

Antoni Paavola

Reduced Circular Slice Buffer II -
Pragmatic Multiplatform Implementation

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

8 May 2023

Abstract

Author: Antoni Paavola

Title: Reduced Circular Slice Buffer II – Pragmatic Multiplatform

Implementation

Number of Pages: 42 pages

Date: 8 May 2023

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Mobile Solutions

Supervisor: Jarkko Vuori, Principal Lecturer

There is a growing interest in slices due to an ever-increasing trend to move toward a
lower level within the field of programming. This paper pursues the integration of a
slice and a circular buffer attempting to make an object that can be described using
both terms, either separated or fused. The present paper strives to attain a more
thorough practical approach by explaining the steps required to design a circular slice
buffer.

This paper contrasts the envisioned circular slice buffer with an ordinary memory
copying buffer. This is carried out by benchmarking the performance of different parts
of both buffers within different environments. The study has a practice-based design
approach to research.

This study is a follow-up to Paavola's paper (2022) which described a more abstract
idea and outline of what a circular slice buffer could be and how one could implement
concurrency within a slice-based buffer.

A circular slice buffer outperforms a memory copying buffer in its usage performance.
However, it is to be noted that a circular slice buffer fails to outperform an ordinary
memory copying buffer if it is not properly reused. The amount of reusage required
depends on the system it is used in.

It would be worthwhile for future studies to investigate whether it is feasible to
integrate circularity into existing ordinary slices and to what extent.

Keywords: circular buffer, slice, benchmark, pragmatic, implementation

Tiivistelmä

Tekijä: Antoni Paavola

Otsikko: Kevennetty ympyräviipalepuskuri II – Pragmaattinen

monialustainen toteutus

Sivumäärä: 42 sivua

Aika: 8.5.2023

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Information Technology

Ammatillinen pääaine: Mobile Solutions

Ohjaaja: Yliopettaja Jarkko Vuori

Ohjelmointialalla kiinnostus nk. viipaleisiin (engl. slices) kasvaa jatkuvasti, sillä
nykypäivän suuntaus on siirtyä jatkuvasti kohti matalamman tason ohjelmointia.
Tutkimuksessa oli tarkoitus yhdistää alemman tason viipaleet ja ympyräpuskuri
yhteen. Näin voitaisiin luoda objekti, jota voidaan kuvata molemmin termein joko
erikseen tai yhdistettynä. Vaikka tätä aihetta on käyty läpi Paavolan (2022)
aikaisemmassa I osan tutkimuksessa teorian pohjalta, nyt tehdyssä työssä pyrittiin
luomaan pragmaattisempi ote esittämällä ympyräviipalepuskurin luomisen eri
vaiheet.

Työssä vertailtiin ympyräviipalepuskuria ja tavanomaista muistia kopioivaa puskuria
mittaamalla puskureiden eri ominaisuuksien suorituskykyä eri ympäristöissä.
Kevennetty tutkimuksen nimessä tarkoittaa sitä, että puskuri käyttää vain kahta
muuttujaa kuten viipalekin. Kevennyksen myötä oli tärkeää tietää, sisältääkö
kevennettykin ympyräpuskuri tehokkuusetuja muistia kopioivaan puskuriin verrattuna.
Tämä selvitettiin tekemällä tehokkuusvertailu. Työn toteuttamisessa käytettiin
menetelmänä käytäntöön perustuvaa lähestymismallia (engl. practice-based design
approach).

Työssä tehdyt mittaukset osoittivat, että ympyräpuskuri suoriutuu tavanomaista
muistia kopioivaa puskuria paremmin käytön suhteen. Ympyräpuskuri vaatii kuitenkin
uudelleenkäyttämistä, jotta se voisi olla nopeampi kuin tavanomainen muistia
kopioiva puskuri, sillä sen luominen on tavallista puskuria hitaampaa.
Uudelleenkäytön määrä riippuu siitä, missä ympäristössä puskuria käytetään.

Tulevissa tutkimuksissa olisi hyvä tutkia, onko mahdollista integroida tutkimuksen
sisältöä olemassa olevien viipaleiden käyttötarkoituksiin ja kuinka laajasti tämä
voitaisiin toteuttaa.

Avainsanat: ympyräpuskuri, viipale, suorituskykyvertailu, pragmaattinen, toteutus

Contents

1 Introduction 2

1.1 Purpose of the study 2

1.2 Research questions 3

1.3 Research structure 4

2 Background 4

2.1 Buffer Management 7

2.2 Mirroring 8

2.3 Concurrency 10

2.4 Methodology 12

3 Implementations 14

3.1 RCSB – Reduced Circular Slice Buffer 16

3.1.1 Linux Construction 17

3.1.2 Posix Construction 22

3.1.3 Windows Construction 24

3.1.4 Usage 27

3.1.5 Destruction 31

3.2 MCB – Memory Copy Buffer 32

3.2.1 Lifecycle 33

3.2.2 Usage 34

4 Comparison 35

4.1 Data collection 36

4.2 Results 36

4.3 Reliability and Validity 39

5 Conclusions 39

References 41

1

List of Abbreviations

POSIX: Portable Operating System Interface. A set of standards defining

compatibility between multiple operating systems. Allows for

abstraction of the operating system in software.

SLICE: A type consisting of a pointer to memory and length. Used to signify

a portion of data but can also be used to encompass all available

data that is within memory.

RCSB: Reduced Circular Slice Buffer. The combination of a circular buffer

and a slice.

MCB: Memory Copy Buffer. A linear memory buffer, where memory is

copied to the start of the buffer when necessary.

LIFE CYCLE: The lifetime of the buffer. Signifies a buffer's construction and

destruction, excluding its usage.

USAGE: All actions taken after construction and before deconstruction such

as writing & removing items from a buffer.

CODE PATH: The set of instructions chosen to be compiled. In the study, specific

code is chosen based on which operating system the buffer is run in.

2

1 Introduction

The usage of arrays, collections, queues, lists or buffers are essential in computer

science. The idea of storing singular elements or types together carries a

multitude of different names but are used with the same purpose. Considering

how widespread these terms are it is likely that at least a few are familiar. With

more complex requirements, it becomes even more essential to provide greater

efficiency for processing data and providing greater throughput from the

hardware already present.

Slices are acquiring greater importance as languages seek to enable lower-level

handling of data and rely less on abstractions. To enable this change, this paper

seeks to introduce a method of integrating buffers and slices to potentially

combine their advantages.

The research divides different sections of code into so-called code paths. These

code paths are chosen at compile time depending on what system calls the target

environment supports. In other words, the study concentrates on

code paths, their content and performance, hence taking a pragmatic approach

which in turn simplifies validification.

This study is a follow-up to Paavola's paper (2022) which described a more

abstract idea and outline of what a circular slice buffer could be and how one

could implement concurrency within a slice-based buffer.

1.1 Purpose of the study

By contrast with the previous study which compared multiple different concurrent

buffer implementations, the aim here is to concentrate on the Reduced Circular

Slice Buffer itself, as a non-concurrent buffer, and to find out in practice how

quickly it can be constructed and used compared to a memory copying buffer.

Accordingly, the study bases itself on the former research but creates further

3

insights into the Circular Buffer variant. This is done by opening broad abstract

subjects mentioned in the previous study by Paavola (2022).

The 2022 study presented the results of an abstract buffer variant and left a

possibility for further ideation without specifying or explaining how the buffer was

created or used in practice. In a sense it can be thought that this research

explains the previous study by unfolding topics and questions that may have been

left unanswered.

The study narrowed itself to a certain sized buffer, whereas the current study

takes into account the possibility of larger sizes than the minimum. Due to this,

there are more complex definitions and formulae regarding the buffer. The former

study also attempted to explain how to integrate a circular buffer with a slice in

theory, while the current study seeks to present it in practice.

However, it should be remembered that there is not just a single way of

implementing a circular slice buffer and this study does not attempt to depict an

ideal variant of a circular slice buffer, but simply a possibility.

It is also important to remember the possible differences between both studies

such as the target audience. The previous study conveyed innovation to

researchers seeking to create new buffer variations while the current

concentrates on instructing implementers.

1.2 Research questions

The main research question the paper seeks to answer is how the Reduced

Circular Slice Buffer performs compared to a memory copying buffer. How do the

lifecycle and buffer usage perform? What kind of results do we acquire from

different implementation variations?

4

Secondly, to create a generally verifiable study, how can we pragmatically

implement some of the topics discussed in the first study? Furthermore, in

different operating systems and the Posix standard, what are the code paths like

for both life cycle and usage?

1.3 Research structure

In the next chapter, called Background, the basic idea of a buffer is introduced,

and it also delves slightly into the rationale in making a buffer circular. In this

section, the study attempts to depict the starting point of literature and how the

study has proceeded to develop further within the field.

In Chapter 3, Implementations, we will look into the Lifecycle and usage of both

the study's own circular buffer and a generalized memory copying buffer. This will

assist with understanding the differences between both variants and code paths

of the same variant, allowing for greater comprehension of Chapter 4,

Comparison.

In Chapter 4 the study will seek to compare the results of the implementations for

both life cycle and usage. In Chapter 5, Conclusion, major findings are

summarized, and information is further structured.

2 Background

To get an overall sense of the topic itself, it is necessary first to understand the

meaning of a circular buffer and in general what buffers are used for. Buffers

are used in various areas of computer science within the context of

concurrency. Buffers are generally used for network and general data related

processing. For example, Han, Wald, Usher & al. (2020) presented a virtual

frame buffer for walls of displays to render videos or Pirkle (2013) who devised

a circular buffer to use with audio effects and filters.

5

A circular buffer is a buffer which can be addressed circularly which is unlike

regular array access for example in C++. When creating an array as a buffer, its

addressing is linear meaning that offsetting a pointer pointing to the buffer’s

memory will always move linearly to the required position. (Pirkle 2013: 207-

210.)

Linux kernel documentation (Circular Buffers) explains circular buffers to be of

fixed and finite size. Access outside the bounds of a linear addressing buffer

usually results in a crash, but with a circular buffer the accesses are wrapped to

remain within the buffer bounds. A circular buffer’s management of pointers also

reduces the need to move data around inside the buffer as items in the buffer

can be acquired through the pointer wrapping system. (Pirkle 2013: 207-210.)

There are multiple implementations of circular buffers in existence, but usually

they consist of two pointers that point to the tail and head of data (Circular

Buffers) as seen in Figure 1.

6

Figure 1: Circular Buffer (FIFO Architecture, Functions, and Applications 1999).

FIFO, First in First Out, indicates that the first item written is the first to be read

(FIFO Architecture, Functions and Applications 1999). Circular buffers provide

an efficient method of implementing a FIFO queue (Ash 2012, Part I). The

paper will henceforth continue to demonstrate circular buffers from a FIFO

standpoint.

The buffer tail can be thought of as pointing to the start of the buffer where the

read pointer is located, and the buffer head is pointing at the end, at the write

pointer (FIFO Architecture, Functions, and Applications 1999). These can be

referenced from Figure 1.

7

Once the buffer must be enlarged, the pointer pointing at the end is moved

toward the positive direction and once items need to be removed the start

pointer is also moved toward the positive direction. (Circular Buffers;

linux/include/linux/circ_buf.h.)

There are other explanations in the kernel documentation in regard to the usual

implementation of a circular buffer. For example, when the buffer is empty the

end and start pointers are equal or when it is full, the end pointer is one less

than the start pointer (see Circular Buffers; Ash 2012, Part II). However, there

are other methods which are especially suitable for mirrored circular buffers

which will be discussed in the “Mirroring” chapter.

2.1 Buffer Management

Management of data locations is necessary to guarantee coherency. Buffer

coherency may become an issue if the first portion of data resides at the end of

the buffer and the second portion at the start of the buffer. If data is to be read

in order, the reading must occur circularly by reading the start after the end.

To address memory circularly, it is possible to use a modulus operation.

However, a common optimization in circular buffers is limiting the buffer size to

a power of two to avoid using modulus division operations. This enables us to

use bitwise operations instead to calculate pointer distances when pointers

wrap over the buffer border to wrap around to the start. (Circular Buffers;

linux/include/linux/circ_buf.h.)

Circular buffers function well when writing is continuous and reading occurs

soon after. They function well as a tool for communicating real-time information

between threads. (Ash 2012, Part I.) In other words, it is best for short-term

data.

When not using a circular addressing mode to access memory, for example if

using an ordinary array, it becomes necessary to copy data continuously.

Copying is undesired as it can cause unnecessary overhead. This situation

8

occurs when data is at the end of the buffer and needs to be moved to the start

of the buffer for more data to be written. Circular buffers solve this issue as

manual buffer management is no longer necessary. (Allen, Zucknick & Evans

2006.) See Figure 2.

Figure 2: Data copying (Allen, Zucknick & Evans 2006).

2.2 Mirroring

In earlier chapters, circular addressing using a modulus operation was

mentioned. It is, however, possible to achieve the same effect as pure modulo

addressing using virtual memory management. It is a way to emulate circular

buffers (Allen, Zucknick and Evans 2006).

In such a system, two contiguous sections of memory that contain identical data

are created. The identicality of these sections are guaranteed by the CPU’s

virtual-to-physical address translation hardware by mapping both sections

memory accesses to the same target, either a separate memory section or file,

so that they are identical. (See for example Figure 3 from Allen, Zucknick &

Evans 2006.)

9

Figure 3: Mirroring (Allen, Zucknick and Evans 2006).

In a mirroring implementation, out of bounds access must be avoided using a

modulus operation if needed after a pointer increment occurs. Using virtual

memory mapping can cause overhead, but it allows for copying to be avoided.

Additionally, the ability to operate directly on memory can further reduce

copying (Allen, Zucknick & Evans 2006).

The benefit of a mirrored circular buffer compared to non-mirrored is that it does

not require wrapping of data. The data in a non-mirrored circular buffer may not

be adjacent which means that passing pointers to the data can become difficult.

This requires either combining data to a separate buffer by copying or

separately processing non-adjacent memory. However, in a mirrored circular

buffer non-adjacent memory is adjoined with a second copy of the memory and

can therefore be used to pass data with just one pointer to previously non-

adjacent memory when a single chunk of memory is required. (Ash 2012, Part

I.)

Allen, Zucknick & Evans (2006) found in their tests on signal and image

processing that using virtual memory management instead of manual memory

copying had a meaningful and measurable difference. They also warned that

their excessive use may result in less meaningful results due to overflow

recovery measures. Several dozens, however, can be used without great

negative impact.

An aspect of a virtual memory managed mirror buffer is that the buffer is page

aligned (Allen, Zucknick & Evans 2006). A page of memory, henceforth referred

10

to as page size, is the smallest amount of memory that can be used with a

virtual memory system and is typically 4096 bytes. While the size of a memory

page can be assumed, it is better to request the size of a single page from the

system. (Ash 2012, Part I.)

Earlier it was said that typically a circular buffer is full when the end pointer is

one less than the start pointer. However, this method becomes ill-favored when

using mirrored circular buffers as the full potential of the buffer is not taken

advantage of (Ash 2012, Part II).

Alternatively, to the typical method, fullness can also be expressed by the read

pointer being exactly a buffer’s maximum size less from the write pointer (Ash

2012, Part II). However, in such an implementation, either subtraction or

addition is required to determine if the buffer is full.

Another way is to use a count instead of a write pointer, but then the write

pointer would need to be derived using computation between the read pointer

and count. In a concurrent setting, the read pointer and count can be

inconsistent with each other from an outside perspective, leading to the

resulting computation between them to be incorrect. (Ash 2012, Part II.)

According to Ash (2012), lockless thread safety becomes greatly more difficult

or even completely impossible if using a read pointer and a count instead of

both read and write pointers.

2.3 Concurrency

To optimize the use of the buffer further, it is necessary to read and write to it at

the same time. This is where the Producer/Consumer or Bounded Buffer

problem surfaces. It is necessary to design a system where multiple actors or

threads can work together to manage reading and writing to the buffer. (Arpaci-

Dusseau & Arpaci-Dusseau 2018.)

11

A consumer can be thought of as the one that reads the start of the buffer and

removes the read or unnecessary data. A producer on the other hand will write

more data to the buffer so that the consumer may acquire more data later when

it needs some. (Arpaci-Dusseau & Arpaci-Dusseau 2018.)

There are multiple solutions to the consumer-producer problem. Concurrency

can be achieved using locks, which block concurrent modifications allowing only

one to modify at a time, but it is not able to utilize many processors efficiently.

To minimize locking, it is possible to use message passing which can scale

much better. (Wilhelmsson 2005.) However, message passing overhead can

negatively affect the performance of the application (Morandi, Nanz & Meyer

2014: 99-114). The most typical way to achieve synchronization is using shared

data structures (Wilhelmsson 2005).

Deciding which parts of memory to share and which to keep thread local can

have implications on performance (ibid.). Some implementations avoid sharing

memory between threads completely, which ends up negatively affecting

performance due to communication overhead between threads (Schill, Nanz &

Meyer 2013). According to Morandi, Nanz & Meyer (2014) typically about half of

the work in producer-consumer programs consists of synchronous read

accesses.

To achieve efficient concurrency on buffers, it is possible to use slices. Slices

are portions of the original buffer but can also point to the whole buffer. Slices

can be implemented as a pointer to memory and length. Slices can be set as

read-only, or both read & modify. To modify a read-only slice, disconnecting it

from the original array must be done by copying the content to a separate

location in memory. (Schill, Nanz & Meyer 2013.)

Slices are also ideal due to their small size, since they fit well within a machine’s

register. Registers are small pieces of memory within the processor. Variables

within registers can be accessed quickly, but registers can only store a limited

number of variables. (Fog 2021: 27, 36, 50, 69, 134 and 144.)

12

Using only a pointer in the consumer would cause inefficiency from looping

through the buffer as it is more efficient if the length is known. This is why slices

are preferred, as they contain the length as well. To get the length of data using

just a pointer, iteration of the buffer to search for an end marker is needed. This

is easily possible with a character array with a zero-byte character, but with

other types a value would need to be designated as an end marker. (Fog 2021:

36, 134 and 144.)

Efficient parallel array algorithm implementations require two types of access.

Namely, parallel disjoint access and parallel read. In other words, a thread

should be allowed to mutate a part of the original array designated to it and

multiple threads should be allowed to view a read-only portion of the original

array in parallel. (Schill, Nanz & Meyer 2013: 37-48.)

Slices allow threads to work concurrently on their own sections of the original

array. Slices can also be merged if the slices are sections of memory directly

next to each other. In a concurrent setting, transferring of data is the most

optimal when the underlying memory area is shared with multiple threads.

(Ibid.)

2.4 Methodology

The methodological design of this study is inspired by practice-based design

research (Horváth 2007). According to Horváth, the research approach, which

intends to generalize and extend design knowledge based on strongly

contextualized practical knowledge, has been called practice-based design

13

research. See Figure 4 below.

Figure 4: Methodology (Horváth 2007).

The information collected was acquired from the reference implementation in the

previous study. This study found the lack of pragmatic solutions to be a problem

with the previous study in addition to the unanswered question of life cycle

performance, i.e. referring to the problem analysis. Taking advantage of existing

research and aligning to Horvath`s conceptualization phases, a testing

framework was built to verify the previous study (conceptualization & detail

design). The testing framework was used to create a benchmark, it was then

analyzed (assessment) and conclusions based on the analysis were drawn

(dispatching).

According to Bose (2022) performance testing is a type of software testing for

evaluating how a certain software performs under variant conditions. He lists

numerous variables - stability, scalability, speed and responsiveness to which

performance may refer. Yet, in this study performance solely refers to speed.

14

3 Implementations

The study developed two buffers for handling continuous data flow. One with

circular slice characteristics, called the Reduced Circular Slice Buffer, or RCSB

for short, and another that uses manual buffer management called Memory Copy

Buffer or MCB.

The buffers’ ways of handling memory overlap are drastically different, but they

do contain some shared terms, which are key to understanding the

implementation details that are to be discussed later on.

As the buffers work with multiple different systems, the page size can potentially

differ drastically, but for the purposes of the simplicity of this paper, it can be

thought of being 4096 bits unless otherwise mentioned. As mentioned in Chapter

2.2, the page size can be assumed, but that is not recommended.

In a real-world environment, it is recommended that the page size is saved

separately from the buffer internal variables so that multiple buffer instances may

find and share a common immutable instance of the page-size, rather than a

compile-time value as is the case in the study. Acquiring the page size from the

operating system on every buffer construction should not be done, only when

necessary.

The key term required for understanding the RCSB is usable pages. Memory

mapped circular buffers contain multiple memory mapped buffer pages of equal

size, but often this is limited to just two buffer pages. The RCSB requires two

buffer pages to be mapped, the first one being identified as the usable page.

Buffer pages should not be mixed up with the operating system pages since a

buffer page can contain multiple pages of system memory. However, a RCSB

can choose to only support buffer page sizes of a single page size, making it

inherently identical to one operating system page.

15

The usable page’s size is a power of two and a multiple of the system page size.

Sometimes buffer memory will be mentioned, in this case it can be assumed to

refer to the total size of each buffer page in memory:

Usable page size = Page size ⋅ 2k, k ∈ W

Buffer memory = Buffer pages ⋅ Usable page size.

Note that on some systems, such as Windows, a platform specific alternative

to page size can be used instead, more information in the system specific

documentation.

When discussing bits of the buffer pages, the study used three key masks that

rely solely on the size of the usable page. Should the system page size be

known or assumed at compile-time, the following variable values may also be

acquired at compile-time.

The “pagebits” mask displays one for all bits that the buffer can write to and is

acquired by subtracting one from the usable page size. The negation of pagebits,

or alternatively inverse of the usable page size is called “membits”, as it displays

the buffer’s memory position bits as ones, including the buffer page bit, when

multiplying it by two, the buffer page bit can be excluded, resulting in “mempos”.

See Figure 5 below for more details.

The universal maximum that one may store in a buffer is the size of the usable

page divided by the size of the type of a single element in the buffer. In the study

however, the usable page size was was limited to one system page size, hence

maximum is then the system page size divided by the buffer element’s type size.

More on this in Figure 5 below.

16

Figure 5: Constants.

3.1 RCSB – Reduced Circular Slice Buffer

The Reduced Circular Slice Buffer or RCSB for short, is a general-purpose

buffer which varies slightly in implementation depending on the platform. The sub-

chapters are divided into different platform lifecycle implementations and shared

usage.

The lifecycle implementation details in each of the platforms, namely Linux, Posix

and Windows, can be said to be very similar with only minor exceptions,

understanding a single platform lifecycle is sufficient for continuing on with the

usage general of the buffer.

In each lifecycle chapter, both construction and deconstruction will be discussed.

In construction, the starting memory position of the constructed buffer is returned

to the calling function. More details on platform specific chapters, see also Figure

6 below.

17

Figure 6: Code paths.

3.1.1 Linux Construction

RCSB’s construction under Linux can be considered a much more simplified

version of the Posix -version. Although it is possible to run Posix code in a Linux

environment, platform specific can be assumed to be more performant. More

details on the performance difference in the chapter Comparison.

In construction, a memory file must be created, in Linux this is best done with

memfd_create as to make the file anonymous. Although the file is anonymous,

it is given a name in addition to flags as its arguments. A memory file descriptor

is given or alternatively a value indicating an error. The name does not need to

be unique, and the operating system can be thought to be fairly lenient on the

correctness of the given name, as seen in Figure 7 below.

After the memory file is created, it is set to the required size with ftruncate,

arguments being the previously created memory file handle and the required

18

usable memory size. In this case, usable memory is defined to be a single page

size. See Figure 7 below.

Figure 7: Linux Construction.

The steps after this will be identical to the Posix implementation. In general

terms, three times the usable memory defined earlier needs to be requested

with mmap. The function will return a pointer to memory.

As mentioned earlier at the start of the Implementation chapter, usable memory

is a power of two, meaning it has only a single bit that is active at any time.

Henceforth the position of this bit will be called the usable memory bit.

It is necessary to find the usable memory bit within the pointer returned by

mmap and ascertain whether it is 0 or 1. The internal functions of the buffer rely

on the compile-time assurance that the buffer’s beginning position in memory is

so that its usable memory bit is known. In the examples, the usable memory bit

is chosen to always be zero, meaning not active. Implementations with this

decision can be described as zero-bit implementations. The usable memory

bit can also be chosen to be one, meaning active, but implementation will differ

from the given examples. An implementation seeking the bit to be active can be

labeled as a one-bit implementation.

19

Should an AND bitwise operation of the usable memory bit on the pointer result

in zero, then the usable memory bit within the three requested sets of memory

should correspond to 0, 1, 0. Otherwise it shall be 1,0,1.

In the first case a zero-bit implementation would seek to return the last set of

memory to the operating system and a one-bit implementation would return the

first set.

In the second case a zero-bit implementation would seek to return the first set

and a one-bit the last set. Whichever case, a zero-bit implementation would now

have usable memory bits of 0 and 1 and a one-bit 1 and 0. For more details on

which sets of memory to choose according to the chosen implementation, see

Figure 8 below.

Figure 8: Memory Selection.

The remaining two memory sets must be mapped to the earlier created memory

file so that both sets of memory contain identical data and always show the

entirety of the data within the memory file.

20

Finally, the created memory file can be closed since the operating system

cannot un-allocate the memory file since there are still two connections to it,

namely the two maps linked to the data of the memory file. This is the base idea

which makes storing the memory file in a variable redundant, since the memory

file is now automatically collected by the operating system after un-mapping the

memory from the memory file. An example of the construction working for both

Linux and Posix systems can be found below in Figure 9 for 0-bit

implementations.

21

Figure 9: Linux Construction 2.

22

3.1.2 Posix Construction

The lifecycle of RCSB under Posix is identical except for the construction, more

specifically creation of the memory file. In this environment, the memory file must

have a unique name.

Instead of the previously mentioned memfd_create system call, that is not

recognized under Posix, shm_open is to be used instead. Otherwise, its usage

is very similar as it is given a name and flags. A memory file descriptor is returned

by the system call similarly to memfd_create or alternatively a value indicating an

error should an issue occur, such as the name not being unique.

As a general suggestion for successfully reserving available names, it is best to

have a prefix and a buffer indicator, since it is possible that there are multiple

instances of the same type of buffer. The name string must be null terminated.

Similarly, to Linux, the memory file size must be defined with ftruncate. An

example of reserving a memory file can be seen from Figure 10 below.

23

Figure 10: Posix Construction.

The steps to map the memory file and deconstruct the buffer can be seen under

the chapter where Linux lifecycle was discussed as it applies to Posix as well,

however, it should be noted that shm_unlink should be used on the name pointer

after mapping the memory file.

24

3.1.3 Windows Construction

In Windows, the general idea of the buffer construction remains the same,

however, there are possible situations that require additional work. Additionally,

it should be noted that the code examples within this chapter use page size,

however, on Windows this keyword has been aliased to be allocation

granularity instead of the usual system page size, to function properly.

As discussed earlier, the working of the buffer is based on a shared memory file

that has its content mapped into two consecutive memory areas. The memory file

creation on windows is performed with CreateFileMapping, its parameters can

be referenced from its documentation.

To find a suitable area of memory, three buffer pages worth of memory must be

reserved. Next the excess buffer page must be identified, according to the rules

of a zero-bit or one-bit implementation, refer to the earlier Linux chapter for more

in depth details.

The next steps differ greatly from the previous implementations. In Posix based

systems, it is possible to directly map memory, however, on Windows the memory

must be unreserved before mapping. This is why all the previously reserved

memory must be unreserved after identifying the two out of three buffer pages

that must be mapped. Details on this from Figure 11 below of a 0-bit

implementation, where the buffer page is identical to page size.

25

Figure 11: Windows Construction.

Reserving, un-reserving and mapping memory must be done in a loop since after

un-reserving, a race condition may occur. This means that either one of the buffer

pages contains memory that came to use after un-reserving the found

consecutive memory area. Mapping can be done with MapViewOfFile, but since

26

the memory area to map must be chosen, MapViewOfFileEx, must be used

instead.

After un-reserving, should any of the mapping fail, a race condition can be

assumed to have occurred. If a race condition occurred when mapping the first,

usable, buffer page to the memory file, then the program must find another three

consecutive buffer pages of memory and retry mapping with the new memory.

If the first mapping was successful, but the second buffer page mapping was not,

then the first mapping must be unmapped with UnmapViewOfFile and a similar

re-attempt must occur as failing of the first map attempt. More details from Figure

12 below.

Figure 12: Windows Construction 2.

27

Once both mappings are successful, as usual, the memory file must be set to

automatically free itself once the mappings are removed by closing the memory

file with CloseHandle.

3.1.4 Usage

Regardless of the different methods of construction, the usage of the buffer

remains the same across all platforms. The usage was designed to remain

intuitive and closely match how an array would operate.

An example of intuitive design is accepting all types of data by means of compile-

time analysis. As discussed before, the size of a single element of the buffer plays

a key role in determining the maximum the buffer may hold, which makes

compile-time computation essential.

The usage also attempts to closely match how a standard array slice would

operate while hiding the circular addressing details behind the scenes. As the

maximum size of a circular buffer is fixed, the user of the buffer must ensure any

additional data does not exceed the buffer limit. An example of the standard

usage of a RCSB, or Reduced Circular Slice Buffer, can be seen in the below

example Figure 13.

28

Figure 13: General Usage Example.

How the RCSB operates internally in its usage is very much like how an ordinary

slice would operate. As a reminder, a slice is simply a pointer and length to data

and similarly so is the reduced circular slice buffer.

Slices can view portions or whole pieces of data. If a slice had no information

regarding the total size of the underlying data that it is viewing a portion of (or if

the underlying data was immutable), concatenating a string would not possible.

Instead, the portion viewed by the slice would need to be copied and combined

with the additional data to be concatenated.

Concatenating (in other words adding more data) into a slice where the

underlying memory size is unknown, would need a copy of the underlying data to

be made in order to avoid writing into unallocated memory. However, as the

maximum size of the circular slice buffer is known, the scope or view of the slice

buffer can be extended to see more of the underlying data.

To add more data, the length of the buffer slice must be increased by the size of

the new data and the newly increased memory area must be written to contain

the data.

29

Additional complexity comes from circular addressing, since the end of the buffer

slice cannot be extended forever even if the total data after concatenation is

below the buffer maximum hold capacity, since the buffer end may eventually be

pointing to memory not owned by the buffer.

To be able to continue reading and extending the buffer slice, there must be a

way to ensure the buffer never accesses memory not owned by it by moving the

view of the slice to memory owned by the buffer when needed.

To do this, it is possible to force the slice view start to always remain within the

first buffer page, hence referred to as the usable page as it is the only page which

may be pointed to by the slice pointer. Although the length of the slice may, should

and will encompass data within the second page.

It is possible to do a conditional to see if the buffer slice pointer has crossed to

the next page and after which move it if needed. However, a more efficient

method that the RCSB uses is binary operations on the pointer itself.

Due to the guarantees made during construction that the buffer page bit is always

known to be whichever the implementation decides, either 0 or 1, it is possible to

reset the buffer page bit of the buffer slice pointer regularly to ensure the pointer

is always pointing at the first page. This can be achieved with basic binary

operations.

In this way, a conditional is not required since the buffer does not need to be

aware of which page the buffer slice pointer is on, it only needs to reset the buffer

page bit when requested even if it already is on the first page. Resetting the buffer

pointer bit is inexpensive due to using binary operations.

During development of the RCSB, the study initially decided to reset the pointer

during each pop, in other words during the removal of elements from the start of

the buffer slice. However, it was identified that it was unnecessarily expensive

30

when small amounts of memory needed to be popped at a time and caused the

loss of any performance gains.

It became apparent that the pointer is best reset during concatenation, since it

was done less frequently and is an action necessary for enabling any popping, or

removal of data from the start of the buffer, since it is not possible to pop if there

is no data. This is the method the RCSB uses for infinite popping, a visual

example is available in the below Figure 14.

Figure 14: Pointer Reset.

In practice, concatenation in the RCSB is very simple. The buffer slice is set to

have its pointer reset and its length increased by the amount that it should be

extended with. The newly extended memory area must also be written to contain

the new data. Example of a 0-bit implementation in Figure 15 below.

31

Figure 15: Pointer Reset in Practice.

3.1.5 Destruction

Deconstruction, or in other words freeing memory back to the operating system,

is also made simple alike to usage since previously in buffer construction the

memory file handle was already pre-closed.

Only two memory maps remain with links to the pre-closed memory file. As

previously discussed, un-mapping the memory mapped to the memory file will

allow for the memory to be freed. Do note that depending on the language, the

buffer slice may also need to be manually freed.

To free the memory maps and therefore allow for the automatic freeing of the

memory file, it is required to give a pointer to indicate which memory page or

pages need to be freed, this of course is highly dependent on the operating

system.

In systems that require the start of the memory map for freeing the maps, it is

possible to reset the buffer slice pointer to the start of the first page with simple

binary operations, also called usable page, see Figure 16 below for a 0-bit

example of this.

Figure 16: Acquiring the Buffer Beginning Position.

32

On systems compatible with Posix, unmapping is as simple as calling munmap,

passing a pointer to the memory map start and the amount of memory mapped

including both buffer pages. Example of this from Figure 17 below.

Figure 17: Munmap.

On Windows, the maps can be separately unmapped with UnmapViewOfFile

passing the locations of both buffer pages separately. Example from Figure 18

below.

Figure 18: UnmapViewOfFile.

After this the buffer slice can be freed as well or simply returned to a program

managed memory pool. There should no longer be any references remaining to

the memory file, allowing for it to be automatically collected by the operating

system.

3.2 MCB – Memory Copy Buffer

The Memory Copy Buffer, or MCB shorthand, is designed as a comparable

implementation for evaluating a linear buffer which moves data to allow for

33

concatenation (see Allen, Zucknick & Evans 2006). This implementation

attempts to replicate the buffer management of a copying buffer as described

above in the Chapter called Buffer Management.

3.2.1 Lifecycle

Since a linear buffer does not require mapping, the size of a linear memory

buffer does not hold any constraints aside from being a positive integer and

could be built on top of a language built-in array reserved from a program

memory pool.

However, to ensure a version of a copying buffer that is comparable, its usable

memory size was ensured to be equal to the RCSB’s. Additionally, memory was

requested directly from the operating system, instead of using an internal

memory pool. Pointer to the acquired memory is then set as the buffer pointer,

example of doing this in both Windows and Posix systems in below Figures 19

and 20.

Figure 19: Requesting Memory Posix.

Figure 20: Requesting Memory Windows.

34

Deconstructing is as simple as passing the same pointer acquired initially to the

respective system call depending on the operating environment, as discussed in

previous sections. See Figure 21 below.

Figure 21: Freeing Memory.

3.2.2 Usage

When concatenation is called on the buffer, there is additional work required to

ensure the operation of a linear memory buffer. As memory has potentially been

popped, the existing memory must be moved to the beginning of the memory

allocated for the buffer. The buffer slice pointer must then also be moved to the

start of the page. Concatenated data must be written to the memory subsequent

to the buffer slice’s view and the buffer slice’s length increased by the amount of

data that needs to be concatenated. See Figure 22 below for example.

Figure 22: Memory Copying Buffer Usage.

35

As seen from the example, an additional move is now required in addition to

writing new data and updating the buffer pointer. It should be noted that

assertions are debug only and are not included in release builds.

The issue with this implementation of a Memory Copy Buffer is that since it uses

binary operations and there is no second buffer page, the buffer pointer will

cross to another page not owned by the buffer should all the buffer items be

popped after the buffer is fully filled. To solve this issue, the Memory Copy

Buffer must limit its maximum to be at least one less than what it is truly capable

of holding.

4 Comparison

Both the Reduced Circular Slice Buffer and the Memory Copy Buffer both have

their unique advantages and disadvantages, so to illustrate that, the study

developed an internal benchmark for comparing both the construction and usage

of both buffers.

In the benchmark lifecycle part, both buffers will be constructed and deallocated

100 000 times with the resulting time taken counted. In the usage part of the

benchmark, both buffers will be filled fully with example data and then half of the

filled data is popped, this as well is repeated the same number of times as in the

lifecycle benchmark.

In the usage benchmark, the example data itself that is filled into the buffers is

determined in a way that alternates between a less than sign ‘<’ and greater than

sign ‘>’ so that the first requested item to be filled will always be ‘a less than’ sign

and the next one a ‘greater than’ sign.

36

It was decided that both buffers should use the same buffer size of one usable

page, but with two items removed from the maximum that the buffer may be filled

with. This is due to the Memory Copy Buffer limiting its maximum to at least one

less than that of the usable page and because the benchmark requiring half of

the buffer content to be popped, creating the need for a non-odd sized buffer

maximum.

Buffer data was set to be characters sized one byte, meaning that in a buffer with

a 4096-byte usable page size, the buffers would be able to be filled with 4094

characters, since as mentioned earlier, it is one less than maximum and a non-

odd number.

4.1 Data collection

The data was collected on a 64-bit system with AMD A8-6410 and 4GB DDR3L

ram on Windows 2004 & MX-18.3. The D-language compiler was instructed to

run in release with -nobounds optimization. The windows implementation was run

on the LDC compiler while for Posix and Linux the DMD compiler was used.

4.2 Results

The first benchmark handles the construction and deconstruction of the buffers.

Times are taken in microseconds. See Figure 23 below.

37

Figure 23: Benchmark Lifecycle in Microseconds.

In the results, it is clear that the MCB is much lighter to construct than the RCSB.

On Windows, the difference was almost five times as much. While the Windows

results cannot be compared with the other lifecycle benchmarks, they also show

similar results. On Linux the difference was over 8 times while on Posix it was

well over 12 times.

Both the Linux and Posix benchmark were run on the same operating system and

compiler, but by using only Posix compatible system calls, the construction

performance lessened by almost a third from 36,3 to 24,4 microseconds.

The usage benchmark consists of writing and removing items from the buffers.

See Figure 24 below.

7
5
,3

 μ
s

2
4
,4

 μ
s 3

6
,3

 μ
s

1
5
,7

 μ
s

2
,9

 μ
s

2
,9

 μ
s

W IN D OW S L I N U X P O S I X

LIFE CYCLE

RCSB Lifecycle MCB Lifecycle

38

Figure 24: Benchmark Usage in Microseconds.

While construction of the RCSB is considerably slower, it makes up for it with

performance of its usage. On Windows the difference in usage performance was

9.5% while on others it was a little over 2%.

Since the buffer usage is identical regardless of whether or not Posix compatible

system calls are used in construction within a Linux system, the performance

differences are likely statistical errors.

It is quite common for construction performance to be disregarded since a buffer

can be created when the program starts, and it can be used for the program’s

whole lifetime. In these cases, the performance benefit of reusing the buffer can

outweigh the additional time used for constructing the buffer.

9
,5

0
 %

15 μs

55 μs

95 μs

135 μs

175 μs

215 μs

W IN D OW S

2
,0

6
 %

15 μs

16 μs

17 μs

18 μs

19 μs

20 μs

P O S I X

USAGE

RCSB MCB

2
,0

7
 %

15 μs

16 μs

17 μs

18 μs

19 μs

20 μs

L I N U X

39

4.3 Reliability and Validity

As discussed in earlier sections, the Windows benchmarks should not be

compared with the other benchmarks since they use a different compiler and are

not built to be comparable. The Windows implementation requires a larger buffer

size which will also affect the comparability of buffers.

In addition, different operating systems have different performance

characteristics. While in the benchmarks the term “Posix” was used, it is indicated

to compare to the same operating system as used in the Linux benchmark, but

with Posix compatibility. Running Posix compatible code on another operating

system that supports Posix system calls will likely result in a different result.

There may also be better, more optimized ways of implementing the buffers

indicated on the paper, such as using compiler -specific optimizations. In these

cases, the results may differ considerably.

5 Conclusions

The study described pragmatic examples of how both the circular buffer and

memory copying buffer could be implemented, including code path differences

for the code on different systems.

In the study it was found that while a memory copying buffer has a more simply

managed life cycle, it fails to perform at the same level as a circular slice buffer

in its usage. Meaning that a properly reused circular buffer would outperform a

memory copying buffer.

40

It was also noted that the circular slice buffer benefits from optimizing its usage

instead of its life cycle. This is because life cycle code needs to be run only

once while usage code multiple times within the buffer`s lifetime.

The circular slice buffer is time-consuming to construct compared to copying

buffers. To further mitigate this, the construction of the buffer can be done in

preparation at the start of a long running program.

It would be interesting to see whether circularity is feasible, and to what extent,

within software that are currently employing slices and how can buffering be

further improved.

Appendix 2

41 (2)

References

Arpaci-Dusseau, Remzi & Arpaci-Dusseau, Andrea.2018. Operating Systems:
Three Easy Pieces. University of Wisconsin-Madison.

Ash, Mike. 2012. Ring Buffers and Mirrored Memory: Part I. [online] Available
at: https://mikeash.com/pyblog/friday-qa-2012-02-03-ring-buffers-and-mirrored-
memory-part-i.html. Accessed 2 Apr 2022.

Ash, Mike. 2012. Ring Buffers and Mirrored Memory: Part II. [online] Available
at: https://www.mikeash.com/pyblog/friday-qa-2012-02-17-ring-buffers-and-
mirrored-memory-part-ii.html. Accessed 2 Apr 2022.

Bose, Shreya. 2022. Performance Testing: A Detailed Guide. [online] Available
at: https://www.browserstack.com/guide/performance-testing. Accessed 30 Sept
2022.

Circular Buffers. [online] Available at: https://www.kernel.org/doc/html/v5.4/core-
api/circular- buffers.html. Accessed 25 Jan 2022.

FIFO Architecture, Functions, and Applications.1999. [online] Available at:
https://www.ti.com/lit/an/scaa042a/scaa042a.pdf. Accessed 24 Jan 2022.

Fog, Agner. 2021. Optimizing software in C++ An optimization guide for
Windows,Linux and Mac platforms. [online] Available at:
https://www.agner.org/optimize/optimizing_cpp.pdf. Accessed 24 Jan 2022.

Gregory E. Allen, Paul E. Zucknick, and Brian L. Evans. 2006. Zero-copy
Queues for Native Signal Processing Using the Virtual Memory System.
/online/ Available at:
https://users.ece.utexas.edu/~bevans/papers/2006/zeroCopyQueues/ZeroCopy
QueuesAsilConf2006Paper.pdf. Accessed 4 March 2021.

Han, Mengijiao; Wald, Ingo; Usher, Will; Morrical, Nate; Knoll, Aaron; Pascucci,
Valerio & Johnson, Chris R. 2020. A Virtual Frame Buffer Abstraction for Pa
rallel Rendering of Large Tiled Display Walls. IEEE Visualization Conference.

Horvàth, Imre. 2007. Comparison of three methodological approaches of design
research. [online] Available at: https://www.designsociety.org/download-
publication/25512/comparison_of_three_methodological_approaches_of_desig
n.Accessed 2 Sept 2022.

linux/include/linux/circ_buf.h. [online] Available at:
https://github.com/torvalds/linux/blob/2f47a9a4dfa3674fad19a49b40c5103a9a8
e1589/include/linux/circ_buf.h. Updated 8 May 2018. Accessed 24 Jan 2022.

Appendix 2

42 (2)

Paavola, Antoni. 2022. Reduced Circular Slice Buffer. Laurea BsC. [online]
Available at: https://urn.fi/URN:NBN:fi:amk-202205057475. Accessed 20 Aug
2022.

Pirkle, Will. 2013. Designing Audio Effect Plug-Ins in C++ With Digital Audio
Signal Processing Theory. New York and London: Focal Press.

Schill, Mischael; Nanz, Sebastian & Meyer, Bertrand. 2013. Handling
Parallelism in a Concurrency Model. In Lourenço J.M., Farchi E. (Eds.)
Multicore Software Engineering, Performance, and Tools. MUSEPAT 2013.
Lecture Notes in Computer Science, vol 8063. Springer, Berlin, Heidelberg.

Wilhelmsson, Jesper. 2005. Efficient Memory Management for Message-
Passing Concurrency Part I: Single-threaded execution. Uppsala: Uppsala
University.

