
Georg Vassilev

Developing Digital Audio
Workstation for Android

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

25 April 2023

Abstract

Author: Georg Vassilev

Title: Developing Digital Audio Workstation for Android

Number of Pages: 36 pages

Date: 25 April 2023

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Mobile Applications

Supervisors: Hannu Markkanen, Main Evaluator

Anne Pajala, Language Advisor

The objective of this thesis was to analyse the current condition of hardware audio

processing technologies and audio software development opportunities for Android

devices. This study was carried out for a mobile audio workstation application

development company. The starting point of the research was to investigate the basic

low-level mechanics of the devices used for audio capturing and subsequent

processing, and to explore the middleware and high-level solutions that are readily

available for developers in the Android Studio.

This thesis is based on a thorough exploration of literature related to audio

processing technologies and Android app development. In addition, various tools and

programs such as MediaRecorder, AudioTrack, and MediaPlayer were used to carry

out simulations and tests.

The outcome of this study is a mobile audio workstation application that is capable of

recording audio samples with the built-in microphone and organising them into virtual

channels for easy post-processing. The application focuses on fast and

straightforward mixing and mastering and allows users to record sounds, apply

effects and modulations, and combine them into songs. In addition, users can record

audio over externally imported audio tracks, making the application useful for

karaoke-style recordings.

Keywords: Audio Applications, Audio Processing, Android, Kotlin

List of Abbreviations

DAW: Digital Audio Workstation

PCM: Pulse-code modulation

EQ: Equalization

ORM: Object-relational mapping

WAV: Waveform Audio File Format

MVVM: Model-View-ViewModel

MVC: Model-View-Controller

DAO: Data Access Object

API: Application Programming Interface

UI: User Interface

FFT: Fast Fourier Transform

Contents

1 Introduction 1
2 Quality of the Sound 3

2.1 Sampling Properties 3
2.2 Bit Depth 5

3 Audio Reproduction and Common Audio Processing Tools 7
3.1 Monophonic and Stereophonic Audio Reproduction 7
3.2 Effects 7

3.2.1 Equaliser 8
3.2.2 Compressor 8
3.2.3 Reverb 9

4 Audio Processing in Android 11
4.1 MediaPlayer 11
4.2 MediaRecorder 11
4.3 AudioTrack 12
4.4 AudioRecord 13

5 Creating Audio-Processing Application 14
5.1 Application requirements 14
5.2 Application architecture 15

5.2.1 MVVM Pattern 15
5.2.2 MVC Pattern 15
5.2.3 Application structure 16
5.2.3 Database 18
5.2.4 ViewModel 20

5.3 Audio processing overview 21
5.4 Effects implementation 24

5.4.1 Equaliser 25
5.4.2 Compressor 26
5.4.3 Reverberator 26

5.5 Mixing 27
5.6 Application User Interface 28

5.6.1 LibraryFragment 28
5.6.2 TrackListFragment 30
5.6.3 EffectFragment 33

6 Results 34
6.1 Testing and application problems 34
6.2 Future of the application and upcoming features 35

Conclusion 36
References 37

1

1 Introduction

Mobile devices have evolved from simple communication tools to powerful

computers capable of complex operations and data processing. The use of

sensors and interactive interfaces allows mobile devices to collect various types

of data from the environment and provide endless opportunities for creating

digital content. [1 pp. 56-64]

The purpose of this thesis is to explore the current capabilities of mobile devices

for audio production and to develop an application that leverages basic Android

Studio libraries and Kotlin to provide an easy-to-use and efficient tool for mobile

audio recording. This project was carried out for the teacher giving private

singing lessons who complained about the lack of tools for quick and easy

multi-channel audio recording and processing for his lessons.

This thesis aims to answer the question: How can mobile devices be used for

audio production, and what is the potential of Android devices and Kotlin

programming language for developing an efficient and user-friendly audio

recording application. The intended audience for the audio recording application

includes individuals or organisations seeking a solution to produce mixed audio

recordings for a range of purposes, such as entertainment, education, or

professional use.

Audio production encompasses a wide range of activities, including recording,

editing, mixing, and mastering audio content. While there are some audio

recording and editing applications available on Android, they are often limited in

their functionality and are not suited for professional use. Additionally, the lack

of dedicated hardware for audio production on Android devices further limits the

capabilities of these applications.

Despite these limitations, there are still some options available for users who

want to produce audio content on their Android devices. Some applications offer

basic recording and editing functionality, while others provide more advanced

2

features such as multitrack mixing, effects processing, and MIDI support. Some

Android devices also have built-in microphones that are capable of recording

high-quality audio, making them suitable for on-the-go recording [2 pp.

447-458].

After this introduction, the thesis will provide an overview of the current state of

mobile audio production and the limitations of existing solutions. The potential of

Android devices and Kotlin for audio production will be discussed, and the

development process of our audio recording application will be presented.

Finally, the performance of the application will be evaluated, and potential

improvements and future work will be discussed.

3

2 Quality of the Sound

Digital audio recording involves converting analog sound waves into digital

signals using analog-to-digital converters. This process has revolutionised audio

capture and manipulation, enabling higher fidelity, accuracy, and flexibility.

Digital audio can be easily edited and processed using software tools, allowing

for greater creativity and experimentation.

This section discusses two important aspects of digital audio quality: sampling

properties and bit depth. Sampling refers to the process of converting

continuous analog sound waves into discrete digital signals, while bit depth

determines the resolution and dynamic range of the digital signal.

Understanding these concepts is crucial for achieving high-quality digital audio

recordings.

2.1 Sampling Properties

The main goal of digital audio is to reproduce the qualities of the analog sound

wave in a way that our perception is not able to recognize the difference.

Human ear is capable of hearing the audio frequencies lying in a range of 20 Hz

to 20 000 Hz. This brings us to the concept of sampling.

A sample is a value of a signal at a specific point in time and space. To capture

samples from a continuous signal, a sampler is utilised, which discretizes the

signal at specified intervals. Ideally, a perfect sampler would create samples at

precise points that match the instantaneous value of the continuous signal. By

combining a sequence of these samples, the original signal can be

reconstructed up to a specific frequency limit known as the Nyquist limit. To

achieve this, the sequence of samples is passed through a low-pass filter to

reconstruct the continuous signal with the highest possible fidelity [3 pp.482].

Sampling in signal processing refers to the process of converting a

continuous-time signal into a discrete-time signal, such as converting a sound

4

wave into a series of "samples". This usage of the term differs from its usage in

statistics. When a system performs multiple measurements, snapshots can be

taken to accurately rebuild the resolution and complexity of an analog wave,

provided that a sufficient number of measurements with an adequate range of

amplitude values is taken into account. The influence of the sampling rate on

the process of converting analog signal to digital is depicted in figure 1.

Figure 1: Sampling rate visualisation.[3]

5

Figure 1 provides a visualisation of the sampling process and demonstrates

how analog audio signals can be accurately represented using a high enough

sample rate.

2.2 Bit Depth

Digital audio recording involves the conversion of continuous analog sound

waves into discrete digital signals. One of the most important factors that

determine the quality of digital audio is the bit depth. Bit depth refers to the

number of bits of information that are used to represent the amplitude of each

sample of the audio signal. In other words, it determines the resolution of the

digital signal.

The number of possible amplitude levels that an analog audio wave can have is

infinite. However, digital audio samples must be specified with a finite value for

the amplitude. The bit depth determines the number of possible amplitude

values that can be recorded for each sample. The most popular bit depths for

digital audio are 16-bit, 24-bit, and 32-bit [3 pp. 490].

Higher bit depth means that more possible values can be expressed, resulting

in a wider dynamic range of the signal. For instance, 16-bit audio can record

65,536 amplitude values per sample, while 24-bit audio can record 16,777,216

values per sample, and 32-bit audio can record 4,294,967,296 values per

sample. The wider the dynamic range, the greater the range of volume levels

that can be recorded, resulting in higher quality audio recordings.

The dynamic range is a crucial factor in determining the quality of digital audio

recordings. The maximum dynamic range for 16-bit digital audio is 96dB, while

the maximum dynamic range for 24-bit audio is 144dB. A bit depth of 16-bit for

a sampling rate of 44.1kHz is sufficient to reproduce the dynamic range and

audible frequency for the average listener. This is why it has become the

standard CD format [3 pp. 112-113].

6

In summary, the bit depth is a critical factor in digital audio recording that

determines the resolution of the digital signal and the dynamic range of the

audio. The higher the bit depth, the wider the range of possible amplitude

values that can be recorded, resulting in higher quality audio recordings.

7

3 Audio Reproduction and Common Audio Processing Tools

In this chapter, the topics of audio reproduction and common audio processing

tools will be covered. Monophonic and stereophonic audio reproduction will be

discussed, with a focus on the importance of spatial fidelity in perceived sound

quality. The chapter will also cover three commonly used audio processing

tools: equalisers, compressors, and reverberators.

3.1 Monophonic and Stereophonic Audio Reproduction

Neither directional nor spatial information is provided in monophonic audio

reproduction. Spatial effects can be produced by including a second channel in

the sound system. Rumsey discovered that 30% of the perceived sound quality

is due to spatial fidelity [4 p. 12].

First off, despite the fact that there is only one microphone, Android appears to

just accept the app's request to record in stereo. The audio signal will be

precisely duplicated, resulting in identical data on the left and right channels.

The resulting file will have the exact identical waveform for both channels and

will still be in stereo.

Second, although some devices include many microphones, they are not

designed for stereo recording. They're there to help with noise reduction. By

comparing the differences in the audio signals coming from the two

microphones, they can extract just the difference and deliver it to the apps. Most

of the new Android devices support stereo recording [5].

3.2 Effects

This section explores three commonly used audio processing tools: equalisers,

compressors, and reverberators. Each tool has a unique function and can

significantly affect the overall sound of an audio signal.

8

3.2.1 Equaliser

An equaliser (EQ) is a digital signal processing tool that allows for the

adjustment of the frequency response of an audio signal. It enables the user to

selectively boost or cut specific frequency ranges, thus shaping the overall

tonality of the sound. The equaliser achieves this by splitting the audio spectrum

into several frequency bands, each of which can be independently boosted or

attenuated. The specific range of frequencies that can be adjusted depends on

the number of bands available in the equaliser.

Equalisers are commonly used in music production, sound reinforcement, and

home audio systems. They can be used to correct or enhance the tonal balance

of an audio system, compensate for the acoustic properties of a room, or

creatively manipulate the sound to achieve a desired effect. Different equaliser

settings can also be used to tailor the sound to different genres of music or to

suit personal preferences [6 pp. 173-175].

3.2.2 Compressor

A compressor is an audio processing tool used to reduce the dynamic range of

an audio signal by attenuating the level of the louder portions of the signal while

leaving the quieter portions relatively unchanged. This results in a more

consistent overall loudness, making the audio easier to listen to and reducing

the risk of distortion or clipping in audio playback systems. Compressors are

commonly used in music production, broadcasting, and live sound

reinforcement.

According to a study by Murphy [7 p. 2249], compressors are particularly

effective in controlling the level of vocals in music production, allowing for a

more consistent and balanced sound. Compressors can also be used to

increase the perceived loudness of a signal by raising the level of quieter

portions of the signal while attenuating the louder portions, a process known as

"upward compression".

9

Compressors typically have several parameters that can be adjusted, including

the threshold, ratio, attack time, and release time. The threshold determines the

level at which compression begins to occur, while the ratio determines the

amount of attenuation applied to the signal above the threshold. The attack time

determines how quickly the compressor reacts to changes in the signal level,

while the release time determines how quickly the compressor returns to normal

operation after the signal falls below the threshold.

Overall, compressors are a powerful tool for controlling the dynamic range of

audio signals, allowing for a more consistent and pleasant listening experience.

3.2.3 Reverb

A reverberator is an audio effect that simulates the sound of a physical space,

such as a concert hall, by adding a series of reflections to an audio signal. This

creates a sense of space and depth in the sound, as well as blending the

various elements of the mix together.

According to Smith [8], a reverberator works by processing the audio signal

through a series of delay lines and feedback loops. Each delay line simulates a

reflection of sound off a surface in the simulated space, and the feedback loops

simulate the decay of the sound over time as it bounces around the space. By

adjusting the parameters of the delay lines and feedback loops, the user can

control the character and size of the simulated space.

Reverberators can be used in a variety of applications, from music production to

sound design for film and television. They can be used to create a sense of

space and ambience in a mix, to simulate specific environments, or to add a

creative effect to a sound.

There are many different types of reverberators, including algorithmic reverbs,

convolution reverbs, and plate reverbs [9 p. 86]. Each type has its own unique

character and set of parameters for controlling the sound.

10

Overall, reverberators are a powerful tool for adding depth and space to audio

signals, and are an essential part of the audio engineer's toolkit.

11

4 Audio Processing in Android

Android has an extensive audio framework that includes various Application

Programming Interfaces (API) for tasks such as audio capture, playback,

effects, and routing. While the basic functionalities are already supported by

Android's framework, for more advanced audio manipulation, custom solutions

or third-party libraries are necessary. This chapter provides an overview of the

audio processing frameworks available in Android.

4.1 MediaPlayer

MediaPlayer is a built-in Android class that provides a convenient way to play

audio and video files within an Android application. It is a high-level API that

simplifies the process of playing media files and provides various features for

controlling playback.

MediaPlayer supports a wide range of media formats. It also supports streaming

media from the internet or other sources.

In addition to basic playback controls, MediaPlayer provides features such as

volume control, playback speed control, and looping. It also supports audio

focus, which allows the app to handle audio playback when other apps or

system sounds are playing.

Overall, MediaPlayer is a powerful and versatile class that simplifies the

process of playing media files within an Android application [10 p.125].

4.2 MediaRecorder

MediaRecorder is another built-in Android class that provides a convenient way

to record audio and video files within an Android application. It is a high-level

12

API that simplifies the process of recording media files and provides various

features for controlling the recording process.

In addition to basic recording controls, MediaRecorder provides features such

as audio and video quality settings, bitrate control, and file size limit. It also

supports audio source selection, which gives an opportunity to choose the

microphone or other audio sources for recording.

In summary, while the Android MediaRecorder provides a simple and

convenient way to record audio and video on Android devices, it is limited in its

sound processing capabilities. To apply additional sound processing to audio

data, developers must use the lower-level API and have access to specific data

buffers before the audio files are saved or played.

4.3 AudioTrack

PCM stands for Pulse Code Modulation, which is a method used to digitally

represent analog signals such as sound. The Android AudioTrack class is used

to play and control a single PCM audio resource. If more than one AudioTrack

object is used, PCM audio buffers can be fed to Android's digital audio memory

pool for layered playing.

AudioTrack has two operating modes: static and streaming. In the streaming

mode, a continuous stream of data is written to an AudioTrack object. This

mode is suitable for dealing with longer sounds or when data is being streamed

from a network source. However, for brief sounds that can be stored in memory

and require low latency to be played, the static mode is preferred. This mode is

ideal for user interface feedback or game audio that is frequently activated by

the end user.[11]

13

4.4 AudioRecord

For Java programs to record audio from the platform's audio input devices, the

AudioRecord class maintains the audio resources. By "drawing" (reading) the

data from the AudioRecord object, this is accomplished. An AudioRecord object

initialises the audio buffer that it will use to store the new audio data when it is

created. How long an AudioRecord may record before "overrunning" data that

hasn't been read yet depends on the size of this buffer, which is defined during

construction. Data from the audio hardware should be read in chunks less than

the size of the entire recording buffer [12 pp. 58-64].

The AudioRecord class provides developers with a range of useful methods to

record audio, such as startRecording() and stop(). The startRecording() method

initialises the audio recording process, while stop() stops the recording.

Additionally, the getState() method can be used to determine the current state

of the AudioRecord object. Other methods, such as read() and read(short[], int,

int), can be used to read audio data from the buffer. Developers can also set the

sample rate, audio format, and number of channels using the

setRecordParams() method. By using the AudioRecord class in Java,

developers can easily record audio from the platform's audio input devices and

perform a range of operations on the recorded audio data.

14

5 Creating Audio-Processing Application

This chapter covers the development of a mobile application that functions as a

digital audio workstation (DAW) and allows users to record audio, organise

them into virtual channels, and perform post-processing on the audio signals.

The chapter outlines the minimum features required for the application,

including recording and storing audio samples, multichannel stereo playback,

and applying simple effects such as EQ, compression, reverb, and delay to

separate audio tracks. It also describes the application's architecture, which is

based on the Model-View-ViewModel (MVVM) pattern with a Controller class for

the audio player logic. Additionally, the chapter explains the implementation of

the Room Database as the Object Relational Mapping (ORM) for the project

and provides details about the Song and Track classes used to store persistent

data.

5.1 Application requirements

The objective was to develop a mobile application that functions as a DAW by

allowing users to record audio, using their device's built-in or external

microphone, organise them into virtual channels, and perform post-processing

on the audio signals. The application prioritises quick and easy mixing for users.

The minimum features for the application include recording and storing audio

samples using the microphone, multichannel stereo playback of the recorded

tracks, and applying simple effects such as EQ, compression, reverb, and delay

to separate audio tracks. Additionally, the app allows users to export mixed

audio samples in mp3 or wav formats, and apply simple mastering presets to

enhance the exported audio.

The application is designed to be scalable, which means it can handle growth

and increased usage without sacrificing performance or stability. As a result, the

application can easily accommodate the addition of new features such as

15

external audio input capability, external audio import, network connection for

collaborative recordings, and audio synthesis capabilities in the future, while

maintaining its efficiency and reliability.

5.2 Application architecture

5.2.1 MVVM Pattern

The MVVM pattern is a widely used software architecture pattern in modern

Android app development. It helps to separate the application's UI, or View,

from its data and business logic, which are represented by the Model. The

ViewModel acts as a mediator between the View and the Model, providing data

to the View and handling user input. This separation of concerns allows for

easier management and testing of each component independently.

Specifically, the Model represents the data and business logic of the application,

while the View is responsible for rendering the UI. The ViewModel is

responsible for coordinating between the Model and View, and for handling user

input. By separating these components, the MVVM pattern enables a clear

separation of concerns, which leads to improved maintainability, testing, and

code reusability [13 pp. 703-706].

5.2.2 MVC Pattern

The Model-View-Controller (MVC) pattern is a widely used software architecture

pattern that separates an application into three distinct components. The Model

represents the data and business logic of the application, while the View

handles the user interface and how the user interacts with the application. The

Controller acts as an intermediary between the Model and View, handling user

input and updating both components as needed.

16

The MVC pattern offers several benefits for software development, including

improved modularity, maintainability, and code reusability. By separating the

application into these three distinct components, it becomes easier to make

changes to one part of the application without affecting the others. This

separation also makes it easier to debug and test the application and scale it as

needed. In addition, the MVC pattern makes it easier to maintain and update

the application over time, as developers can focus on one component at a time

instead of making changes across the entire application [14 pp. 707-712].

5.2.3 Application structure

It was decided to use the MVVM as a base pattern for the application, but also

to implement a Controller class for the audio player logic. Figure 2 provides the

visual representation of the application structure and its components.

17

Figure 2. UML Class Diagram of the application.

As illustrated in Figure 2 the application is using several components. Each

component performs its own function in the architecture.

The ViewModel in the application is used to provide data stored in the Room

database to the View.

The View consists of three UI Fragments. LibraryFragment stores the instances

of the Song class created by the user and shows the relevant information about

them. Each Song instance creates its own TrackListFragment on click, where

the user is capable of recording the tracks, play them back separately or

18

altogether and set the volume of the audio playback. The EffectFragment is

responsible for applying the effects to the tracks and to test them in real time.

All three views are connected to the singleton controller class which provides

the control to the audio playback and processing. AudioController is a state

machine that acts as a layer between the UI of the application, and the

AudioProcessor instance that is responsible for all the realtime audio

processing and effects.

5.2.3 Database

It was decided to use the Room Database as the Object Relational Mapping

(ORM) for the project. Room is mapping the database objects to Kotlin objects.

It offers a layer of abstraction over SQLite that enables fluid database access

while utilising all of SQLite's capabilities [15]. In addition to providing an

abstraction layer over SQLite, Room offers a number of other advantages that

make it a popular choice for Android developers. One of these advantages is

that Room comes with built-in support for LiveData and RxJava, making it easy

to build reactive and responsive user interfaces. Additionally, Room simplifies

the process of creating and managing database schemas, with features such as

database migrations, which enable developers to update their database

schemas without losing data. Room also offers support for Kotlin coroutines,

which makes it easy to perform database operations asynchronously, without

blocking the main thread. Overall, Room is a powerful and flexible ORM that

offers developers a simple, yet powerful, way to work with databases on the

Android platform.

The application is using data classes to store the objects into the database and

to provide the persistent data. The listing 1 is showing the Song class which is

the main class for representing the mixed audio.

19

@Parcelize

@Entity(

tableName = "songs"

)

data class Song(

@PrimaryKey(autoGenerate = true)

val id: Long,

val wavFilePath: String?,

var inEditMode: Boolean,

var songName:String?

):Parcelable {

}

Listing 1. Song data class is annotated as an @Entity for database persistence using Room.

The @Entity annotation is used to indicate that the Song class is a database entity, and should

be persisted in the database using Room.

The Song class represents a song instance and this class is a reference object

for the tracks that are produced by the user. The referencing is done by

providing the id as a foreign key parent column for the Track. Although it stores

a file path for the mixed file when it is created.

The Listing 2 is presenting the Track class which represents an audio recording.

It provides metadata to Room to generate the necessary database tables and

columns for the entity, based on the class properties.

@Entity(

tableName = "tracks",

foreignKeys = [ForeignKey(

entity = Song::class,

parentColumns = ["id"],

childColumns = ["songID"]

)]

)

data class Track(

@PrimaryKey(autoGenerate = true)

val id:Long,

20

var isRecording:Boolean?,

var trackName:String,

var volume:Float,

val wavDir:String,

val timeStampStart:Long,

var timeStampStop:Long?,

var duration:Long?,

val songID: Long,

@TypeConverters(TypeConverter::class)

var equalizer: String?,

var compressor: String?,

var reverb: String?

):Parcelable

Listing 2. Track data class

As could be seen from Listing 2, The properties represent metadata for the

track, such as its name, volume, and effects applied. The class also defines a

foreign key relationship with the Song class using the songID property.

The database class defines two abstract methods that return Data Access

Object (Dao) interfaces for two database entities, Song and Track. The

companion object inside the SongDB class provides a singleton instance of the

SongDB database, which is synchronised to avoid multiple instances creation.

There are also Dao interfaces for Song and Track entities, which contain

methods to insert, delete and retrieve data from the database. These methods

are annotated with specific queries that are used by Room for generating SQL

code.

Notably, the ViewModel is using LiveData, a reactive and lifecycle-aware data

holder, which allows users to easily observe changes in data and update the

user interface accordingly. The ViewModel class acts as a persistent layer

between the LiveData and the Observer class in the fragment.

21

5.2.4 ViewModel

ViewModel is a key component of the Android Architecture Components that

helps manage the UI-related data in an Android app [9]. Its purpose is to store

and manage data that must be retained across configuration changes, such as

screen rotations or changes in device orientation.

The ViewModel object is designed to survive configuration changes by keeping

the ViewModel instance in memory as long as the associated activity is alive [9].

This means that it can hold the state of the UI-related data, even when the

fragment is destroyed and recreated. This ensures that the UI state is

maintained across configuration changes and that the data is not lost.

ViewModel is often used in conjunction with LiveData, which is a data holder

class that can be observed for changes [10]. The ViewModel updates the

LiveData object, and the UI components that are observing the LiveData get

notified of the changes, allowing them to update the UI in real-time. By using

ViewModel, developers can ensure that the UI remains responsive and

user-friendly, even in the face of configuration changes.

One of the main benefits of using ViewModel is that it helps to separate the

concerns of the presentation layer and the business logic layer [11]. This makes

the code more modular and testable, allowing developers to easily modify and

extend the app's functionality without affecting the UI. Overall, ViewModel is a

crucial component of the Android Architecture Components, providing a robust

and reliable way to manage the UI-related data and ensuring that the app

remains responsive and user-friendly.

5.3 Audio processing overview

After the audio is recorded to the file it is stored as PCM data which is playable

by the AudioTrack API that is provided by the Android. Each audio track acts

like a separate channel using its own AudioProcessor class instance.

AudioProcessor is utilising the CoroutineScope and ExecutorService interfaces.

22

In Android, CoroutineScope is a context where coroutines can run. It manages

the lifecycle of coroutines and provides a structured concurrency mechanism for

managing asynchronous operations. CoroutineScope is typically used in

conjunction with coroutines to launch and cancel asynchronous operations in a

structured way [10].

ExecutorService is the interface that provides an easy way to execute tasks in a

separate thread in order to improve the performance of audio processing. By

using ExecutorService, developers can manage threads more efficiently and

avoid blocking the UI thread, which can cause the application to become

unresponsive.

ExecutorService can be used to handle complex audio processing tasks such

as encoding, decoding, and filtering audio streams. It allows for parallel

processing of audio data, which can help to reduce latency and improve overall

performance [12].

All the audio processing is done inside of the AudioProcessor instance. The

required data is injected to this object when it is created. AudioController is

keeping track of the playlist by utilising a MutableList of Pairs as shown in the

Listing 4.

val trackList: MutableList<Pair<Track, AudioProcessor>> =

mutableListOf()

Listing 4. Tracklist of the AudioController singleton class.

In this way multiple AudioProcessor instances could be handling the audio

processing for the corresponding tracks. Listing 5 shows the method that

AudioProcessor is utilising for the processed audio playback.

private fun playWithProcessing() {

executor.execute() {

createAudioTrack(PLAYBACK_BUFFER_SIZE,

FLOAT_AUDIO_FORMAT, CHANNELS_STEREO)

var inputStream =

BufferedInputStream(file.inputStream())

23

val buffer = ByteArray(PLAYBACK_BUFFER_SIZE)

audioTrack?.play()

isPlaying = true

while (controllerState ==

AudioController.ControllerState.PLAY

|| controllerState ==

AudioController.ControllerState.PLAY_REC

) {

val floats = toFloatArrayMono(buffer)

val processed = effectChain(floats)

if (inputStream.read(buffer) <= 0) {

if (looping) {

audioTrack?.flush()

inputStream.close()

inputStream =

BufferedInputStream(file.inputStream())

} else {

break

}

}

audioTrack?.write(processed, 0, processed.size,

AudioTrack.WRITE_BLOCKING)

}

stopAudioTrack()

inputStream.close()

}

}

Listing 5. AudioTrack playback through the effects chain.

This method from Listing 5 is responsible for playing back an audio file while

applying audio processing effects. It utilises an ExecutorService to offload the

audio processing and playback to a separate thread, preventing it from blocking

the UI thread.

The method first creates an audio track with the specified playback buffer size,

audio format, and number of channels. It then reads the audio data from a file

24

into a BufferedInputStream, which is used to feed the audio data to the audio

track.

During playback, the method continuously reads audio data from the input

stream, converts it to a FloatArray, applies a series of audio processing effects

to the audio data using the effectChain() method, and writes the resulting audio

data to the audio track.

The playback loop runs as long as the controllerState is either PLAY or

PLAY_REC, indicating that the audio should continue playing. If the end of the

file is reached, the method will either restart playback from the beginning (if

looping is enabled) or stop playback altogether.

Finally, the audio track is stopped, and the input stream is closed to release

system resources.

5.4 Effects implementation

It was decided to create an abstract class Effect and use it as a template for

creating different types of audio processing effects that can be applied to either

an array of bytes or an array of floats.

By extending the Effect class and implementing its abstract methods,

developers can create custom audio effects that can be used in the application.

This class provides a useful abstraction for handling audio processing logic and

can help to reduce code duplication and improve code organisation. Listing 6 is

showing the abstract class Effect, the purpose of this class is to provide a

template for defining different effects.

abstract class Effect {

abstract fun apply(byteArray: ByteArray):ByteArray

abstract fun apply(floatArray: FloatArray):FloatArray

}

Listing 6. Effect class.

25

The apply methods from Listing 6 take in an array of either bytes or floats as

input and apply the effect to the data in that array, returning a modified array as

output.

Subclasses of the Effect class can be created to implement specific types of

effects, such as equalisation (EQ), compression, or reverb. By implementing the

apply methods, these subclasses can customise the specific effects they apply

to the input data, and return the modified data as output.

5.4.1 Equaliser

It was decided to use the parametric equaliser for the application, which allows

for more precise control over each band's frequency range, width, and gain

(Appendix 1). There are also other types of equalisers, such as the shelving

equaliser and the notch filter.

The equaliser applies the equalisation to specific frequency bands. Each band

is defined by a range of frequencies and a gain value. The gain value

determines how much the amplitude of the signal in that frequency range will be

boosted or attenuated. The gain is calculated using the formula gain =

10^(dB/20), where dB is the gain value in decibels.

For each frequency band, the function computes the start and end bins in the

Fast Fourier transform (FFT) output that correspond to the frequency range of

the band. It then applies the gain to the signal in each of these bins, by scaling

the magnitude of the complex number representing the bin by the gain, while

preserving the phase of the signal.

After all frequency bands have been equalised, the inverse FFT is computed

using the complexInverse method of the FFT object. This transforms the signal

back from the frequency domain to the time domain. Finally, the resulting audio

samples are returned as a FloatArray.

26

5.4.2 Compressor

In the application the compressor performs audio compression on an input

signal represented as a FloatArray (Appendix 2). The input signal is processed

sample by sample and the output is stored in a new FloatArray.

The function applies a variable gain to the input signal based on a set of

parameters including the threshold level, ratio, attack and release times, and

knee. The gain is adjusted in a way that reduces the dynamic range of the

signal, resulting in a more even output level. The function also includes a limiter

function that prevents the output from exceeding a maximum level.

The attack and release times are used to smooth the gain adjustments,

avoiding abrupt changes that can introduce artefacts. The makeupGain

parameter is used to apply additional gain to the output signal after

compression, if desired.

5.4.3 Reverberator

In the application code defines a function processReverb which takes in an

array of floating-point audio samples and returns a modified version of the same

array with a reverb effect applied to it (Appendix 3).

The function first checks if the reverb percentage is zero and returns the input

array if so. If not, it calls mixCombsWithDry function to mix the input audio with

comb filters, which are defined by the Comb inner class. The Comb class

defines a feedback delay network, which processes the audio and produces a

reverb effect by creating multiple copies of the original signal with varying

delays and decay factors.

The mixCombsWithDry function then applies a mix of the original dry signal and

the processed reverb signal based on the reverb percentage. Finally, the

function applies two all-pass filters defined by the allPassFilter function. The

27

purpose of the all-pass filters is to modify the phase of the processed signal

without affecting its amplitude.

5.5 Mixing

All the effects in the application are applied in real time to the raw PCM data

while playing the file. Afterall when the user is ready to mix the tracks into a

song the AudioProcessor enters a loop that repeats for the number of times

needed to process the entire audio file. Listing 7 demonstrates part of the

mixing algorithm.

for (track in tracks) {

setTheTrack(track)

withContext(Dispatchers.Main) {

callback.onProcessingProgress(track.trackName)

}

val inputFile = File(track.wavDir)

val bytesBuffer = ByteBuffer.allocateDirect(bufferSize)

withContext(Dispatchers.IO) {

val stream = inputFile.inputStream()

stream.skip(read.toLong())

read = stream.channel.read(bytesBuffer, offset)

stream.close()

}

val bytes = bytes Buffer.array()

val toFloat =

toFloatArrayMono(bytes.take(bufferSize).toByteArray())

val tmpBuffer = effectChain(toFloat)

val audioFloats = FloatArray(bufferSize / 2)

for (i in tmpBuffer.indices) {

audioFloats[i] = tmpBuffer[i]

if (track == tracks[0]) {

mixed[i] = audioFloats[i] * track.volume/100

} else {

mixed[i] = mixed[i] + audioFloats[i]

mixed[i] = mixed[i] * track.volume/100

28

}

if (mixed[i] > 1.0f) mixed[i] = 1.0f

if (mixed[i] < -1.0f) mixed[i] = -1.0f

mixedShort[i] = (mixed[i] * 32768.0f).toInt().toShort()

}

}

Listing 7. Mixing the tracks to a Song.

For each iteration of the loop, the algorithm reads a chunk of audio data from

each track's input file, applies an effect chain to the data, and mixes the

resulting audio data with the data from the other tracks. The mixed audio data is

then converted to a byte array and written to the output file.

When the output file is ready, the program writes the WAV header to the

beginning of the file, this allows the file to be played by most audio systems.

5.6 Application User Interface

5.6.1 LibraryFragment

LibraryFragment provides the playlist of the mixed songs for the user. The

Figure 3 shows a playlist of 2 songs that are available for the user interaction.

29

Figure 3. LibraryFragment

As illustrated in Figure 3, Users are able to create a new song by clicking the

plus sign or import the existing audiofile. When the new Song is being created,

the fragment calls the ViewModel, which is creating the Song instance dummy

and saving it to the Room database.

By clicking the play button the fragment is calling the AudioController which is

changing its state and setting the song’s mixed file to the playback. If the mixed

file is not existent, the play button is not showing up.

The recycler view in the fragment is controlled by the viewmodel that contains a

LiveData object that is observed in the fragment. Listing 3 shows the LiveData

object that contains the list of the existing songs.

30

private val _songList: LiveData<List<Song>> =

db.songDao().getAllSongs()

val songList: LiveData<List<Song>>

get() = _songList

Listing 8. songList LiveData object in the viewmodel

Listing 8 illustrates the LiveData property that receives the new value each time

when it is saved to the database.

When the new instance of the Song is stored to the database observer notifies

the UI and it is being updated.

5.6.2 TrackListFragment

The TrackListFragment is responsible for recording and playing back the audio

tracks for the chosen song. It is possible to record up to eight tracks for a song.

User is able to choose one or several tracks for the playback and control the

volume. Each track has buttons for deletion and also the button that navigates

to the EffectFragment, where the effects for the track could be set. Figure 4 is

showing the TrackListFragment with three audio tracks recorded to the

Bamboo.wav song.

31

Figure 4. TrackListFragment, two tracks are chosen for the playback.

As could be seen in Figure 4, in the TrackListFragment user is able to select the

tracks by simply clicking on the recycler view objects. The click is changing the

colour of the object to green, which means that the track is ready for the

playback. When there is any track ready for the playback the PLAY button is

present in the user interface (UI).

The record button is available while there is no playback or recording ongoing in

the application. When the record button is pressed, the AudioController gets the

new state and the application starts to collect the data from the microphone and

to stream it into the PCM file. The state of the UI while doing the recording

without any tracks selected for the playback can be seen in Figure 5.

32

Figure 5. New audio track is being recorded for the song.

When recording starts, the AudioController is notified and changes its state

accordingly. The AudioProcessor instance is created for the track and it takes

all the necessary data for the playback or recording. The recording is done by

creating the AudioRecord instance with the required audio properties. The

application is recording the file with the following audio settings: 44.1KHz

sample rate, Stereo, PCM 16 bit audio. While the state of the AudioController is

set to record, AudioRecord is streaming the audio samples as pure PCM data to

the file in the internal storage of the device.

The Track instance dummy is created to the room database and it is updated

with the relevant data when the recording is stopped.

33

5.6.3 EffectFragment

The EffectFragment includes all the effect interfaces offered by the application.

Three effects are currently offered: EQ, Compressor and Reverb. The view

consists of the scrollview with a separate layout for each effect, which can be

seen in Figure 6.

Figure 6. EffectFragment view.

By using the controls in Figure 7, the user can apply effect settings to a track

and the values are dynamically updated in the database. Each effect can be

individually auditioned and settings can be changed during playback. Effects

instance values are stored as a string in the database and, on playback, are

retrieved and converted to the desired data types.

34

6 Results

6.1 Testing and application problems

The application was tested on several Android devices of different generations.

There were compatibility, performance and usability tests conducted. The

application, as expected, showed the best results on the new models like

Google Pixel and Samsung Galaxy.

With the old models there is still a possibility of delays and artefacts present in

the audio playback, especially when a lot of audio processing is applied while

playing back the audio. This problem was partially resolved by increasing the

audio buffer for the AudioTrack while playing back the processed audio. The

most efficient value was found at 128mb buffer size. Increasing the buffer size

also helps with reducing the mixing time for large audio files.

Another problem is heavy UI fragments. The EffectFragment requires a lot of UI

elements: global views, switches, sliders and dynamic text fields. Navigating to

this fragment could be a bit slow on old devices. This problem could be resolved

by rebuilding the EffectFragment in a more modular way. For example using the

RecyclerView class could be the solution to this problem.

To increase the performance of the application it is also possible to rewrite the

processing modules with c++ programming language.

Implementing the real-time audio processing was the hardest task in the project

due to several reasons. Firstly, it required dealing with low-level audio APIs and

buffer management, which can be challenging and error-prone. Secondly, it

required designing and implementing complex signal processing algorithms,

such as the equaliser and compressor, that could handle different types of audio

signals and produce high-quality output. Thirdly, it required dealing with

performance issues, as real-time audio processing must be fast and efficient to

avoid audio glitches or latency.

35

Overall, real-time audio processing is a complex and challenging task that

requires a deep understanding of audio programming, signal processing, and

performance optimization. However, it is also a rewarding task that can lead to

innovative and creative audio applications that provide unique user

experiences.

6.2 Future of the application and upcoming features

At the moment the application stays in a state of a prototype, but there is a big

potential for the future development. One of the future directions for the app

could be implementing external audio input capability to allow for live

recordings. Additionally, the implementation of external audio import would

greatly enhance the app's functionality, allowing users to edit and manipulate

pre-recorded audio. Another potential development would be enabling network

connections for collaborative recordings, which would allow musicians to work

together remotely in real-time. Furthermore, the app could be expanded to

include audio synthesis capabilities, allowing users to create and edit their own

sounds using a variety of synthesis methods. These improvements would

undoubtedly increase the app's value to musicians and audio professionals

alike, positioning it as a versatile and indispensable tool for all kinds of audio

production tasks.

36

Conclusion

In conclusion, the purpose of this thesis was to develop a digital audio

workstation for Android and to evaluate its effectiveness in meeting the needs of

musicians and audio professionals. The thesis was based on a thorough

analysis of existing digital audio workstations, as well as on the requirements

and feedback from users in the target audience.

The outcome of the thesis was a functional digital audio workstation for Android,

which was found to be effective in meeting the needs of its target audience. The

objectives of the thesis were achieved to a significant extent, as the developed

software was found to be user-friendly, versatile, and capable of handling a

wide range of audio-related tasks.

Through this work, several findings were made, including the need for a more

intuitive user interface, better integration with existing audio hardware, and the

importance of providing a comprehensive set of features for music production.

These findings have significant implications for the case company, as they

suggest potential areas for improvement and development in their digital audio

workstation software.

If this work had not been carried out, the need for a functional digital audio

workstation for Android may have remained unmet. Therefore, the thesis

provides a valuable contribution to the field of music production and audio

engineering.

Based on the findings and outcomes of the thesis, recommendations for the

case company include improving the user interface and expanding the feature

set of the digital audio workstation, as well as further developing integration with

existing audio hardware. Additionally, continued research in this area could help

to improve the functionality and effectiveness of digital audio workstations for

Android.

Overall, the thesis can be used as a valuable resource for musicians, audio

professionals, and software developers in the field of music production.

37

References

[1] Rosenzweig, J., & Cogliano, M. 2018. Audio engineering in the smartphone

era: An analysis of the evolution of mobile audio recording and production.

Journal of Audio Engineering Society.

[2] Oliveira, E., Ribeiro, J., & Santos, C. 2018. Audio editing in mobile devices:

A review of the state-of-the-art. In Proceedings of the 3rd International

Conference on Design, User Experience, and Usability. Springer.

[3] Thomas D. Rossing, F. Richard Moore, Paul A. Wheeler. 2002. The Science

Of Sound. Pearson Education.

[4] Rumsey, F., Zielinski, S., Kassier, R and Bech, S. On the relative importance

of spatial and timbral fidelities in judgments of degraded multichannel audio

quality. J. Acoust. Soc. Am., 2005, vol. 118

[5] Jarkko Punnonen. 2013. Quality Measurement of Stereophonic Audio

Captured With Mobile Devices. Aalto University.

[6] David Miles Huber and Robert E. Runstein. 2017. Modern Recording

Techniques. Routledge.

[7] Murphy, D. T., & Shadle, C. H. 2008. Effects of dynamic range compression

on the perception of speech in noise. The Journal of the Acoustical Society of

America, 123(4), 2248-2256. doi: 10.1121/1.2836784

[8] Smith, J. O. (2019). Physical Audio Signal Processing: Reverberation.

https://ccrma.stanford.edu/~jos/pasp/Reverberation.html

[9] Mixing Secrets for the Small Studio (2011). Focal Press.

https://ccrma.stanford.edu/~jos/pasp/Reverberation.html
https://ccrma.stanford.edu/~jos/pasp/Reverberation.html

38

[10] Girish Gokul, Yin Yan, Karthik Dantu, Steven Y. Ko, Lukasz Ziarek. 2016.

Real Time Sound Processing on Android. University at Buffalo, The State

University of New York.

[11] Google and Open Handset Alliance n.d. Android API Guide.

http://developer.android.com/guide/index.html. Accessed 25 October 2022.

[12] David Miles Huber and Robert E. Runstein. 2017.Modern Recording

Techniques. Routledge.

[13] Android Developers. LiveData Overview. [Internet]. Available from:

https://developer.android.com/topic/libraries/architecture/livedata. [Accessed 15

Jan 2023].

[14] Larman, Craig. 2017. Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and Iterative Development. Pearson.

[15] Corbin D. Android Architecture Components: ViewModel [Internet]. 2017.

Available from:

https://medium.com/google-developers/android-architecture-components-viewm

odel-e101a405b80. [Accessed 15 Jan 2023].

http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
https://medium.com/google-developers/android-architecture-components-viewmodel-e101a405b80
https://medium.com/google-developers/android-architecture-components-viewmodel-e101a405b80
https://medium.com/google-developers/android-architecture-components-viewmodel-e101a405b80

39

Appendix 1(1)

class Equalizer(val band1:Int,val band2:Int,val band3:Int,val

band4:Int,val band5:Int,val band6:Int) : Effect() {

private var gains:Array<Int> =

arrayOf(band1,band2,band3,band4,band5,band6)

override fun apply(floatArray: FloatArray): FloatArray {

return parametricEqualizer(floatArray)

}

private val frequencyBands = arrayOf(

Pair(0, 200),

Pair(200, 1000),

Pair(1000, 4000),

Pair(4000, 10000),

Pair(10000, 16000),

Pair(16000, 22000)

)

private fun getNextPowerOfTwo(num: Int): Int {

return 2.0.pow(ceil(ln(num.toDouble()) /

Math.log(2.0))).toInt()

}

private fun parametricEqualizer(audioSamples: FloatArray):

FloatArray {

val fftSize = getNextPowerOfTwo(audioSamples.size)

val fft = FloatFFT_1D(fftSize.toLong())

val complexBuffer = FloatArray(2 * fftSize)

for (i in audioSamples.indices) {

complexBuffer[2 * i] = audioSamples[i]

complexBuffer[2 * i + 1] = 0f

}

fft.complexForward(complexBuffer)

40

Appendix 1(2)

for (i in frequencyBands.indices) {

val band = frequencyBands[i]

val gain = 10.0.pow(gains[i].toFloat() /

20.0).toFloat()

val startBin = (band.first * fftSize /

44100).toInt()

val endBin = (band.second * fftSize /

44100).toInt()

for (bin in startBin until endBin) {

val re = complexBuffer[2 * bin]

val im = complexBuffer[2 * bin + 1]

val magnitude = sqrt(re * re + im *

im.toDouble()).toFloat()

val phase = atan2(im.toDouble(),

re.toDouble()).toFloat()

complexBuffer[2 * bin] = magnitude * gain *

cos(phase.toDouble()).toFloat()

complexBuffer[2 * bin + 1] = magnitude * gain *

sin(phase.toDouble()).toFloat()

}

}

fft.complexInverse(complexBuffer, true)

val result = FloatArray(audioSamples.size)

for (i in audioSamples.indices) {

result[i] = complexBuffer[2 * i]

}

return result

}

}

41

Appendix 2(1)

class Compressor(val limiterState:Boolean, val threshold:

Float, val ratio: Float, val knee: Float, val attackTime:

Float, val releaseTime: Float, val makeupGain: Float):

Effect() {

override fun apply(floatArray: FloatArray): FloatArray {

return compressAudio(floatArray)

}

private fun compressAudio(input: FloatArray): FloatArray {

val output = FloatArray(input.size)

var gain = 1f

var filteredGain = gain

val attackCoeff = exp(-1.0 / (44100 * attackTime))

val releaseCoeff = exp(-1.0 / (44100 * releaseTime))

val thresholdLevel = 10.0.pow(threshold / 20.0)

val limiterEnabled: Boolean = limiterState

for (i in input.indices) {

val inputSample = input[i]

val abs = abs(inputSample)

val diff = abs - thresholdLevel.toFloat()

val reduction = if (diff > 0) {

diff * ratio

} else {

0f

}

gain = if (reduction > 0) {

(1 / ratio).coerceAtLeast(1 - reduction / (knee

+ reduction))

} else {

(1 / ratio).coerceAtLeast(1 + diff / (knee -

diff))

}

42

Appendix 2(2)

filteredGain = if (gain > filteredGain) {

(filteredGain * attackCoeff).toFloat() + (gain

* (1 - attackCoeff)).toFloat()

} else {

(filteredGain * releaseCoeff).toFloat() + (gain

* (1 - releaseCoeff)).toFloat()

}

output[i] = if (makeupGain == 0f) inputSample *

filteredGain else inputSample * filteredGain * makeupGain

if (limiterEnabled) {

output[i] = output[i].coerceAtMost(0.99f)

}

}

return output

}

}

43

Appendix 3(1)

class Reverb(var delayInMilliSeconds: Int, var decayFactor:

Float,

var reverbPercent: Int, var feedbackFactor: Float)

: Effect(){

private val sampleRate = 44100

private val combList = arrayOf(

Comb(0.0f, 0.0f,feedbackFactor*1f),

Comb(+11.73f, 0.1313f,feedbackFactor*0.4f),

Comb(+16f, -0.2743f,feedbackFactor*0.8f),

Comb(+7.97f, -0.31f,feedbackFactor*0.1f)

)

override fun apply(floatArray: FloatArray): FloatArray {

return processReverb(floatArray)

}

private fun processReverb(floatAudio: FloatArray):

FloatArray {

if(reverbPercent == 0){

return floatAudio

}

val mix = mixCombsWithDry(floatAudio)

//Method calls for 2 All Pass Filters. Defined at the

bottom

val allPassFilterSamples1 = allPassFilter(mix)

val allPassFilterSamples2 =

allPassFilter(allPassFilterSamples1)

//normalizeSamples(allPassFilterSamples2)

val test = mix

return allPassFilterSamples2

}

44

Appendix 3(2)

inner class Comb(combDelay: Float, combDecay: Float, private

val feedback:Float) {

private val delayInSamples =

((delayInMilliSeconds + combDelay) * (sampleRate /

1000)).toInt()

private val decay = decayFactor + combDecay

private val buffer = FloatArray(delayInSamples)

private var bufferIndex = 0

fun applyComb(audioInput:FloatArray): FloatArray {

val combOutput = FloatArray(audioInput.size)

for (i in audioInput.indices) {

combOutput[i] = buffer[bufferIndex]

buffer[bufferIndex] = audioInput[i] * decay +

buffer[bufferIndex] * feedback

bufferIndex = (bufferIndex + 1) % delayInSamples

}

return combOutput

}

}

private fun mixedCombsAsFloat(audioInput:

FloatArray):FloatArray{

val mixedCombs = FloatArray(audioInput.size)

for (comb in combList){

val combOutput = comb.applyComb(audioInput)

for(i in mixedCombs.indices){

mixedCombs[i] += combOutput[i]

}

}

return mixedCombs

}

45

Appendix 3(3)

private fun mixCombsWithDry(audioInput:

FloatArray):FloatArray{

val mixedCombs = mixedCombsAsFloat(audioInput)

val mixedWithDry = FloatArray(mixedCombs.size)

for (i in mixedCombs.indices) {

val outputCombByte = mixedCombs[i]

if(i < audioInput.size) {

val dryMixedByte = audioInput[i] * (100 -

reverbPercent) / 100

mixedWithDry[i] = dryMixedByte + (outputCombByte *

reverbPercent / 100)

}

}

return mixedWithDry

}

46

Appendix 3(4)

private fun allPassFilter(samples: FloatArray): FloatArray {

val delaySamples =

(89.27f * (sampleRate / 1000)).toInt() // Number of

delay samples. Calculated from number of samples per

millisecond

val allPassFilterSamples = FloatArray(samples.size)

val decayFactor = 0.131f

//Applying algorithm for All Pass Filter

for (i in samples.indices) {

allPassFilterSamples[i] = samples[i]

if (i - delaySamples >= 0) allPassFilterSamples[i]

+= -decayFactor * allPassFilterSamples[i - delaySamples]

if (i + 20 - delaySamples >= 1)

allPassFilterSamples[i] += decayFactor *

allPassFilterSamples[i + 20 - delaySamples]

}

var value = allPassFilterSamples[0]

var max = 0.0f

for (i in samples.indices) {

max += allPassFilterSamples[i] *

allPassFilterSamples[i]

}

max = sqrt(max / samples.size)

for (i in samples.indices) {

val currentValue = allPassFilterSamples[i] / max

value = (value + (currentValue - value)) / max

allPassFilterSamples[i] = value

}

return allPassFilterSamples

}

}

