

Duc Anh Le

E-COMMERCIAL FULL STACK

WEB APPLICATION DEVELOPMENT

with React, Redux, NodeJS, and MongoDB

Technology and Communication
2023

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Duc Anh Le
Title E-Commercial Full Stack Web Application Development
Year 2023
Language English
Pages 78
Name of Supervisor Harri Lehtinen

E-commerce is a fast-expanding industry, and businesses rely increasingly on
their online presence to attract global customers. Businesses want full-stack web
applications that can support their operations throughout the whole e-
commerce lifecycle in order to meet the growing demand.

This thesis intends to create a web application that integrates front-end and
back-end technology to streamline e-commerce processes. Utilizing multiple
software frameworks and programming languages, the application creates a
powerful platform. This research gives insights into the difficulty of designing full-
stack e-commerce applications and suggests strategies for overcoming these
obstacles.

This thesis utilizes the technologies React, Redux, and SASS for the front-end,
and Node.js and Express for the back-end. The primary database system of the
program is MongoDB. TypeScript is the primary programming language, with
HTML/CSS support for web structure and design. The application allows
authentication with Google Passport as a main method of authentication.

Overall, the full-stack web application developed for this thesis provides e-
commerce enterprises with a means to better their online presence and increase
sales.

Keywords React, Redux, SASS, Node.js, Express.js, MongoDB,
 TypeScript, and Google Passport

CONTENTS

ABSTRACT

1 INTRODUCTION OF THE THESIS .. 8

1.1 Background ... 8

1.2 Objectives and Processes .. 8

1.3 Expectations .. 9

2 TYPESCRIPT ... 10

2.1 Introduction .. 10

2.2 Advantages of TypeScript ... 11

2.3 Disadvantages of TypeScript ... 12

2.3.1 Slow Development Time ... 12

2.3.2 Complex Initial Setup .. 12

2.3.3 Limited Browser Compatibility .. 13

2.4 Conclusion ... 13

3 THE MONGODB DATABASE MANAGEMENT SYSTEM 15

3.1 Overview ... 15

3.1.1 Definition ... 15

3.1.2 Advantages .. 15

3.2 Characteristics of MongoDB ... 16

3.2.1 Database Structure ... 16

3.2.2 Data Model .. 16

3.2.3 Query Language .. 17

3.3 Applications of MongoDB ... 17

3.3.1 Web Applications .. 17

3.3.2 Cloud Computing ... 18

3.3.3 Mobile Applications .. 18

3.3.4 Big Data Analytics .. 19

3.4 Implementation of MongoDB in this thesis .. 19

3.4.1 Data Models .. 19

3.4.2 Data in the MongoDB Database System 20

4 THE BACK-END SIDE .. 22

4.1 Introduction .. 22

4.1.1 Definition of NodeJS and ExpressJS .. 22

4.1.2 Benefits of Using NodeJS and ExpressJS 22

4.2 NodeJS ... 23

4.2.1 Overview of NodeJS .. 23

4.2.2 NodeJS in Web Development ... 24

4.3 ExpressJS ... 24

4.3.1 Overview of ExpressJS ... 24

4.3.2 ExpressJS in Web Development .. 25

4.4 Implementation of NodeJS and ExpressJS in this thesis 25

4.4.1 Understanding the CRUD Implementation of the Back-end 25

4.4.2 Product Data Type ... 26

4.4.3 User Data Type .. 26

4.4.4 Product Service Structure ... 27

4.4.5 User Service Structure ... 29

4.4.6 Product Controller Structure... 30

4.4.7 User Controller Structure .. 32

4.4.8 Authentication at Back-end Level ... 35

4.4.9 Product and User router structures .. 36

4.4.10 Login with Google Passport... 37

4.4.11 Setting up the Main Application ... 37

4.4.12 Running the Server .. 39

5 THE FRONT-END SIDE ... 40

5.1 Introduction .. 40

5.1.1 Definition of Front-end Development .. 40

5.1.2 Overview of React, Redux, and SASS .. 40

5.2 React ... 41

5.2.1 Declarative Approach .. 41

5.2.2 Component-based ... 42

5.2.3 Virtual DOM .. 42

5.2.4 Server-Side Rendering ... 43

5.2.5 Optimization .. 43

5.2.6 Performance Monitoring .. 43

5.2.7 Community .. 44

5.2.8 Integration ... 44

5.3 Redux .. 44

5.3.1 Ability to View Application's State .. 45

5.3.2 Reduction of Boilerplate Code .. 46

5.3.3 Improved Debugging ... 47

5.3.4 Storing the State in a Single Object... 48

5.4 SASS ... 48

5.4.1 Improved Readability and Maintainability.................................. 48

5.4.2 Ability to Create Variables and Functions 50

5.4.3 Ability to Nest CSS ... 51

5.5 Implementation of Front-end technologies in this thesis 51

5.5.1 The Overall Structure of the Front-end 51

5.5.2 HTTPS Requests to Back-end .. 53

5.5.3 Redux and Global State Management of the Application 56

5.5.4 index.tsx and App.tsx .. 60

5.5.5 Theme provider ... 61

5.5.6 Router .. 61

5.5.7 Pages in the Application .. 61

6 AUTHENTICATION WITH GOOGLE PASSPORT .. 73

6.1 Introduction .. 73

6.2 Benefits of Authentication with Google Passport 73

7 CONCLUSIONS .. 76

REFERENCES .. 78

LIST OF FIGURES AND TABLES

Figure 1. Product type definition .. 20

Figure 2. User type definition ... 20

Figure 3. Product data type example in the database .. 21

Figure 4. User data type example in the database ... 21

Figure 5. Product service structure 1 .. 27

Figure 6. Product service structure 2 .. 28

Figure 7. User service structure .. 29

Figure 8. createProduct controller method ... 30

Figure 9. updateProduct controller method .. 31

Figure 10. deleteProduct controller method ... 31

Figure 11. findProductById controller method .. 32

Figure 12. findAllProducts controller method ... 32

Figure 13. deleteUser controller method ... 33

Figure 14. createUser controller method ... 33

Figure 15. findAllUsers controller method ... 34

Figure 16. findUserByEmail controller method ... 34

Figure 17. Back-end authentication .. 35

Figure 18. userRouter method ... 36

Figure 19. productRouter method ... 36

Figure 20. Logging in with Google Passport .. 37

Figure 21. Back-end main application .. 38

Figure 22. Get the server up and running ... 39

Figure 23. The structure of the front-end ... 52

Figure 24. Front-end User API ... 53

Figure 25. Front-end Login APIs .. 53

Figure 26. Front-end Product APIs .. 54

Figure 27. Roles and their own authorizations ... 55

Figure 28. Methods to check roles and return corresponding authorizations 55

Figure 29. Global store of the application .. 56

Figure 30. Shopping cart reducer.. 56

https://livepuv-my.sharepoint.com/personal/e1700679_edu_vamk_fi/Documents/e1700679_Le-Duc-Anh_thesis-phase3.docx#_Toc136202729

7

Figure 31. Search bar reducer ... 57

Figure 32. Single User reducer for current User login .. 57

Figure 33. UserList reducer ... 58

Figure 34. Product reducer ... 59

Figure 35. index.tsx file... 60

Figure 36. App.tsx file ... 60

Figure 37. Theme Provider .. 61

Figure 38. Router .. 61

Figure 39. AppBar components at the top of the page .. 62

Figure 40. Light theme mode .. 63

Figure 41. Dark theme mode .. 63

Figure 42. Page layout at Homepage .. 64

Figure 43. Specific information for an item .. 65

Figure 44. Shopping cart with products inside ... 65

Figure 45. Search with keyword ... 66

Figure 46. Sorting with different orders ... 67

Figure 47. Pagination in the web application ... 67

Figure 48. Homepage as an admin user ... 68

Figure 49. AppBar navigation for admin user .. 69

Figure 50. Product creation page.. 69

Figure 51. New product item on the home page ... 70

Figure 52. Information of the new product item .. 70

Figure 53. Modify product item information .. 71

Figure 54. Product item with updated data ... 71

Figure 55. User list, only available to admin users ... 72

Figure 56. Updated user list after deletion of a user .. 72

https://livepuv-my.sharepoint.com/personal/e1700679_edu_vamk_fi/Documents/e1700679_Le-Duc-Anh_thesis-phase3.docx#_Toc136202748
https://livepuv-my.sharepoint.com/personal/e1700679_edu_vamk_fi/Documents/e1700679_Le-Duc-Anh_thesis-phase3.docx#_Toc136202749
https://livepuv-my.sharepoint.com/personal/e1700679_edu_vamk_fi/Documents/e1700679_Le-Duc-Anh_thesis-phase3.docx#_Toc136202751
https://livepuv-my.sharepoint.com/personal/e1700679_edu_vamk_fi/Documents/e1700679_Le-Duc-Anh_thesis-phase3.docx#_Toc136202754

1 INTRODUCTION OF THE THESIS

1.1 Background

The advent of e-commerce has brought about a significant transformation in con-

temporary business practices, and the persistent demand for e-commerce solu-

tions indicates a sustained trend towards its adoption. The growing trend of busi-

nesses shifting towards online platforms and adopting digital transformation has

accentuated the significance of dependable, secure, and effective e-commerce so-

lutions. The thesis investigates the creation of a comprehensive web-based plat-

form for commercial transactions, which involves the implementation of both cli-

ent-side and server-side programming, as well as the integration of a database

system. The objective of this thesis is to furnish a thorough manual for the creation

of e-commerce websites, encompassing all aspects ranging from design to deploy-

ment, security, and performance enhancement.

1.2 Objectives and Processes

The process of developing a full-stack web application comprises several stages,

each of which presents unique challenges and complexities. The initial phase of

front-end development encompasses the development of an interface that is user-

friendly, possesses responsive design, and features intuitive navigation. Con-

versely, the subsequent stage of back-end development is centered on the con-

struction of resilient server-side applications and APIs. The phase of integrating

the database is of utmost importance and necessitates meticulous planning for

data modeling, storage, and retrieval. To ensure a smooth and secure user expe-

rience, it is imperative for an e-commerce web application to seamlessly integrate

all of these components.

The thesis highlights the fundamental principles, tools, and technologies em-

ployed in the creation of a comprehensive full-stack e-commerce web application.

A comprehensive survey of pertinent academic and industry literature, along with

case studies, was undertaken to ascertain the optimal approaches and methodol-

9

ogies for creating e-commerce websites that are efficient, dependable, and se-

cure. The thesis offers practical exposure to the creation and implementation of

an e-commerce website, utilizing prevalent web development frameworks, con-

tent management systems (CMS), and hosting platforms.

1.3 Expectations

The outcomes of this research will be advantageous for individuals involved in

software development, business ventures, and those with a keen interest in elec-

tronic commerce. It will provide valuable knowledge on the most effective tech-

niques for creating and implementing comprehensive e-commerce web applica-

tions. The objective of the study is to provide a user-friendly approach that illus-

trates the systematic procedure of creating web applications. This includes the

provision of practical instances, code excerpts, and visual representations to assist

novices in the field of web development. Furthermore, the outcomes of this thesis

will aid enterprises in optimizing their procedures, improving their marketing

strategies, and delivering an improved digital shopping experience to their clien-

tele.

In summary, this thesis aims to bridge the gap between theory and practice in web

development and provide valuable insights for businesses looking to enhance their

online presence. The practical examples and recommendations presented in this

study can serve as a valuable resource for both novice developers and established

companies seeking to stay ahead in the digital landscape.

2 TYPESCRIPT

2.1 Introduction

Microsoft has developed the programming language TypeScript, an open-source

programming language that supersedes JavaScript. TypeScript seeks to improve

the development experience for developers by adding static typing, class, and in-

terface definitions to JavaScript.

TypeScript is an open-source pure object-oriented programming language.
It is a strongly typed superset of JavaScript which compiles to plain JavaS-
cript. It contains all elements of the JavaScript. It is a language designed for
large-scale JavaScript application development, which can be executed on
any browser, any Host, and any Operating System. The TypeScript is a lan-
guage as well as a set of tools. TypeScript is the ES6 version of JavaScript
with some additional features.

TypeScript cannot run directly on the browser. It needs a compiler to com-
pile the file and generate it in JavaScript file, which can run directly on the
browser. The TypeScript source file is in “.ts” extension. We can use any
valid “.js” file by renaming it to “.ts” file. TypeScript uses TSC (TypeScript
Compiler) compiler, which converts TypeScript code (.ts file) to JavaScript
(.js file). (Sharma, S. 2020. Online)

TypeScript is a statically typed programming language that is a superset of JavaS-

cript. It compiles to ordinary JavaScript and is compatible with all browsers, hosts,

and operating systems. TypeScript provides advanced features, such as interfaces,

classes, and modules that make it simpler for developers to write code that is

maintainable and scalable.

The TypeScript syntax is very similar to that of JavaScript. It includes static typing

and other features that aid in error detection at compile time. This makes it sim-

pler to detect errors prior to sending code to production. TypeScript supports fea-

tures such as decorators, which allow programmers to add metadata to their code.

One of the primary advantages of TypeScript is that it makes code more modular

and manageable. By utilizing classes and interfaces, developers can better struc-

ture their code. This facilitates code maintenance and refactoring as the size of the

codebase increases.

11

TypeScript is additionally extremely interoperable with other JavaScript frame-

works and libraries. This implies that developers can use TypeScript with popular

front-end frameworks such as React, Angular, and Vue.

TypeScript is a potent instrument for developers who wish to write maintainable,

scalable, and error-free code. Its advanced features make it simpler for developers

to write complex applications, and its interoperability with other frameworks and

libraries enables its use in a variety of projects.

2.2 Advantages of TypeScript

TypeScript is a statically typed programming language that offers many ad-

vantages over dynamically typed languages, particularly for developers. Here are

some of TypeScript’s primary benefits:

TypeScript provides robust type checking capabilities that aid in identifying errors

at compile time as opposed to runtime. This increases the reliability and quality of

the code. TypeScript also enforces strict syntax standards, which can aid in reduc-

ing common programming errors.

Maintaining and updating code can be difficult, particularly as the complexity of a

project increases. TypeScript offers enhanced documentation, code organization,

and error handling to address this issue. Additionally, the intrinsic typing system

better organizes code, making it simpler to read and comprehend.

Refactoring is an essential aspect of software development because it enables the

enhancement of features and functionality without disrupting the existing code.

TypeScript’s streamlined syntax, modular structures, and helpful error messages

make it simpler to refactor code without affecting other code elements.

Reading and comprehending code is frequently difficult, particularly when work-

ing with the code of others. TypeScript facilitates the process by enforcing strict

syntax rules, clear variable declarations, and improved organization in general.

The language also supports type validation and documentation, which improves

the overall readability of code.

2.3 Disadvantages of TypeScript

TypeScript is a superset of JavaScript that facilitates the development of sophisti-

cated web applications. Despite its many benefits, such as type checking, code or-

ganization, and enhanced developer tools, it has a number of disadvantages that

can negatively impact the development process. In this section, we will discuss

TypeScript’s three primary drawbacks:

2.3.1 Slow Development Time

One of the major drawbacks of using TypeScript is that it can lengthen the devel-

opment process. TypeScript’s strict typing system necessitates that developers de-

fine the data types of each variable explicitly, which can be time-consuming and

laborious. This can help prevent errors and improve code quality, but it can also

slow down the development process, which can be frustrating for developers who

must move rapidly.

The need to continually compile TypeScript code into JavaScript is an additional

factor that contributes to longer development times. Because most web browsers

do not inherently support TypeScript, it must be compiled into JavaScript before

it can be executed. This additional stage increases the duration and complexity of

the development process.

2.3.2 Complex Initial Setup

Setting up TypeScript can be difficult for developers unfamiliar with the language.

Unlike traditional JavaScript, which only requires an HTML file and a JavaScript file,

TypeScript setup requires the installation and configuration of several additional

tools.

For instance, developers must first install Node.js and npm before installing the

TypeScript compiler, which can be installed globally or locally. In addition, devel-

opers must frequently install and configure distinct development environments,

such as Webpack, in order to support TypeScript.

13

For newcomers in particular, these additional setup procedures can be time-con-

suming and perplexing, which may deter developers from utilizing TypeScript al-

together.

2.3.3 Limited Browser Compatibility

TypeScript has limited browser compatibility, which is a significant disadvantage.

While the majority of modern web browsers support JavaScript, not all can run

TypeScript out of the box. This can be problematic for developers who must en-

sure that their applications are compatible with a broad range of devices and plat-

forms.

Moreover, TypeScript may not be compatible with all JavaScript libraries and

frameworks, particularly older ones that have not been updated to support it. This

can restrict the options available to developers, making it harder to acclimate to

changes in the web development environment.

2.4 Conclusion

TypeScript provides developers with numerous advantages when it comes to im-

proving code quality, increasing maintainability, enabling better refactoring, and

improving readability and understanding of code. However, it also has several dis-

advantages that can slow down development time, make initial setup more com-

plex, and limit browser compatibility. Ultimately, whether or not to use TypeScript

depends on the specific needs of the project, your level of experience with the

language, and your development goals.

TypeScript provides a number of implications for developers that can considerably

enhance the development process. TypeScript enables programmers to write

cleaner and more concise code by supplying type annotations. Using type annota-

tions, developers can readily detect errors during the development phase, thereby

reducing errors that occur at runtime. In addition, TypeScript provides improved

code navigation and completion, and enables developers to write more robust

code by leveraging interfaces, classes, and inheritance. TypeScript also offers en-

hanced tooling support and compiler optimizations to ensure the code is quick and

efficient. Overall, TypeScript provides numerous benefits for developers, and it

can considerably enhance the quality of code by providing improved type checking

and a more solid code structure.

15

3 THE MONGODB DATABASE MANAGEMENT SYSTEM

3.1 Overview

3.1.1 Definition

MongoDB is a NoSQL document-oriented database that allows for flexible and

scalable data storage. It is designed to manage large volumes of unstructured and

semi-structured data, making it ideal for modern web applications and big data

processing. MongoDB also provides high availability and automatic scaling fea-

tures, which ensure that applications can handle increasing amounts of data with-

out compromising performance or reliability. Its dynamic schema allows for easy

modification and evolution of data models as business needs change over time.

MongoDB is an open source NoSQL database management program.
NoSQL (Not only SQL) is used as an alternative to traditional relational da-
tabases. NoSQL databases are quite useful for working with large sets of
distributed data. MongoDB is a tool that can manage document-oriented
information, store or retrieve information.

MongoDB is used for high-volume data storage, helping organizations
store large amounts of data while still performing rapidly. Organizations
also use MongoDB for its ad-hoc queries, indexing, load balancing, aggre-
gation, server-side JavaScript execution and other features.

Instead of using tables and rows as in relational databases, as a NoSQL da-
tabase, the MongoDB architecture is made up of collections and docu-
ments. Documents are made up of key-value pairs -- MongoDB's basic unit
of data. Collections, the equivalent of SQL tables, contain document sets.
MongoDB offers support for many programming languages, such as C, C++,
C#, Go, Java, Python, Ruby and Swift. (Gillis, A. S. & Botelho, B. 2023.
online)

Additionally, MongoDB offers a flexible query language and powerful indexing ca-

pabilities that enable developers to retrieve data quickly and efficiently. These fea-

tures make MongoDB a popular choice for building modern, scalable applications.

3.1.2 Advantages

Some advantages of using MongoDB include its ability to scale horizontally, its

flexible data model, and its support for dynamic queries. Additionally, MongoDB's

document-oriented approach allows for easier integration with object-oriented

programming languages. This makes it a popular choice for developers who want

to build applications with complex data structures. Moreover, MongoDB's auto-

matic sharding and replication features provide high availability and fault toler-

ance for mission-critical applications.

MongoDB is a choice that is suited for both small and large-scale projects due to

its flexibility, which enables it to easily scale up in response to growing data re-

quirements. In addition, its document-based paradigm makes the development

process simpler by enabling developers to work with data in a manner that is more

in line with how they naturally think about it. This, in turn, makes the process sim-

pler.

3.2 Characteristics of MongoDB

3.2.1 Database Structure

MongoDB is a document-oriented NoSQL database that stores data in flexible,

JSON-like documents. It uses a dynamic schema, allowing the storage of complex

hierarchical data structures with ease. MongoDB is a popular choice for modern

web and mobile applications due to its scalability, high availability, and ease of

use. MongoDB's flexible data model allows for faster iteration and more efficient

development. Additionally, its document-oriented approach enables developers

to work with data in a way that closely mirrors their programming language of

choice.

This makes it easier for developers to build and maintain applications, as they can

work with data in a way that is natural and intuitive to them. MongoDB's scalability

and high availability features also make it a popular choice for large-scale, mission-

critical applications.

3.2.2 Data Model

The MongoDB data model is based on collections and documents, which allows

for flexible and scalable data storage. It also supports various data types, including

17

arrays and embedded documents, making it ideal for handling complex data struc-

tures. Its flexible data model also allows for faster development and iteration

times compared to traditional relational databases. Additionally, MongoDB's dis-

tributed architecture enables horizontal scaling and high availability, ensuring that

applications can handle copious amounts of data and remain operational even in

the event of hardware failure. This makes it a popular choice for modern web ap-

plications and big data processing.

Moreover, MongoDB's flexible data model allows for easy integration with various

programming languages and frameworks, making it a versatile solution for devel-

opers. Its document-oriented approach also enables faster development cycles

and easier data manipulation compared to traditional relational databases.

3.2.3 Query Language

Query Language of MongoDB allows users to retrieve and manipulate data stored

in MongoDB databases using a variety of operators and commands. It supports a

flexible and powerful syntax that enables complex queries to be executed effi-

ciently. MongoDB's Query Language also allows users to perform aggregations and

transformations on data, making it a versatile tool for data analysis and reporting.

Additionally, it can be integrated with programming languages such as Python and

Java for seamless data processing. This flexibility and integration capabilities make

MongoDB a popular choice for modern data-driven applications that require effi-

cient and scalable data storage and retrieval. With its rich query language and ro-

bust features, MongoDB has become a leading NoSQL database solution in the

industry.

3.3 Applications of MongoDB

3.3.1 Web Applications

Web applications with MongoDB offer a scalable and flexible solution for manag-

ing large amounts of data. MongoDB’s document-oriented database model allows

for easy integration with web frameworks, making it a popular choice for modern

web development. In addition, MongoDB’s dynamic schema allows for faster de-

velopment cycles and easier data modeling compared to traditional relational da-

tabases. This makes it a great option for agile development teams that need to

quickly iterate and adapt to changing requirements.

Furthermore, MongoDB’s scalability and ability to handle large amounts of un-

structured data make it ideal for applications that require high performance and

flexibility. This is particularly useful in industries such as finance, healthcare, and

e-commerce where data needs can be complex and constantly evolving.

3.3.2 Cloud Computing

Cloud Computing with MongoDB allows developers to easily deploy and scale their

applications on cloud platforms, providing flexibility and cost-effectiveness. This

has made MongoDB a preferred choice for cloud-based applications and services.

MongoDB’s ability to handle large amounts of unstructured data and its support

for distributed architectures make it well-suited for cloud computing. Additionally,

its document-oriented data model allows for faster development and deployment

of applications in the cloud.

Moreover, MongoDB’s flexible data model enables developers to easily modify

their data structures as their applications evolve, making it an ideal choice for rap-

idly changing cloud environments. Finally, its built-in horizontal scaling capabilities

allow for seamless growth of databases as demand increases.

3.3.3 Mobile Applications

MongoDB’s flexible data model and ability to handle large amounts of unstruc-

tured data make it an ideal choice for mobile applications that require real-time

data syncing and offline capabilities. Additionally, MongoDB’s native support for

geospatial queries allows developers to build location-based features into their

mobile apps with ease. This makes it a popular choice for mobile apps in industries

such as transportation, logistics, and healthcare. With MongoDB, developers can

19

create robust and scalable mobile applications that meet the demands of today’s

users.

With MongoDB, developers can create robust and scalable mobile applications

that meet the demands of today’s users. MongoDB’s flexible data model and abil-

ity to handle large amounts of unstructured data also make it a suitable choice for

IoT applications, where data is generated from various sources. Additionally, Mon-

goDB’s cloud-based Atlas service offers a fully managed solution for deploying and

scaling mobile applications.

3.3.4 Big Data Analytics

This feature enables developers to analyze large amounts of location data and gain

insights into user behavior, preferences, and patterns. MongoDB’s flexible data

model also makes it easy to integrate with other big data tools for even more pow-

erful analytics capabilities. With this feature, developers can create personalized

experiences for users based on their location data. Additionally, MongoDB’s scal-

able infrastructure allows for efficient processing of large datasets, making it ideal

for businesses with rapidly growing data needs.

This combination of location-based personalization and scalable infrastructure is

particularly useful for businesses in the e-commerce and retail industries, as it en-

ables them to provide targeted promotions and recommendations to customers

in real-time. By leveraging MongoDB’s capabilities, these businesses can improve

customer engagement and drive sales growth.

3.4 Implementation of MongoDB in this thesis

3.4.1 Data Models

This thesis demonstrates two types of data: Product and User.

The Product data type includes several essential properties of a typical product:

name, description, image link, categories to which the product belongs, variants

of the product in terms of colors, shapes, and other physical characteristics, and

product sizes.

The User data type features some important properties of a user: email address,

first name, last name, and the role of the user (normal user or administrator).

export type ProductDocument = Document & {

 name: string

 description: string

 img: string

 categories: string[]

 variants: string[]

 sizes: string[]

}

Figure 1. Product type definition

export enum Role {

 ADMIN = 'admin',

 USER = 'user',

}

export type UserDocument = Document & {

 email: string

 firstname: string

 lastname: string

 role: Role

}

Figure 2. User type definition

3.4.2 Data in the MongoDB Database System

In the MongoDB database, these two types of data are represented as follows:

21

Figure 3. Product data type example in the database

Figure 4. User data type example in the database

In addition to the fields that have been defined in the data models above, Mon-

goDB database system automatically generates extra fields, the _id and the __v

fields. The _id field states the unique identifier for an object (in this case it can be

either a Product or a User), and the __v field indicates the version number, which

shows changes made on the object over time.

4 THE BACK-END SIDE

4.1 Introduction

4.1.1 Definition of NodeJS and ExpressJS

NodeJS is a server-side JavaScript runtime environment that allows developers to

build scalable and high-performance applications. ExpressJS, on the other hand, is

a popular NodeJS web application framework that simplifies the process of build-

ing web applications by providing a set of robust features and tools.

NodeJS and ExpressJS have revolutionized the way web applications are built, as

they provide developers with an efficient and effective way to create scalable ap-

plications. The combination of NodeJS's fast processing capabilities and Express-

JS's streamlined framework has made it possible for developers to build web ap-

plications that can handle large amounts of traffic without compromising perfor-

mance or reliability. As a result, NodeJS and ExpressJS have become the go-to tools

for web developers looking to create high-quality, dynamic web applications.

NodeJS's key features include its event-driven architecture, non-blocking I/O

model, and ability to handle multiple requests simultaneously. Additionally, Ex-

pressJS offers a range of features including middleware support, routing capabili-

ties, and support for templating engines. These features allow developers to cre-

ate custom APIs and web applications quickly and efficiently. It is important to

note that the popularity of NodeJS and ExpressJS is evidenced by their large and

active communities, which provide extensive documentation, resources, and tu-

torials for developers of all skill levels. This has helped to further cement their po-

sition as essential tools for modern web development.

4.1.2 Benefits of Using NodeJS and ExpressJS

NodeJS and ExpressJS are both open-source technologies that are widely used for

building scalable and high-performance web applications. They offer a great level

23

of flexibility, speed, and efficiency, making them ideal for building real-time appli-

cations and APIs.

Furthermore, the event-driven architecture of NodeJS and the middleware sup-

port and routing capabilities of ExpressJS enable developers to easily create com-

plex web applications with minimal effort. Additionally, the non-blocking I/O

model of NodeJS allows for efficient handling of large amounts of data, making it

suitable for use in data-intensive applications. The active communities surround-

ing these technologies also provide valuable support and resources to developers,

ensuring that they remain relevant and up to date with modern web development

practices. Overall, the benefits of using NodeJS and ExpressJS make them indis-

pensable tools for developers looking to create efficient and scalable web applica-

tions.

4.2 NodeJS

4.2.1 Overview of NodeJS

NodeJS is an open-source, cross-platform JavaScript runtime environment that al-

lows developers to build server-side applications using JavaScript. It is built on top

of the V8 JavaScript engine and provides an event-driven, non-blocking I/O model

that makes it lightweight and efficient for building scalable network applications.

NodeJS features include a rich library of various JavaScript modules that simplifies

web application development, the ability to handle multiple client requests simul-

taneously, and support for real-time web applications with two-way connections.

Additionally, it has a large and active community that contributes to its continuous

improvement and development.

NodeJS is used because it allows developers to use JavaScript on both the front-

end and back-end of web applications, making it a versatile and efficient tool for

building full-stack applications.

Moreover, NodeJS is known for its scalability and ability to handle a large number

of concurrent connections, making it a popular choice for building real-time appli-

cations such as chat applications and online gaming platforms. Its non-blocking I/O

model also allows for faster processing of data, improving the overall performance

of web applications.

4.2.2 NodeJS in Web Development

NodeJS is used in web development as a server-side platform for building scalable

and high-performance web applications. It allows developers to write server-side

code in JavaScript, making it easier to develop both the front-end and back-end of

web applications using a single programming language.

NodeJS offers several benefits in web development, including faster development

cycles, improved scalability and performance, and a vast library of pre-built mod-

ules and packages that can be easily integrated into applications. Additionally,

NodeJS supports non-blocking I/O operations, allowing for efficient handling of

large volumes of data and concurrent connections.

NodeJS is also highly compatible with cloud-based architectures, making it an ideal

choice for developing applications that can be easily deployed and scaled in the

cloud. Furthermore, NodeJS has a large and active community of developers,

providing ample resources and support for those working with the technology.

4.3 ExpressJS

4.3.1 Overview of ExpressJS

ExpressJS is a popular and widely used web application framework for Node.js that

simplifies the process of building robust, scalable, and maintainable web applica-

tions. It provides a range of features and tools for handling HTTP requests, routing,

middleware, and much more.

Some of the features of ExpressJS include support for various HTTP methods, easy

integration with databases, and the ability to create RESTful APIs. Additionally, it

25

allows for the use of middleware functions to handle requests and responses. Ex-

pressJS is used because it simplifies the process of building web applications and

APIs in Node.js, making it faster and easier to develop robust server-side applica-

tions.

It also provides a wide range of features such as routing, templating engines, and

error handling, which makes it a popular choice among developers. Furthermore,

its lightweight nature and flexibility make it suitable for building both small and

large-scale applications.

4.3.2 ExpressJS in Web Development

ExpressJS is a popular web application framework used for building web applica-

tions and APIs. It simplifies the process of building server-side applications by

providing a set of robust features and tools for creating scalable and maintainable

web applications.

ExpressJS provides a minimalist framework that allows developers to create web

applications quickly and efficiently. Additionally, it offers flexibility in terms of in-

tegrating with other libraries and databases, making it a popular choice for build-

ing APIs and microservices.

ExpressJS is also known for its middleware architecture, which enables developers

to add functionality to their applications without having to modify the core code.

This makes it easier to maintain and scale applications over time.

4.4 Implementation of NodeJS and ExpressJS in this thesis

4.4.1 Understanding the CRUD Implementation of the Back-end

In the world of software development, the back-end portion of a project plays an

essential role in improving its overall performance and functionality. It focuses on

creating, managing, and processing data stored in databases. The project's back-

end is responsible for all business logic, storage operations, and data processing.

This section will discuss the functionalities of the back-end portion of a project,

focusing specifically on the Product and User data types.

4.4.2 Product Data Type

In this thesis, the product data type represents the various products offered by the

business or organization. The back-end portion of a project that implements a

product data type is responsible for CRUD operations.

1. Create: This operation entails the creation of a new product and its addi-

tion to the database. This is typically done when a new product is added to

the product line.

2. Read: This operation retrieves information about a specific product from

the database. It is utilized frequently when displaying product information

on the store website.

3. Update: This operation entails modifying the database information of an

existing product. It is typically performed when a product attribute, such

as the price or description, must be modified.

4. Delete: This operation involves erasing a particular product from the data-

base. Typically, this occurs when a product is discontinued or no longer for

sale.

4.4.3 User Data Type

A project's user data type represents the individuals who interact with the organ-

ization, such as customers and employees. In a project, there are two types of us-

ers: Admin and Normal User. The back-end portion of a project that implements a

user data type is responsible for CRUD operations.

1. Create: This operation involves the creation of a new user and the addition

of their information to the database. This is typically done when a new cus-

tomer registers on the company's website or a new employee is hired.

27

2. Read: This operation retrieves information about a specific user from the

database. When a user is logged in and their profile information is dis-

played, this operation is frequently employed.

3. Update: This operation entails modifying the information of an existing

user in the database. It is typically performed when a user wants to update

their contact information.

4. Delete: This operation deletes a particular user from the database. Typi-

cally, this occurs when a user deletes their account or when an employee

leaves the company.

4.4.4 Product Service Structure

The Product service structure provides a conceptualization of the CRUD imple-

mentation, as well as establishing the connection to the database through the

Product data model (see Figures 5 and 6).

const createProduct = async (

 product: ProductDocument

): Promise<ProductDocument> => {

 return product.save()

}

const findProductById = async (productId: string): Promise<ProductDocument> =>

{

 const foundProduct = await Product.findById(productId)

 if (!foundProduct) {

 throw new NotFoundError(`Product ${productId} not found`)

 }

 return foundProduct

}

const findAllProducts = async (): Promise<ProductDocument[]> => {

 return Product.find().sort({ name: 1 })

}

Figure 5. Product service structure 1

const updateProduct = async (

 productId: string,

 update: Partial<ProductDocument>

): Promise<ProductDocument | null> => {

 const foundProduct = await Product.findByIdAndUpdate(productId, update, {

 new: true,

 })

 if (!foundProduct) {

 throw new NotFoundError(`Product ${productId} not found`)

 }

 return foundProduct

}

const deleteProduct = async (

 productId: string

): Promise<ProductDocument | null> => {

 const foundProduct = Product.findByIdAndDelete(productId)

 if (!foundProduct) {

 throw new NotFoundError(`Product ${productId} not found`)

 }

 return foundProduct

}

Figure 6. Product service structure 2

The codes demonstrate the required services for the Product data type:

1. createProduct: receives the information of a new product and saves that

new product to the database.

2. findProductById: receives an argument as the ID of the product and re-

turns the information of that product. Returns an error if the product can-

not be found in the database.

3. findAllProducts: returns all the products available in the database.

4. updateProduct: receives two arguments, the ID of the product to be mod-

ified, and the new data of the product that is to replace the old data of

such product. Returns an error if the product cannot be found.

5. deleteProduct: receive one argument which is the ID of the product to be

removed from the database. Return an error if the product cannot be

found in the database.

29

4.4.5 User Service Structure

The User service structure (Figure 7) gives an abstraction of how the CRUD imple-

mentation is performed regarding the database.

const createUser = async (user: UserDocument): Promise<UserDocument> => {

 return user.save()

}

const findAllUsers = async (): Promise<UserDocument[]> => {

 return User.find().sort({ firstname: 1 })

}

const findUserByEmail = async (email: string): Promise<UserDocument | any> =>

{

 const foundUser = User.findOne({ email })

 if (!foundUser) {

 throw new NotFoundError(`User with email ${email} not found`)

 }

 return foundUser

}

const deleteUser = async (userId: string): Promise<UserDocument | any> => {

 const foundUser = User.findByIdAndDelete(userId)

 if (!foundUser) {

 throw new NotFoundError(`User ${userId} not found`)

 }

 return foundUser

}

Figure 7. User service structure

The codes demonstrate the required services for the Product data type:

1. createUser: receives the information of a new user and saves that new

user to the database.

2. findAllUsers: returns all users available in the database.

3. findUserByEmail: receives the email address of the user as the only argu-

ment, and returns the user associated with such email address. Returns an

error message if the user cannot be found in the database.

4. deleteUser: receives the ID of the user that needs to be deleted. Performs

the deletion if the user is found, or else returns an error message.

To the limitation of my knowledge, the CRUD implementation of User Update

is not in place.

4.4.6 Product Controller Structure

The Product controller structure illustrates in detail how the back-end processes

front-end data and converts it into Product service requests as mentioned above.

export const createProduct = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 const { name, description, img, categories, variants, sizes } = req.body

 const product = new Product({

 name,

 description,

 img,

 categories,

 variants,

 sizes,

 })

 await ProductService.createProduct(product)

 res.json(product)

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 8. createProduct controller method

This method destructurizes the new product data in the request sent from the

front-end, processes it into correct format and sends it to the createProduct ser-

vice in Figure 5. This method also checks for errors such as Validation Error and

other errors.

31

export const updateProduct = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 const update = req.body

 const productId = req.params.productId

 const updatedProduct = await ProductService.updateProduct(productId,

update)

 res.json(updatedProduct)

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 9. updateProduct controller method

The same with createProduct method as mentioned above, this method also pro-

cesses the data and sends it to the updateProduct service in Figure 6. This will

examine the pertinent errors to ensure the data's continued integrity as well.

export const deleteProduct = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 await ProductService.deleteProduct(req.params.productId)

 res.status(204).end()

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 10. deleteProduct controller method

This works the same way with createProduct and updateProduct methods above.

This method provides processed data passed from the front-end request to the

deleteProduct service in Figure 6.

export const findProductById = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 res.json(await ProductService.findProductById(req.params.productId))

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 11. findProductById controller method

This method will take in the request which asks for the Product ID and then look

for that unique Product item in the database and return that Product item if found.

Otherwise, it will display an error message indicating the unavailability of such

Product item. This method will also notify if an error comes from a bad request.

export const findAllProducts = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 res.json(await ProductService.findAllProducts())

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 12. findAllProducts controller method

This method will return all the Product items available in the database.

4.4.7 User Controller Structure

The User controller structure illustrates in detail how the back-end processes

front-end data and converts it into User service requests.

33

export const deleteUser = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 await UserService.deleteUser(req.params.userId)

 res.status(204).end()

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 13. deleteUser controller method

This method will receive the request which asks for the User ID and look for that

user in the database. Once found, the method will carry out the deletion of such

user with the deleteUser service in Figure 7.

export const createUser = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 const { email, firstname, lastname, role } = req.body

 const user = new User({

 email,

 firstname,

 lastname,

 role,

 })

 await UserService.createUser(user)

 res.json(user)

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 14. createUser controller method

This method will receive a request which contains the information of a new user,

send to the createUser service as stated in Figure 7 for the creation of a new user.

export const findAllUsers = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 res.json(await UserService.findAllUsers())

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 15. findAllUsers controller method

This method will return all the users available in the database.

export const findUserByEmail = async (

 req: Request,

 res: Response,

 next: NextFunction

) => {

 try {

 res.json(await UserService.findUserByEmail(req.params.email))

 } catch (error) {

 if (error instanceof Error && error.name == 'ValidationError') {

 next(new BadRequestError('Invalid Request', error))

 } else {

 next(error)

 }

 }

}

Figure 16. findUserByEmail controller method

This method will receive a request which asks for an email associated with the user

we want to find, send to the findUserByEmail service as stated in Figure 7 and

return that user if available. Error handling is also carried out.

35

4.4.8 Authentication at Back-end Level

This back-end level authentication will receive the login information from the

front-end login request and verify the user with the support of JSON web token.

export default function authentication(

 req: Request,

 res: Response,

 next: NextFunction

) {

 try {

 const auth = req.headers.authorization || ''

 const token = auth.split(' ')[1]

 const verifiedToken = jwt.verify(token, JWT_SECRET)

 req.user = verifiedToken

 next()

 } catch (error) {

 console.log(error)

 next(error)

 }

}

Figure 17. Back-end authentication

JSON web token (JWT) is a compact and secure way of transmitting information

between parties as a JSON object. It can be used for authentication, authorization,

and exchanging information. There are three components: a header, a payload,

and a signature.

The token's encryption algorithm, such as HMAC SHA256 or RSA, is specified in the

token's header. The payload contains the transferred claims or data, such as

username or role. The signature is used to confirm that the message has not been

altered and that the sender is who they claim to be.

The server generates a JWT with the user's information, signs it with a secret key,

and sends it to the client when the user logs in. The client stores the JWT and

includes it in subsequent requests to the server's Authorization header. The server

can then decode and validate the JWT to determine if the user is authorized to

access the requested resource as illustrated in Figure 17.

JWT is a more secure and efficient method of authentication and authorization

that eliminates the need to repeatedly query the database for user credentials.

4.4.9 Product and User router structures

After we define how the controllers for the Product and User data types, we now

put them together in different types of HTTPS requests, each request will have its

own URL and HTTPS method.

const userRouter = express.Router()

userRouter.post('/', createUser)

userRouter.get('/', findAllUsers)

userRouter.get('/:email', findUserByEmail)

userRouter.delete('/:userId', deleteUser)

Figure 18. userRouter method

import authentication from '../middlewares/authentication'

const productRouter = express.Router()

productRouter.get('/', authentication, findAllProducts)

productRouter.get('/:productId', findProductById)

productRouter.put('/:productId', updateProduct)

productRouter.delete('/:productId', deleteProduct)

productRouter.post('/', createProduct)

Figure 19. productRouter method

We use the GET method with the necessary authentication for the Read operation

of CRUD. We utilize POST for the Create operation and PUT for the Update opera-

tion. The DELETE method must be used for Delete operation.

37

4.4.10 Login with Google Passport

const loginWithGoogle = () => {

 return new GoogleStrategy(

 {

 clientID: process.env.GOOGLE_CLIENT_ID,

 },

 async (parsedToken: any, googleID: any, done: any) => {

 try {

 let user = await

UserService.findUserByEmail(parsedToken.payload.email)

 if (!user) {

 user = {

 email: parsedToken.payload.email,

 firstname: parsedToken.payload.given_name,

 lastname: parsedToken.payload.family_name,

 role: isAdmin(parsedToken.payload.hd) ? Role.ADMIN : Role.USER,

 } as UserDocument

 const newUser = new User(user)

 await UserService.createUser(newUser)

 }

 done(null, user)

 } catch (error) {

 done(error)

 }

 }

)

}

Figure 20. Logging in with Google Passport

This method of logging in with Google Passport support will assist in determining

the various authorization levels of user accounts, such as administrators and reg-

ular users. In the context of this thesis, authorization will be based on the email

address associated with the user's Google account during the login step.

If the user's email address ends in the integrify.io domain, the administrator role

will be assigned. The remaining email addresses will be assigned as regular users.

4.4.11 Setting up the Main Application

Now that we have developed all the necessary APIs, it is time to integrate them

together into a complete application for our server.

const app = express()

// Express configuration

app.set('port', process.env.PORT || 3000)

// Global middleware

app.use(apiContentType)

app.use(express.json())

app.use(cors())

// Use Google passport for login

app.use(passport.initialize())

passport.use(loginWithGoogle())

app.post(

 '/google-login',

 passport.authenticate('google-id-token', { session: false }),

 (req, res) => {

 const user = req.user as { email: string; role: string }

 const token = jwt.sign(

 {

 email: user.email,

 role: user.role,

 },

 JWT_SECRET,

 { expiresIn: '1h' }

)

 res.json({ message: 'login done', token })

 }

)

// Set up routers

app.use('/api/v1/users', userRouter)

app.use('/api/v1/products', productRouter)

// Custom API error handler

app.use(apiErrorHandler)

Figure 21. Back-end main application

As is evident, the application will use Google Passport for authentication rather

than standard email addresses and passwords. Users will only need one Google

account to log in and gain access to Google Passport-supported services. This is

crucial for passwordless authentication because it enhances security and the user

experience. Figure 21 shows how the back-end is implemented with Google Pass-

port Authentication mechanism.

39

4.4.12 Running the Server

We will connect the back-end to MongoDB database and gain access to the Prod-

uct and User data stored there. Simultaneously, the server will listen to the re-

quests made from the front-end with appropriate APIs call and will reply with cor-

responding responses.

mongoose

 .connect(mongoUrl, {

 useNewUrlParser: true,

 useUnifiedTopology: true,

 useFindAndModify: false,

 useCreateIndex: true,

 })

 .then(() => {

 logger.info('Connected to MongoDB')

 })

 .catch((err: Error) => {

 console.log(

 'MongoDB connection error. Please make sure MongoDB is running. ' + err

)

 process.exit(1)

 })

if (process.env.NODE_ENV === 'development') {

 app.use(errorHandler())

}

// Start Express server

app.listen(app.get('port'), () => {

 console.log(

 ' App is running at http://localhost:%d in %s mode',

 app.get('port'),

 app.get('env')

)

 console.log(' Press CTRL-C to stop\n')

})

Figure 22. Get the server up and running

5 THE FRONT-END SIDE

5.1 Introduction

5.1.1 Definition of Front-end Development

Front-end development refers to the process of creating a website's or applica-

tion's user interface and visual design. It involves using languages such as HTML,

CSS, and JavaScript to create visually appealing and functional interfaces that are

easy to navigate and interact with for users. Front-end development is an essential

part of web development as it is responsible for the look and feel of a website or

application. It also plays a crucial role in enhancing user experience by ensuring

that the interface is responsive and accessible across different devices.

Front-end developers work closely with designers and back-end developers to en-

sure that the website or application is visually appealing, functional, and easy to

use. They also need to stay up to date with the latest technologies and trends in

web development to create modern and innovative user interfaces. In addition,

front-end developers may also be responsible for optimizing the website or appli-

cation for search engines and ensuring that it is accessible to users with disabili-

ties. This requires a deep understanding of web standards and best practices.

5.1.2 Overview of React, Redux, and SASS

React is a JavaScript library used for the development of user interfaces. It enables

developers to create UI components that are reusable and efficiently update the

interface when data changes.

Redux is a state management library that enables developers to predictably man-

age application state. It offers a centralized repository for all application data and

operations, making it simple to manage complex state and update the interface

accordingly.

SASS (Syntactically Awesome Style Sheets) is a CSS pre-processor that enables de-

velopers to compose more modular and efficient CSS code. It offers capabilities,

41

such as variables, mixins, and nesting, that simplify the styling process and reduce

code duplication. Together, these technologies provide front-end developers with

a potent toolkit for creating dynamic and responsive user interfaces.

5.2 React

React is a JavaScript library used to create user interfaces. Developers can make

modular UI elements that can be used in multiple places, and the UI can be quickly

refreshed when data changes. React was developed by Facebook and is widely

used in web development. It allows for the creation of complex and interactive

user interfaces with ease.

React is based on a component-based architecture, making it easy to reuse code

and maintain applications. React is highly performant due to its virtual DOM im-

plementation, which allows for efficient updates and rendering of components.

Additionally, React's popularity has led to the creation of many third-party librar-

ies and tools that can further enhance development productivity. It also has a large

and active community, providing developers with ample resources and support.

React becomes an ideal choice for beginners who want to get started with pro-

gramming quickly and efficiently. Additionally, its versatility and scalability make

it a popular choice for building complex applications and software systems. Over-

all, React offers a straightforward and effective method for developing user inter-

faces, making it an ideal choice for web developers.

In the field of web development, React provides some features that improve per-

formance, security, and scalability, as follows:

5.2.1 Declarative Approach

React employs a declarative approach to constructing user interfaces, in which the

desired state of the application is described and React handles updating the UI.

- This approach facilitates easier debugging and testing, as well as enhanced

performance due to React's ability to update only the necessary compo-

nents when changes occur.

- Developers can concentrate on the logic of the application rather than

manually manipulating the DOM, resulting in more efficient and predicta-

ble development.

5.2.2 Component-based

Component-based React enables the reuse of existing code and the construction

of complex user interfaces from simple building blocks called components.

- React encourages component reusability by enabling the developer to cre-

ate a library of reusable components that can be used across the entire

website.

- This assists in reducing development time and enhancing code organiza-

tion and allows for easier maintenance and updates of software systems

by isolating and modularizing specific functionalities.

5.2.3 Virtual DOM

React uses a virtual DOM instead of the actual DOM to render updates. This allows

React to make changes without requiring a page reload. Utilizing a virtual DOM

enables the interface to be efficiently updated by rendering only the modified

components.

- React's virtual DOM allows for efficient updates and rendering, resulting in

improved performance compared to traditional methods. This makes Re-

act a popular choice for building high-performance web applications.

- Cross-site scripting attacks are prevented by React's virtual DOM, making

it a secure option for web development. Moreover, React's one-way data

binding reduces the risk of data manipulation and enhances security.

- The virtual DOM of React enables the efficient rendering of components,

resulting in enhanced scalability and performance for web applications.

43

5.2.4 Server-Side Rendering

React supports server-side rendering, which generates the initial HTML on the

server before sending it to the client. This significantly improves the website's per-

formance, as the client can begin rendering without waiting for the initial HTML to

load.

- Server-side rendering also improves search engine optimization (SEO) by

providing search engines with fully rendered HTML content to crawl and

index, rather than relying on JavaScript to generate the content dynami-

cally on the client-side.

5.2.5 Optimization

React provides numerous tools and libraries to assist developers in writing opti-

mized code. This results in an overall faster and more efficient website.

- Among these tools are React.memo, which memoizes components to pre-

vent unnecessary re-renders, and the use of hooks, which enables im-

proved state management and code organization.

- By utilizing these tools, developers can create high-performance websites

with an enhanced user experience.

5.2.6 Performance Monitoring

React provides excellent performance monitoring tools that enable developers to

identify performance issues and optimize a website's performance.

- These tools enable developers to monitor the performance of a website

and make the necessary adjustments to enhance its speed and efficiency.

- Using the performance monitoring tools provided by React, developers can

ensure that their website is operating efficiently and providing a positive

user experience.

5.2.7 Community

There is a large and active community of developers who use React, so documen-

tation, tutorials, and support are readily available.

- This makes it easier for developers to learn and troubleshoot issues they

may encounter while using React. Additionally, the community regularly

contributes new libraries and tools to enhance the development experi-

ence.

- This means that developers can easily find solutions to common problems

and have access to a wide range of resources that can help them build bet-

ter applications. Moreover, being part of such a vibrant community allows

developers to stay up-to-date with the latest trends and best practices in

React development.

- Moreover, the community also organizes conferences and meetups to

share knowledge and network with other React developers. These events

provide a great opportunity for developers to stay up-to-date with the lat-

est trends and best practices in React development.

5.2.8 Integration

React is simple to integrate with other libraries and frameworks, making it a ver-

satile option for a wide variety of projects.

This means that developers can easily incorporate React into their existing projects

without having to completely overhaul their codebase. The flexibility of React also

allows for easy collaboration between teams with different technology stacks.

5.3 Redux

Redux is a popular JavaScript state management library inspired by the Flux archi-

tecture. It offers a predictable state container that can manage and update an ap-

plication's state. Redux is compatible with all front-end frameworks and libraries,

such as React, Angular, and Vue. It centralizes and predictably updates the state,

making it easier to analyze and debug the application. Redux also facilitates easier

45

data flow and state management across an application's various components,

thereby enhancing the overall performance of the application. Redux is widely

used by web developers because it provides a more efficient and reliable method

for managing an application's state.

In addition, Redux facilitates testing and debugging of an application's state

changes, making it a popular choice for large-scale projects. Its popularity has also

resulted in the creation of numerous tools and libraries that enhance its function-

ality. Redux DevTools, which provides a visual representation of the state changes

in real-time, and Reselect, which enables the efficient computation of derived data

from the Redux store, are examples of these tools. These features make Redux a

potent state management tool for modern web applications.

5.3.1 Ability to View Application's State

Redux is a robust library for state management that enables developers to create

complex and scalable applications. The ability to view application state is one of

the most important features of Redux for developers during the application devel-

opment, debugging, and testing processes.

Using Redux DevTools, developers are able to monitor and debug the real-time

state of their application. Redux DevTools provides a visual representation of the

state tree, allowing developers to track the evolution of the application's state.

This visibility into the application's state enables developers to identify problems,

debug errors, and optimize performance.

Redux's application state view enables developers to implement efficient and ef-

fective testing strategies. By comparing the current state of the application to its

previous states, developers can track the application's evolution over time and

identify potential issues before they become significant problems.

In addition, the ability to view application state in Redux enables developers to

optimize application performance. By monitoring the state tree, developers can

identify redundant or inefficient code and improve the application's performance.

Overall, the ability to view application state in Redux is a crucial feature that ena-

bles developers to create more effective, scalable, and streamlined applications.

Redux DevTools enables developers to easily monitor, debug, and optimize their

applications, resulting in a better user experience and enhanced performance.

5.3.2 Reduction of Boilerplate Code

Redux is a JavaScript state container with predictable behavior. It is commonly

employed in web and mobile applications to manage and store application state

in a central location. Redux reduces the amount of boilerplate code needed to

manage the state, which is one of its most notable benefits. The codebase can be

simplified and enhance the performance of an application using Redux.

Managing application state in traditional web and mobile applications can be ar-

duous and difficult. To manage the application's state, developers must write a

significant amount of boilerplate code. This code can quickly become complex and

difficult to maintain, making it difficult to debug and resolve issues.

Redux significantly reduces the state management code, resulting in code that is

simpler to read, understand, and maintain. Redux accomplishes this by introduc-

ing a few straightforward concepts that simplify the code.

Redux begins by introducing a centralized store that holds the application's state.

This implies that the entire application's state is stored in a single location, making

it easier to manage and manipulate.

Redux then uses a simple set of rules to update the state of the application. Create

actions that describe what should occur in the state. The store is then notified of

these actions, which trigger a reducer function that modifies the state based on

the action.

Finally, Redux provides a collection of tools and libraries that automate a number

of repetitive state management tasks. Redux, for instance, offers libraries such as

React-Redux that simplify the integration of Redux with React applications.

47

In conclusion, utilizing Redux to manage the state of web and mobile applications

reduces boilerplate code. This facilitates codebase readability, comprehension,

and maintenance. In addition, Redux offers a collection of tools and libraries that

automate many of the repetitive tasks associated with state management,

thereby reducing the need for boilerplate code.

5.3.3 Improved Debugging

Debugging is one of the primary advantages of utilizing Redux. Due to the dis-

persed state across various components in conventional web applications, debug-

ging can be difficult. However, Redux provides a centralized state management

system, making code debugging easier.

Redux makes debugging easier because all state changes take place in an individ-

ual location, the Redux store. Having only one source of truth makes it simple to

determine where the code is failing and permits developers to monitor the appli-

cation's state at all times.

In addition, some of the most effective debugging tools have been created specif-

ically for Redux. The Redux DevTools Extension, for instance, provides a multitude

of useful features, such as time-travel debugging, which enables developers to

view all past actions and state changes in their application.

Additionally, developers can easily view and analyze an application's entire state

history, allowing them to determine where a problem may have occurred. The use

of middleware and time-travel debugging tools further enhances the developer's

ability to diagnose and fix issues in web applications.

In conclusion, Redux improves the debugging process for web applications by

providing centralized state management and essential tools. This makes it easier

for developers to identify and resolve issues more quickly and create applications

of higher quality.

5.3.4 Storing the State in a Single Object

Redux's ability to store state in a single object simplifies the management of ap-

plication state, which is one of its primary advantages. By storing all application

states in a specific location, it becomes easier to track, manage, and share this

state among the application's modules and components.

Another advantage of this method is that it simplifies the implementation of time-

travel debugging. Because Redux stores all state changes in a single object, it is

simple to roll back to a previous state and debug any application issues that may

have arisen.

Additionally, storing application state in a single object can reduce the number of

API requests required. Instead of making repeated requests for data that has al-

ready been loaded, Redux can store this data in the state object and retrieve it

when necessary.

Redux's ability to store state in a single object has the potential to vastly improve

the efficiency and effectiveness of application state management. By reducing

complexity and streamlining the debugging process, developers are able to con-

centrate on creating better applications more quickly.

5.4 SASS

SASS (Syntactically Awesome Style Sheets) is a preprocessor scripting language

that streamlines the creation of CSS stylesheets. It adds features such as variables,

nesting, mixins, and functions to CSS, making stylesheet scripting more organized

and efficient. It is interpreted or compiled into CSS, enabling developers to write

code that is more efficient and maintainable.

5.4.1 Improved Readability and Maintainability

SASS is a preprocessor for CSS that offers features to make coding stylesheets

more efficient and organized. It introduces a set of features that improve the abil-

ity to maintain code in several ways.

49

- Reusability: With SASS, code fragments can be constructed that are reus-

able and can be shared across multiple stylesheets. This saves effort and

makes the code easier to maintain.

- Modular code: SASS enables the writing of code that is modular and reus-

able across multiple project components. Codebase-wide functions, varia-

bles, and mixins can be generated. This eliminates redundant code and en-

sures uniformity throughout the codebase.

- Reduced Code: SASS enables more concisely and effectively written code.

This reduces the quantity of code to be written, resulting in a faster and

more responsive application.

- Code Organization: SASS enables you to have more logically and system-

atically organized code. This facilitates the maintenance and updating of

stylesheets.

- Variables: Variables can be defined that can be utilized throughout the

stylesheets with SASS. This facilitates code maintenance and increases its

flexibility.

o SASS permits the use of variables, so values that are repeated

throughout the stylesheet can be designated to variables and uti-

lized consistently throughout the document. This makes updating

designs simpler and reduces the likelihood of making mistakes.

o SASS enables the storing of values such as colors, font sizes, and

spacing in variables. This makes it simpler to update these values

across the codebase, as the variable needs to be changed only once

as opposed to each instance of the value.

- Mixins: SASS enables the creation of mixins that are reusable throughout

stylesheets. This facilitates code maintenance and ensures that designs are

uniform.

o Mixins are parts of code that can be written once and used multiple

times. This makes the code simpler and more modular.

o SASS permits the creation of mixins, which are reusable sections of

code used to apply styles to various elements. This makes it simple

to implement consistent styles throughout the codebase without

duplicating code.

- Inheritance: SASS supports inheritance, so styles can inherit the properties

of other styles. This eliminates code redundancy and assures uniformity

throughout the stylesheet.

o SASS enables the sharing of styles between selectors using inher-

itance. This decreases the quantity of code that must be written

and makes the code easier to maintain.

- Comments: Comments can be utilized in SASS to provide context and ex-

planation for the code. This makes it simpler for other developers to com-

prehend the code's functionality.

5.4.2 Ability to Create Variables and Functions

SASS is a CSS pre-processor that enables developers to more efficiently and effec-

tively write CSS code. The ability to create variables and functions is one of the

primary benefits of SASS.

Variables enable programmers to assign a value to a name and reuse it throughout

the code. This makes it easier to modify styles in the future, as the variable value

only needs to be changed rather than manually updating each instance of the

value.

SASS's functionality allows developers to group CSS styles into reusable functions.

This can facilitate the streamlining and cleaning of code, making it easier to man-

age and more effective. SASS functions can accept arguments and return a value,

allowing for the creation of more complex and dynamic styles.

In conclusion, variables and functions in SASS provide a more efficient method for

writing CSS code, allowing developers to reuse styles and streamline workflow.

51

5.4.3 Ability to Nest CSS

The ability to nest CSS rules is one of the most useful features of SASS, as it allows

selectors to be nested within each other and styles for child elements to be written

within the block of the parent element.

SASS enables nesting of CSS selectors, making the code more readable and under-

standable. This also reduces the amount of code that must be written, as the par-

ent selector is not repeated for each child selector. SASS permits the nesting of

rules, allowing related styles to be grouped together. This establishes a visual hi-

erarchy that makes it easier to determine which styles apply to particular ele-

ments.

Using nesting in SASS can make the code more organized and readable, as the

nesting structure clearly indicates the HTML element hierarchy. It also simplifies

styling, as developers can write styles for particular elements without worrying

about specificity issues, as SASS generates the appropriate CSS selectors automat-

ically.

5.5 Implementation of Front-end technologies in this thesis

5.5.1 The Overall Structure of the Front-end

The index.tsx file contains the App.tsx file, which is nested within the Redux store

provider and theme provider by React Context. The Redux provides an efficient

method for managing all the application's global states. The Context manages a

simple status of the application, which in this case is the page theme. This file also

contains the Router from React Router DOM, which defines all paths required for

navigation and HTTPS requests.

The App.tsx file includes the AppBar.tsx, Drawer.tsx, and Router.tsx components.

These components are responsible for rendering the navigation bar, displaying the

menu drawer, and routing to various application pages.

The Router.tsx is responsible for defining all application routes and rendering the

appropriate pages as React components based on the current URL. It would also

handle any navigation logic required, such as redirecting the user to a different

page or displaying an error message.

Figure 23. The structure of the front-end

53

5.5.2 HTTPS Requests to Back-end

The connections to the back-end are among the essential features of a successful

front-end interface. The front-end provides a platform for displaying data from the

back-end, as well as tools and functions for user interaction with the data. A suc-

cessful connection to the back-end guarantees a streamlined workflow between

users and the data warehouse.

const baseUrl = "http://localhost:5000/api/v1/users";

const getAllUsers = async () => {

 try {

 const res = await axios.get(baseUrl);

 return res.data;

 } catch (error) {

 console.log(error);

 }

};

const deleteAUser = async (userId: string) => {

 try {

 const res = await axios.delete(`${baseUrl}/${userId}`);

 return res.data;

 } catch (error) {

 console.log(error);

 }

};

Figure 24. Front-end User API

export const clientId =

 (process.env.GOOGLE_CLIENT_ID as string) ||

 "7367156687-ci6cn59gllt698sjpklf2c8v7a6lh4ji.apps.googleusercontent.com";

export const handleLogin = async (res: any) => {

 const tokenId = res.credential;

 const response = await axios.post(

 "http://localhost:5000/google-login",

 {},

 {

 headers: {

 Authorization: `Bearer ${tokenId}`,

 },

 }

);

 const token = await response.data.token;

 const decodedToken = jwt_decode(token) as { [key: string]: any };

 return { token, user: decodedToken };

};

Figure 25. Front-end Login APIs

const baseUrl = "http://localhost:5000/api/v1/products";

const getAllProducts = async (token: string) => {

 try {

 const res = await axios.get(baseUrl, {

 headers: {

 Authorization: `Bearer ${token}`,

 },

 });

 return res.data;

 } catch (error) {

 console.log(error);

 }

};

const createNewProduct = async (newProduct: Product) => {

 try {

 const res = await axios.post(baseUrl, newProduct);

 return res.data;

 } catch (error) {

 console.log(error);

 }

};

const editAProduct = async (productId: string, newProduct: Product) => {

 try {

 const res = await axios.put(`${baseUrl}/${productId}`, newProduct);

 return res.data;

 } catch (error) {

 console.log(error);

 }

};

const deleteAProduct = async (productId: string) => {

 try {

 const res = await axios.delete(`${baseUrl}/${productId}`);

 return res.data

 } catch (error) {

 console.log(error);

 }

};

Figure 26. Front-end Product APIs

When we have created all the necessary APIs to connect the front-end to the back-

end APIs, we can define different user roles to determine which types of users will

have access to particular APIs.

55

export const RBAC_RULES = {

 admin: {

 view: ["dashboard"],

 actions: [

 "products:get",

 "product:post",

 "product:edit",

 "product:delete",

 "user:findAll",

 "user:findByEmail",

 "user:delete",

],

 },

 user: { view: ["homepage"], actions: ["products:get"] },

};

Figure 27. Roles and their own authorizations

const check = (rules: any, role: any, action: any) => {

 const permissions = rules[role];

 if (!permissions) {

 return false;

 }

 const staticPermissions = permissions.view;

 if (staticPermissions && staticPermissions.includes(action)) {

 return true;

 }

 const dynamicPermissions = permissions.actions;

 if (dynamicPermissions) {

 const permissionCondition = dynamicPermissions.includes(action);

 if (!permissionCondition) {

 return false;

 }

 return true;

 }

 return false;

};

const Can = ({ role, perform, yes, no }: any) => {

 return check(RBAC_RULES, role, perform) ? yes() : no();

};

Figure 28. Methods to check roles and return corresponding authorizations

Now that we have covered all required APIs, we can move on to retrieving and

saving data to the global state of the web application using such APIs. To accom-

plish this, we must define the global state of the application using Redux.

5.5.3 Redux and Global State Management of the Application

To store the application's global states, we must initially define a "store" as shown

in Figure 29.

const store = configureStore({

 reducer: {

 user: userReducer,

 cart: cartReducer,

 product: productReducer,

 search: searchReducer,

 userList: userListReducer,

 },

});

Figure 29. Global store of the application

The store consists of multiple reducers, each of which defines an application com-

ponent state in order to manage each application data type.

const initialState: Product[] = [];

const cartReducer = createSlice({

 name: "cart",

 initialState,

 reducers: {

 addToCart(state, action) {

 state.push(action.payload);

 },

 removeFromCart(state, action) {

 return state.filter((product) => product.id !== action.payload.id);

 },

 },

});

Figure 30. Shopping cart reducer

This shopping cart reducer manages the state of the shopping cart, allowing the

user to add and remove items from the cart as well as alter existing items.

57

const searchReducer = createSlice({

 name: "search",

 initialState: "",

 reducers: {

 setSearchKeyword(state, action) {

 return action.payload;

 },

 },

});

Figure 31. Search bar reducer

This search reducer controls the state of the web application's search bar, enabling

users to search for product items by name.

const initialState: User = {

 token: "",

 user: {},

};

const userReducer = createSlice({

 name: "user",

 initialState,

 reducers: {

 setUser(state, action) {

 return action.payload;

 },

 },

});

export const handleLoginSuccess = (res: any) => {

 return async (dispatch: any) => {

 const user = await handleLogin(res);

 dispatch(setUser(user))

 };

};

Figure 32. Single User reducer for current User login

This reducer assists the user in logging in and storing their login credentials so they

can be used in various web application authorizations.

const initialState: User[] = [];

const userListReducer = createSlice({

 name: "userList",

 initialState,

 reducers: {

 setUsers(state, action) {

 return action.payload;

 },

 deleteUser(state, action) {

 return state.filter((user) => user.id !== action.payload);

 },

 },

});

export const getAllUsers = () => {

 return async (dispatch: any) => {

 const users = await userListService.getAllUsers();

 dispatch(setUsers(users));

 };

};

export const deleteAUser = (userId: string) => {

 return async (dispatch: any) => {

 await userListService.deleteAUser(userId);

 dispatch(deleteUser(userId));

 };

};

Figure 33. UserList reducer

This reducer saves all users available in the database, compiles them into a list,

and displays it to the admin user responsible for deleting users of normal role.

Next, we will consider the Product reducer.

This reducer retrieves data from all Product service APIs and stores it in the front-

end's global state. The ability to view all product items is accessible to all user

roles, but the ability to add, delete, or modify product items is restricted to admin

users.

59

const initialState: Product[] = [];

const productReducer = createSlice({

 name: "product",

 initialState,

 reducers: {

 setProducts(state, action) {

 return action.payload;

 },

 updateAProduct(state, action) {

 return state.map((product) =>

 product.id !== action.payload.id ? product : action.payload

);

 },

 deleteAProduct(state, action) {

 return state.filter((product) => product.id !== action.payload);

 },

 createAProduct(state, action) {

 state.push(action.payload);

 },

 },

});

export const setAllProducts = (token: string) => {

 return async (dispatch: any) => {

 const products = await productService.getAllProducts(token);

 dispatch(setProducts(products));

 };

};

export const createProduct = (product: any) => {

 return async (dispatch: any) => {

 const createNew = await productService.createNewProduct(product);

 dispatch(createAProduct(createNew));

 };

};

export const editProduct = (productId: string, product: any) => {

 return async (dispatch: any) => {

 const editedProduct = await productService.editAProduct(productId,

product);

 dispatch(updateAProduct(editedProduct));

 };

};

export const deleteProduct = (productId: string) => {

 return async (dispatch: any) => {

 await productService.deleteAProduct(productId);

 dispatch(deleteAProduct(productId));

 };

};

Figure 34. Product reducer

5.5.4 index.tsx and App.tsx

In our project, index.tsx and App.tsx are the two files that serve as first building

blocks of the web application, where it leads to all other pages and components.

const WithProvider = () => (

 <Provider store={store}>

 <ThemeProvider>

 <Router>

 <App />

 </Router>

 </ThemeProvider>

 </Provider>

);

ReactDOM.render(<WithProvider />, document.getElementById("root"));

Figure 35. index.tsx file

function App() {

 const { theme } = useContext(ThemeContext);

 const [drawerState, setDrawerState] = useState(false);

 const handleDrawerState = (state: boolean) => {

 setDrawerState(state);

 };

 return (

 <div className={`App ${theme}`}>

 <AppBar drawerState={drawerState} onClick={handleDrawerState} />

 <Drawer state={drawerState} onClick={handleDrawerState} />

 <Router />

 </div>

);

}

Figure 36. App.tsx file

The Redux store, Theme provider, and Router are all global states that are imple-

mented by the index.tsx file. Wherever users navigate inside the web application,

these statuses will remain constant throughout the entire web application. All ad-

ditional components and pages will appear to be located to the App.tsx file, which

serves as the starting location of the web application.

61

5.5.5 Theme provider

export const ThemeContext = createContext<any>({ theme: "light", undefined });

export const ThemeProvider: React.FC<{}> = ({ children }) => {

 const [theme, setTheme] = useState("light");

 return (

 <ThemeContext.Provider value={{ theme, setTheme }}>

 {children}

 </ThemeContext.Provider>

);

};

Figure 37. Theme Provider

The complete web application's theme can be changed thanks to the Theme Pro-

vider, which functions as a Context Hook. The two themes are light and dark.

5.5.6 Router

const Router = () => {

 return (

 <Routes>

 <Route path="/" element={<Homepage />} />

 <Route path="/products/:id" element={<Product />} />

 <Route path="/user/" element={<User />} />

 <Route path="/form" element={<Form />} />

 <Route path="/form/products/:id" element={<Form />} />

 </Routes>

);

};

Figure 38. Router

The Router component is accountable for directing the URL input to the appropri-

ate API call. Each route will navigate to its proper React component.

5.5.7 Pages in the Application

There are four main pages in the application:

- Homepage.tsx: This page redirects to the component that displays the en-

tire product catalog.

o ProductList.tsx: This component contains all the products.

o ProductCard.tsx: This element provides concise information about

a single product item. The component only displays some infor-

mation about the product so as to make the ProductCard.tsx com-

ponent fit nicely in the list.

- Product.tsx: This page displays information about a particular product.

- User.tsx: This page displays the whole list of available users. Administra-

tors can also delete standard users.

- Form.tsx: This page serves as a form for adding a new product item or up-

dating an existing one.

The AppBar.tsx component is always present at the top of every web page on

every page. It serves as the navigation bar, allowing users to navigate to various

pages. It also includes the search dialog, which allows users to search for product

items using a particular keyword, and the shopping cart, which contains the prod-

uct items that users wish to purchase.

Figure 39. AppBar components at the top of the page

When the user is not logged in, the product list is not displayed.

63

Figure 40. Light theme mode

Figure 41. Dark theme mode

The web application permits Google users to log in with their Google credentials,

eliminating the need to register separate accounts. The web application will assign

the role of administrator to Google account emails associated with the integrify.io

domain, while all other Google account emails will be assigned the role of normal

user.

This is how the page looks like when a normal user is logged in:

Figure 42. Page layout at Homepage

65

When you click on an item, you will be taken to a page containing the item's spe-

cific information. This page is also the product page.

An item can be added to the shopping cart from either the homepage or the

product page, and the cart will be updated everywhere.

Figure 44. Shopping cart with products inside

Figure 43. Specific information for an item

When a product is searched with the search bar, it will show the product items

with the names containing the search keyword. In this case, all the items whose

names contain the letter “b” are searched.

Figure 45. Search with keyword

67

Users can also sort the list of product items in different order:

Figure 46. Sorting with different orders

Pagination on a website refers to the practice of separating lengthy content into

multiple pages to enhance the user experience and readability. It involves dividing

lengthy articles, blog posts, product lists, or search results into smaller, more di-

gestible sections and providing links or icons for navigation. Pagination can in-

crease the loading speed of a website and make it simpler for users to locate and

consume the intended content. It is utilized frequently on e-commerce, news,

blog, and other content-heavy websites.

The pagination component will divide the total number of product items across

multiple pages. It permits users to view a limited number of items per page and

navigate to other pages to view additional items.

Figure 47. Pagination in the web application

Now we will observe what an admin user can do with the web application.

Figure 48. Homepage as an admin user

69

This time the home page looks different with additional pages, specially reserved

for admin accounts only.

Figure 49. AppBar navigation for admin user

The Form page will allow admin users to create new products.

Figure 50. Product creation page

Let us try creating a new product and see how it will appear on the home page.

After the creation of the product, we can see that the new product has been suc-

cessfully added to the home page:

Figure 51. New product item on the home page

When we click on the new product item, it will direct us to the information page:

Figure 52. Information of the new product item

We can also update the product item with new data as an admin user:

71

Figure 53. Modify product item information

Now the new data on our product has been successfully updated.

Figure 54. Product item with updated data

Another feature for admin users is that they can manage other accounts.

Figure 55. User list, only available to admin users

Once a user is deleted, that user information will be removed from the user list.

The deleted user will then need to log in to his or her Google account again in

order to gain access to our web application.

Figure 56. Updated user list after deletion of a user

73

6 AUTHENTICATION WITH GOOGLE PASSPORT

6.1 Introduction

In the current digital era, security is a top priority for both enterprises and individ-

uals. The proliferation of online transactions, cloud computing, and social net-

working has increased the demand for secure and trustworthy authentication

mechanisms. Google Passport offers a remedy to this problem by allowing users

to authenticate and authorize requests with their Google account credentials.

Google Passport is an authentication and authorization service that allows devel-

opers to authenticate users and authorize API access using a singular set of cre-

dentials. It offers a unified authentication mechanism that enables a user to log in

to multiple websites with the same Google account credentials. Google Passport

enables developers to integrate authentication and authorization stages into their

applications and websites.

It supports multiple authentication strategies, including OAuth 2.0, OpenID Con-

nect, and third-party authentication providers like Facebook and Twitter, making

it a flexible and versatile authentication platform. Google Passport complies with

all data protection regulations and stores user data securely, ensuring the safety

and preservation of user data. Many prominent technology companies and apps

rely on Google Passport for user authentication and authorization. The system is

widely utilized by developers around the globe. By utilizing Google Passport, busi-

nesses and developers can concentrate on providing innovative solutions without

fretting about authentication and security.

6.2 Benefits of Authentication with Google Passport

Authentication with Google Passport is a popular and secure method for logging

into multiple web services with a single set of logon credentials. Some of the ben-

efits of authenticating with Google Passport are discussed next.

It is optimal for security to have a unique username and password for each online

service used, but it can be difficult to manage. Users can forget their passwords or

fall into the pitfall of using the same password for multiple accounts. Using Google

Passport to link multiple online accounts with a single password provides an addi-

tional layer of security that can help mitigate these issues. This method can also

expedite the login procedure and reduce the likelihood that your account will be

compromised.

One of the greatest advantages of Google Passport is that it simplifies account ac-

cess. Multiple websites can be logged onto without entering the credentials each

time because they are stored in a central location. This makes logging in speedier

and more convenient, ultimately saving you time.

With Google Passport, the user only needs to remember a single set of login cre-

dentials, making it much simpler to access multiple websites. There is no longer

needed to remember multitudes of passwords for various accounts; instead, the

user only needs to remember one password that grants access to Google Passport.

Two-factor authentication adds an additional layer of security to the account by

requiring a security code in addition to the user’s login information.

Google Passport enhances the user experience by streamlining the registration

procedure. Customers do not need to establish new accounts or remember com-

plicated usernames and passwords to access multiple websites; they can simply

use their Google Passport login credentials. This streamlined approach can provide

consumers with a more efficient and satisfying experience, which can aid in retain-

ing their loyalty.

Using Google Passport for authentication can significantly enhance online security,

simplify account access, make passwords simpler to remember, and enhance the

customer experience. In a world where online security threats are constantly

growing, it is crucial to select an authentication method that ensures the safety of

your data and credentials. Google Passport offers a secure and convenient method

for doing so.

75

Authentication is a crucial security measure that helps prevent unauthorized ac-

cess and deception. Google Passport is a popular authentication mechanism that

enables users to sign in to multiple websites and applications without needing to

recollect multiple login credentials. The steps required to create a Google Passport

account, install the Passport application, link existing accounts to the application,

and use the application for authentication are simple and straightforward.

7 CONCLUSIONS

Full-stack web application development necessitates a strategic approach involv-

ing meticulous planning, implementation, and testing. The development of this

application utilizing MongoDB, TypeScript, NodeJS, ExpressJS, React, Redux, SASS,

and Google Passport was a challenging but rewarding endeavor.

This application's development began with the identification of its functional re-

quirements, which included creating user accounts, logging in, creating, and pub-

lishing content. In the initial phase of development, the database schema was cre-

ated using MongoDB, and NodeJS and ExpressJS were configured to establish the

server-side code. Next, we wrote the front-end components with TypeScript and

integrated them with React and Redux. In consideration of the user interface and

user experience, we also used SASS to create a custom appearance and feel for

the application.

In the concluding phase of development, Google Passport was integrated for user

authentication and authorization. This aspect of the application was essential for

establishing secure communications between the server and client, thereby facil-

itating a seamless user experience.

During the application's development, we confronted a number of obstacles, par-

ticularly with the integration of the various technologies, user authentication pro-

cedure, and debugging and evaluating the application. We overcame these obsta-

cles, however, by testing the application, identifying the problems, and imple-

menting the required changes. Using a more robust framework, such as Angular

or Vue.js, to streamline the development process would be a significant sugges-

tion for enhancement.

The overall design of the application appears robust, and it provides a secure au-

thentication mechanism that safeguards users against unauthorized access. In ad-

dition, TypeScript improves the maintainability of the application by providing a

more structured codebase that makes it simpler to identify errors and vulnerabil-

77

ities. The techniques utilized in this development process have enormous poten-

tial for creating secure, scalable, and maintainable cross-platform web applica-

tions. These techniques have a promising future, and we anticipate additional in-

novations that will further facilitate the development process.

Overall, we are satisfied with the outcome of our efforts. However, there is always

room for improvement, and we have identified a few areas where the application

can be enhanced further. These areas include enhancing the user authentication

process to improve security and the user experience, refining the code for im-

proved performance and scalability, and adding more features to make the appli-

cation more versatile and appealing to a larger audience.

In conclusion, the development of a full-stack web application is a complicated

procedure requiring meticulous planning, implementation, and testing. The devel-

opment process can be made more manageable by having a well-defined project

plan, a clear comprehension of the functional requirements, and a talented team

of developers. With careful attention to detail and a focus on the user experience,

it is possible to effectively develop a full-stack web application that meets user

needs and expectations.

REFERENCES

Richards, G., Francesco, Z.N. & Jan, V. 2015. Concrete Types for TypeScript. Ac-
cessed 14.04.2023. https://drops.dagstuhl.de/opus/volltexte/2015/5218/.

Sharma, S. 2020. TypeScript: A Superset of JavaScript. Accessed 27.05.2023.
https://www.linkedin.com/pulse/typescript-superset-javascript-sunil-sharma/.

Gillis, A.S. & Botelho, B. 2023. MongoDB. Accessed 01.05.2023. https://www.tech-
target.com/searchdatamanagement/definition/MongoDB.

Tutorials Point. 2023. MongoDB Tutorials. Accessed 01.03.2023. https://www.tu-
torialspoint.com/mongodb/index.htm.

Google Developers. 2023. Learn web development. Accessed 12.03.2023.
https://web.dev/learn/.

W3Schools. n.d. What is React?. Accessed 21.03.2023.
https://www.w3schools.com/whatis/whatis_react.asp.

Redux. 2023. Getting Started with Redux. Accessed 02.04.2023. https://re-
dux.js.org/introduction/getting-started.

Luksza, R. n.d. How To Setup Redux with Redux Toolkit. Accessed 05.04.2023.
https://www.softkraft.co/how-to-setup-redux-with-redux-toolkit/.

W3Schools. n.d. SASS Introduction. Accessed 07.04.2023.
https://www.w3schools.com/sass/sass_intro.php.

Giraudel, K. 2023. SASS Guidelines. Accessed 11.04.2023. https://sass-
guidelin.es/.

Simplilearn. 2023. Node.js Tutorial. Accessed 15.04.2023. https://www.sim-
plilearn.com/tutorials/nodejs-tutorial.

Tutorials Point. 2023. ExpressJS Tutorial. Accessed 15.04.2023. https://www.tuto-
rialspoint.com/expressjs/index.htm.

Geeks For Geeks. 2023. Express.js. Accessed 16.04.2023. https://www.geeksfor-
geeks.org/express-js/.

Ram, P. 2021. How to implement Google Authentication in Node JS using Passport
JS. Accessed 27.04.2023. https://medium.com/@prashantramnyc/how-to-imple-
ment-google-authentication-in-node-js-using-passport-js-9873f244b55e.

Gathoni, M. 2022. NodeJS Google Authentication Using Passport and Express. Ac-
cessed 30.04.2023. https://www.makeuseof.com/nodejs-google-authentication/.

https://www.simplilearn.com/tutorials/nodejs-tutorial
https://www.simplilearn.com/tutorials/nodejs-tutorial

