

The Integration of Native Mobile App Features

into a Progressive Web App

LAB University of Applied Sciences

Bachelor of Engineering, Information Technology

2023

Aki Virtanen

 Abstract

Author(s)

Aki Virtanen

Publication type

Thesis, UAS

Completion year

2023

Number of pages

24

Title of the thesis

The Integration of Native Mobile App Features into a Progressive Web App

Degree, Field of Study

Engineer (UAS), Information Technology

Organisation of the client

Saima Soft Oy

Abstract

Progressive web app, as a term, refers to a collection of features that modern web
sites utilize. Usually, an app is considered to be a progressive web app if it is both in-
stallable and usable offline. As such, they bridge to gap between a web site and a na-
tive application.

This thesis investigates if a native web app can be replaced with a progressive web
app. This is achieved by implementing the features of a progressive web app into an
existing web application. The thesis also considers the business viability of making
the swich.

This thesis finds that a progressive web app can implement the most wanted features
of a mobile application. These features are push notifications, responsiveness, and
offline usage. The business viability is considered good, as many companies that
have made the switch report increased user retention.

Keywords

PWA, React, Mobile first, Firebase Cloud Messaging

Contents

1 Introduction .. 1

2 Progressive Web Apps .. 2

2.1 Origins of Progressive web apps .. 2

2.2 The Native Capabilities of Progressive Web Apps .. 3

2.2.1 Push Notifications .. 3

2.2.2 Installability .. 3

2.3 Design Principles of Progressive Web Apps ... 5

2.3.1 Mobile First Design .. 5

2.3.2 Offline First Design .. 7

2.4 React and Progressive Web App Integration .. 8

2.4.1 Hooks .. 8

2.4.2 Lazy loading ...10

2.5 Analytics of Progressive Web Applications ..12

3 Upgrading to A Progressive Web Application ..14

3.1 Adding Progressive Web App Features to An Existing Web App14

3.2 Implementing Native App Features in a Progressive Web App16

3.2.1 Push Notifications Through Firebase ..16

3.2.2 Message history ...20

3.2.3 Mobile compatibility ..21

4 Summary and conclusion ..22

References ..23

1

1 Introduction

Progressive web app (PWA) is less of a single technology, rather it is a collection of features

that modern web sites utilize. The primary features that a website must fulfill to be a Pro-

gressive web app are usually considered to be the ability to install the website as an app

and offline use of the website. Additionally, for a web site to be installable, it must be served

via TLS. There are additional features that a progressive web app should have, such as

responsiveness, which is a key factor in making a website look good on mobile devices.

(Russell 2015.)

This thesis is made in co-operation with Saima Soft Oy, a software company that is partly

owned by the StaffPoint Group. Saima Soft Oy creates and maintains HR management

solutions for the Group.

The goal of this thesis is to see how viable a PWA is as a replacement to a traditional iOS

and Android application. The primary focus is on the viability of the technology and the

primary method is to add PWA features into an existing web application. The most important

features wanted in a mobile application, such as push notifications, are also needed.

This thesis first covers the origins and theory of PWAs and their design principles. React

hooks are briefly covered. The business viability of PWAs is also investigated. Specifically,

the usage statistics are in focus. Then, the implementation of PWA features is covered.

2

2 Progressive Web Apps

2.1 Origins of Progressive web apps

The term progressive web app was first used and coined by Alex Russell, a Google Chrome

engineer at the time, in his article Progressive Web Apps: Escaping Tabs Without Losing

Our Soul (2015). Russell explains the reason behind giving this collection of features a

unified name by describing how new web technologies are not widely adopted until they are

named. He cites XMHTTPRequest as an example, saying it was not broadly known about

until it was rolled up into the term AJAX. Russell then recalls developing a list of attributes

with web designer Frances Berriman describing a progressive web app. These items from

Russell’s list make PWAs look and feel like native applications:

• Responsiveness, meaning that the web fits on the user’s screen regardless of its

size.

• Connectivity independent, meaning the ability to use the web app without an internet

connection.

• App-like-interactions refers to what is commonly called an app shell structure. An

app shell is a minimalist user interface that is loaded first and cached for offline use,

if that feature is enabled, after which the content is loaded, creating native app like

navigations.

• Re-engageable means the ability to use re-engagement methods native to the op-

erating system, usually push notifications.

• Finally, installable means the ability to add a PWA to the operating system as its

own app outside of a web browser.

One of the predecessors to PWAs was Apples attempt to make iPhone third-party app de-

velopment possible without a software development kit (SDK). It ultimately failed due to the

limitations that contemporary web apps had at the time when compared to native applica-

tions (Ritchie 2018). The ongoing development of these web technologies has closed this

gap between the native and web apps.

From a developer point of view, one of the biggest advantages of creating a progressive

web app instead of a native application is the ability to use the same code on both mobile

and desktop. The PWA functions as a mobile app, so new features are available on both

the web and mobile simultaneously. A PWA also requires less maintenance than a native

application. (Chand 2020.)

3

2.2 The Native Capabilities of Progressive Web Apps

2.2.1 Push Notifications

Push notifications as a term comes from server push operation, which is the ability for a

server to push information to a client application, for example Outlook, without the client

making a request. Therefore, a push notification is a notification that informs the user that

they have received information. Using Outlook as an example again, if a user receives an

email and they happen to have Outlook open, the new email will be immediately visible to

them, as the email server has pushed the email to the client. The client will then send a

push notification informing the user of the new email, so they will be aware of the email

even if they didn’t have Outlook open.

The push API allows a web app to receive and handle push messages. If used in a service

worker, the push API can be used to send push notifications. Service workers are JavaS-

cript workers that work between a web app and server on the browser level. Service workers

can also keep working after the web app that registered them has been closed. This allows

service workers to use the push API when the user is not using the application, creating

similar notification functionality as native applications. (MDN Web Docs 2023a.)

Push notifications through the push API are usually authenticated with a Vapid key, a vol-

untary application server identification key. This key pair is used to restrict any malicious

actors from hijacking messages to another application, as the public key is needed to sub-

scribe an app to the push service. For additional security, the key is used to decrypt received

push messages. (RFC 8292.)

2.2.2 Installability

To make a web application installable, it must include a web application manifest. Chro-

mium-based browsers also require a service worker that caches the web app for offline use.

As an example, Figure 1 shows a manifest from the World Wide Web Consortium’s Web

Application Manifest (2023) specification.

4

Figure 1. A typical web manifest (World Wide Web Consortium 2023)

The required fields for installability are name and at least one icon with a src parameter, as

these are what the application name and icon will be once installed. The non-mandatory

fields can still be useful, as they can change the applications look and feel. For example,

the background_color field is used on the splash screen that shows up when the app is

opened. When a web app is installed, it will appear on the user’s device like a native appli-

cation. As can be seen in Image 1, the app will still use the browser as a base, but the

5

browser’s user interface can be hidden using the display field of the manifest. (MDN Web

Docs 2023b.)

Image 1. YouTube.com on Microsoft Edge next to YouTube installed as an app with Edge

2.3 Design Principles of Progressive Web Apps

2.3.1 Mobile First Design

When creating a web app that will be used on a mobile device, it can be difficult to design

it well. One principle that can be used to aid in design is called mobile first. In essence,

mobile first design is exactly what it sounds like; designing a web app to primarily be used

on the smallest supported device, instead of a large monitor. Then, instead of scaling the

site down to fit on a smaller screen, it is scaled up. This approach helps with reaching fea-

ture parity between screen sizes, as scaling a web app down and retaining all features is

almost impossible. (Boduch 2017, p. 190-192.)

6

Responsive web design is a strategy that can be used to make a web app look good re-

gardless of the user’s device. Usually this is done by rearranging and resizing the compo-

nents on the web app. Image 2 shows an example of responsive web design being used on

the LAB University of Applied Sciences’ home page. (Gonzalez 2013, p. 5–9.)

Image 2. LAB University of Applied Sciences’ home page at different device widths

As Wroblewski (2009) points out, designing a web app with mobile first considerations

focuses the design on the most important aspects of the web app. Wroblewski continues

by laying out the benefits of mobile first, saying that it requires developers to focus on the

most important features of the web app. Further, Wroblewski cites projections and statistics

to argue that mobile first design is important as usage of web apps on mobile devices is

going to increase. Figure 2 confirms Wroblewski’s assessment, as mobile devices have

7

slowly overtaken desktop. The data comes from Statcounter, which is a web analytics ser-

vice that collects data from over a million web sites.

Figure 2. Desktop vs Mobile vs Tablet Market Share Worldwide 2009–2022 (Statcounter)

2.3.2 Offline First Design

Offline first, also known as cache first, is a strategy of showing a web app to a user. The

main principle is to save as many resources to the user’s browser cache as possible and

then use the cache to display the web app instead of fetching the resources from a server.

(MDN Web Docs 2023a; Domes 2017, p. 234–235.)

While making a web app offline usable does provide shorter load times for all users, the

mobile users receive the most benefits. If a mobile user is moving through an area with a

bad connection, they can continue using the site’s offline features. For example, the mes-

sage history of a chat feature could be saved on the user’s device and shown even if an

internet connection is not available.

Web app caching is usually done with a service worker. The service worker runs in the

background and does the caching of a web app’s resources and data. The API calls of the

web app are made through the service worker, the response data is cached and then shown

to the user. When the user is offline, the service worker fetches the cached data if it exists.

(Gambhir & Raj 2018)

0

20

40

60

80

100

120

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Desktop vs Mobile vs Tablet Market Share 2009–2022

Desktop Mobile Tablet

8

2.4 React and Progressive Web App Integration

2.4.1 Hooks

React has hooks that let programmers use the many features of React from their compo-

nents. Some of the most important hooks are useState and useEffect. (Meta Open Source.)

The use state hook can be used to make a component remember values and re-render if

the values change. If a component should show values depending on user input, the hook

must be used instead of a normal variable, as functional React components do not remem-

ber value changes to local variables. Figure 3 shows an example use case of a useState.

(Meta Open Source.)

Figure 3. A demonstration of useState

A counter is shown. It’s value changes by one every time the button is clicked. The value is

stored in the number state variable and is changed using the setNumber method, both being

returned by the useState hook called on line 5. The hook is given the default value that the

variable should have. When the setNumber method is called, the variable is changed, and

the component is re-rendered.

The useEffect hook should only be used when the component interacts with a system out-

side of React. For example, fetching data with user input would be done with a useEffect

9

hook. The hook takes a callback function as a parameter. Optionally, a state can be pro-

vided as a dependency. If no state is given, the callback function is run every time the

component is rendered. If a state is provided, the call back only happens when that state

changes. Figure 4 shows a use case for the hook.

Figure 4. A demonstration of useEffect

Similarly to the previous example, a counter goes up when a button is pressed. The value

of the counter is stored in the number state variable. A useEffect hook is created on lines

19 to 21, which has the number as a dependent. When the button is pressed and the counter

increases, the callback function will be run. The function shows a browser popup if the

number is divisible by 5.

10

2.4.2 Lazy loading

Lazy loading is used to load a web sites resource only once they are needed. This then

shortens the load that a user would have to wait through when they first navigate to the web

site. Further resources are loaded once the user navigates to a part of the site that needs

them. For example, on a news site, only a couple of articles would be loaded at the start

and once the user scrolls down, more would be loaded. (MDN Web Docs 2023c.)

React has a native method for lazy loading simply called lazy. This method can be used to

only load components once they are rendered. With a Suspense component, a placeholder

can be shown while the component is being loaded. In Figure 5, the Text component is only

loaded once the button is clicked. A CircularProgress component from the Material UI com-

ponent library is provided to the Suspense as a fallback, so it is shown while the TestText

component is being loaded. (Meta Open Source.)

11

Figure 5. A demonstration of React lazy loading

The intersection observer API can be used to lazy load data. The API is given a reference

to an element that it should watch. Once the element is in view, a callback function is run.

The observer can be customized with a threshold value, which will change how much of the

element would have to be in view before the callback is run. (MDN Web Docs 2023d.)

A third-party package called React Intersection Observer implements the intersection ob-

server API with React hooks and states. The hook useInView receives the options wanted

for the observer and the hook returns a ref and a state. The ref would be given to the com-

ponent that should be observed and the state would update when the component is in view.

Figure 6 shows an example of the hook. (React Intersection Observer authors 2023.)

12

Figure 6. A demonstration of UseInView

The hook is called on line 49. As no options are given, the default value of zero will be used

for the threshold. The Boolean state variable inView is shown as a string. The ref is assigned

to an empty div component at the end of the page. Once the page is scrolled down, the

inView variable will change to true.

2.5 Analytics of Progressive Web Applications

From a corporate perspective, progressive web apps have been a success. The website

PWA stats lists stories of increased user bases and general app usage when different com-

panies switched from native apps to PWAs. These are not small companies either, for ex-

ample, Twitter, Forbes, and Starbucks are listed among many others. In an article titled

Twitter Lite PWA Significantly Increases Engagement and Reduces Data Usage (2017), the

PWA released under the name Twitter Lite is discussed in detail. The usage statistics are

said to be a 65% increase in pages per session, a 75% increase in Tweets sent and a 20%

13

decrease in bounce rate. Nicolas Gallagher, a lead engineer on Twitter Lite is quoted saying

that Twitter Lite requires only 3% of the storage space that the Twitter native Android appli-

cation requires.

One concern with PWAs is how to get the app on the user’s device. With mobile native

applications, the app is submitted to either the Google Play Store or Apple’s App Store

giving users a unified place from which to download apps. The worry is that how can the

users be informed of the web app being installable without dissuading them from installing

it. Luckily, there does not seem to be any reason to worry, as Lyft’s statistics show a 40%

increase in users clicking an install PWA button when compared to a download app button

(Dreyer 2022).

14

3 Upgrading to A Progressive Web Application

3.1 Adding Progressive Web App Features to An Existing Web App

The first step of this project was to analyze what the different PWA features are and what

needed to be implemented. Table 1 shows the status of PWA features and whether they

were added to the app during this project or existed before hand.

Table 1. The PWA features of the app this project developed

PWA Feature Preexisting feature or implemented during thesis

Responsiveness Preexisting

Connectivity independent Project

App-like-interactions Preexisting

Re-engageable Project

Installable Project

The two PWA features not added during this project, which were responsiveness and app-

like-interactions, were still considerations during development. As such, they warrant brief

descriptions of how they were implemented. App-like-interactions were implemented with

an app shell that was made with React Router and Material UI, the component library that

is in use. Responsiveness is done with Material UI’s breakpoints defined in the app’s theme.

The breakpoints are then used in a component to change its attributes depending on the

user’s screen width. At some point during development, it was decided that the lowest sup-

ported device width would be 360 pixels because that is the lowest device width with any

significant usage share in Finland (Figure 7).

15

Figure 7. Screen resolution percentage compared to used breakpoints (Statcounter)

The only requirement of installability that was not met at the beginning of this project was a

service worker allowing offline usage. The manifest file was edited to use the correct image

as the app’s icon, but it had the correct information otherwise. Because the app is made

with React and Create React App, the logical place to start was to create a new app with

Create React App’s PWA template and seeing what the differences were between it and

the existing app. The newly created app had twelve packages that were not in the existing

app’s package.json, those being workbox and its modules (Figure 8).

0

0,05

0,1

0,15

0,2

0,25

0,3

360 600 1200 1536 Other

Breakpoints

Screen Resolution Stats Finland
March 2022 - March 2023

1280x720 1280x800 1280x960 1366x768 1440x900 1536x864 1600x900

1920x1080 2560x1440 360x640 360x780 360x800 375x667 375x812

384x854 390x844 393x873 412x915 414x896 768x1024 Other

16

Figure 8. Dependencies of an app created by Create React App's PWA template

Two additional files were present in the template app’s src folder, service-worker.js and

serviceWorkerRegistration.js. Four new lines were present in the index.js (Figure 9).

Figure 9. Lines 15-18 in Create React App's PWA template's index.js file

After installing the new packages and copying the file additions and changes to the existing

application, enabling the offline caching was as simple as changing line 18 of index.js to

say serviceWorkerRegistration.register().

3.2 Implementing Native App Features in a Progressive Web App

3.2.1 Push Notifications Through Firebase

As the web application that was developed in this project was meant to replace a native

mobile application capable of receiving push notifications, they must be a feature in the web

app as well. As the mobile app gets push notifications from a backend server through Fire-

base, the web app should do the same. As Firebase was already used in the web app, no

17

new packages needed to be added. Thus, the first thing that needed to be done was to

generate a Vapid Key from the Firebase console to subscribe the app to receive messages.

A new file was created to handle Firebase messaging, which contains the method creating

a Firebase push notification subscription (Figure 10).

Figure 10. A sequence diagram of firebase messaging

The getTokens method was created as asynchronous, as it needs to get a messaging token

from the Firebase Cloud. A Firebase messaging instance is created with an imported Fire-

base instance. The getToken method from Firebase takes a Firebase messaging instance,

the previously created Vapid Key and optionally a service worker registration. By default, a

service worker file called firebase-sw.js is used, but because a service worker handling the

offline cache was registered earlier, the service worker registration is provided. The service

worker requires some additions as well, which will be covered later. Additionally, the getTo-

ken method also asks the user permission to send push notifications to their device if per-

mission has not been granted yet. After receiving the token, a message listener is created

with a separate method. The listener sets any received message to a state that the getTo-

kens method receives as a parameter. The state change is handled in a component that

will be discussed later. An API call is made to save the token to the database. It is stopped

by a Firebase remote config flag, as the backend functionality handling message sending

to the web application is not yet completed.

 otificationComponent async getTokens firebase messaging Browser irebase remote config atabase

set otification

import irebase nstance

getMessaging(irebase nstance

messagingInstance

await navigator.serviceWorker.getRegistration(

serviceWorkerRegistration

await getToken(messagingInstance, vapid ey, serviceWorkerRegistration

messagingToken

firebaseMessageListener(messagingInstance, set otification

await get lag(saveMessagingToken

saveMessagingToken

if (saveMessagingToken true await saveMessagingToken(messagingToken

response

18

The service worker is needed for Firebase messaging to work at all. Figure 11 shows the

sequence of action in the service worker.

Figure 11. A sequence diagram of the firebase messaging service worker

First, Firebase messaging is initialized in a similar manner as previously, but the getMes-

saging method is from firebase/messaging/sw instead of firebase/messaging. This service

worker specific messaging handles receiving messages by itself, so the next additions are

not strictly necessary. Next, the onBackgroundMessage listener is used to customize the

native operating system notification the user receives when the web app is not open or in

focus. It is given the data found in the notification sent by the server and the web app’s icon

as the notification icon. Additionally, if a link is included in the notification, it will be included,

otherwise a link to the login page will be used. Then the customized notification is sent to

the user with the service worker method of showNotification. Lastly, a listener that listens to

when a user clicks on a notification is created. If a user clicks on a notification and has the

ServiceWorker firebase messaging sw Browser Server Operating System User

import irebase nstance

getMessaging(irebase nstance

messagingInstance

onBackgroundMessage listener

add ventListener(notificationClick

registerServiceWorker

push otification

onBackgroundMessage

show otification

Click notification

 ventListener(notificationClick

openWindow(otificationURL

19

web app open to the address specified in the notification, the web app is brought to focus.

Otherwise, the app is opened to the address.

A new component was created to handle asking the user for permission to receive push

notifications and for showing them (Figure 12).

Figure 12. A sequence diagram of the notification component

This component is rendered when a user has logged in. A popup asking them if they want

to receive notifications is shown if certain conditions are met. The conditions are that the

user has not explicitly denied notifications on an app level and has not dismissed the notifi-

cation. The popup is not shown in development environments as service workers do not

work in them. If the user closes the notification, the handleDoNotGetNotifications method is

invoked causing the notification to not be show in the future, as well as, showing the user a

popup saying that they will not receive notifications. If the receive notifications button in

pressed, the method handleGetNotifications is invoked instead. The method calls the getTo-

kens method defined earlier with the set method of the notification. Then a popup saying

notifications enabled is show to the user. If the component is loaded and the user has ac-

cepted to receive notifications, the handleGetNotifications is called to handle receiving no-

tifications. If a notification is received, another popup with the notification’s information is

shown. Both popups are snackbar components with alert components inside them, which

are from the Material UI component library.

User Application otificationComponent async getTokens atabase

Log in

 o you want notifications popup

Agree to notifications

set otification

getTokens internal logic logic

 otifications enabled popup

firebaseMessageListener(messagingInstance, set otification

 otification

set otification(otification

 otification popup

20

3.2.2 Message history

The mobile app being replaced has a view showing all messages the current user has re-

ceived, so naturally the web app must show the message history as well. The backend

server saves sent messages to a database so the mobile app can retrieve the history

through an API. The same API should be used in the web app as well.

A new React component was created for showing the list of messages. A fetcher hook from

React Router is used to retrieve the messages. The fetcher works by using a specified

URL’s React Router loader. The loader is defined inside the routes file given to React

Router. The URL used is provided to the loader and the loader makes the API call fetching

the message history. The loaded data ends up in the fetcher hook and is assigned to the

notifications state inside a useEffect hook. First method in the hook checks the retrieved

data amount to see if the end of data was reached. Then if the fetcher is idle and data has

been retrieved, the data is added to the notifications array. The fetcher call mentioned ear-

lier happens inside a useEffect as well, this time happening if the request state is changed.

The default values of the request are defined at the start of the file. An intersection observer

is defined to load more data when a user has scrolled to the bottom of the loaded list. The

ref variable that was gotten from the useInView call is a React ref that is set to an invisible

div at the bottom of the message list. Once the div is in view, the inView state will update.

The change of the inView state will cause the useEffect to change the request if certain

conditions are met. These conditions are that the div at the end is in view, data is not cur-

rently being loaded, some data has been fetched and that the end of data has not been

reached. The request is changed by the starting amount to get the next messages without

reloading messages.

The user can change a couple of the request values with a set of filter components. These

components are all from the Material UI component library. The user can choose what mes-

sages to see based on the delivery format of the message, the messages content, and a

date range of when the message was sent. Changing any of these values calls the handle-

FilterChange method. This method first clears any loaded messages and then sets the end

of data to false to remove messages loaded earlier and to restart the loading if all messages

were previously loaded.

The messages are rendered with a Material UI list. If the end of the list is reached, skeleton

components are show while the data is loading. The notifications are rendered using a cus-

tom notification component, which is a Material UI list item that can be clicked to open the

21

link the notification may have attached to itself. The notifications message and subject are

also shown.

3.2.3 Mobile compatibility

All the components created during this project were tested to be usable on Android and iOS

devices. The components themselves are loaded into a responsive view that changes de-

pending on the break points mentioned earlier. The notification permission was tested to be

working without any specific handling for mobile devices. The app was installed successfully

to both devices, as well as a Windows laptop.

22

4 Summary and conclusion

The primary goal was to implement parts of an existing native application into an existing

web app. This was achieved by upgrading web app into a PWA. The web app was deemed

to have met certain features of a PWA. The missing PWA features of offline usage, installa-

bility and re-engageability were implemented. Offline usage was done with service workers

and re-engagement with firebase messaging.

The business viability of PWAs was investigated and found to be good. Many companies

report increases in user retention as they switch to PWAs. Users seem to be more likely to

install a PWA than a native application. This preference for PWAs most likely stems from

their smaller install size and directness of the install when compared to an app store.

The application these PWA features were implemented to will not be released yet, as more

features from the native mobile application need to be implemented. The added feature of

offline usage will be considered when the app is developed further. The notifications will be

developed further, as the backend is not yet capable of sending messages to the app.

23

References

Boduch, A. 2017. React and React Native: Use React and React Native to Build

Applications for Desktop Browsers, Mobile Browsers, and Even as Native Mobile Apps. First

edition. Birmingham: Packt.

Chand, M. 2020. What is a PWA (Progressive Web App) and Why Do We Need PWAs?

Retrieved 19.04.2023. Available at https://www.c-sharpcorner.com/article/what-is-a-pwa/

Domes, S. 2017. Progressive Web Apps with React. Birmingham: Packt.

Dreyer, C. 2022. 3 Most Incredible Boosts By Lyft PWA. Retrieved 30.04.2023. Available at

https://doccly.com/articles/3-most-incredible-boosts-by-lyft-pwa

Gambhir, A. & Raj, G. 2018. 'Analysis of Cache in Service Worker and Performance Scoring

of Progressive Web Application'. International Conference on Advances in Computing and

Communication Engineering (ICACCE). Paris, 294–299. Available at DOI

10.1109/icacce.2018.8441715

Gonzalez, J. 2013. Mobile First Design with HTML5 and CSS3: Roll Out Rock-Solid,

Responsive, Mobile First Designs Quickly and Reliably. First edition. PACKT Publishing.

MDN Web Docs. 2023a. Making PWAs work offline with Service workers. Retrieved

22.3.2023. Available at https://developer.mozilla.org/en-

US/docs/Web/Progressive_web_apps/Offline_Service_workers

MDN Web Docs. 2023b. How to make PWAs installable. Retrieved 25.4.2023. Available at

https://developer.mozilla.org/en-

US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/Installable_PWAs

MDN Web Docs. 2023c. Lazy loading. Retrieved 9.5.2023. Available at

https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading

MDN Web Docs. 2023d. Intersection Observer API. Retrieved 9.5.2023. Available at

https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

Meta Open Source. Built-in React Hooks. Retrieved 9.5.2023. Available at

https://react.dev/reference/react

Meta Open Source. lazy. Retrieved 9.5.2023. Available at

https://react.dev/reference/react/lazy

Meta Open Source. State: A Component's Memory. Retrieved 9.5.2023. Available at

https://react.dev/learn/state-a-components-memory

https://www.c-sharpcorner.com/article/what-is-a-pwa/
https://doccly.com/articles/3-most-incredible-boosts-by-lyft-pwa
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Offline_Service_workers
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Offline_Service_workers
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/Installable_PWAs
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/Installable_PWAs
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://react.dev/reference/react
https://react.dev/reference/react/lazy
https://react.dev/learn/state-a-components-memory

24

React Intersection Observer authors. 2023. react-intersection-observer readme. Retrieved

9.5.2023. Available at https://github.com/thebuilder/react-intersection-

observer/blob/6c8111c7a04db5665898ea771e0b20c1a9c85467/README.md

Ritchie, R. 2018. App Store Year Zero: Unsweet web apps and unsigned code drove iPhone

to an SDK. Retrieved 19.04.2023. Available at https://www.imore.com/history-app-store-

year-zero

Russell, A. 2015. Progressive Web Apps: Escaping Tabs Without Losing Our Soul.

Retrieved 8.2.2023. Available at https://infrequently.org/2015/06/progressive-apps-

escaping-tabs-without-losing-our-soul/

Source, M.O. Synchronizing with Effects. Retrieved 9.5.2023. Available at

https://react.dev/learn/synchronizing-with-effects

Statcounter. Desktop vs Mobile vs Tablet Market Share Worldwide. Retrieved 7.5.2023.

Available at https://gs.statcounter.com/platform-market-share/desktop-mobile-

tablet/worldwide/#yearly-2009-2022

Statcounter. Screen Resolution Stats Finland. Retrieved 26.04.2023. Available at

https://gs.statcounter.com/screen-resolution-stats/all/finland/

RFC 8292. 2017. Voluntary Application Server Identification (VAPID) for Web Push. Internet

Engineering Task Force. Available at https://datatracker.ietf.org/doc/html/rfc8292 [28 Apr

2023].

web.dev. 2017. Twitter Lite PWA Significantly Increases Engagement and Reduces Data

Usage. Retrieved 30.04.2023. Available at https://web.dev/twitter/

World Wide Web Consortium. 2023. Web Application Manifest. Retrieved 25.4.2023.

Available at https://www.w3.org/TR/2023/WD-appmanifest-20230329/

Wroblewski, L. 2009. Mobile First. Retrieved 22.2.2023. Available at

https://www.lukew.com/ff/entry.asp?933

https://github.com/thebuilder/react-intersection-observer/blob/6c8111c7a04db5665898ea771e0b20c1a9c85467/README.md
https://github.com/thebuilder/react-intersection-observer/blob/6c8111c7a04db5665898ea771e0b20c1a9c85467/README.md
https://www.imore.com/history-app-store-year-zero
https://www.imore.com/history-app-store-year-zero
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://react.dev/learn/synchronizing-with-effects
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#yearly-2009-2022
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#yearly-2009-2022
https://gs.statcounter.com/screen-resolution-stats/all/finland/
https://web.dev/twitter/
https://www.w3.org/TR/2023/WD-appmanifest-20230329/
https://www.lukew.com/ff/entry.asp?933

