Jamstack mobile sites were slightly faster than

WordPress mobile sites, with a median value of 331.50 milliseconds compared to

WordPress’ median value of 378.00 milliseconds, the waterfall figures in Appendix C still

showed a familiar pattern to the desktop waterfall figures where WordPress was still able to

load most of its website’s contents faster than Jamstack, again by a margin of five to 30

milliseconds.

32

Figure 12. Sitespeed.io – Timing Metrics (Desktop) [Median, p50] (Whitley, 2023a)

Note. The metric results were generated by Sitespeed.io. The unit of time used in Figure 12
is in milliseconds (ms). Lower is better. The metric results are in median (p50). Additional
data is available from the author’s GitHub repository (https://github.com/Sam-
Whitley/thesis).

7 10 4 6

177 181

201 206

115

144

84
102

254 260
278

297

133

200

134

167

267
267

334

367

155

216

137

211

290

353
344

468

Jamstack
(LEMP WSL2)

Jamstack
(LAMP WSL2)

Jamstack
(LEMP VM)

Jamstack
(LAMP VM)

WordPress
(LEMP WSL2)

WordPress
(LAMP WSL2)

WordPress
(LEMP VM)

WordPress
(LAMP VM)

Time to First Byte (TTFB)

First Contentful Paint (FCP)

Last Visual Change (Visually Complete)

Fully Loaded

33

Figure 13. Sitespeed.io – Timing Metrics (Mobile) [Median, p50] (Whitley, 2023a)

Note. The metric results were generated by Sitespeed.io. The unit of time used in Figure 13
are in milliseconds (ms). Lower is better. Metric results are in median (p50). Additional data
is available from the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

39 43
34 36

210 217

281
294

229

262

208

352

397

417

474

495

326

367

315
328

500
513

583

608

362

430

361
372

546

627 627

742

Jamstack
(LEMP WSL2)

Jamstack
(LAMP WSL2)

Jamstack
(LEMP VM)

Jamstack
(LAMP VM)

WordPress
(LEMP WSL2)

WordPress
(LAMP WSL2)

WordPress
(LEMP VM)

WordPress
(LAMP VM)

Time to First Byte (TTFB)

First Contentful Paint (FCP)

Page Load Time

Fully Loaded

34

5.2 Scalability Results

After the performance tests, the scalability of both web architectures was tested using the

load testing tool, Grafana k6, with various types of load tests. Typically, these load tests

simulated the different levels of traffic to determine how each web architecture handled

different loads at different durations. Depending on the specific load test in question, most

involved ramping up the number of virtual users (VUs) over a certain period of time,

maintaining that specific number of VUs, before then ramping down the number of VUs back

to zero.

Like Sitespeed.io, the load tests were run through a command-line interface (CLI), but

instead of using Git Bash, the command was executed through the PowerShell. These load

tests were then run using a command with three distinct options (also known as flags);

‘IP_ADDRESS’, ‘ENVNAME’, and ‘CSV=fileName’, which allowed for the options to be

changed through the input rather than having to modify the script itself after each load test,

as shown in Figure 14 below.

Figure 14. Example Grafana k6 Command (Whitley, 2023)

1 k6 run -e IP_ADDRESS=192.168.100.157 -e ENVNAME=L1

-o csv=fileName=csv/L1-smokeTest.csv smokeTest.js

Note. The tool shown in Figure 14 is a command used to run a smoke test. Created by
Grafana Labs (https://k6.io/docs/get-started/running-k6/).

These load tests were conducted over a two-day period, similar to the web performance

tests. However, since the VUs combine both desktop and mobile users, there was no need to

separate them into different categories. This allowed for the scalability of the sites to be

tested using only a single category of users, VUs, or better known as Virtual Users. VUs are

essentially execution agents that load the script and its contents and are responsible for

running it, practically emulating a user performing the script. (Crevon, 2022)

The tests were divided into different load test categories based on their type. These load

tests were smoke testing, average-load testing, stress testing, and spike testing. The first set

of load tests, consisted of smoke, average-load, and spike tests, which were all conducted on

35

the 25th of April 2023, while the stress tests were conducted on the following day, the 26th of

April 2023. In addition, the number of virtual users and the duration of each load test may

vary depending on the type of test. Further details regarding the load test script descriptions

and configurations for each test are found in Table 9 and Table 11, while the load test scripts

are located in Appendix E.

Before proceeding to the following chapters, it is important to note that only the most

important metrics and data have been chosen. However, only the Success Rate figures are

covered, since there are too many figures and tables to cover. Moreover, additional data of

these are available in appendices F through I, as well as in the GitHub repository.

It is also important to mention that the “Content type is text/HTML” check has been

excluded from the load test Success Rate charts (e.g., in Figure 15) and from the Check tables

(e.g., in Table 15). This is because it had a success rate of 100% for the most part, which

greatly affected the overall success rate score. This can be seen in Appendix I, specifically in

the “Spike Test L8” section, where the “Status is 200” and “Verify Homepage Text” checks

both showed a success rate of 5.19%. However, with the “Content type is text/HTML” check

being 100%, the overall success rate was significantly skewed, resulting in an overall success

rate of 36.79%, not 5.19%, similarly to the other two checks.

36

5.2.1 Smoke Test

Smoke tests are typically performed to check and verify that a test script does not contain

any errors or to establish a baseline for the performance metrics of a system’s response

under minimal load. In this case, the smoke tests were used to check and verify that the

environments (as well as the sites) did not produce any errors when under minimal load.

This was always done before running any of the other primary load testing scripts. (Grafana

k6, 2023d)

When analysing the Success Rate figure shown in Figure 15, it was evident that all the

environments passed the smoke test, resulting in a total success rate of 100% for each

environment. However, a closer analysis of the success count revealed that all the Jamstack

environments had a combined median value of 360 checks, whereas WordPress only had

306 checks, meaning that Jamstack had 54 (or 1.17 times) more checks than WordPress.

Interestingly enough, when comparing the WordPress environments' virtualisation groups

and web servers to each other, WordPress (LAMP VM) had 306 checks, six more than

WordPress (LEMP VM) with 200 checks. However, this was quite the opposite on WSL2,

where WordPress (LEMP WSL2) had 312 checks, again six more than WordPress (LAMP

WSL2), with 306 checks.

37

Table 13. Smoke Test [Requests] (Whitley, 2023a)

Environments
req_duration
(Median)

req_waiting
(Median)

req_receiving
(Median)

iteration_duration
(Median)

 WP (LAMP VM) 180.26 ms 168.78 ms 8.83 ms 1.18 s

 WP (LEMP VM) 207.46 ms 192.01 ms 9.69 ms 1.20 s

 WP (LAMP WSL2) 166.39 ms 165.39 ms 1.03 ms 1.17 s

 WP (LEMP WSL2) 162.00 ms 160.89 ms 1.05 ms 1.16 s

 JS (LAMP VM) 8.66 ms 537.84 µs 7.99 ms 1.00 s

 JS (LEMP VM) 8.86 ms 540.15 µs 8.15 ms 1.00 s

 JS (LAMP WSL2) 6.41 ms 4.07 ms 2.11 ms 1.01 s

 JS (LEMP WSL2) 4.03 ms 2.86 ms 1.06 ms 1.00 s

Note. The metric results in the table are in median (p50) and some are in different units of
time, such as in seconds (s), milliseconds (ms), microseconds (μs), and sometimes even in
nanoseconds (ns). Additional data is available in the author’s GitHub repository
(https://github.com/Sam-Whitley/thesis).

Table 14. Smoke Test [Other Stats] (Whitley, 2023a)

Environments
Requests
(Total)

Requests
(Rate, /s)

Data Sent/Received
(Total)

Data Sent/Received
(Rate, /s)

 WP (LAMP VM) 153 2.51/s 12 kB / 18 MB 204 B / 297 kB

 WP (LEMP VM) 150 2.46/s 12 kB / 18 MB 199 B / 291 kB

 WP (LAMP WSL2) 153 2.55/s 13 kB / 18 MB 219 B / 302 kB

 WP (LEMP WSL2) 156 2.56/s 13 kB / 19 MB 220 B / 304 kB

 JS (LAMP VM) 180 2.97/s 15 kB / 21 MB 240 B / 247 kB

 JS (LEMP VM) 180 2.97/s 15 kB / 21 MB 231 B / 247 kB

 JS (LAMP WSL2) 180 2.96/s 16 kB / 21 MB 255 B / 346 kB

 JS (LEMP WSL2) 180 2.97/s 16 kB / 21 MB 256 B / 3438 kB

Note. The ”/s” in the table is an abbreviation for ”per second (s)”. Additional data is available
in the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

38

Figure 15. Smoke Test [Success Rate] (Whitley, 2023a)

Note. The data label in the middle of the column bar represents a numerical value calculated
by combining the results of both the “Status 200 (OK)” and “Verify Homepage” checks.

Table 15. Smoke Test [Checks] (Whitley, 2023a)

Environments

Status 200
(OK)
Successful
Checks

Status 200
(OK)
Failed
Checks

Verify
Homepage
Successful
Checks

Verify
Homepage
Failed
Checks

Success
Rate (%)

 WP (LAMP VM) 153 0 153 0 100.00 %

 WP (LEMP VM) 150 0 150 0 100.00 %

 WP (LAMP WSL2) 153 0 153 0 100.00 %

 WP (LEMP WSL2) 156 0 156 0 100.00 %

 JS (LAMP VM) 180 0 180 0 100.00 %

 JS (LEMP VM) 180 0 180 0 100.00 %

 JS (LAMP WSL2) 180 0 180 0 100.00 %

 JS (LEMP WSL2) 180 0 180 0 100.00 %

Note. This table does not include the “Content type is text/HTML” check, as including it
would significantly affect the overall success rate. This check is only available in the Check
tables in Appendix F. Additional data is available in the author’s GitHub repository
(https://github.com/Sam-Whitley/thesis).

306 300 306 312
360 360 360 360

100.00% 100.00% 100.00% 100.00%

100.00% 100.00% 100.00% 100.00%

WordPress
(LAMP VM)

WordPress
(LEMP VM)

WordPress
(LAMP WSL2)

WordPress
(LEMP WSL2)

Jamstack
(LAMP VM)

Jamstack
(LEMP VM)

Jamstack
(LAMP WSL2)

Jamstack
(LEMP WSL2)

Failed Checks Successful Checks Success Rate (%)

39

5.2.2 Average-Load Test

Typically, average-load tests are used to test and identify early signs of degradation during a

ramp-up or full load period. They can also be used to ensure that the system still meets the

performance standards after a system change (code and infrastructure). In this case, the

average-load test was used to assess the performance of the environment and site under

typical load conditions. The name “average-load test” is used by Grafana k6 to avoid

confusion since a “load test” might refer to all types of tests that simulate traffic. In some

testing conversations, the average-load test might also be called a “day-in-a-life” or volume

test. (Grafana k6, 2023e)

After analysing the Success Rate figure shown in Figure 16, it was apparent that even after

the smoke test, all the environments still passed all of the checks with flying colours with a

total success rate of 100%. Out of all the Jamstack environments, Jamstack (LEMP VM)

scored the highest number of checks, with a check count of 416 506. While Jamstack (LAMP

WSL2) and Jamstack (LEMP WSL2) achieved similar check counts, scoring 410 340 and 413

688 checks respectively. The Jamstack environment with the lowest number of checks was

the Jamstack (LAMP VM) environment, falling slightly behind the other Jamstack

environments with a score of 323 580 checks, which was 92 926 (or 1.29 times) less than

Jamstack (LEMP VM).

Moreover, when comparing both WordPress and Jamstack environments, the WordPress

environments scored considerably less, with a median check count of 141 512, which was

270 502 (or 2.91 times) less than the median check count of 412 014 of the Jamstack

environments. However, there was one WordPress environment that stood out from the

rest. This environment was WordPress (LAMP WSL2), which had a pass count of 335 052,

which was only 11 472 (or 1.04 times) more than the lowest performing Jamstack

environment, Jamstack (LAMP VM). It is unclear why WordPress (LAMP WSL2) outperformed

WordPress (LEMP WSL2) by such a large margin, despite the fact that WordPress (LEMP

WSL2) should have had the edge with its slightly newer and better-performing web server,

NGINX.

40

To verify the validity of this result, the WordPress (LAMP WSL2) environment was checked to

ensure that it had the same packages, services, and WordPress settings and versions as the

other WordPress environments. After this check, the same average-load test was rerun,

which ultimately resulted in the same outcome. Afterwards, a new temporary environment

was created to run several load tests on it. However, this temporary environment produced

the same consistent results as WordPress (LAMP WSL2), which validated the accuracy of the

environment’s results. Subsequently, this issue was later researched, and an article from

Hackr.io was discovered that revealed that there should not be a significant performance

difference between the two web servers, Apache and NGINX, if the content type is dynamic.

According to the benchmark mentioned in the article, done by Speedemy, both NGINX and

Apache performed similarly when it came to displaying dynamic content since almost all of

the request processing time is spent in the PHP runtime environment rather than on the

core part of the web server. (Krishnan, 2022)

Ultimately, after much investigation there was no clear answer as to why WordPress (LAMP

WSL2) performed better than WordPress (LEMP WSL2). As a result, the environment results

for WordPress (LAMP WSL2) could be deemed invalid and left out based on how the other

three WordPress environments performed.

41

Table 16. Average-Load Test [Requests] (Whitley, 2023a)

Environments
req_duration
(Median)

req_waiting
(Median)

req_receiving
(Median)

iteration_duration
(Median)

 WP (LAMP VM) 2.26 s 2.23 s 14.20 ms 3.26 s

 WP (LEMP VM) 2.24 s 2.20 s 19.40 ms 3.24 s

 WP (LAMP WSL2) 255.10 ms 253.62 ms 1.56 ms 1.25 s

 WP (LEMP WSL2) 2.35 s 2.35 s 1.08 ms 3.35 s

 JS (LAMP VM) 272.14 ms 4.56 ms 255.07 ms 1.27 s

 JS (LEMP VM) 7.59 ms 549.10 µs 6.79 ms 1.00 s

 JS (LAMP WSL2) 17.56 ms 8.58 ms 8.54 ms 1.02 s

 JS (LEMP WSL2) 12.76 ms 7.51 ms 3.81 ms 1.01 s

Note. The metric results in the table are in median (p50) and some are in different units of
time, such as in seconds (s), milliseconds (ms), microseconds (μs), and sometimes even in
nanoseconds (ns). Additional data is available in the author’s GitHub repository
(https://github.com/Sam-Whitley/thesis).

Table 17. Average-Load Test [Other Stats] (Whitley, 2023a)

Environments
Requests
(Total)

Requests
(Rate, /s)

Data Sent/Received
(Total)

Data Sent/Received
(Rate, /s)

 WP (LAMP VM) 70 483 29.37/s 5.7 MB / 8.3 GB 2.4 kB / 3.5 MB

 WP (LEMP VM) 71 029 29.59/s 5.8 MB / 8.4 GB 2.4 kB / 3.5 MB

 WP (LAMP WSL2) 167 526 69.77/s 14 MB / 20 GB 6.0 kB / 8.3 MB

 WP (LEMP WSL2) 68 371 28.49/s 5.9 MB / 8.1 GB 2.4 kB / 3.4 MB

 JS (LAMP VM) 161 790 67.40/s 13 MB / 19 GB 5.5 kB / 7.9 MB

 JS (LEMP VM) 208 253 86.74/s 17 MB / 24 GB 7.0 kB / 10 MB

 JS (LAMP WSL2) 205 170 85.47/s 18 MB / 24 GB 7.4 kB / 10 MB

 JS (LEMP WSL2) 206 844 86.16/s 18 MB / 24 GB 7.4 kB / 10 MB

Note. The ”/s” in the table is an abbreviation for ”per second (s)”. Additional data is available
in the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

42

Figure 16. Average-Load Test [Success Rate] (Whitley, 2023a)

Note. The data label in the middle of the column bar represents a numerical value calculated
by combining the results of both the “Status 200 (OK)” and “Verify Homepage” checks.

Table 18. Average-Load Test [Checks] (Whitley, 2023a)

Environments

Status 200
(OK)
Successful
Checks

Status 200
(OK)
Failed
Checks

Verify
Homepage
Successful
Checks

Verify
Homepage
Failed
Checks

Success
Rate (%)

 WP (LAMP VM) 70 483 0 70 483 0 100.00 %

 WP (LEMP VM) 71 029 0 71 029 0 100.00 %

 WP (LAMP WSL2) 167 526 0 167 526 0 100.00 %

 WP (LEMP WSL2) 68 371 0 68 371 0 100.00 %

 JS (LAMP VM) 161 790 0 161 790 0 100.00 %

 JS (LEMP VM) 208 253 0 208 253 0 100.00 %

 JS (LAMP WSL2) 205 170 0 205 170 0 100.00 %

 JS (LEMP WSL2) 206 844 0 206 844 0 100.00 %

Note. This table does not include the “Content type is text/HTML” check, as including it
would significantly affect the overall Success Rate. This check is only available in the Check
tables in Appendix G.

140 966 142 058

335 052

136 742

323 580

416 506 410 340 413 688

100.00% 100.00%

100.00%

100.00%

100.00%

100.00% 100.00% 100.00%

WordPress
(LAMP VM)

WordPress
(LEMP VM)

WordPress
(LAMP WSL2)

WordPress
(LEMP WSL2)

Jamstack
(LAMP VM)

Jamstack
(LEMP VM)

Jamstack
(LAMP WSL2)

Jamstack
(LEMP WSL2)

Failed Checks Successful Checks Success Rate (%)

43

5.2.3 Stress Test

The stress test operates similarly to an average-load test, with the main difference being the

higher load. Although the load pattern of the stress test slightly resembles that of an

average-load test, the stress test has a longer ramp-up period to proportionally account for

the higher load. Similarly, when the test reaches the designated load level, it must remain at

that level for a slightly longer duration compared to an average-load test. This type of load

test was used to test and verify the scalability and reliability of the environments and sites

under heavier conditions with twice as many virtual users (VUs) compared to the previous

test. (Grafana k6, 2023f)

After analysing the next Success Rate figure, Figure 17, it is again apparent that the figure

followed a similar pattern to that of the earlier test, the average-load test, with a few

notable differences. For instance, this was the first load test in which several checks failed,

specifically in the first three WordPress environments. WordPress (LAMP VM) had 158 012

successful checks and 69 456 failed checks, while WordPress (LEMP VM) had 161 556

successful checks and 23 398 failed checks. The WordPress (LAMP WSL2) environment, on

the other hand, was the only environment out of the WordPress environments to have no

failed checks, but it had the lowest number of successful checks of the WordPress

environments with 156 676 successful checks.

Moreover, when turning our attention to the Jamstack environments, it was apparent that

not a single environment encountered a failed check, where each achieved a total success

rate of 100%. This is in contrast to the WordPress environments, which achieved a median

success rate of only 93.50%, with the lowest-scoring environment receiving a total of

69.47%. Upon closer analysis of Figure 17, the Jamstack environment, Jamstack (LAMP VM),

had the fewest number of successful checks, with only 482 822, compared to Jamstack

(LEMP VM), which scored the highest, with 877 680 successful checks.

44

Table 19. Stress Test [Requests] (Whitley, 2023a)

Environments
req_duration
(Median)

req_waiting
(Median)

req_receiving
(Median)

iteration_duration
(Median)

 WP (LAMP VM) 4.03 s 3.98 s 7.99 ms 5.03 s

 WP (LEMP VM) 4.67 s 4.59 s 19.74 ms 5.68 s

 WP (LAMP WSL2) 1.29 s 1.28 s 1.61 ms 2.29 s

 WP (LEMP WSL2) 5.68 s 5.68 s 1.11 ms 6.68 s

 JS (LAMP VM) 1.17 s 70.68 ms 1.08 ms 2.18 s

 JS (LEMP VM) 562.67 ms 6.95 ms 537.86 ms 1.56 s

 JS (LAMP WSL2) 19.69 ms 9.54 ms 9.57 ms 1.02 s

 JS (LEMP WSL2) 13.94 ms 8.09 ms 4.79 ms 1.01 s

Note. The metric results in the table are in median (p50) and some are in different units of
time, such as in seconds (s), milliseconds (ms), microseconds (μs), and sometimes even in
nanoseconds (ns). Additional data is available in the author’s GitHub repository
(https://github.com/Sam-Whitley/thesis).

Table 20. Stress Test [Other Stats] (Whitley, 2023a)

Environments
Requests
(Total)

Requests
(Rate, /s)

Data Sent/Received
(Total)

Data Sent/Received
(Rate, /s)

 WP (LAMP VM) 113 734 42.11/s 9.2 MB / 9.4 GB 3.4 kB / 3.5 MB

 WP (LEMP VM) 92 527 34.26/s 7.5 MB / 9.6 GB 2.8 kB / 3.5 MB

 WP (LAMP WSL2) 207 235 76.74/s 18 MB / 25 GB 6.6 kB / 9.1 MB

 WP (LEMP WSL2) 78 338 29.01/s 6.7 MB / 9.3 GB 2.5 kB / 3.4 MB

 JS (LAMP VM) 241 411 89.39/s 20 MB / 28 GB 7.2 kB / 11 MB

 JS (LEMP VM) 319 408 118.26/s 26 MB / 37 GB 9.6 kB / 14 MB

 JS (LAMP WSL2) 438 840 162.50/s 38 MB / 51 GB 14 kB / 19 MB

 JS (LEMP WSL2) 442 551 163.88/s 38 MB / 52 GB 14 kB / 19 MB

Note. The ”/s” in the table is an abbreviation for ”per second (s)”. Additional data is available
in the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

45

Figure 17. Stress Test [Success Rate] (Whitley, 2023a)

Note. The data labels in the middle of the column bar represents a numerical value
calculated by combining the results of both the “Status 200 (OK)” and “Verify Homepage”
checks.

Table 21. Stress Test [Checks] (Whitley, 2023a)

Environments

Status 200
(OK)
Successful
Checks

Status 200
(OK)
Failed
Checks

Verify
Homepage
Successful
Checks

Verify
Homepage
Successful
Checks

Success
Rate (%)

 WP (LAMP VM) 79 006 34 728 79 006 34 728 69.47 %

 WP (LEMP VM) 80 778 11 749 80 778 11 749 87.30 %

 WP (LAMP WSL2) 206 600 635 206 600 635 99.69 %

 WP (LEMP WSL2) 78 338 0 78 338 0 100.00 %

 JS (LAMP VM) 241 411 0 241 411 0 100.00 %

 JS (LEMP VM) 319 408 0 319 408 0 100.00 %

 JS (LAMP WSL2) 438 840 0 438 840 0 100.00 %

 JS (LEMP WSL2) 442 551 0 442 551 0 100.00 %

Note. This table does not include the “Content type is text/HTML” check, as including it
would significantly affect the overall Success Rate. This check is only available in the Check
tables in Appendix H.

69 456 23 498 1 270

158 012
161 556

413 200

156 676

482 822

638 816

877 680 885 102

69.47%
87.30%

99.69%

100.00%

100.00%

100.00%

100.00% 100.00%

WordPress
(LAMP VM)

WordPress
(LEMP VM)

WordPress
(LAMP WSL2)

WordPress
(LEMP WSL2)

Jamstack
(LAMP VM)

Jamstack
(LEMP VM)

Jamstack
(LAMP WSL2)

Jamstack
(LEMP WSL2)

Failed Checks Successful Checks Success Rate (%)

46

5.2.4 Spike Test

Finally, the spike tests were used to test and identify whether the environments and sites

could withstand a sudden and massive rush of traffic. This type of test is commonly used to

simulate events, such as a product launch (e.g., a PlayStation 5 launch) or seasonal sales

(e.g., a Black Friday or Christmas sale). In this case, the tests were used to put both web

architectures to the ultimate test and evaluate how they performed under extremely high

traffic loads. (Grafana k6, 2023g) Compared to earlier tests, the spike test used exactly 10

times more virtual users (VUs) than the stress test or 20 times more VUs than the average-

load test.

When analysing the fourth and final Success Rate figure, Figure 18, significant changes were

observed when compared to previous figures. The figure showed a staircase-like pattern,

with the leftmost environments performing the fewest checks, while the rightmost

performed the most checks, which was not observed in previous figures. Additionally, this

was also the first chart where both WordPress and Jamstack architectures had failing checks.

By comparing both web architectures together, it became clear which environment

performed better in handling potential traffic spikes. In the spike test, the Jamstack

environments held up extremely well, despite the large number of VUs. Among the Jamstack

environments, the best performing environment was Jamstack (LEMP WSL2), which had a

total of 185 330 successful checks and only 1 336 failed checks, resulting in an impressive

total success rate of 99.28%. On the other hand, the Jamstack (LAMP VM) environment had

the fewest number of checks, with 36 792 successful checks and 927 failed checks, but still

maintained a relatively high total success rate of 97.54%.

When analysing the WordPress environment in the same figure, Figure 18, it was clearly

evident that the majority of them had a significant number of failures, with a median total

success rate of only 14.25%, compared to 98.30% of all Jamstack environments. When

comparing the best performing WordPress environment, WordPress (LAMP WSL2), which

had 22 306 successful checks and 107 342 failed checks, to the best Jamstack environment,

Jamstack (LEMP WSL2), it showed that Jamstack had 163 024 (or 8.31 %) more successful

47

checks than WordPress, highlighting the significant difference in the scalability between the

two architectures under extremely high traffic loads.

Although technically WordPress (LEMP WSL2) produced the most checks overall out of all

the environments, most of them were failed checks. The reason why WordPress (LEMP

WSL2) might have produced more failed checks than the total check count of Jamstack

(LEMP WSL2) can probably be seen in the log files of the environment. Upon analysing the

log files, it was found that the environment was hit with numerous "Resource temporarily

unavailable" errors, also known as a "502 Bad Gateway" error. This error might be caused by

the PHP-FPM (FastCGI Process Manager) being unable to process the huge amounts of

requests, according to an article by Xiao Guoan. By default, the Linux kernel's

“net.core.somaxconn” setting, which defines the maximum number of connections allowed

to a socket file, has a value of 4096, meaning the maximum number of users. Before kernel

5.4, this value was 128. Therefore, the Linux kernel might not be to blame in this regard, as

the maximum number of users limit was well above the VUs limit of the spike test.

However, increasing the number of child processes in the PHP-FPM may potentially slightly

alleviate this issue. (Guoan, 2022)

48

Table 22. Spike Test [Requests] (Whitley, 2023a)

Environments
req_duration
(Median)

req_waiting
(Median)

req_receiving
(Median)

iteration_duration
(Median)

 WP (LAMP VM) 7.91 s 7.90 s 0 s 8.91 s

 WP (LEMP VM) 1.26 s 1.26 s 0 s 2.26 s

 WP (LAMP WSL2) 0 s 148.31 ms 505.40 µs 2.44 s

 WP (LEMP WSL2) 1.25 ms 1.18 ms 0 s 1.00 s

 JS (LAMP VM) 6.15 s 163.60 ms 5.88 s 7.58 s

 JS (LEMP VM) 3.97 s 106.83 ms 3.82 s 5.02 s

 JS (LAMP WSL2) 21.22 ms 10.09 ms 8.81 ms 1.02 s

 JS (LEMP WSL2) 27.08 ms 14.43 ms 10.59 ms 1.02 s

Note. The metric results in the table are in median (p50) and some are in different units of
time, such as in seconds (s), milliseconds (ms), microseconds (μs), and sometimes even in
nanoseconds (ns). Additional data is available in the author’s GitHub repository
(https://github.com/Sam-Whitley/thesis).

Table 23. Spike Test [Other Stats] (Whitley, 2023a)

Environments
Requests
(Total)

Requests
(Rate, /s)

Data Sent/Received
(Total)

Data Sent/Received
(Rate, /s)

 WP (LAMP VM) 20 570 112.88/s 1.7 MB / 566 MB 9.2 kB / 3.1 MB

 WP (LEMP VM) 44 077 243.47/s 3.6 MB / 618 MB 20 kB / 2.4 MB

 WP (LAMP WSL2) 73 413 403.52/s 4.8 MB / 1.4 GB 27 kB / 7.9 MB

 WP (LEMP WSL2) 106 048 554.74/s 9.1 MB / 682 MB 48 kB / 3.6 MB

 JS (LAMP VM) 19 323 106.93/s 1.6 MB / 2.2 GB 8.8 kB / 12 MB

 JS (LEMP VM) 27 837 153.85/s 2.3 MB / 3.2 GB 13 kB / 18 MB

 JS (LAMP WSL2) 40 987 224.89/s 3.6 MB / 4.6 GB 20 kB / 25 MB

 JS (LEMP WSL2) 94 001 447.62/s 8.2 MB / 11 GB 39 kB / 52 MB

Note. The ”/s” in the table is an abbreviation for ”per second (s)”. Additional data is available
in the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

49

Figure 18. Spike Test [Success Rate] (Whitley, 2023a)

Note. The data labels in the middle of the column bar represents a numerical value
calculated by combining the results of both the “Status 200 (OK)” and “Verify Homepage”
checks.

Table 24. Spike Test [Checks] (Whitley, 2023a)

Environments
Status 200
(OK)
Successful Checks

Status 200
(OK)
Failed
Checks

Verify
Homepage
Successful
Checks

Verify
Homepage
Failed
Checks

Success
Rate (%)

 WP (LAMP VM) 4 408 16 162 4 408 16 162 21.43 %

 WP (LEMP VM) 4 975 39 102 4 975 39 102 11.29 %

 WP (LAMP WSL2) 11 153 62 260 11 153 45 082 17.21 %

 WP (LEMP WSL2) 5 499 100 549 5 499 100 549 5.19 %

 JS (LAMP VM) 18 396 927 18 396 0 97.54 %

 JS (LEMP VM) 27 230 607 27 230 0 98.90 %

 JS (LAMP WSL2) 39 138 1 849 39 138 0 97.69 %

 JS (LEMP WSL2) 92 665 1 336 92 665 0 99.28 %

Note. This table does not include the “Content type is text/HTML” check, as including it
would significantly affect the overall Success Rate. This check is only available in the Check
tables in Appendix I.

32 324

78 204
107 342

201 098

927 607 1 849 1 336

8 816

9 950

22 306

10 998

36 792 54 460
78 276

185 330

21.43%

11.29%

17.21%

5.19%

97.54%

98.90%

97.69%

99.28%

WordPress
(LAMP VM)

WordPress
(LEMP VM)

WordPress
(LAMP WSL2)

WordPress
(LEMP WSL2)

Jamstack
(LAMP VM)

Jamstack
(LEMP VM)

Jamstack
(LAMP WSL2)

Jamstack
(LEMP WSL2)

Failed Checks Successful Checks Success Rate (%)

50

6 Conclusion

This research study aimed to gather more quantitative data on the performance and

scalability of the Jamstack architecture and compare it to the monolithic architecture of

WordPress. More specifically, this research study aimed to answer the following research

questions:

Question 1: How did the performance of the Jamstack web architecture compare to the

monolithic web architecture of WordPress in the terms of different user-centric performance

metrics?

Question 2: How did the scalability of the Jamstack web architecture compare to the

monolithic web architecture of WordPress in handling different patterns of traffic?

To test and evaluate the performance and scalability of the two architectures, a total of

eight Linux-based virtualised environments were tested, half of which were created using

Jamstack and the other WordPress. These environments were then deployed on different

virtualisation technologies, WSL2 and VM, using the different web servers, Apache and

NGINX, from the software stacks of LAMP and LEMP, respectively. This was repeated to

ensure the reliability as well as the validity of the test results.

Based on the performance results that were gathered and analysed, the Page Load Time

(PLT) metric results showed that Jamstack loaded pages 1.68 times faster on mobile,

whereas desktop loaded pages 2.05 times faster when compared to WordPress. Moreover,

when comparing the Time to First Byte (TTFB) metric, Jamstack had a clear advantage in

server response time with a 6.64 time faster TTFB on mobile and a staggering 29.88 time

faster TTFB on desktop, which would explain the improved page load time of the Jamstack

architecture. However, it is worth noting that when examining the time between TTFB and

Fully Loaded metrics, Jamstack loaded some of its website content, such as its CSS,

JavaScript, and font files slower compared to WordPress, being 1.11 times slower on desktop

and 1.14 times slower on mobile, as clearly evident in the waterfall figures in Appendix C.

51

Fortunately, Jamstack can quickly recoup for this performance loss with its faster TTFB load

time, again both on desktop and mobile sites.

When regarding the scalability results, the research study included various types of

quantitative data, such as request metrics and checks. However, due to the large number of

figures, tables, and the overall amount of data, only the Success Rate figures were covered.

These Success Rate figures showed the number of successful and failed checks of each load

test, providing insight into how each architecture performed under different types of traffic

loads. Based on the scalability results of the Success Rate figures, the load tests, in this case,

the smoke test, showed that Jamstack had 1.17 times the number of successful checks

compared to WordPress during minimal load. During an average-load test, Jamstack had

2.91 times the number of successful checks compared to WordPress. As the number of

virtual users (VUs) and the test duration increased, Jamstack’s advantaged grew as well, with

Jamstack getting 4.75 times the number of successful checks than WordPress during the

stress test. Finally, during the most rigorous load test, the spike test, Jamstack had close to

6.64 times more successful checks than WordPress, highlighting the significant difference in

the scalability between the two architectures under extremely high traffic loads.

In summary, it can be concluded that the Jamstack architecture provided clear performance

benefits when serving its content statically, especially under heavier loads, compared to the

monolithic web architecture of WordPress. Furthermore, the research study generated

more, potentially new and unresearched quantitative data of both web architectures. This

data could be further analysed by examining, for example, the HAR (HTTP Archive) files from

the performance tests, which contain different network traffic information about the

browser’s interactions with a site. (Seal, 2022) Alternatively, the CSV files from the scalability

tests, which contains granular data points (detailed data) of the load tests, could be analysed

in greater detail to further validate or potentially uncover any aspects that were missed or

overlooked by the author.

52

Additionally, a question remained on whether the Jamstack architecture would still have the

upper hand in performance when utilising application programming interfaces (APIs) and

microservices, such as an e-commerce Jamstack website, against the monolithic web

architecture of WordPress, which could be a potential area for further research. Another

potential area of research could involve comparing the build times of different static site

generators (SSGs) against each other, as some are notorious for their slow build time. While

there have been publications on this, notably a CSS-Tricks article written by Sean C Davis, the

article might be slightly outdated by now.

53

References

Ahmed, R. (2023, January 25). Why Biggest Brands in the World Use WordPress and Who

They Are? [Why WordPress is So Popular]. Retrieved May 4, 2023, from weDevs:

https://wedevs.com/blog/103311/top-brands-using-wordpress/

Atlassian. (n.d.). Git Bash. Retrieved May 8, 2023, from Atlassian:

https://www.atlassian.com/git/tutorials/git-bash

Awati, R., & Wigmore, I. (2022, May). What Is Monolithic Architecture in Software? Retrieved

March 21, 2023, from TechTarget:

https://www.techtarget.com/whatis/definition/monolithic-architecture

Bhandari, P. (2023, January 20). How to Calculate Standard Deviation (Guide) | Calculator &

Examples. Retrieved May 9, 2023, from Scribbr:

https://www.scribbr.com/statistics/standard-deviation/

Biilmann, M. (2021, May 3). The Evolution of Jamstack. Retrieved March 23, 2023, from

Smashing Magazine: https://www.smashingmagazine.com/2021/05/evolution-

jamstack/

Biilmann, M., & Hawksworth, P. (2019). Modern Web Development on the JAMstack (First

Edition ed.). (J. Pollock, A. Rufino, & E. Dayton, Eds.) O’Reilly Media, Inc. Retrieved

March 1, 2023, from https://www.netlify.com/pdf/oreilly-modern-web-

development-on-the-jamstack.pdf

Budert-Waltz, T. (2021, December 28). What Is Research Methodology? Retrieved March 13,

2023, from Study.com: https://study.com/learn/lesson/research-methodology-

examples-approaches-techniques.html

Cambridge Dictionary. (n.d.). Meaning of Monolithic in English. Retrieved March 23, 2023,

from Cambridge Dictionary:

https://dictionary.cambridge.org/dictionary/english/monolithic

Camden, R., & Rinaldi, B. (2022). The Jamstack Book. (K. S. Johnson, L. Lazaris, M. Batinić, A.

Marinkovich, & M. Mitchell, Eds.) New York: Manning Publications Co.

doi:9781617298882

Coleman, B. (2021, March 16). K6 HTML Report Exporter v2. Retrieved April 8, 2023, from

GitHub: https://github.com/benc-uk/k6-reporter

54

Coursera Inc. (2022, November 14). What Is Python Used For? A Beginner’s Guide. Retrieved

March 28, 2023, from Coursera: https://www.coursera.org/articles/what-is-python-

used-for-a-beginners-guide-to-using-python

Crevon, T. (2022, June 8). What Are Iterations, VUs, and How They Relate? Retrieved May 15,

2023, from Grafana k6: https://community.k6.io/t/level-easy-what-are-iterations-

vus-and-how-they-relate/3887/3

Denysov, A. (2019, November 1). A Look at JAMstack’s Speed, By the Numbers. Retrieved

March 16, 2023, from CSS-Tricks: https://css-tricks.com/a-look-at-jamstacks-speed-

by-the-numbers/

Dodson, M. (2016, September 28). WordPress In Action: Microsoft. Retrieved May 5, 2023,

from Torque Magazine: https://torquemag.io/2016/09/wordpress-microsoft/

Domantas, G. (2023, February 21). What Is WordPress? An Overview of the World’s Most

Popular CMS. Retrieved March 11, 2023, from Hostinger Tutorials:

https://www.hostinger.com/tutorials/what-is-wordpress

Dziuba, A. (2021a, November 17). Do JAMstack Websites Use the Microservice Architecture.

Retrieved March 27, 2023, from Relevant Software:

https://relevant.software/blog/jamstack-

review/#Do_JAMstack_websites_use_the_microservice_architecture

Dziuba, A. (2021b, August 27). What Are Micro Frontends? Retrieved March 27, 2023, from

Relevant Software: https://relevant.software/blog/scale-frontend-micro-frontends-

architecture/#What_are_micro_frontends

Falconer, J. (2022, November 26). Jamstack Basics: What Is Jamstack, and Is It the Future of

Web Development? [Better Performance]. Retrieved May 9, 2023, from Variables.sh:

https://www.variables.sh/what-is-jamstack/

Fayock, C. (2022, March 31). New to Jamstack? Everything You Need to Know to Get Started.

Retrieved May 28, 2023, from Snipcart: https://snipcart.com/blog/jamstack

Frost, J. (n.d.). Reliability vs Validity: Differences & Examples. Retrieved March 20, 2023, from

Statistics by Jim: https://statisticsbyjim.com/basics/reliability-vs-validity/

Gaur, A. (2022, May 6). Median Formula for Even, Odd, and Grouped Data. Retrieved May 9,

2023, from Adda247: https://www.adda247.com/school/median-formula/

Grafana k6. (2023a). Browser Module Documentation. Retrieved April 6, 2023, from Grafana

k6: https://k6.io/docs/javascript-api/k6-browser/

55

Grafana k6. (2023b). Load Test Types. Retrieved May 1, 2023, from Grafana k6:

https://k6.io/docs/test-types/load-test-types/

Grafana k6. (2023c). Using k6 [Metrics]. Retrieved May 2, 2023, from Grafana k6:

https://k6.io/docs/using-k6/metrics/

Grafana k6. (2023d, April 24). What Is Smoke Testing? How to Create a Smoke Test in k6.

Retrieved May 15, 2023, from Grafana k6: https://k6.io/docs/test-types/smoke-

testing/

Grafana k6. (2023e, April 24). What Is Load Testing? How to Create a Load Test in k6.

Retrieved May 15, 2023, from Grafana k6: https://k6.io/docs/test-types/load-

testing/#average-load-testing-in-k6

Grafana k6. (2023f, April 24). What Is Stress Testing? How to Create a Stress Test in k6.

Retrieved May 15, 2023, from Grafana k6: https://k6.io/docs/test-types/stress-

testing/#stress-testing-in-k6

Grafana k6. (2023g, April 24). What Is Spike Testing? How to Create a Spike Test in K6.

Retrieved May 15, 2023, from Grafana k6: https://k6.io/docs/test-types/spike-

testing/#spike-testing-in-k6

Grafana k6. (n.d.). k6 Documentation. Retrieved March 8, 2023, from Grafana k6:

https://k6.io/docs/

Guoan, X. (2022, December 1). How to Fix Common NGINX Web Server Errors. Retrieved May

21, 2023, from LinuxBabe: https://www.linuxbabe.com/linux-server/how-to-fix-

common-nginx-errors

Gustafsson, R. (2021, June 29). Our Exciting Next Step - k6 Is Now Part of Grafana Labs!

Retrieved March 8, 2023, from k6: https://k6.io/blog/joining-grafana-labs/

Harris, C. (n.d.). Microservices vs. Monolithic Architecture. Retrieved March 21, 2023, from

Atlassian: https://www.atlassian.com/microservices/microservices-

architecture/microservices-vs-monolith

Hedenskog, P. (2017, November 9). Sitespeed.io/plugins. Retrieved March 9, 2023, from

GitHub: https://github.com/sitespeedio/plugins

Hedenskog, P. (2021, December 20). Sitespeed.io - Documentation. Retrieved March 9, 2023,

from Sitespeed.io: https://www.sitespeed.io/documentation/

56

Hedenskog, P. (2022, September 23). Results and Examples of What You Will Get if You Run

Sitespeed.io. Retrieved April 6, 2023, from Sitespeed.io:

https://www.sitespeed.io/examples/#sitespeedio

Hogan, B., & Garnett, A. (2021, December 9). How to Set Up Nginx With HTTP/2 Support on

Ubuntu 20.04. Retrieved April 3, 2023, from DigitalOcean:

https://www.digitalocean.com/community/tutorials/how-to-set-up-nginx-with-http-

2-support-on-ubuntu-20-04

Inch Calculator. (n.d.). Relative Standard Deviation Calculator. Retrieved May 9, 2023, from

Inch Calculator: https://www.inchcalculator.com/relative-standard-deviation-

calculator/

Jamstack.org. (n.d.). What Is Jamstack? Retrieved March 17, 2023, from Jamstack.org:

https://jamstack.org/

Javatpoint. (n.d.). WordPress History. Retrieved March 11, 2023, from Javatpoint:

https://www.javatpoint.com/wordpress-history

Kostrzewa, D. (2020, December 14). Jamstack Explained. Retrieved March 23, 2023, from

Bejamas: https://bejamas.io/blog/jamstack/

Krishnan, A. (2022, December 13). NGINX vs Apache: Head to Head Comparison. Retrieved

May 16, 2023, from Hackr.io: https://hackr.io/blog/nginx-vs-apache#differences-

between-apache-and-nginx

Krzywda, K. (2021, December 9). Why Are Developers Choosing Jamstack More Often?

Retrieved March 23, 2023, from Naturaily: https://naturaily.com/blog/why-are-

developers-choosing-jamstack-more-often

Lönn, R. (2020, March 4). Open Source Load Testing Tool Review 2020. Retrieved April 4,

2023, from Grafana k6: https://k6.io/blog/comparing-best-open-source-load-testing-

tools/#max-traffic-generation-capability

Matilainen, M. (2020). Comparison of Usage of Different Content Management Systems.

Bachelor's thesis. Retrieved March 17, 2023, from

https://www.theseus.fi/bitstream/handle/10024/354520/Matilainen_Markus.pdf

Middleton, F. (2023, January 30). Reliability vs. Validity in Research. Retrieved March 20,

2023, from Scribbr: https://www.scribbr.com/methodology/reliability-vs-

validity/#understanding-reliability-vs-validity

57

Moreira, R. (2020, July 2). From Monolithic to Headless: How and Why You Should Adapt

Your WordPress Stack. Retrieved May 3, 2023, from Medium:

https://medium.com/pixelmatters/from-monolithic-to-headless-how-and-why-we-

adapted-our-wordpress-stack-309f0536007e

Pawlik, K., & Czernia, D. (2022, December 5). Percentage Change Calculator. Retrieved May

9, 2023, from Omni Calculator: https://www.omnicalculator.com/math/percentage-

change

Rechneronline. (n.d.). Convert Percent and Factor. Retrieved May 9, 2023, from

Rechneronline: https://rechneronline.de/anteil/percent-factor.php

Seal, R. (2022, May 27). A Comprehensive Guide on HAR Files. Retrieved May 26, 2023, from

Keysight: https://www.keysight.com/blogs/tech/nwvs/2022/05/27/a-

comprehensive-guide-on-har-files

Sharma, M. (2022, November 4). Comparison Between Web 1.0, Web 2.0 and Web 3.0.

Retrieved March 15, 2023, from GeeksforGeeks:

https://www.geeksforgeeks.org/web-1-0-web-2-0-and-web-3-0-with-their-

difference/

Sheldon, R. (2023, February). What Is Codebase (Code Base)? Retrieved March 21, 2023,

from TechTarget: https://www.techtarget.com/whatis/definition/codebase-code-

base

Sirisilla, S. (2023, January 19). Inductive and Deductive Reasoning — Strategic Approach for

Conducting Research. Retrieved March 13, 2023, from Enago Academy:

https://www.enago.com/academy/inductive-and-deductive-reasoning/

Sitespeed.io. (2022a, January 21). Metrics - Sitespeed.io. Retrieved April 17, 2023, from

Sitespeed.io: https://www.sitespeed.io/documentation/sitespeed.io/metrics/

Sitespeed.io. (2022b). Sitespeed.io - Compare HAR Files. Retrieved May 11, 2023, from

Sitespeed.io: https://compare.sitespeed.io/

Sitespeed.io. (2023, March 7). Welcome to the Wonderful World of Web Performance.

Retrieved March 9, 2023, from Sitespeed.io: https://www.sitespeed.io/

Stack Overflow. (2022). Stack Overflow Developer Survey 2022. Retrieved March 28, 2023,

from Stack Overflow: https://survey.stackoverflow.co/2022/#most-popular-

technologies-language-prof

58

Streefkerk, R. (2023, May 1). Qualitative vs. Quantitative Research | Differences, Examples &

Methods. Retrieved from Scribbr:

https://www.scribbr.com/methodology/qualitative-quantitative-research/#the-

differences-between-quantitative-and-qualitative-research

Techopedia. (2020, August 25). Techopedia Explains Microsoft Excel. Retrieved March 8,

2023, from Techopedia: https://www.techopedia.com/definition/5430/microsoft-

excel#techopedia-explains-microsoft-excel

The Editors of Encyclopaedia Britannica. (2022, October 20). Microsoft Excel. Retrieved

March 8, 2023, from Encyclopedia Britannica:

https://www.britannica.com/technology/Microsoft-Excel

The HTTP Archive. (2023, March 1). Page Weight. Retrieved April 3, 2023, from HTTP

Archive: https://httparchive.org/reports/page-weight#bytesTotal

van der Hoeven, N. (2021, January 2021). Comparing k6 and JMeter for Load Testing.

Retrieved April 6, 2023, from Grafana k6: https://k6.io/blog/k6-vs-jmeter/

Vistola, L. (2021, July 23). Shifting From Monolithic Application Development. Retrieved

March 15, 2023, from DevOps.com: https://devops.com/the-move-away-from-

monolithic-application-development/

Voss, L., & Alam-Naylor, S. (2022, October 13). The 2022 Web Almanac. Retrieved March 8,

2023, from HTTP Archive: https://almanac.httparchive.org/en/2022/jamstack#the-

growth-of-the-jamstack

W3Techs. (2023a, May 3). Market Share Yearly Trends for Content Management Systems.

Retrieved May 3, 2023, from World Wide Web Technology Surveys:

https://w3techs.com/technologies/history_overview/content_management/ms/y

W3Techs. (2023b, March 11). Usage Statistics of Content Management Systems. Retrieved

March 11, 2023, from World Wide Web Technology Surveys:

https://w3techs.com/technologies/overview/content_management

Wagner, J. L. (2017). 2.3.1 Viewing Timing Information. In S. Kline, I. Martinovic´, N. Watts, K.

Sullivan, & S. Wilkey (Eds.), Web Performance in Action: Building Faster Web Pages

(p. 27). New York: Manning Publications Co. doi:ISBN: 9781617293771

Wallis, J. (2022, April 14). What Is Jamstack Architecture? [Here’s A Quick Overview For

People In a Hurry!]. Retrieved March 6, 2023, from WEBO Digital:

https://webo.digital/blog/what-is-jamstack-architecture-an-overview/

59

Walton, P. (2022, May 11). User-Centric Performance Metrics [Types of Metrics]. Retrieved

May 2, 2023, from Web.dev: https://web.dev/user-centric-performance-

metrics/#types-of-metrics

Whitley, S. (2023a, May 1). Sam Whitley's Thesis GitHub Repository. Retrieved April 26, 2023,

from GitHub: https://github.com/Sam-Whitley/thesis

Whitley, S. (2023b, April 12). Sitespeed.io Runtime Settings [Desktop]. Retrieved April 12,

2023, from GitHub: https://sam-

whitley.github.io/thesis/sitespeed/desktop/L1/settings.html

Whitley, S. (2023c, April 13). Sitespeed.io Runtime Settings [Mobile]. Retrieved April 13,

2023, from GitHub: https://sam-

whitley.github.io/thesis/sitespeed/mobile/L1/settings.html

Whitley, S. (2023d, April 29). Testing Environment Flow Chart. Created using Canva

(https://www.canva.com/).

Whitley, S. (2023e, May 15). Sam Whitley's Grafana k6 Scripts. Retrieved May 15, 2023, from

GitHub: https://github.com/Sam-Whitley/thesis/tree/main/k6/scripts

WPBeginner. (2023, January 17). 40+ Most Notable Big Name Brands That Are Using

WordPress [Why Do So Many Big Name Brands Use WordPress?]. Retrieved May 4,

2023, from WPBeginner: https://www.wpbeginner.com/showcase/40-most-notable-

big-name-brands-that-are-using-wordpress/

WTF Is Jamstack? (n.d.). What Is Jamstack? Retrieved March 3, 2023, from WTF Is Jamstack?:

https://jamstack.wtf/#what-is-jamstack

Appendix A / 1

Appendix A. Mathematical Formulas

Equation 2. Example Data List and Median Formula (Gaur, 2022)

 [𝐷𝑎𝑡𝑎 𝑙𝑖𝑠𝑡 = (𝑥1, 𝑥2…𝑥𝑛)]

[𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑀𝑒𝑑(𝑋) =

{

 𝑋 [

𝑛

2
] , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

(𝑋 [
𝑛 − 1
2] + 𝑋 [

𝑛 + 1
2]

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

Note. Median formula adapted from Adda247
(https://www.adda247.com/school/median-formula/)

Equation 3. Percentage Change Formula (Pawlik & Czernia, 2022)

% 𝐶ℎ𝑎𝑛𝑔𝑒 = 100𝑥
(𝑓𝑖𝑛𝑎𝑙 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

|𝑖𝑛𝑖𝑡𝑖𝑎𝑙|

Note. Percentage change formula adapted from Omni Calculator
(https://www.omnicalculator.com/math/percentage-change)

Equation 4. Percent and Factor Formula (Rechneronline, n.d.)

[𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 + 100

100
]

[𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 = 100 ∗ 𝑓𝑎𝑐𝑡𝑜𝑟 − 100]

Note. Percent and factor formula adapted from Rechneronline
(https://rechneronline.de/anteil/percent-factor.php)

Equation 5. Relative Standard Deviation (RSD) Formula (Inch Calculator, n.d.)

𝑅𝑆𝐷 = |
𝜎

𝜇
| × 100%

Note. σ = Population Standard Deviation, μ = Population Mean. Formula adapted from
(https://www.inchcalculator.com/relative-standard-deviation-calculator/)

https://www.inchcalculator.com/relative-standard-deviation-calculator/

Appendix A / 2

Equation 6. Standard Deviation (SD) Formula (Bhandari, 2023)

𝜎 = √
∑(𝑥 − 𝜇)2

𝑁

Note. σ = Population Standard Deviation, ∑ = Sum of…, x = Each value, μ = Population
Mean, N = Number of Values in the Population. Formula adapted from

(https://www.scribbr.com/statistics/standard-deviation/)

Equation 7. Excel Standard Deviation (SD) Formula

[= 𝑆𝑇𝐷𝐸𝑉. 𝑃(𝐵3: 𝐶𝑊3)]

Equation 8. Example Excel Relative Standard Deviation (RSD) Formula

𝑆𝑇𝐷𝐸𝑉. 𝑃 (
𝐵3: 𝐶𝑊3

𝐴𝑉𝐸𝑅𝐴𝐺𝐸(𝐵3: 𝐶𝑊3)
) × 100

https://www.scribbr.com/statistics/standard-deviation/

Appendix B / 1

Appendix B. Sitespeed.io – Timing Metric Summary

Sitespeed.io Metric Summary - [L1 WordPress with LAMP Stack (VM)] (Whitley, 2023a)

Metric
Median (Min; Max) Mean (SD) RSD %

Timing Metrics [Desktop]

 First Paint and FCP 297 (254-344) 293 (20) 6.69

 Largest Contentful Paint 297 (254-344) 293 (20) 6.69

 Load Event End 382 (319-435) 382 (26) 6.80

 Server Response Time 204 (170-248) 201 (17) 8.57

 Time to First Byte 206 (172-250) 202 (17) 8.50

 Page Load Time 382 (318-435) 382 (26) 6.83

 First Visual Change 300 (234-367) 289 (25) 8.83

 Last Visual Change 367 (300-434) 358 (34) 9.50

 Speed Index 359 (294-426) 350 (34) 9.66

 Visual Readiness 67 (33-134) 69 (26) 37.34

 Visual Complete 95 367 (300-434) 356 (36) 9.97

 Visual Complete 99 367 (300-434) 358 (34) 9.50

Timing Metrics [Mobile]

 First Paint and FCP 495 (387-941) 501 (65) 12.91

 Largest Contentful Paint 618 (503-1642) 635 (116) 18.25

 Load Event End 609 (488-1643) 627 (129) 20.53

 Server Response Time 271 (180-378) 270 (39) 14.34

 Time to First Byte 294 (200-385) 292 (38) 12.98

 Page Load Time 608 (487-1642) 626 (129) 20.56

Note. Lists several timing metrics (https://github.com/Sam-Whitley/thesis). Median (Min;
Max) and Mean (SD) values are in milliseconds (ms).

Appendix B / 2

Sitespeed.io Metric Summary - [L2 WordPress with LAMP Stack (WSL2)] (Whitley, 2023a)

Metric
Median (Min; Max) Mean (SD) RSD %

Timing Metrics [Desktop]

 First Paint and FCP 260 (248-272) 258 (6) 2.39

 Largest Contentful Paint 260 (248-272) 258 (6) 2.39

 Load Event End 278 (267-296) 278 (6) 2.29

 Server Response Time 179 (168-193) 179 (6) 3.21

 Time to First Byte 181 (170-195) 181 (6) 3.17

 Page Load Time 277 (266-295) 278 (6) 2.29

 First Visual Change 267 (233-333) 258 (18) 7.15

 Last Visual Change 267 (267-333) 281 (18) 6.25

 Speed Index 267 (263-333) 275 (16) 5.83

 Visual Readiness 33 (0-66) 23 (16) 70.05

 Visual Complete 95 267 (267-333) 277 (16) 5.92

 Visual Complete 99 267 (367-333) 277 (16) 5.92

Timing Metrics [Mobile]

 First Paint and FCP 417 (372-942) 432 (68) 15.79

 Largest Contentful Paint 530 (450-1164) 549 (83) 15.20

 Load Event End 514 (463-1129) 538 (83) 15.35

 Server Response Time 200 (173-591) 215 (55) 25.35

 Time to First Byte 217 (192-422) 232 (40) 17.21

 Page Load Time 513 (462-1127) 537 (83) 15.36

Note. Lists several timing metrics (https://github.com/Sam-Whitley/thesis). Median (Min;
Max) and Mean (SD) values are in milliseconds (ms).

Appendix B / 3

Sitespeed.io Metric Summary - [L4 Jamstack with LAMP Stack (WSL2)] (Whitley, 2023a)

Metric
Median (Min; Max) Mean (SD) RSD %

Timing Metrics [Desktop]

 First Paint and FCP 144 (133-157) 142 (4) 3.09

 Largest Contentful Paint 144 (133-157) 142 (4) 3.09

 Load Event End 209 (184-247) 204 (14) 6.67

 Server Response Time 8 (7-10) 8 (1) 6.02

 Time to First Byte 10 (10-12) 10 (1) 4.83

 Page Load Time 208 (184-247) 203 (14) 6.69

 First Visual Change 133 (133-167) 136 (10) 7.11

 Last Visual Change 200 (167-234) 194 (18) 9.02

 Speed Index 194 (163-228) 189 (17) 8.78

 Visual Readiness 67 (33-100) 58 (17) 28.64

 Visual Complete 95 200 (167-234) 194 (18) 9.02

 Visual Complete 99 200 (167-234) 194 (18) 9.02

Timing Metrics [Mobile]

 First Paint and FCP 262 (219-375) 267 (31) 11.56

 Largest Contentful Paint 375 (328-531) 389 (40) 10.23

 Load Event End 368 (324-564) 379 (44) 11.53

 Server Response Time 19 (15-70) 22 (8) 38.13

 Time to First Byte 43 (26-84) 45 (8) 18.42

 Page Load Time 367 (323-563) 378 (44) 11.55

Note. Lists several timing metrics (https://github.com/Sam-Whitley/thesis). Median (Min;
Max) and Mean (SD) values are in milliseconds (ms).

Appendix B / 4

Sitespeed.io Metric Summary - [L5 Jamstack with LAMP Stack (VM)] (Whitley, 2023a)

Metric
Median (Min; Max) Mean (SD) RSD %

Timing Metrics [Desktop]

 First Paint and FCP 102 (78-126) 101 (9) 9.17

 Largest Contentful Paint 102 (78-126) 101 (9) 9.17

 Load Event End 209 (154-284) 209 (21) 9.87

 Server Response Time 5 (4-13) 6 (2) 29.85

 Time to First Byte 6 (5-14) 6 (1) 22.70

 Page Load Time 209 (153-284) 209 (21) 9.88

 First Visual Change 100 (67-134) 100 (22) 22.10

 Last Visual Change 167 (100-267) 171 (35) 20.73

 Speed Index 161 (97-256) 163 (35) 21.64

 Visual Readiness 67 (0-167) 70 (31) 43.56

 Visual Complete 95 167 (100-267) 169 (37) 22.18

 Visual Complete 99 167 (100-267) 170 (36) 20.89

Timing Metrics [Mobile]

 First Paint and FCP 209 (184-296) 216 (22) 10.07

 Largest Contentful Paint 352 (283-453) 356 (35) 9.86

 Load Event End 329 (292-579) 348 (58) 16.71

 Server Response Time 15 (10-69) 19 (11) 58.38

 Time to First Byte 36 (27-95) 39 (10) 26.02

 Page Load Time 328 (291-578) 347 (58) 16.73

Note. Lists several timing metrics (https://github.com/Sam-Whitley/thesis). Median (Min;
Max) and Mean (SD) values are in milliseconds (ms).

Appendix B / 5

Sitespeed.io Metric Summary - [L6 WordPress with LEMP Stack (VM)] (Whitley, 2023a)

Metric
Median (Min; Max) Mean (SD) RSD %

Timing Metrics [Desktop]

 First Paint and FCP 278 (254-648) 282 (38) 13.52

 Largest Contentful Paint 278 (254-648) 282 (38) 13.52

 Load Event End 341 (309-720) 345 (40) 11.54

 Server Response Time 200 (178-568) 205 (38) 18.46

 Time to First Byte 201 (179-570) 206 (38) 18.42

 Page Load Time 341 (308-720) 345 (40) 11.57

 First Visual Change 267 (234-634) 278 (39) 13.98

 Last Visual Change 334 (300-700) 331 (44) 13.38

 Speed Index 301 (267-694) 320 (46) 14.30

 Visual Readiness 67 (0-133) 53 (23) 43.47

 Visual Complete 95 300 (267-700) 324 (47) 14.55

 Visual Complete 99 334 (300-700) 330 (44) 13.44

Timing Metrics [Mobile]

 First Paint and FCP 473 (386-1055) 478 (72) 15.01

 Largest Contentful Paint 603 (507-1288) 608 (82) 13.41

 Load Event End 584 (497-1286) 594 (85) 14.27

 Server Response Time 264 (193-564) 267 (48) 18.13

 Time to First Byte 281 (210-681) 287 (55) 19.21

 Page Load Time 583 (496-1284) 593 (85) 14.28

Note. Lists several timing metrics (https://github.com/Sam-Whitley/thesis). Median (Min;
Max) and Mean (SD) values are in milliseconds (ms).

Appendix B / 6

Sitespeed.io Metric Summary - [L7 Jamstack with LEMP Stack (VM)] (Whitley, 2023a)

Metric
Median (Min; Max) Mean (SD) RSD %

Timing Metrics [Desktop]

 First Paint and FCP 84 (77-91) 82 (3) 4.25

 Largest Contentful Paint 84 (77-91) 82 (3) 4.25

 Load Event End 135 (122-165) 136 (7) 5.47

 Server Response Time 3 (2-5) 3 (1) 22.11

 Time to First Byte 4 (3-5) 4 (0) 4.95

 Page Load Time 134 (122-165) 136 (7) 5.49

 First Visual Change 67 (67-100) 73 (13) 17.67

 Last Visual Change 134 (100-167) 123 (21) 17.14

 Speed Index 90 (67-161) 111 (22) 19.61

 Visual Readiness 51 (0-100) 50 (22) 43.02

 Visual Complete 95 100 (67-167) 115 (23) 20.35

 Visual Complete 99 134 (100-167) 122 (22) 17.73

Timing Metrics [Mobile]

 First Paint and FCP 208 (184-297) 215 (23) 10.75

 Largest Contentful Paint 340 (262-788) 351 (68) 19.36

 Load Event End 316 (286-992) 347 (93) 26.80

 Server Response Time 13 (9-57) 18 (11) 60.65

 Time to First Byte 34 (21-82) 37 (11) 30.32

 Page Load Time 315 (285-990) 346 (93) 26.85

Note. Lists several timing metrics (https://github.com/Sam-Whitley/thesis). Median (Min;
Max) and Mean (SD) values are in milliseconds (ms).

Appendix B / 7

Sitespeed.io Metric Summary - [L8 WordPress with LEMP Stack (WSL2)] (Whitley, 2023a)

Metric
Median (Min; Max) Mean (SD) RSD %

Timing Metrics [Desktop]

 First Paint and FCP 254 (248-279) 257 (7) 2.71

 Largest Contentful Paint 254 (248-279) 257 (7) 2.71

 Load Event End 274 (264-298) 276 (7) 2.63

 Server Response Time 175 (169-195) 178 (6) 3.43

 Time to First Byte 177 (171-197) 179 (6) 3.42

 Page Load Time 274 (263-297) 276 (7) 2.63

 First Visual Change 267 (233-300) 252 (18) 7.12

 Last Visual Change 267 (267-300) 280 (16) 5.77

 Speed Index 267 (263-300) 276 (16) 5.62

 Visual Readiness 33 (0-34) 28 (13) 45.29

 Visual Complete 95 267 (267-300) 279 (16) 5.65

 Visual Complete 99 267 (267-300) 279 (16) 5.65

Timing Metrics [Mobile]

 First Paint and FCP 397 (362-676) 416 (51) 12.38

 Largest Contentful Paint 513 (431-821) 528 (60) 11.38

 Load Event End 502 (453-805) 520 (61) 11.70

 Server Response Time 191 (173-314) 206 (38) 18.45

 Time To First Byte 210 (183-350) 226 (39) 17.11

 Page Load Time 500 (452-804) 519 (61) 11.70

Note. Lists several timing metrics (https://github.com/Sam-Whitley/thesis). Median (Min;
Max) and Mean (SD) values are in milliseconds (ms).

Appendix B / 8

Metric Summary - [L9 Jamstack with LEMP Stack (WSL2)] (Whitley, 2023a)

Metric
Median (Min; Max) Mean (SD) RSD %

Timing Metrics [Desktop]

 First Paint and FCP 115 (96-133) 112 (7) 6.66

 Largest Contentful Paint 115 (96-133) 112 (7) 6.66

 Load Event End 134 (117-154) 134 (8) 5.87

 Server Response Time 5 (5-6) 5 (0) 3.89

 Time to First Byte 7 (6-8) 7 (0) 4.13

 Page Load Time 134 (117-153) 134 (8) 5.88

 First Visual Change 100 (100-134) 114 (16) 14.39

 Last Visual Change 133 (100-167) 146 (17) 11.71

 Speed Index 133 (100-164) 142 (17) 11.95

 Visual Readiness 33 (0-67) 32 (16) 51.01

 Visual Complete 95 133 (100-167) 145 (18) 12.45

 Visual Complete 99 133 (100-167) 145 (18) 12.45

Timing Metrics [Mobile]

 First Paint and FCP 229 (187-707) 239 (57) 23.79

 Largest Contentful Paint 341 (284-841) 356 (63) 17.77

 Load Event End 327 (291-892) 349 (79) 22.52

 Server Response Time 16 (12-202) 23 (23) 102.22

 Time to First Byte 39 (23-291) 45 (28) 63.70

 Page Load Time 326 (290-891) 348 (78) 22.56

Note. Lists several timing metrics (https://github.com/Sam-Whitley/thesis). Median (Min;
Max) and Mean (SD) values are in milliseconds (ms).

Appendix C / 1

Appendix C. Sitespeed.io – Waterfall Graphs

Waterfall Graph - Jamstack (LEMP WSL2) [Desktop] (Sitespeed.io, 2022b; Whitley, 2023a)

Note. This figure shows a waterfall chart of the site Jamstack (LEMP WSL2) [Desktop], which
was adapted from Sitespeed.io’s HAR file comparison website
(https://compare.sitespeed.io/), created by the Sitespeed.io team. The HAR file used was
from the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

Appendix C / 2

Waterfall Graph - WordPress (LEMP WSL2) [Desktop] (Sitespeed.io, 2022b; Whitley, 2023a)

Note. This figure shows a waterfall chart of the site WordPress (LEMP WSL2) [Desktop],
which was adapted from Sitespeed.io’s HAR file comparison website
(https://compare.sitespeed.io/), created by the Sitespeed.io team. The HAR file used was
from the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

Appendix C / 3

Waterfall Graph - Jamstack (LEMP WSL2) [Mobile] (Sitespeed.io, 2022b; Whitley, 2023a)

Note. This figure shows a waterfall chart of the site Jamstack (LEMP WSL2) [Mobile], which
was adapted from Sitespeed.io’s HAR file comparison website
(https://compare.sitespeed.io/), created by the Sitespeed.io team. The HAR file used was
from the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

Appendix C / 4

Waterfall Graph - WordPress (LEMP WSL2) [Mobile] (Sitespeed.io, 2022b; Whitley, 2023a)

Note. This figure shows a waterfall chart of the site WordPress (LEMP WSL2) [Desktop],
which was adapted from Sitespeed.io’s HAR file comparison website
(https://compare.sitespeed.io/), created by the Sitespeed.io team. The HAR file used was
from the author’s GitHub repository (https://github.com/Sam-Whitley/thesis).

Appendix D / 1

Appendix D. Grafana k6 – Check Examples

smokeTest.js - Wrong IP Address (Whitley, 2023a)

 /\ |‾‾| /‾‾/ /‾‾/

 /\ / \ | |/ / / /

 / \/ \ | (/ ‾‾\

 / \ | |\ \ | (‾) |

 / __________ \ |__| __\ _____/ .io

 execution: local

 script: smokeTest.js

 output: csv (L1-smokeTest.csv)

 scenarios: (100.00%) 1 scenario, 1 max VUs, 35s max duration (incl. graceful stop):

 * default: 1 looping VUs for 5s (gracefulStop: 30s)

WARN[0002] Request Failed

error="Get \"http://192.168.100.151:8080/\": dial tcp 192.168.100.151:8080: connectex:

No connection could be made because the target machine actively refused it."

WARN[0005] Request Failed

error="Get \"http://192.168.100.151:8080/\": dial tcp 192.168.100.151:8080: connectex:

No connection could be made because the target machine actively refused it."

INFO[0006] [k6-reporter v2.3.0] Generating HTML summary report source=console

 ✗ status is 200

 ↳ 0% — ✓ 0 / ✗ 2

 ✗ content type is text/html

 ↳ 0% — ✓ 0 / ✗ 2

 ✗ verify homepage text

 ↳ 0% — ✓ 0 / ✗ 2

 checks.....................: 0.00% ✓ 0 ✗ 6

 data_received..............: 0 B 0 B/s

 data_sent..................: 0 B 0 B/s

 http_req_blocked...........: avg=0s min=0s med=0s max=0s p(90)=0s p(95)=0s

 http_req_connecting........: avg=0s min=0s med=0s max=0s p(90)=0s p(95)=0s

 ✓ http_req_duration..........: avg=0s min=0s med=0s max=0s p(90)=0s p(95)=0s

 http_req_failed............: 100.00% ✓ 2 ✗ 0

 http_req_receiving.........: avg=0s min=0s med=0s max=0s p(90)=0s p(95)=0s

 http_req_sending...........: avg=0s min=0s med=0s max=0s p(90)=0s p(95)=0s

 http_req_tls_handshaking...: avg=0s min=0s med=0s max=0s p(90)=0s p(95)=0s

 http_req_waiting...........: avg=0s min=0s med=0s max=0s p(90)=0s p(95)=0s

 http_reqs..................: 2 0.332844/s

 iteration_duration.........: avg=3s min=3s med=3s max=3s p(90)=3s p(95)=3s

 iterations.................: 2 0.332844/s

 vus........................: 1 min=1 max=1

running (06.0s), 0/1 VUs, 2 complete and 0 interrupted iterations

default ✓ [======================================] 1 VUs 5s

Note. This smoke test demonstrates testing an environment (in this case environment L1)
with the wrong IP address, which resulted in failed checks and a failed test.

Appendix D / 2

smokeTest.js – Error Establishing a Database Connection (WordPress) (Whitley, 2023a)

 /\ |‾‾| /‾‾/ /‾‾/

 /\ / \ | |/ / / /

 / \/ \ | (/ ‾‾\

 / \ | |\ \ | (‾) |

 / __________ \ |__| __\ _____/ .io

 execution: local

 script: smokeTest.js

 output: csv (csv/L6-smokeTest.csv)

 scenarios: (100.00%) 1 scenario, 1 max VUs, 35s max duration (incl. graceful stop):

 * default: 1 looping VUs for 5s (gracefulStop: 30s)

INFO[0005] [k6-reporter v2.3.0] Generating HTML summary report source=console

 ✗ status is 200

 ↳ 0% — ✓ 0 / ✗ 5

 ✓ content type is text/html

 ✗ verify homepage text

 ↳ 0% — ✓ 0 / ✗ 5

 checks.....................: 33.33% ✓ 5 ✗ 10

 data_received..............: 14 kB 2.8 kB/s

 data_sent..................: 405 B 81 B/s

 http_req_blocked...........: avg=111.06µs min=0s med=0s max=555.3µs

p(90)=333.18µs p(95)=444.23µs

 http_req_connecting........: avg=111.06µs min=0s med=0s max=555.3µs

p(90)=333.18µs p(95)=444.23µs

 ✓ http_req_duration..........: avg=3.23ms min=2.7ms med=3.3ms max=3.77ms

p(90)=3.72ms p(95)=3.74ms

 http_req_failed............: 100.00% ✓ 5 ✗ 0

 http_req_receiving.........: avg=588.26µs min=167.5µs med=533.8µs max=1.16ms

p(90)=1.01ms p(95)=1.08ms

 http_req_sending...........: avg=0s min=0s med=0s max=0s

p(90)=0s p(95)=0s

 http_req_tls_handshaking...: avg=0s min=0s med=0s max=0s

p(90)=0s p(95)=0s

 http_req_waiting...........: avg=2.65ms min=2.48ms med=2.51ms max=3.23ms

p(90)=2.95ms p(95)=3.09ms

 http_reqs..................: 5 0.995172/s

 iteration_duration.........: avg=1s min=1s med=1s max=1s

p(90)=1s p(95)=1s

 iterations.................: 5 0.995172/s

 vus........................: 1 min=1 max=1

running (05.0s), 0/1 VUs, 5 complete and 0 interrupted iterations

default ✓ [======================================] 1 VUs 5s

Note. This smoke test demonstrates testing an environment (in this case environment L6).
While some checks and data results were received, the test clearly indicated which resulted
in failed checks and a failed test.

Appendix D / 3

smokeTest.js – Successful Smoke Test (Whitley, 2023a)

 /\ |‾‾| /‾‾/ /‾‾/

 /\ / \ | |/ / / /

 / \/ \ | (/ ‾‾\

 / \ | |\ \ | (‾) |

 / __________ \ |__| __\ _____/ .io

 execution: local

 script: smokeTest.js

 output: csv (L1-smokeTest.csv)

 scenarios: (100.00%) 1 scenario, 1 max VUs, 35s max duration (incl. graceful stop):

 * default: 1 looping VUs for 5s (gracefulStop: 30s)

INFO[0006] [k6-reporter v2.3.0] Generating HTML summary report source=console

 ✓ status is 200

 ✓ content type is text/html

 ✓ verify homepage text

 checks.........................: 100.00% ✓ 15 ✗ 0

 data_received..................: 591 kB 99 kB/s

 data_sent......................: 405 B 68 B/s

 http_req_blocked...............: avg=360.36µs min=0s med=0s max=1.8ms

p(90)=1.08ms p(95)=1.44ms

 http_req_connecting............: avg=360.36µs min=0s med=0s max=1.8ms

p(90)=1.08ms p(95)=1.44ms

 ✓ http_req_duration..............: avg=195.88ms min=185.09ms med=193.03ms

max=217.3ms p(90)=207.68ms p(95)=212.49ms

 { expected_response:true }...: avg=195.88ms min=185.09ms med=193.03ms

max=217.3ms p(90)=207.68ms p(95)=212.49ms

 http_req_failed................: 0.00% ✓ 0 ✗ 5

 http_req_receiving.............: avg=7.83ms min=5.46ms med=6.46ms max=11ms

p(90)=10.67ms p(95)=10.84ms

 http_req_sending...............: avg=0s min=0s med=0s max=0s

p(90)=0s p(95)=0s

 http_req_tls_handshaking.......: avg=0s min=0s med=0s max=0s

p(90)=0s p(95)=0s

 http_req_waiting...............: avg=188.05ms min=179.05ms med=185.26ms

max=206.3ms p(90)=198.41ms p(95)=202.35ms

 http_reqs......................: 5 0.835372/s

 iteration_duration.............: avg=1.19s min=1.18s med=1.19s max=1.21s

p(90)=1.2s p(95)=1.21s

 iterations.....................: 5 0.835372/s

 vus............................: 1 min=1 max=1

running (06.0s), 0/1 VUs, 5 complete and 0 interrupted iterations

default ✓ [======================================] 1 VUs 5s

Note. This smoke test demonstrates testing an environment (in this case environment L6)
that passes all of the checks.

Appendix E / 1

Appendix E. Grafana k6 – Load Testing Scripts

Smoke Testing Script (smokeTest.js) (Grafana k6, 2023d; Whitley, 2023e)

1 import http from 'k6/http';

2 import { check, sleep } from 'k6';

3
import { htmlReport } from 'https://raw.githubusercontent.com/benc-uk/k6-

reporter/main/dist/bundle.js';

4 import { textSummary } from 'https://jslib.k6.io/k6-summary/0.0.1/index.js';

5

6 const envNameMap = {…

15 };

16

17 export const options = {

18 vus: 3,

19 duration: '1m',

20 };

21

22 export default function () {

23 const res = http.get(`http://${__ENV.IP_ADDRESS}`);

24 check(res, {

25 'status is 200': (r) => r.status === 200,

26
 'content type is text/html': (r) => r.headers['Content

Type'].includes('text/html'),

27 'verify homepage text': (r) => r.body.includes('Lorem ipsum dolor'),

28 });

29 sleep(1);

30 }

31

32 function getFullEnvName(envAlias) { return envNameMap[envAlias] || envAlias; }

33

34 export function handleSummary(data) {

35 const fullEnvName = getFullEnvName(__ENV.ENVNAME);

36 return {

37
 [`reports/${fullEnvName}.html`]: htmlReport(data, { title: `[Smoke Test |

${fullEnvName}]`}),

38 stdout: textSummary(data, { indent: ' ', enableColors: true }),

39 };

40 }

Note. This smoke test ensure that the system is performing as expected under minimal load.
(Grafana k6, 2023b)

Appendix E / 2

Average-Load Testing Script (averageLoadTest.js) (Grafana k6, 2023e; Whitley, 2023e)

1 import http from 'k6/http';

2 import { check, sleep } from 'k6';

3
import { htmlReport } from 'https://raw.githubusercontent.com/benc-uk/k6-

reporter/main/dist/bundle.js';

4 import { textSummary } from 'https://jslib.k6.io/k6-summary/0.0.1/index.js'

5

6 const envNameMap = {…

15 };

16

17 export const options = {

18 stages: [

19 { duration: '5m', target: 100 },

20 { duration: '30m', target: 100 },

21 { duration: '5m', target: 0 },

22 // 40m

23],

24 };

25

26 export default function () {

27 const res = http.get(`http://${__ENV.IP_ADDRESS}`);

28 check(res, {

29 'status is 200': (r) => r.status === 200,

30
 'content type is text/html': (r) => r.headers['Content-

Type'].includes('text/html'),

31 'verify homepage text': (r) => r.body.includes('Lorem ipsum dolor'),

32 });

33 sleep(1);

34 }

35

36 function getFullEnvName(envAlias) {

37 return envNameMap[envAlias] || envAlias;

38 }

39

40 export function handleSummary(data) {

41 const fullEnvName = getFullEnvName(__ENV.ENVNAME);

42 return {

43
 [`reports/${fullEnvName}.html`]: htmlReport(data, {title: `[Average-Load Test |

${fullEnvName}]`}),

44 stdout: textSummary(data, { indent: ' ', enableColors: true }),

45 };

46 }

Note. This average-load test assesses how the system is performing under expected normal
conditions. (Grafana k6, 2023b)

Appendix E / 3

Stress Testing Script (stressTest.js) (Grafana k6, 2023f; Whitley, 2023e)

1 import http from 'k6/http';

2 import { check, sleep } from 'k6';

3
import { htmlReport } from 'https://raw.githubusercontent.com/benc-uk/k6-

reporter/main/dist/bundle.js';

4 import { textSummary } from 'https://jslib.k6.io/k6-summary/0.0.1/index.js'

5

6 const envNameMap = {…

15 };

16

17 export const options = {

18 stages: [

19 { duration: '10m', target: 200 },

20 { duration: '30m', target: 200 },

21 { duration: '5m', target: 0 },

22 // 45m

23],

24 };

25

26 export default function () {

27 const res = http.get(`http://${__ENV.IP_ADDRESS}`);

28 check(res, {

29 'status is 200': (r) => r.status === 200,

30
 'content type is text/html': (r) => r.headers['Content-

Type'].includes('text/html'),

31 'verify homepage text': (r) => r.body.includes('Lorem ipsum dolor'),

32 });

33 sleep(1);

34 }

35

36 function getFullEnvName(envAlias) {

37 return envNameMap[envAlias] || envAlias;

38 }

39

40 export function handleSummary(data) {

41 const fullEnvName = getFullEnvName(__ENV.ENVNAME);

42 return {

43
 [`reports/${fullEnvName}.html`]: htmlReport(data, {title: `[Stress Test |

${fullEnvName}]`}),

44 stdout: textSummary(data, { indent: ' ', enableColors: true }),

45 };

46 }

Note. This stress test assesses how well the system is performing under extreme loads when
exceeding the expected averages. (Grafana k6, 2023b)

Appendix E / 4

Spike Testing Script (spikeTest.js) (Grafana k6, 2023g; Whitley, 2023e)

1 import http from 'k6/http';

2 import { check, sleep } from 'k6';

3
import { htmlReport } from 'https://raw.githubusercontent.com/benc-uk/k6-

reporter/main/dist/bundle.js';

4 import { textSummary } from 'https://jslib.k6.io/k6-summary/0.0.1/index.js'

5

6 const envNameMap = {

15 };

16

17 export const options = {

18 stages: [

19 { duration: '2m', target: 2000 },

20 { duration: '1m', target: 0 },

21 // 3m

22],

23 };

24

25 export default function () {

26 const res = http.get(`http://${__ENV.IP_ADDRESS}`);

27 check(res, {

28 'status is 200': (r) => r.status === 200,

29
 'content type is text/html': (r) => r.headers['Content-

Type'].includes('text/html'),

30 'verify homepage text': (r) => r.body.includes('Lorem ipsum dolor'),

31 });

32 sleep(1);

33 }

34

35 function getFullEnvName(envAlias) {

36 return envNameMap[envAlias] || envAlias;

37 }

38

39 export function handleSummary(data) {

40 const fullEnvName = getFullEnvName(__ENV.ENVNAME);

41 return {

42
 [`reports/${fullEnvName}.html`]: htmlReport(data, {title: `[Spike Test |

${fullEnvName}]`}),

43 stdout: textSummary(data, { indent: ' ', enableColors: true }),

44 };

45 }

Note. The spike test validates the behaviour and survival of the system when subjected to a
sudden, short, and massive increase in activity. (Grafana k6, 2023b)

Appendix F / 1

Appendix F. Grafana k6 – Smoke Test Results

Smoke Test [L1 - WP with LAMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 180.26 ms (163.80 ms - 259.73 ms) 188.87 ms 221.79 ms 239.23 ms

 req_waiting 168.78 ms (157.65 ms - 244.95 ms) 177.49 ms 208.21 ms 221.90 ms

 req_connecting 0 s (0 s - 1.2 ms) 19.26 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 0s) 0 s 0 s 0 s

 req_receiving 8.83 ms (5.06 ms - 78.78 ms) 11.38 ms 16.01 ms 21.68 ms

 req_blocked 0 s (0 s - 1.2 ms) 19.26 µs 0 s 0 s

 iteration_duration 1.18 s (1.16 s - 1.26 s) 1.18 s 1.22 s 1.24 s

Smoke Test [L1 - WP with LAMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 153 2.513721/s

 Data Sent/Received 12 kB / 18 MB 204 B / 297 kB

Smoke Test [L1 - WP with LAMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 459 0

 Status is 200 (OK status) 153 0

 Content type is text/HTML 153 0

 Verify Homepage Text 153 0

Appendix F / 2

Smoke Test [L2 - WP with LAMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 166.39 ms (162.20 ms - 180.17 ms) 167.08 ms 170.83 ms 174.29 ms

 req_waiting 165.39 ms (161.14 ms - 179.28 ms) 166.08 ms 169.89 ms 173.01 ms

 req_connecting 0 s (0 s - 0s) 0 s 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 0s) 0 s 0 s 0 s

 req_receiving 1.03 ms (503.7µs - 2.58 ms) 1 ms 1.57 ms 1.63 ms

 req_blocked 0 s (0 s - 0s) 0 s 0 s 0 s

 iteration_duration 1.17 s (1.16s - 1.19 s) 1.17 s 1.18 s 1.18 s

Smoke Test [L2 - WP with LAMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 153 2.548485/s

 Data Sent/Received 13 kB / 18 MB 219 B / 302 kB

Smoke Test [L2 - WP with LAMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 459 0

 Status is 200 (OK status) 153 0

 Content type is text/HTML 153 0

 Verify Homepage Text 153 0

Appendix F / 3

Smoke Test [L4 - Jamstack with LAMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 6.41 ms (4.77 ms - 17.51 ms) 7.13 ms 11.42 ms 13.66 ms

 req_waiting 4.07 ms (2.66 ms - 14.63 ms) 4.95 ms 7.80 ms 10.69 ms

 req_connecting 0 s (0 s - 530.20 µs) 8.83 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 529.59 µs) 7.03 µs 0 s 0 s

 req_receiving 2.11 ms (517 µs - 6.28 ms) 2.17 ms 2.71 ms 3.67 ms

 req_blocked 0 s (0 s - 530.20 µs) 8.83 µs 0 s 0 s

 iteration_duration 1.01 s (1 s - 1.02 s) 1.01 s 1.02 s 1.02 s

Smoke Test [L4 - Jamstack with LAMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 180 2.959218/s

 Data Sent/Received 16 kB / 21 MB 255 B / 346 kB

Smoke Test [L4 - Jamstack with LAMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 540 0

 Status is 200 (OK status) 180 0

 Content type is text/HTML 180 0

 Verify Homepage Text 180 0

Appendix F / 4

Smoke Test [L5 - Jamstack with LAMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 8.66 ms (6.39 ms - 26.24 ms) 9.67 ms 12.51 ms 14.29 ms

 req_waiting 537.84 µs (503.80 µs) 815.42 µs 1.36 ms 1.68 ms

 req_connecting 0 s (0 s - 718.20 µs) 11.97 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_receiving 7.99 ms (5.86 ms - 22.49 ms) 8.86 ms 11.44 ms 12.61 ms

 req_blocked 0 s (0 s - 718.20 µs) 11.97 µs 0 s 0 s

 iteration_duration 1 s (1 s - 1.02 s) 1.01 s 1.01 s 1.01 s

Smoke Test [L5 - Jamstack with LAMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 180 2.966327/s

 Data Sent/Received 15 kB / 21 MB 240 B / 247 kB

Smoke Test [L5 - Jamstack with LAMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 540 0

 Status is 200 (OK status) 180 0

 Content type is text/HTML 180 0

 Verify Homepage Text 180 0

Appendix F / 5

Smoke Test [L6 - WordPress with LEMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 207.46 ms (174.13 ms - 286.28 ms) 214.61 ms 251.63 ms 263.36 ms

 req_waiting 192.01 ms (161.28 ms - 243.18 ms) 191.83 ms 211.77 ms 218.24 ms

 req_connecting 0 s (0 s - 670 µs) 12.41 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 148.40 µs) 989 ns 0 s 0 s

 req_receiving 9.69 ms (5.41 ms - 66.24 ms) 22.78 ms 56.32 ms 57.80 ms

 req_blocked 0 s (0 s - 670 µs) 13.40 µs 0 s 0 s

 iteration_duration 1.20 s (1.17 s - 1.28 s) 1.21 s 1.25 s 1.26 s

Smoke Test [L6 - WordPress with LEMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 150 2.457366/s

 Data Sent/Received 12 kB / 18 MB 199 B / 291 kB

Smoke Test [L6 - WordPress with LEMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 450 0

 Status is 200 (OK status) 150 0

 Content type is text/HTML 150 0

 Verify Homepage Text 150 0

Appendix F / 6

Smoke Test [L7 - Jamstack with LEMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 8.86 ms (7.04 ms - 19.85 ms) 9.54 ms 12.53 ms 14.31 ms

 req_waiting 540.15 µs (54.50 µs - 2.94 ms) 715.13 µs 1.33 ms 1.71 ms

 req_connecting 0 s (0 s - 909 µs) 15.15 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 94.10 µs) 522 ns 0 s 0 s

 req_receiving 8.15 ms (6.52 ms - 18.36 ms) 8.82 ms 11.07 ms 13.22 ms

 req_blocked 0 s (0 s - 909 µs) 15.15 µs 0 s 0 s

 iteration_duration 1 s (1 s - 1.02 s) 1.01 s 1.01 s 1.01 s

Smoke Test [L7 - Jamstack with LEMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 180 2.968861/s

 Data Sent/Received 15 kB / 21 MB 231 B / 247 kB

Smoke Test [L7 - Jamstack with LEMP Stack (VM) [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 540 0

 Status is 200 (OK status) 180 0

 Content type is text/HTML 180 0

 Verify Homepage Text 180 0

Appendix F / 7

Smoke Test [L8 - WordPress with LEMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 162 ms (156.20 ms - 179.11 ms) 162.58 ms 166.82 ms 169.23 ms

 req_waiting 160.89 ms (155.15 ms - 178.05 ms) 161.45 ms 165.74 ms 168.01 ms

 req_connecting 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_receiving 1.05 ms (505.29 µs - 2.17 ms) 1.13 ms 1.57 ms 1.70 ms

 req_blocked 0 s (0 s - 0 s) 0 s 0 s 0 s

 iteration_duration 1.16 s (1.15 s - 1.18 s) 1.17 s 1.17 s 1.17 s

Smoke Test [L8 - WordPress with LEMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 156 2.562256/s

 Data Sent/Received 13 kB / 19 MB 220 B / 304 kB

Smoke Test [L8 - WordPress with LEMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 468 0

 Status is 200 (OK status) 156 0

 Content type is text/HTML 156 0

 Verify Homepage Text 156 0

Appendix F / 8

Smoke Test [L9 - Jamstack with LEMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 4.03 ms (3.06 ms - 5.53 ms) 4.02 ms 4.69 ms 4.80 ms

 req_waiting 2.86 ms (2.08 ms - 3.94 ms) 2.88 ms 3.28 ms 3.46 ms

 req_connecting 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 129.10 µs) 717 ns 0 s 0 s

 req_receiving 1.06 ms (510.80 µs - 2.18 ms) 1.14 ms 1.59 ms 1.65 ms

 req_blocked 0 s (0 s - 0 s) 0 s 0 s 0 s

 iteration_duration 1 s (1 s - 1.01 s) 1 s 1.01 s 1.01 s

Smoke Test [L9 - Jamstack with LEMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 180 2.973877/s

 Data Sent/Received 16 kB / 21 MB 256 B / 348 kB

Smoke Test [L9 - Jamstack with LEMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 540 0

 Status is 200 (OK status) 180 0

 Content type is text/HTML 180 0

 Verify Homepage Text 180 0

Appendix G / 1

Appendix G. Grafana k6 – Average-Load Test Results

Average-Load Test [L1 - WordPress with LAMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 2.26 s (159.61 ms - 3.18 s) 1.98 s 2.55 s 2.62 s

 req_waiting 2.23 s (150.95 ms - 3.08 s) 1.95 s 2.52 s 2.59 s

 req_connecting 0 s (0 s - 21 ms) 10.87 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 2.63 ms) 2.7 µs 0 s 0 s

 req_receiving 14.20 ms (4.38 ms - 717.74 ms) 27.52 ms 61.75 ms 94.97 ms

 req_blocked 0 s (0 s - 21.18 ms) 12.27 µs 0 s 0 s

 iteration_duration 3.26 s (1.15 s - 4.18 s) 2.98 s 3.56 s 3.62 s

Average-Load Test [L1 - WordPress with LAMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 70 483 29.366839/s

 Data Sent/Received 5.7 MB / 8.3 GB 2.4 kB / 3.5 MB

Average-Load Test [L1 - WordPress with LAMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 211 449 0

 Status is 200 (OK status) 70483 0

 Content type is text/HTML 70483 0

 Verify Homepage Text 70483 0

Appendix G / 2

Average-Load Test [L2 - WordPress with LAMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 255.10 ms (157.67 ms - 339.07 ms) 249.83 ms 266.10 ms 271.13 ms

 req_waiting 253.62 ms (157.16 ms - 337.04 ms) 248.37 ms 264.58 ms 269.60 ms

 req_connecting 0 s (0s - 6.81 ms) 4.3 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1.63 ms) 9.28 µs 0 s 0 s

 req_receiving 1.56 ms (0 s - 26.97 ms) 1.45 ms 2.11 ms 2.24 ms

 req_blocked 0 s (0 s - 6.81 ms) 7.02 µs 0 s 0 s

 iteration_duration 1.25 s (1.16 s - 1.34 s) 1.25 s 1.27 s 1.27 s

Average-Load Test [L2 - WordPress with LAMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 167 526 69.769101/s

 Data Sent/Received 14 MB / 20 GB 6.0 kB / 8.3 MB

Average-Load Test [L2 - WordPress with LAMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 502 578 0

 Status is 200 (OK status) 167 526 0

 Content type is text/HTML 167 526 0

 Verify Homepage Text 167 526 0

Appendix G / 3

Average-Load Test [L4 - Jamstack with LAMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 17.56 ms (2.61 ms - 65.05 ms) 19.25 ms 32.46 ms 36.38 ms

 req_waiting 8.58 ms (1.46 ms - 38.15 ms) 9.56 ms 15.51 ms 17.34 ms

 req_connecting 0 s (0 s - 3.07 ms) 2.8 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 3.15 ms) 3.72 µs 0 s 0 s

 req_receiving 8.54 ms (502.20 µs - 47.99 ms) 9.68 ms 17.59 ms 20.80 ms

 req_blocked 0 s (0 s - 4.65 ms) 4.06 µs 0 s 0 s

 iteration_duration 1.02 s (1 s - 1.07 s) 1.02 s 1.03 s 1.04 s

Average-Load Test [L4 - Jamstack with LAMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 205 170 85.47/s

 Data Sent/Received 18 MB / 24 GB 7.4 kB / 10 MB

Average-Load Test [L4 - Jamstack with LAMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 615 510 0

 Status is 200 (OK status) 205 170 0

 Content type is text/HTML 205 170 0

 Verify Homepage Text 205 170 0

Appendix G / 4

Average-Load Test [L5 - Jamstack with LAMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 272.14 ms (4.73 ms - 757.20 ms) 298.41 ms 646.93 ms 668.89 ms

 req_waiting 4.56 ms (0 s - 177.38 ms) 28.38 ms 81.52 ms 93.20 ms

 req_connecting 0 s (0 s - 121.88 ms) 217.47 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1 ms) 2.73 µs 0 s 0 s

 req_receiving 255.07 ms (3.82 ms - 750.46 ms) 270.02 ms 580.43 ms 600.42 ms

 req_blocked 0 s (0 s - 121.88 ms) 218.32 µs 0 s 0 s

 iteration_duration 1.27 s (1 s - 1.75 s) 1.29 s 1.64 s 1.66 s

Average-Load Test [L5 - Jamstack with LAMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 161 790 67.40/s

 Data Sent/Received 13 MB / 19 GB 5.5 kB / 7.9 MB

Average-Load Test [L5 - Jamstack with LAMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 486 370 0

 Status is 200 (OK status) 161 790 0

 Content type is text/HTML 161 790 0

 Verify Homepage Text 161 790 0

Appendix G / 5

Average-Load Test [L6 -WordPress with LEMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 2.24 s (160.07 ms - 3.43 s) 1.95 s 2.66 s 2.74 s

 req_waiting 2.20 s (152.62 ms - 3.42 s) 1.91 s 2.60 s 2.68 s

 req_connecting 0 s (0 s - 5.38 ms) 1.19 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1 ms) 1.3 µs 0 s 0 s

 req_receiving 19.40 ms (4.13 ms - 780.99 ms) 46.21 ms 113.22 ms 161.93 ms

 req_blocked 0 s (0s - 5.38 ms) 1.66 µs 0 s 0 s

 iteration_duration 3.24 s (1.16 s - 4.44 s) 2.95 s 3.66 s 3.74 s

Average-Load Test [L6 -WordPress with LEMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 71 029 29.59/s

 Data Sent/Received 5.8 MB / 8.4 GB 2.4 kB / 3.5 MB

Average-Load Test [L6 -WordPress with LEMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 213 087 0

 Status is 200 (OK status) 71 029 0

 Content type is text/HTML 71 029 0

 Verify Homepage Text 71 029 0

Appendix G / 6

Average-Load Test [L7 - Jamstack with LEMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 7.59 ms (3.84 ms - 94.69 ms) 8.62 ms 12.10 ms 14.65 ms

 req_waiting 549.10 µs (0 s - 42.15 ms) 904.02 µs 1.66 ms 2.10 ms

 req_connecting 0 s (0 s - 3.49 ms) 884 ns 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 2.48 ms) 2.70 µs 0 s 0 s

 req_receiving 6.79 ms (3.17 ms - 91.48 ms) 7.71 ms 10.85 ms 13.23 ms

 req_blocked 0 s (0 s - 3.49 ms) 1.50 µs 0 s 0 s

 iteration_duration 1 s (1 s - 1.09 s) 1 s 1.01 s 1.01 s

Average-Load Test [L7 - Jamstack with LEMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 208 253 86.74/s

 Data Sent/Received 17 MB / 24 GB 7.0 kB / 10 MB

Average-Load Test [L7 - Jamstack with LEMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 624 759 0

 Status is 200 (OK status) 208 253 0

 Content type is text/HTML 208 253 0

 Verify Homepage Text 208 253 0

Appendix G / 7

Average-Load Test [L8 - WordPress with LEMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 2.35 s (154.04 ms - 3.37 s) 2.07 s 2.36 s 2.37 s

 req_waiting 2.35 s (153.23 ms - 3.37 s) 2.06 s 2.36 s 2.36 s

 req_connecting 0 s (0 s - 703.70 µs) 293 ns 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1.54 ms) 14.30 µs 0 s 0 s

 req_receiving 1.08 ms (0 s - 8.21 ms) 1.35 ms 2.03 ms 2.15 ms

 req_blocked 0 s (0 s - 1.5 ms) 4.1 µs 0 s 0 s

 iteration_duration 3.35 s (1.15 s - 4.38 s) 3.07 s 3.36 s 3.37 s

Average-Load Test [L8 - WordPress with LEMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 68 371 28.49/s

 Data Sent/Received 5.9 MB / 8.1 GB 2.4 kB / 3.4 MB

Average-Load Test [L8 - WordPress with LEMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 205 113 0

 Status is 200 (OK status) 68 371 0

 Content type is text/HTML 68 371 0

 Verify Homepage Text 68 371 0

Appendix G / 8

Average-Load Test [L9 - Jamstack with LEMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 12.76 ms (2.10 ms - 57.35 ms) 13.75 ms 24.19 ms 26.91 ms

 req_waiting 7.51 ms (1.50 ms - 41.36 ms) 8.73 ms 16.19 ms 18.30 ms

 req_connecting 0 s (0 s - 658.80 µs) 329 ns 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 3.87 ms) 3.15 µs 0 s 0 s

 req_receiving 3.81 ms (0 s - 33.82 ms) 5.01 ms 10.38 ms 12.30 ms

 req_blocked 0 s (0 s - 1.27 ms) 1.36 µs 0 s 0 s

 iteration_duration 1.01 s (1 s - 1.05 s) 1.01 s 1.02 s 1.02 s

Average-Load Test [L9 - Jamstack with LEMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 206 844 86.16/s

 Data Sent/Received 18 MB / 24 GB 7.4 kB / 10 MB

Average-Load Test [L9 - Jamstack with LEMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures

 Total Checks 620 532 0

 Status is 200 (OK status) 206 844 0

 Content type is text/HTML 206 844 0

 Verify Homepage Text 206 844 0

Appendix H / 1

Appendix H. Grafana k6 – Stress Test Results

Stress Test [L1 - WordPress with LAMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 4.03 s (505.7 µs - 6.70 s) 2.95 s 5.39 s 5.52 s

 req_waiting 3.98 s (504.4 µs - 6.41 s) 2.93 s 5.35 s 5.47 s

 req_connecting 0 s (0 s - 19.67 ms) 275.54 µs 836.70 µs 1.47 ms

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 560.37 ms) 185.93 µs 0 s 212.60 µs

 req_receiving 7.99 ms (0 s - 1.25 s) 28.94 ms 104.31 ms 149.65 ms

 req_blocked 0 s (0 s - 19.67 ms) 299.28 µs 921.50 µs 1.50 ms

 iteration_duration 5.03 s (1 s - 7.70 s) 3.96 s 6.40 s 6.52 s

Stress Test [L1 - WordPress with LAMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 113 734 42.11/s

 Data Sent/Received 9.2 MB / 9.4 GB 3.4 kB / 3.5 MB

Stress Test [L1 - WordPress with LAMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 271 746 69 456 79.64 %

 Status is 200 (OK status) 79 006 34 728 69.47 %

 Content type is text/HTML 113 734 0 100.00 %

 Verify Homepage Text 79 006 34 728 69.47 %

Appendix H / 2

Stress Test [L2 - WordPress with LAMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 1.29 s (2.10 ms - 2.37 s) 1.16 s 1.73 s 1.81 s

 req_waiting 1.28 s (1.56 ms - 2.37 s) 1.16 s 1.73 s 1.81 s

 req_connecting 0 s (0 s - 5.27 ms) 5.78 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 4.07 ms) 11.06 µs 0 s 0 s

 req_receiving 1.61 ms (0 s - 100.92 ms) 3.85 ms 9.49 ms 15.40 ms

 req_blocked 0 s (0 s - 5.27 ms) 9.06 µs 0 s 0 s

 iteration_duration 2.29 s (1 s - 3.37 s) 2.17 s 2.74 s 2.82 s

Stress Test [L2 - WordPress with LAMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 207 235 76.74/s

 Data Sent/Received 18 MB / 25 GB 6.6 kB / 9.1 MB

Stress Test [L2 - WordPress with LAMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 620 435 1270 99.79 %

 Status is 200 (OK status) 206 600 635 99.69 %

 Content type is text/HTML 207 235 0 100.00 %

 Verify Homepage Text 206 600 635 99.69 %

Appendix H / 3

Stress Test [L4 - Jamstack with LAMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 19.69 ms (2.61 ms - 120.14 ms) 21.79 ms 36.69 ms 42.79 ms

 req_waiting 9.54 ms (1.38 ms - 64.89 ms) 10.60 ms 17.55 ms 20.15 ms

 req_connecting 0 s (0 s - 1.26 ms) 3.14 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1.04 ms) 3.69 µs 0 s 0 s

 req_receiving 9.57 ms (503.70 µs - 95.08 ms) 11.18 ms 20.69 ms 25.65 ms

 req_blocked 0 s (0 s - 1.26 ms) 4.46 µs 0 s 0 s

 iteration_duration 1.02 s (1 s - 1.12 s) 1.02 s 1.04 s 1.04 s

Stress Test [L4 - Jamstack with LAMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 438 840 162.50/s

 Data Sent/Received 38 MB / 51 GB 14 kB / 19 MB

Stress Test [L4 - Jamstack with LAMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 1 316 520 0 100.00 %

 Status is 200 (OK status) 438 840 0 100.00 %

 Content type is text/HTML 438 840 0 100.00 %

 Verify Homepage Text 438 840 0 100.00 %

Appendix H / 4

Stress Test [L5 - Jamstack with LAMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 1.17 s (4.77 ms - 1.55 s) 864.03 ms 1.33 s 1.35 s

 req_waiting 70.68 ms (0 s - 282.87 ms) 74.90 ms 162.40 ms 178.35 ms

 req_connecting 0 s (0 s - 259.61 ms) 653.40 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 265.13 ms) 125.63 µs 0 s 0 s

 req_receiving 1.08 s (3.92 ms - 1.5 s) 789 ms 1.2 s 1.23 s

 req_blocked 0 s (0 s - 259.61 ms) 695.51 µs 0 s 0 s

 iteration_duration 2.18 s (1 s - 2.55 s) 1.86 s 2.33 s 2.35 s

Stress Test [L5 - Jamstack with LAMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 241 411 89.39/s

 Data Sent/Received 20 MB / 28 GB 7.2 kB / 11 MB

Stress Test [L5 - Jamstack with LAMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 724 233 0 100.00 %

 Status is 200 (OK status) 241 411 0 100.00 %

 Content type is text/HTML 241 411 0 100.00 %

 Verify Homepage Text 241 411 0 100.00 %

Appendix H / 5

Stress Test [L6 - WordPress with LEMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 4.67 s (505.40 µs - 11.49 s) 3.86 s 6.02 s 6.48 s

 req_waiting 4.59 s (505.40 µs - 11.45 s) 3.78 s 5.88 s 6.33 s

 req_connecting 0 s (0 s - 12.99 ms) 2.11 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 976 µs) 1.65 µs 0 s 0 s

 req_receiving 19.74 ms (0 s - 2.96 s) 84.37 ms 231.82 ms 374.13 ms

 req_blocked 0 s (0 s - 13.64 ms) 2.64 µs 0 s 0 s

 iteration_duration 5.68 s (1 s - 12.49 s) 4.86 s 7.02 s 7.48 s

Stress Test [L6 - WordPress with LEMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 92 527 34.26/s

 Data Sent/Received 7.5 MB / 9.6 GB 2.8 kB / 3.5 MB

Stress Test [L6 - WordPress with LEMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 254 083 23 498 91.53 %

 Status is 200 (OK status) 80 778 11 749 87.30 %

 Content type is text/HTML 92 527 0 100.00 %

 Verify Homepage Text 80 778 11 749 87.30 %

Appendix H / 6

Stress Test [L7 - Jamstack with LEMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 562.67 ms (3.67 ms - 947.55 ms) 409.24 ms 802.80 ms 820.06 ms

 req_waiting 6.95 ms (0 s - 437.09 ms) 13.13 ms 28.99 ms 37.56 ms

 req_connecting 0 s (0 s - 36.67 ms) 7.26 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 983.20 µs) 1.81 µs 0 s 0 s

 req_receiving 537.86 ms (1.73 ms - 894.7 ms) 396.11 ms 780.87 ms 797.86 ms

 req_blocked 0 s (0 s - 36.67 ms) 7.68 µs 0 s 0 s

 iteration_duration 1.56 s (1 s - 1.94 s) 1.40 s 1.80 s 1.82 s

Stress Test [L7 - Jamstack with LEMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 319 408 118.26/s

 Data Sent/Received 26 MB / 37 GB 9.6 kB / 14 MB

Stress Test [L7 - Jamstack with LEMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 958 224 0 100.00 %

 Status is 200 (OK status) 319 408 0 100.00 %

 Content type is text/HTML 319 408 0 100.00 %

 Verify Homepage Text 319 408 0 100.00 %

Appendix H / 7

Stress Test [L8 - WordPress with LEMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 5.68 s (154.17 ms - 5.75 s) 4.74 s 5.70 s 5.71 s

 req_waiting 5.68 s (152.60 ms - 5.75 s) 4.74 s 5.70 s 5.70 s

 req_connecting 0 s (0 s - 616.60 µs) 464 ns 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1.51 ms) 13.48 µs 0 s 0 s

 req_receiving 1.11 ms (0 s - 10.84 ms) 1.39 ms 2.11 ms 2.20 ms

 req_blocked 0 s (0 s - 1.73 ms) 4.44 µs 0 s 0 s

 iteration_duration 6.68 s (1.15 s - 6.75 s) 5.75 s 6.70 s 6.71 s

Stress Test [L8 - WordPress with LEMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 78 338 29.01/s

 Data Sent/Received 6.7 MB / 9.3 GB 2.5 kB / 3.4 MB

Stress Test [L8 - WordPress with LEMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 235 014 0 100.00 %

 Status is 200 (OK status) 78 338 0 100.00 %

 Content type is text/HTML 78 338 0 100.00 %

 Verify Homepage Text 78 338 0 100.00 %

Appendix H / 8

Stress Test [L9 - Jamstack with LEMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 13.94 ms (2.06 ms - 79.26 ms) 14.75 ms 24.31 ms 27.52 ms

 req_waiting 8.09 ms (1.03 ms - 40.66 ms) 9.19 ms 16.16 ms 18.22 ms

 req_connecting 0 s (0 s - 1.05 ms) 333 ns 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 3.69 ms) 3.12 µs 0 s 0 s

 req_receiving 4.79 ms (0 s - 54.03 ms) 5.55 ms 10.65 ms 12.88 ms

 req_blocked 0 s (0 s - 1.07 ms) 1.28 µs 0 s 0 s

 iteration_duration 1.01 s (1 s - 1.07 s) 1.01 s 1.02 s 1.02 s

Stress Test [L9 - Jamstack with LEMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 442 551 163.88/s

 Data Sent/Received 38 MB / 52 GB 14 kB / 19 MB

Stress Test [L9 - Jamstack with LEMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 1 327 653 0 100.00 %

 Status is 200 (OK status) 442 551 0 100.00 %

 Content type is text/HTML 442 551 0 100.00 %

 Verify Homepage Text 442 551 0 100.00 %

Appendix I / 1

Appendix I. Grafana k6 – Spike Test Results

Spike Test [L1 - WordPress with LAMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 7.91 s (1.33 ms - 45.42 s) 8.32 s 14.33 s 17.78 s

 req_waiting 7.90 s (1.12 ms - 45.41 s) 8.30 s 14.30 s 17.71 s

 req_connecting 1.41 ms (0 s - 121.69 ms) 2.63 ms 6.64 ms 9.24 ms

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 2.58 s) 2.64 ms 104.60 µs 508.05 µs

 req_receiving 0 s (0 s - 6.2 s) 16.04 ms 26.28 ms 87.98 ms

 req_blocked 1.51 ms (0 s - 121.69 ms) 2.69 ms 6.74 ms 9.29 ms

 iteration_duration 8.91 s (1 s - 46.43 s) 9.32 s 15.33 s 18.78 s

Spike Test [L1 - WordPress with LAMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 20 570 112.88/s

 Data Sent/Received 1.7 MB / 566 MB 9.2 kB / 3.1 MB

Spike Test [L1 - WordPress with LAMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 29 386 32 324 47.62 %

 Status is 200 (OK status) 4 408 16 162 21.43 %

 Content type is text/HTML 20 570 0 100.00 %

 Verify Homepage Text 4 408 16 162 21.43 %

Appendix I / 2

Spike Test [L2 - WordPress with LAMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 0 s (0 s - 16.96 s) 785.42 ms 2.57 s 3.73 s

 req_waiting 148.31 ms (0 s - 16.94 s) 781.75 ms 2.56 s 3.72 s

 req_connecting 1.57 ms (0 s - 2.77 s) 278.23 ms 1.20 s 1.71 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0s - 37.21 ms) 47.23 µs 0 s 518.40 µs

 req_receiving 505.40 µs (0s - 886.22 ms) 3.62 ms 4.83 ms 14.26 ms

 req_blocked 1.58 ms (0 s - 2.77 s) 278.27 ms 1.20 s 1.71 s

 iteration_duration 2.44 s (47.71 ms - 20.19 s) 2.49 s 3.98 s 5.36 s

Spike Test [L2 - WordPress with LAMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 73 413 403.52/s

 Data Sent/Received 4.8 MB / 1.4 GB 27 kB / 7.9 MB

Spike Test [L2 - WordPress with LAMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 78 541 124 520 38.68 %

 Status is 200 (OK status) 11 153 62 260 15.19 %

 Content type is text/HTML 56 235 17 178 76.60 %

 Verify Homepage Text 11 153 45 082 19.83 %

Appendix I / 3

Spike Test [L4 - Jamstack with LAMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 21.22 ms (2.63 ms - 1 m 0 s) 3.63 s 54.88 ms 49.62 s

 req_waiting 10.09 ms (1.53 ms - 1 m 0 s) 10.09 ms 25.10 ms 49.60 s

 req_connecting 0 s (0 s - 3.11 ms) 24.15 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 588.40 µs) 8.15 µs 0 s 0 s

 req_receiving 8.81 ms (0 s - 78.41 ms) 10.88 ms 22.73 ms 28.25 ms

 req_blocked 0 s (0 s - 3.11 ms) 29.11 µs 0 s 504 µs

 iteration_duration 1.02 s (1 s - 1 m 0 s) 4.58 s 1.05 s 50.63 s

Spike Test [L4 - Jamstack with LAMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 40 987 224.89/s

 Data Sent/Received 3.6 MB / 4.6 GB 20 kB / 25 MB

Spike Test [L4 - Jamstack with LAMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 117 414 3 698 96.95 %

 Status is 200 (OK status) 39 138 1 849 95.49 %

 Content type is text/HTML 39 138 1 849 95.49 %

 Verify Homepage Text 39 138 0 100.00 %

Appendix I / 4

Spike Test [L5 - Jamstack with LAMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 6.15 s (0 s - 1 m 0 s) 8.53 s 17.03 s 28.98 s

 req_waiting 163.60 ms (0 s - 3.89 s) 209.87 ms 600.57 ms 784.91 ms

 req_connecting 160.41 ms (0 s - 16.23 s) 329.23 ms 1.16 s 1.19 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1.60 s) 6.97 ms 0 s 96.49 µs

 req_receiving 5.88 s (0 s - 59.69 s) 8.31 s 16.61 s 28.59 s

 req_blocked 162.07 s (0 s - 16.23 s) 334.25 ms 1.17 s 1.19 s

 iteration_duration 7.58 s (1 s - 1 m 0 s) 9.81 s 18.69 s 31.19 s

Spike Test [L5 - Jamstack with LAMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 19 323 106.93/s

 Data Sent/Received 1.6 MB / 2.2 GB 8.8 kB / 12 MB

Spike Test [L5 - Jamstack with LAMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 55 188 1 854 96.75 %

 Status is 200 (OK status) 18 396 927 95.20 %

 Content type is text/HTML 18 396 927 95.20 %

 Verify Homepage Text 18 396 0 100.00 %

Appendix I / 5

Spike Test [L6 - WordPress with LEMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 1.26 s (0 s - 33.38 s) 3.27 s 8.22 s 16.59 s

 req_waiting 1.26 s (0 s - 32.89 s) 3.25 s 8.13 s 16.50 s

 req_connecting 0 s (0 s - 11.58 ms) 49.51 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 988.70 µs) 3.78 µs 0 s 0 s

 req_receiving 0 s (0 s - 14.21 ms) 15.22 ms 14.21 ms 90.09 ms

 req_blocked 0 s (0 s - 11.74 ms) 52.70 µs 0 s 0 s

 iteration_duration 2.26 s (1 s - 34.38 s) 4.27 s 9.22 s 17.59 s

Spike Test [L6 - WordPress with LEMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 44 077 243.47/s

 Data Sent/Received 3.6 MB / 618 MB 20 kB / 2.4 MB

Spike Test [L6 - WordPress with LEMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 54 027 78 204 40.86 %

 Status is 200 (OK status) 4 975 39 102 11.29 %

 Content type is text/HTML 44 077 0 100.00 %

 Verify Homepage Text 4 975 39 102 11.29 %

Appendix I / 6

Spike Test [L7 - Jamstack with LEMP Stack (VM)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 3.97 s (4.94 ms - 1 m 0 s) 5.72 s 11.61 s 15.92 s

 req_waiting 106.83 ms (0 s - 2.49 s) 165.17 ms 412.21 ms 610.08 ms

 req_connecting 0 s (0 s - 7.11 s) 23.74 ms 0 s 99.16 ms

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1.03 ms) 4.88 µs 0 s 0 s

 req_receiving 3.82 s (4.21 ms - 59.91 s) 5.56 s 11.31 s 15.55 s

 req_blocked 0 s (0 s - 7.11 s) 23.75 ms 0 s 99.17 ms

 iteration_duration 5.02 s (1 s - 1 m 0 s) 6.73 s 12.66 s 16.93 s

Spike Test [L7 - Jamstack with LEMP Stack (VM)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 27 837 153.85/s

 Data Sent/Received 2.3 MB / 3.2 GB 13 kB / 18 MB

Spike Test [L7 - Jamstack with LEMP Stack (VM)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 81 690 1 214 98.54 %

 Status is 200 (OK status) 27 230 607 97.82 %

 Content type is text/HTML 27 230 607 97.82 %

 Verify Homepage Text 27 230 0 100.00 %

Appendix I / 7

Spike Test [L8 - WordPress with LEMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 1.25 ms (0 s - 18.33 s) 800.02 ms 2.55 ms 2.03 s

 req_waiting 1.18 ms (0 s - 18.32 s) 799.91 ms 2.49 ms 2.03 s

 req_connecting 0 s (0 s - 26.84 ms) 6.79 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 2.76 ms) 7.61 µs 0 s 0 s

 req_receiving 0 s (0 s - 48.16 ms) 104.36 µs 507.70 µs 1 ms

 req_blocked 0 s (0 s - 26.84 ms) 10 µs 0 s 0 s

 iteration_duration 1 s (1 s - 19.33 s) 1.80 s 1.01 s 3.03 s

Spike Test [L8 - WordPress with LEMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 106 048 554.74/s

 Data Sent/Received 9.1 MB / 682 MB 48 kB / 3.6 MB

Spike Test [L8 - WordPress with LEMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 117 046 201 098 36.79 %

 Status is 200 (OK status) 5 499 100 549 5.19 %

 Content type is text/HTML 106 048 0 100.00 %

 Verify Homepage Text 5 499 100 549 5.19 %

Appendix I / 8

Spike Test [L9 - Jamstack with LEMP Stack (WSL2)] [Requests] (Whitley, 2023a)

Request Metrics Median (Min; Max) Mean P90 P95

 req_duration 27.08 ms (2.08 ms - 1 m 0 s) 937.17 ms 286.73 ms 371.26 ms

 req_waiting 14.43 ms (1.03 ms - 1 m 0 s) 887.25 ms 106.93 ms 147.56 ms

 req_connecting 0 s (0 s - 1.5 ms) 7.97 µs 0 s 0 s

 req_tls_handshaking 0 s (0 s - 0 s) 0 s 0 s 0 s

 req_sending 0 s (0 s - 1 ms) 4.4 µs 0 s 0 s

 req_receiving 10.59 ms (0 s - 59.77 ms) 49.91 ms 165.24 ms 216.56 ms

 req_blocked 0 s (0 s - 2.1 ms) 9.86 µs 0 s 0 s

 iteration_duration 1.02 s (1 s - 1 m 0 s) 1.92 s 1.28 s 1.37 s

Spike Test [L9 - Jamstack with LEMP Stack (WSL2)] [Other Stats] (Whitley, 2023a)

Other Stats Total Rate (per second)

 Iterations/Requests 94 001 447.62/s

 Data Sent/Received 8.2 MB / 11 GB 39 kB / 52 MB

Spike Test [L9 - Jamstack with LEMP Stack (WSL2)] [Checks] (Whitley, 2023a)

Checks Passes Failures Success Rate (%)

 Total Checks 277 995 2 672 99.05 %

 Status is 200 (OK status) 92 665 1 336 98.58 %

 Content type is text/HTML 92 665 1 336 98.58 %

 Verify Homepage Text 92 665 0 100.00 %

	1 Introduction
	1.1 Previous Studies
	1.2 Objectives and Questions
	1.3 Scope and Limitations

	2 Jamstack
	2.1 Definition
	2.2 Advantages
	2.3 Disadvantages
	2.4 Current State

	3 Monolithic Architecture
	3.1 Definition
	3.2 Advantages
	3.3 Disadvantages
	3.4 WordPress
	3.5 Current State of WordPress

	4 Methodology
	4.1 Research Approaches
	4.1.1 Research Approach Selection

	4.2 Research Design
	4.3 Reliability and Validity
	4.4 Hardware and Software Configurations
	4.5 Research Tools Used
	4.5.1 Sitespeed.io
	4.5.2 Grafana k6
	4.5.3 Python
	4.5.4 Microsoft Excel

	5 Results and Analysis
	5.1 Performance Results
	5.1.1 Page Load Time Results
	5.1.2 Timing Metrics

	5.2 Scalability Results
	5.2.1 Smoke Test
	5.2.2 Average-Load Test
	5.2.3 Stress Test
	5.2.4 Spike Test

	6 Conclusion
	References

