
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Carl-Oscar Ahlsved 
 
USB LICENSE DEVICE SHARING OVER NETWORKS 
 
Development of a VirtualHere and Raspberry Pi based system 
 
 
 
Thesis 
CENTRIA UNIVERSITY OF APPLIED SCIENCES 
Bachelor of Engineering, Information Technology 
May 2023 
 
 
  



  

ABSTRACT 
 

Centria University  
of Applied Sciences 
 

Date 
May 2023 

Author 
Carl-Oscar Ahlsved 

Degree programme 
Bachelor of Engineering, Information Technology 
Name of thesis 
USB LICENSE DEVICE SHARING OVER NETWORKS. Development of a VirtualHere and Rasp-
berry Pi based system 
Centria supervisor 
Jari Isohanni 

Pages 
41 + 4 

Instructor representing commissioning institution or company  
Mikael Brodin 
 
The aim of this thesis was improving an existing VirtualHere-based system running on Raspberry Pi 
used for sharing USB license devices over networks in Swedish audio post-production company Ljud-
Bang. The original system had several shortcomings, including an inability to detect disconnected 
USB devices, hard-coded settings in the code, and limited user interaction possibilities. While all is-
sues were addressed, the most significant were detection and automatic power cycling of discon-
nected USB devices as well as providing a means of user interaction.  
 
First, the original system and proposed system is presented. Then background information about 
USB, followed by a description of the key software components used. Furthermore, considerations 
related to selecting USB hubs with per-port power switching used for power cycling of devices are 
addressed. Lastly, the developed system is presented with additional details regarding the enclosure 
used for the completed system. 
 
The original system was developed using BASH scripts, which were replaced with Python and hard-
coded settings were separated into JSON files. The system now incorporates the ability to detect dis-
connected devices, automatically power cycle them, log the event, and send email alerts to an admin-
istrator. The power cycling mechanism utilizes USB hub per-port power switching, replacing the me-
chanical relays used in the old system. For user interaction, a web interface was developed using 
Node.js and React, enabling editing of USB device configurations as well as providing means for sys-
tem reboot and shutdown. Finally, the components were housed in a suitable enclosure for practical 
deployment. 

While the system meets initial requirements, further field testing is still needed. In addition, some fea-
tures are still under development. Log viewing through the web interface and adding a user database 
for login functionality are examples of areas requiring further improvement. Other development sug-
gestions include enhancing device logging for better insights into device usage.  

 
 
Key words 
Raspberry Pi, Remote USB, USB, USB over IP, VirtualHere  
 

  



CONCEPT DEFINITIONS 

 

 

API 

(Application Programming Interface) is a set of rules that allows different software applications to com-

municate and interact with each other. 

 

BASH 

(Bourne-Again SHell) is a shell and scripting language used in Linux and other Unix-based operating 

systems. 

 

DESIGN SYSTEM 

The use of reusable components and guidelines to ensure consistency in visual language and user expe-

rience. 

 

ENDPOINT  

In USB, a communication channel between a USB device and the host computer where each endpoint 

is associated with a specific function or data stream. 

 

DOM 

(The Document Object Model) represents the objects that comprise the structure and content of a web 

document. 

 

GPIO 

(General Purpose Input/Output) refers to programmable pins on microcontrollers, such as Raspberry Pis, 

allowing interfacing with electronic components enabling communication and control. 

 

iLok  

Hardware-based digital rights management system using USB devices to securely store and manage 

software licenses commonly used in the audio production industry. 

 

JSON 

(JavaScript Object Notation) is a lightweight, text-based data format used for transmitting structured 

data in web applications with a human-readable syntax. 



KEY-VALUE PAIRS 

Data structures that link unique keys with corresponding values, allowing for efficient storage and re-

trieval. 

 

NAMED PIPE 

A file-like interface for communicating and sharing data through the file system. 

 

RPi 

Raspberry Pi 

 

SoC 

System On Chip 

 

SSH  

(Secure Shell) is a network protocol for secure remote access and communication between computers, 

often used for managing servers and executing remote commands. 

 

SSL  

(Security Sockets Layer) is a protocol for secure communications that encrypts data transmission be-

tween parties, primarily in client-server communication. 

 

UHUBCTL 

Command-line utility to control power to ports of USB hubs that support per-port power switching. 

 

USER SPACE 

In an operating system, user-space is where applications run, separate from kernel-space where the op-

erating system's core runs. 

 

VPN 

Virtual Private Network 

 

XML 

(Extensible Markup Language) is a text-based markup language used to encode, store, and transport 

structured data, characterized by its flexibility and self-descriptive nature.  



ABSTRACT 
CONCEPT DEFINITIONS 
CONTENTS 
 

1 INTRODUCTION ............................................................................................................................... 1 

2 ORIGINAL SYSTEM AND REQUIREMENTS .............................................................................. 3 
2.1 Original system .............................................................................................................................. 3 
2.2 Requirements and proposed system ............................................................................................. 4 

3 UNIVERSAL SERIAL BUS ............................................................................................................... 6 
3.1 Overview ......................................................................................................................................... 6 
3.2 History ............................................................................................................................................. 7 
3.3 Enumeration ................................................................................................................................... 9 
3.4 Per-port power switching and uhubctl ........................................................................................ 9 

4 SOFTWARE ...................................................................................................................................... 11 
4.1 VirtualHere ................................................................................................................................... 11 
4.2 Web interface technologies ......................................................................................................... 13 
4.3 Python ........................................................................................................................................... 14 
4.4 Raspberry Pi OS and utilities ..................................................................................................... 15 

5 HARDWARE ..................................................................................................................................... 16 
5.1 Raspberry Pi ................................................................................................................................. 16 
5.2 USB hubs ...................................................................................................................................... 17 

6 DEVELOPED SYSTEM ................................................................................................................... 21 
6.1 Development environment .......................................................................................................... 21 
6.2 Overview ....................................................................................................................................... 23 
6.3 Raspberry Pi ................................................................................................................................. 24 
6.4 Configuration files ....................................................................................................................... 24 
6.5 Python scripts ............................................................................................................................... 26 

6.5.1 Enumeration ....................................................................................................................... 27 
6.5.2 Start use ............................................................................................................................... 27 
6.5.3 Stop use ................................................................................................................................ 29 
6.5.4 Port check and alert ........................................................................................................... 29 

6.6 Web interface ............................................................................................................................... 30 
6.6.1 Backend ............................................................................................................................... 30 
6.6.2 Frontend .............................................................................................................................. 31 

6.7 Enclosure and USB hubs ............................................................................................................. 32 
6.8 Security and reliability ................................................................................................................ 34 

7 CONCLUSIONS ................................................................................................................................ 36 

8 REFERENCES .................................................................................................................................. 38 
APPENDICES 
 

  



CODE 
CODE 1. Single device JSON device configuration example ................................................................ 25 
CODE 2. Port location JSON example ................................................................................................... 26 
CODE 3. VirtualHere server event config example for onBind ............................................................. 27 
CODE 4. VirtualHere onEnumeration data ............................................................................................ 27 
CODE 5. VirtualHere onBind data ......................................................................................................... 28 
CODE 6. Python subprocess with uhubctl ............................................................................................. 28 
 
FIGURES 
FIGURE 1. USB topology ........................................................................................................................ 7 
FIGURE 2. USB 3.2 dual bus system architecture ................................................................................... 8 
FIGURE 3. VirtualHere overview .......................................................................................................... 12 
FIGURE 4. VirtualHere client window .................................................................................................. 12 
FIGURE 5. RPi 4 overview .................................................................................................................... 16 
FIGURE 6. Two 10-port hubs and two 7-port hubs ............................................................................... 18 
FIGURE 7. Working locally on RPi using VS code and SSH-remote extension ................................... 22 
FIGURE 8. Overview of project folder structure ................................................................................... 22 
FIGURE 9. Overview of system components ........................................................................................ 23 
FIGURE 10. Frontend in mobile view ................................................................................................... 31 
FIGURE 11. Overview of case ............................................................................................................... 34 
 
PICTURES 
PICTURE 1. Amazon basics 7 & 10 port and D-Link DUB-H7 USB hubs .......................................... 17 
PICTURE 2. Tested self-powered USB 2.0 4-port hubs ........................................................................ 19 
PICTURE 3. YOJOCK USB digital tester ............................................................................................. 19 
PICTURE 4. Flirc RPi 4 aluminium case ............................................................................................... 33 
 
TABLES 
TABLE 1. Functional and non-functional requirements .......................................................................... 4 
TABLE 2. Measured power consumption of common USB 2.0 devices in the original system ........... 20 
TABLE 3. REST API resource URLs .................................................................................................... 30 
 
 
 
 
 
 
 



1 

1 INTRODUCTION 

Some devices are more critical than others. If a USB license device responsible for starting software is 

lost or broken, it can be a stressful and unpleasant experience, especially if travelling and relying on the 

device for work. Moreover, sharing these devices with others can be both frustrating and time-consum-

ing if a device must be searched for in countless office rooms. There is also a possibility that these 

devices contain very expensive licenses and are susceptible to theft. These are just a few examples of 

the challenges of sharing devices like this in their physical form. Therefore, having them located in a 

secure environment and sharing them over a network could be a more desirable solution. In addition, 

this is an excellent way of facilitating remote work, something that has become common for many due 

to the Coronavirus pandemic, and something which is likely to continue in the future. 

 

There exists a plethora of ways to remotely access USB devices over a network. This technology is 

widely used in many areas, such as cloud services, where a local USB device can be used remotely on a 

virtual machine or gaming service. Another example is USB servers that share USB devices attached to 

the server over a network with users elsewhere running a client on their computer. An example of this 

type of software is VirtualHere.  

 

This thesis covers work to replace an already existing VirtualHere system used to share USB licence 

devices within Swedish company LjudBang. VirtualHere allows interfacing with its functions using call-

back scripts and this is used to add functionality such as timers and power cycle of devices using relays. 

The current system has been in operation for over five years and has some flaws that need to be ad-

dressed. One of the main goals for the new system was improving reliability through the detection of 

disconnected devices and automatic power cycling when this occurs, as devices commonly disconnect 

from the server, and this requires manual intervention. Another important aspect was to enable a means 

of user interaction as well as proper labelling capabilities as there currently is no way for users to interact 

with the system or appropriately label devices. For all this to be possible, the code needed to be rewritten 

with existing hard-coded configuration being separated from the code. Additionally, another power cy-

cling method than mechanical relays needed to be used as the new system would have more ports than 

the old system and using relays quickly becomes bulky and impractical.  

 

  



2 

To achieve the goals the project involved the evaluation and selection of hardware, including the selec-

tion of USB hubs with port power cycling that could replace the current use of mechanical relays. Fur-

thermore, the project included the development of new Python scripts to interface with VirtualHere and 

the implementation of a web-based user interface using a Node.js backend and a React frontend for user 

interaction. Further, central configuration files in JSON format shared by both Python and the web in-

terface were created to replace the hard-coded settings. The thesis covers the initial development of the 

system. However, field testing and further development will be done after the thesis. 

 

The structure of the thesis is as follows. The original system, requirements and proposed system are first 

presented in more detail. Background information about USB is then provided, followed by a description 

of the key software components. Furthermore, considerations regarding the selection of USB hubs with 

per-port power switching are discussed. Lastly, the developed system is presented. This includes the 

development environment, Raspberry Pi, JSON configuration files, Python scripts, the web interface, 

and additional details regarding the enclosure used for the completed system. Lastly, key security and 

reliability concerns are discussed. 



3 

2 ORIGINAL SYSTEM AND REQUIREMENTS 

This section provides an overview of the original system for sharing USB license devices, including its 

limitations such as lack of device disconnection detection and hard-coded settings. It then presents the 

functional and non-functional requirements for the proposed system. Key improvements include using 

Python scripts, USB hubs with per-port power cycling capabilities, and a user-friendly interface devel-

oped with Node.js and React. The new system also introduces centralized JSON configuration files. 

 

 

2.1 Original system 

 

The system discussed in this thesis is used by the Sweden-based audio post-production company Ljud-

bang to share USB license devices both for computers within studios and between offices, as well as for 

people doing remote work. The company began experimenting with remote USB solutions in 2013, and 

the current system, which is based on the commercial software VirtualHere, was implemented in 2016. 

The USB devices containing licenses consist of both regular flash memory drives and specific USB 

license devices from iLok. Normally, iLoks are intended to be plugged into a computer, and when 

moved, the power is naturally disconnected. These require power cycling between uses or they will not 

work for the next user. Certain iLoks within the company are in high demand and hence there is also a 

timer functionality developed to power cycle the device after a set time. The timer settings are tied to a 

specific USB port on a hub and not to the device itself. 

 

VirtualHere is highly flexible, allowing for the addition of functionality through call-back scripts on 

certain events. This is how both the power cycle and timer functionality are implemented. The current 

system uses simple BASH scripts with all settings hard-coded into the files. The hardware used consists 

of Raspberry Pi (RPi) and connected USB hubs, with a selection of the devices having additional power 

control by relays controlled from the GPIO ports of the RPi. As VirtualHere has been in use for over 

five years at the company, several issues have surfaced.  

 

  



4 

2.2 Requirements and proposed system 

 

One major issue with the current system is that VirtualHere does not detect if a device improperly dis-

connects. This has been a common occurrence, especially with USB flash drives that have been plugged 

in for extended periods of time. Currently, the solution is to physically unplug and reconnect the devices. 

Often, the same devices are causing issues and would need to be replaced, but there is no organized way 

of tracking this. Another major issue is the lack of easy user interaction with the system. As settings are 

hard-coded into the BASH scripts it is hard to adjust them, and the system cannot be shut down or 

rebooted easily either. Additionally, due to the hard-coded settings, it is difficult to add more devices 

and hubs to the system. Despite not being a technical issue, the current system lacks adequate device 

labelling, making it difficult to locate devices. As a result of the shortcomings mentioned above and 

discussions with other technical staff as well as users, the requirements in table 1 were developed.  

 

TABLE 1. Functional and non-functional requirements 

Functional requirements 

The system shall have power cycling functionality for each USB port. 

The system shall have timer functionality that trigger port power cycling if set. 

The system shall have detection of disconnected USB devices and do automatic power cycling for 

reconnection of devices. 

The system shall be able to share a minimum of 40 USB devices. 

The system shall provide means to restart or shut it down. 

The system shall provide means for labelling of ports and devices. 

 

Non-functional requirements 

The system shall have an easy-to-use user interface to enable non-technical users to perform basic 

operations and configurations.  

The system shall log disconnected USB devices to help track malfunctioning devices in the long run. 

The system shall be stable and not experience regular crashes. 

The system shall have a maximum of four hours of downtime.  

The system shall be housed in an enclosure. 

The system shall be compatible with Mac OS. 

  



5 

For the new system the functioning components of the original system, including VirtualHere and RPi, 

were kept since there was no obvious reason to replace them. However, the Bash scripts responsible for 

the core functionalities such as power cycling and timers were considered lacking and not suitable as a 

basis for further development. Additionally, adding detection of disconnected devices would require 

considerable modifications to the system. As a replacement scripting language, Python was chosen. Au-

tomatic power cycling of disconnected devices would require power cycling of all ports, not just iLoks. 

Instead of using mechanical relays, which would be bulky and require much work to implement for all 

ports, USB hubs with per-port power cycling capabilities were selected. Node.js and React were chosen 

for the user interface, partly to maximize learning effort and take advantage of prior knowledge. The 

user interface would provide ways to interact with the system, allow for easy configuration and facilitate 

system reboot and shutdown. The previously hard-coded configurations needed to be centralized to en-

able the Python scripts and the user interface to access the same settings and device data. While using a 

database was considered, for simplicity, it was ultimately decided to use JSON files instead. 

  



6 

3 UNIVERSAL SERIAL BUS 

In this thesis, the focus is not on providing an in-depth understanding of USB, as it is a complex tech-

nology that have evolved over time. This section first offers a general overview, and then covers specific 

aspects relevant to the project as per-port power cycling required for power cycling of devices. The 

emphasis is on USB 2.0 as that is what is used for the project, but to understand some concepts and 

issues encountered, USB 3 is also covered to a certain extent. The latest versions of USB, such as USB4 

and the use of the Type-C connector, will not be discussed, as they are not relevant to this project. 

 

 

3.1 Overview 

 

Universal Serial Bus (USB) is a widely used standard for interfacing computers and other digital devices 

with peripherals introduced by Intel in 1996. A USB system is described by three definitional areas in 

the USB 2.0 specification, interconnect, device, and host. The interconnect is the way USB devices are 

connected to and communicate with the host and includes the protocols as well as physical connectors 

and cables providing connections. Devices can be either hubs, which provide additional connection 

points, or devices that provide functions for the system such as flash drives or other peripherals. There 

is only one host in any USB system. A hub is integrated within the host to provide one or more connec-

tion points and is called the root hub. The USB interface to the host computer system is called the Host 

Controller and it is responsible for controlling data flow, managing power consumption, and ensuring 

correct device connections and disconnections. The USB Host Controller Interface (HCI) specification 

defines how USB host controllers communicate with USB devices and computer systems. (USB-IF 

2000.) 



7 

 
FIGURE 1. USB topology (USB-IF 2000) 

 

The kind of physical interconnect used forms a tiered star topology, as can be seen in figure 1 where the 

host with the root hub is at the top and there are additional tiers below with hubs and devices. Due to 

timing constraints related to hub and cable transmission times a maximum of seven tiers are allowed. 

(USB-IF 2000.)  In later specifications as USB 3.2, there are significant changes in protocols; however, 

the basic topology remains the same (USB-IF 2022). 

 

 

3.2 History 

 

The first USB specification offered two transfer speeds, initially 1,5 Mbps (low-speed) which was later 

increased to 12 Mbps (high-speed). As computers become more powerful and capable of processing 

larger amounts of data, higher data transfer rates were required. The USB 2.0 specification was intro-

duced in 2000, providing 480 Mbps as a third transfer rate while maintaining backward compatibility. 

USB 2.0 also introduced more features as better power management allowing for USB devices to be 

powered down when not in use to reduce power consumption. With USB 2.0 a new HCI called EHCI 

was introduced but it coexists with a USB 1.1 host controller used for lower speeds. USB 2.0 devices 

are backward compatible with USB 1.1, so they can be connected to USB 1.1 computers and vice versa. 

(USB-IF 2022.) 

 



8 

The need for higher transfer rates continued, as by 2006, drive speeds commonly exceeded 100 MB/s, 

which was significantly higher than the 32 MB/s bandwidth offered by the 480 Mbps transfer rate avail-

able in USB 2.0. In response, USB 3.0, also called SuperSpeed, was introduced, enabling data rates up 

to 5 Gbps while still maintaining backward compatibility. Later, Enhanced SuperSpeed USB 3.1 and 3.2 

were introduced, increasing transfer speeds even further, with USB 3.1 offering speeds up to 10 Gbps 

and USB 3.2 providing speeds up to 20 Gbps. (USB-IF 2022.) 

 

 
FIGURE 2. USB 3.2 dual bus system architecture (USB-IF 2022) 

 

With USB 3.0 many technical improvements were introduced, including changes in the protocol, encod-

ing, wiring, power management and more. Most are out of scope for this thesis, but the dual-bus archi-

tecture that enables backwards combability is worth mentioning as USB 2.0 and 3.0 co-exists side by 

side. This architecture provides separate paths for USB 2.0 and USB 3.0 traffic, as can be seen in figure 

2 above. Data is transferred simultaneously between USB 2.0 and USB 3.0 devices via a single cable. 

By using separate connectors and additional wires, USB 3.0 devices are not affected by USB 2.0 traffic 

and both buses can be active at the same time. When connected to a USB 2.0 port, USB 3.0 devices will 

operate at USB 2.0 speeds. (USB-IF 2022.) USB 3.0 also introduced a new HCI controller called eX-

stensible Host Interface controller (xHCI) capable of also handling the older standards. The xHCI con-

troller theoretically supports up to 255 devices with 31 endpoints each. (Intel 2019.)  



9 

3.3 Enumeration 

 

When a USB hub or device is connected to a host computer, a process called enumeration is initiated to 

establish communication and configure the device. The process involves detecting the connection, 

providing power, resetting the device to have a clean starting point, assigning a unique address, and 

retrieving device descriptors. These are data structures containing essential information about the device 

and its configuration. Based on the received information, the host selects an appropriate configuration 

for the device and if necessary, loads device drivers. Once configured, the host computer can begin data 

transfers and communicate with the device using various USB transfer types and protocols. As USB 

allows devices to attach or detach at any time, enumeration is an ongoing process. In the enumeration 

process, the host communicates with the device using control transfers at what is called endpoint 0, 

which is a unidirectional control endpoint that is required for all USB devices and hubs. (USB-IF 2022.) 

 

In Linux the device descriptors are also made available in a virtual filesystem. More recent kernels likely 

use sysfs. Here the kernel's internal data structures related to devices, drivers, and other kernel compo-

nents are presented in user space through a virtual filesystem. This way, it allows users and applications 

to easily access this information by presenting it in a hierarchical directory structure. The sysfs filesys-

tem contains many read-only files, but some are writable, allowing change of kernel variables. An entry 

is created for a USB device by the kernel under /sys/bus/usb/devices after it is successfully enumerated. 

The complete path forms a device path, or devpath in short. This entry contains files and directories that 

represent device attributes and configuration options. (Linux Kernel Organization 2023a; Linux Kernel 

Organization 2023b.) 

 

 

3.4 Per-port power switching and uhubctl 

 

USB 2.0 introduced better power management. Self-powered hubs, which do not have external power, 

may have optional power switches to control power to ports, while externally powered hubs require 

them. The control does not have to be for each individual port, however. In ganged power-switching 

mode, power to ports in a group is controlled simultaneously. In per-port power-switching mode, power 

to each port is controlled individually. (USB-IF 2000.) While it is possible to control port power by 

writing to the virtual sysfs filesystem as described by Stern (2014) in the Linux Kernel documentation, 

this is not straightforward and always reliable. Another simpler approach would be to use a third-party 

tool. 



10 

Uhubctl is an open-source command-line utility written in C designed to manage and control USB hubs 

which support per-port power switching that are compliant with USB 2.0 and USB 3.0 specifications. It 

is compatible with various operating systems, including Linux and macOS. The tool allows users to 

display information about detected hubs, including their location, device ID, and port power status. In 

addition, it allows control of port power. It also has a forced mode, which attempts to control individual 

ports on a hub even if per-port power capability is not reported by device descriptors. (MVP 2023.) 

  



11 

4 SOFTWARE 

This section describes key software components of the project. It was found that the main component of 

the system, VirtualHere, was still competitive among other solutions. Because of its proven reliability 

and good support from the developer, it was decided to continue using it. Furthermore, using another 

software would invalidate much of the knowledge and lessons learned from the current system, making 

a switch even less compelling. Following VirtualHere, the technologies used for the web interface are 

also briefly discussed. An overview of Python follows, preceded by an overview of the RPi operating 

system and some Linux tools that were used. 

 

 

4.1 VirtualHere 

 

VirtualHere is a software solution that enables sharing of USB devices across a network. Several alter-

natives to VirtualHere exist on the market, but not all are suitable as the company is using Apple com-

puters and therefore requires MacOS support. There exists, however, several competitive cross-platform 

products as USB Network Gate and FlexiHub by Eltima as well as products from other vendors, includ-

ing USB over Network from FabulaTech and USB redirector from Incentives Pro. Additionally, hard-

ware alternatives exist, such as Digi's AnywhereUSB line of products. (Eltima 2023; FabulaTech 2023; 

IncentivesPro 2023; Digi 2023.) Among these alternatives, a common denominator is that they are con-

siderably more expensive than VirtualHere, which costs 49 USD at the time of writing, which is a frac-

tion of what most competitors charge for similar functionality (VirtualHere 2023a).  

 

VirtualHere works by converting USB into TCP/IP packets and then converting it back at the other end. 

This enables remote access to various USB devices, such as printers, scanners, webcams, and other 

peripherals, as though they were directly connected. VirtualHere uses a client-server architecture. The 

server is where the devices are connected, and the client is used on the host computer to access the 

devices remotely. (VirtualHere 2023b.) An overview can be seen in figure 3 below.  

 



12 

 
FIGURE 3. VirtualHere overview (adapted from virtualhere.com) 

 

The VirtualHere USB Server is available for Windows, Mac OS, and Linux including Android. The 

Linux server is designed to be compatible with any version of the Linux kernel and with any architecture. 

This includes desktops, servers, Android, and various embedded systems as the RPi. All settings are 

stored in a text-based configuration file, and the server supports up to 122 devices and six tiers of hubs. 

A variety of integrations are possible through the server's ability to perform call-backs to scripts on 

certain events, such as when devices are enumerated on the server and used or stopped being used on 

the client.  It uses the open Bonjour protocol for network discovery and operates on a single TCP port 

making firewall and remote access setup easier. It supports SSL for added security when sharing over 

the Internet and has a built-in system for accessing devices over the Internet, albeit at additional cost. 

(VirtualHere 2023c.) 

 

 
FIGURE 4. VirtualHere client window 

 

Dongles

Gaming

Printers
Serial USB adapters

Headsets

Embedded

Server

Android

Embedded

Cloud Client

PC / Mac / Linux

USB device VirtualHere
server

VirtualHere
client

LAN
WAN

Cellular

Transparently creates a USB connection using the network instead of a USB cable



13 

The client is cross-platform, supporting Windows, Mac OS, and Linux. The GUI can be seen in figure 

4 where a click on a device connects or disconnects it. The client can also be run as a service and con-

trolled through an API either directly or using a named pipe. One useful command returns the client's 

state in XML format that also includes all connected devices. The client also supports event-based call-

backs, but the number of events supported is lower than that of the server. (VirtualHere 2023d.) 

 

 

4.2 Web interface technologies 

 

When developing the web interface, the primary focus was on the functionality provided rather than the 

specific technology used. The main purpose to create a web interface was to enable user interaction with 

the system, offering options to edit device configuration and perform actions such as shutdown and 

reboot. In this project Node.js is used as a REST API that provides endpoints to the React frontend to 

fulfil the functionality required. For security reasons there was also need for login functionality. This 

part first presents a brief background on the key technologies used for the web interface as Node.js, 

React, and JSON. Further, additional technologies used as JWT and JSON are mentioned.  

 

Node.js is a widely used open-source, cross-platform JavaScript runtime environment released in 2009. 

It offers a fast and efficient way to build JavaScript-based server-side applications. It has fast perfor-

mance, non-blocking I/O, and large module ecosystem. REST APIs (Representational State Transfer 

Application Programming Interfaces) are architectural styles for developing web services that allow dif-

ferent systems to communicate and exchange data. It is based on resources, which are uniquely identifi-

able entities. To perform operations on resources, standard HTTP methods are used and standard HTTP 

response codes are given. Each request is stateless, meaning that all necessary information is included 

in the request. The data is often represented using JSON or XML. (Bojinov 2018.)  

 

For preventing unauthorized use several endpoints expect a token in the header for authentication and 

JSON Web Token (JWT) is used for this. JWTs consist of three parts: the header, payload, and signature. 

The header contains information regarding the type of token and cryptographic algorithm used. The 

payload of a JWT contains important information about the user or entity. The signature verifies the 

authenticity of the token. The use of JWTs is often used to provide stateless authentication, allowing 

servers to verify and authorize requests without having to query a database or save session information. 

(Jose, M., Jones, M., & Bradley, J. 2015.) The JWT token received from the backend is also stored by 



14 

the frontend within the browser's localStorage to be retained between sessions. Localstorage is a storage 

of key-value pairs only accessible locally in the browser (Mozilla 2023).  

 

The front-end is built using React, which is an open-source JavaScript library used for building user 

interfaces and UI components in web and mobile applications. In React, developers declare the desired 

structure of the user interface rather than working with the DOM. React uses a virtual representation 

called the Virtual DOM, which allows it to detect changes and update only the necessary parts of the UI. 

This enables automatic UI updates in response to changes in data or user interactions. (React 2023.) The 

React frontend built for the system uses Material UI (MUI) which is an open-source UI component 

library for React-based web and mobile application development. It is a design system based on Google's 

Material Design system and contains a wide range of customizable and responsive components, layout 

utilities, and themes that simplify the design and development process. (MUI 2023.)  

 

JavaScript Object Notation (JSON) is used for both communication between backend and frontend as 

well as for configuration files. JSON represents structured data in a lightweight, human-readable format. 

In general, it is used to transmit data between a server and a client (web application) or within an appli-

cation. Although derived from JavaScript, JSON is language-independent, meaning it can be used with 

any programming language. JSON data is stored as key-value pairs, where keys are strings and values 

are strings, numbers, booleans, objects, or arrays. For objects, curly braces are used "{}" and for arrays, 

square brackets are used "[]". (Ecma International 2017.) 

 

 

4.3 Python 

 

Initially released by Guido van Rossum in 1991, Python is a high-level interpreted programming lan-

guage. It stresses simplicity and readability and uses indents for statement grouping which reduces the 

need for complex syntax structures. This makes it easier to read and a suitable choice for both beginners 

and experienced programmers. Python is general-purpose and versatile and is used for a variety of ap-

plications including web development, data science, artificial intelligence, and automation. In addition 

to a standard library supporting many common programming tasks, a range of external libraries is avail-

able for more specific work. Furthermore, Python has a strong and active community that contributes to 

its development and offers support. (Python Software Foundation 2023a.) 

  



15 

4.4 Raspberry Pi OS and utilities 

 

The RPi in this project uses the recommended operating system provided by the RPi Foundation, known 

as Raspberry Pi OS. This operating system is based on Debian and tailored to the RPi (RPi Foundation 

2023a). Raspbian includes numerous pre-installed tools as does most Linux distributions. A couple of 

common Linux tools are used. To start and keep the VirtualHere server and Node processes running, 

systemd is used, and for starting scripts at intervals crontab is used. Additionally, logrotate is used to 

manage logs. 

 

Systemd is a system and service manager for Linux operating systems. A systemd daemon is a back-

ground process that manages system services, ensuring they start, stop, and restart as required. Several 

Python scripts need to be started at certain intervals and for this crontab is used which enables users to 

schedule tasks in crontab files. These contain a series of lines describing the tasks to be executed at what 

time or interval. To prevent logs from becoming excessively large, lograte is used. Logrotate is a utility 

designed to manage log files generated by various applications and services. Log rotation involves re-

naming, moving, and creating new log files to manage log sizes and make efficient use of disk space. 

(Negus 2015.)  

 

To prevent unnecessary wear on the SD card, a directory in RAM is used for temporary files written by 

the Python scripts. Raspbian, and other Linux distributions create such folders automatically. One ex-

ample is described in the Linux Foundation (2015) filesystem hierarchy standard where temporarily a 

directory based on the user ID is created in /run/user/ at system login. This directory serves as a memory 

storage location for user-specific data used at runtime. When the system restarts or the user logs out, it 

is automatically cleared. 

 



16 

5 HARDWARE 

This section discusses several hardware choices for the project. The old system uses the RPi 2 model, 

which has worked reliably for many years. However, as it is old the support is about to end. As a result, 

the decision was made to use the newer RPi 4 version, which offers prolonged support and improved 

performance. The USB hubs section covers the evaluation process for hubs suitable for the project. The 

hubs were chosen mainly based on their per-port power control ability and their size, in order to fit 

enough hubs within the enclosure. 

 

 

5.1 Raspberry Pi 

 

In 2012, the RPi Foundation developed a credit card sized computer to provide the educational sector 

with an affordable platform for learning programming. The initial version of the RPi, the Model B, 

featured limited connectivity and only 256 MB of RAM powered by an ARM11 processor at 700MHz. 

Several revisions to the RPi have taken place since then, and updated models have been introduced with 

improved specifications and features, such as more GPIO pins, improved USB, and network support. A 

major strength of the RPi is the support it receives from both the Foundation and a large community of 

developers and enthusiasts. In addition to documentation, educational resources, and online communities 

the Foundation provides an official operating system, Raspberry Pi OS, which is based on Debian. (RPi 

Foundation 2023b.) 

 

 
FIGURE 5.  RPi 4 overview 

 



17 

The most recent model as of 2023, the RPi 4B, can be seen in figure 5 above. It has a quad-core ARM 

Cortex-A72 processor at 1.5 GHz, up to 8 gigabytes of RAM, and is the first version to have USB 3 

support (RPi Foundation 2023b). The USB 3 controller is directly attached to the PCIe bus and drives 

the main USB ports. The old legacy controller used on previous models is found on the SoC, albeit only 

capable of USB 2.0, and is available for the USB-C port which can be used as both USB host and device. 

This controller must be manually enabled and configured as the USB-C port is primarily used for pow-

ering the PI. (Raspberry Pi Foundation 2023c.) 

 

 

5.2 USB hubs 

 

For the new system USB hubs with per-port power control were selected to replace the mechanical relays 

used in the original systems. This to be able to power cycle all USB devices connected in a practical 

manner. The list of USB hubs that support per-port power switching as reported by the uhubctrl project 

is short (MVP 2023). The hubs for this project, aside from per-port switching capabilities, needed to 

have dimensions to fit enough of them in a practical way inside an enclosure. Initially, a compact hub 

called D-Link DUB-H7 was considered as it already was in use by the company. It has seven USB 2.0 

ports without any LED indicators. The data transfer is limited to 480Mbits since this is a USB 2.0 hub. 

The power adapter is 15W at 5V but is not required. (D-Link 2023.) However, it is an old hub and there 

exist several newer revisions where newer models lack per-port power cycling capabilities which is also 

made clear from the uhubctl page. After unsuccessful attempts to source the older model from three 

different sources, it was decided to explore other options. A 7-port hub from the Amazon basics line had 

a very compact format and was listed as compatible and therefore was tested. It features seven USB 

Type-A 3.1 ports with LED indicators for each port. It supports data transfer speeds of up to 5Gbps 

being compatible with USB 3.1, 3.0, and 2.0. The power adapter, which is rated at 36W and 12V, is 

required for the hub to function. There is also a 10-port version which also was evaluated that is similar 

but uses a 20V power supply. (Amazon 2023.) The three hubs can be seen in picture 1 below. 

 

 
PICTURE 1. Amazon basics 7 & 10 port and D-Link DUB-H7 USB hubs (Amazon 2023; D-Link 2023) 

 



18 

Manufacturers often design larger hubs using 4-port hubs internally, which is noted by the uhubctl pro-

ject (Mvp 2022). This means that a 10-port hub often contains three internally daisy-chained 4-port hubs, 

and a 7-port often uses two. This was the case with all hubs tested in this project. It was discovered that 

VirtualHere's six-tier limit could easily be exceeded if not careful. Figure 6 illustrates two scenarios 

involving two different hubs. In the first example, two 10-port hubs are used, and the chain of internal 

hubs causes some devices to end up on tier 7 and they cannot be used by VirtualHere. The other example 

presents a working alternative utilizing 7-port hubs where no device goes past tier 5. 

 

 
FIGURE 6. Two 10-port hubs and two 7-port hubs 

 

Three self-powered USB 2.0 4-port hubs were additionally evaluated for this project as these consist of 

a single 4-port hub. These were hubs that were found to be available at the company and can be seen in 

picture 2 below. According to the USB 2.0 specification (USB-IF 2000), self-powered USB hubs must 

have power switches to control ports, although they can be managed in gangs or groups. The power 

switching behaviour of all hubs initially appeared to be ganged. However, when using the forced mode 

of uhubctl, each hub indeed featured per-port power switching capabilities. There is also the issue of 

limited power allowance when using self-powered hubs as there is no external power available. In USB 

2.0 only 500 mA of current is supported per port (USB-IF 2000). 



19 

 
PICTURE 2. Tested self-powered USB 2.0 4-port hubs 

 

To determine if the 4-port hubs could be used, preliminary testing of USB flash drive energy consump-

tion was performed with a simple power meter as seen in picture 3 below. Device descriptors provide 

information about the device, including power consumption (USB-IF 2000). A difference was observed 

between the reported power usage in the device descriptors and the measured power usage when testing 

the most common types of USB devices currently in use in the original system. With the descriptor 

values being consistently higher than the measured values in most cases as can be seen in table 2.  

 

 
PICTURE 3. YOJOCK USB digital tester 

 

These numbers are very similar to numbers found in a previous study on power and performance char-

acteristics of USB flash drives, where flash drives commonly used more power for writing than for 

reading (O'Brien, K., Salyers, D.C., Striegel, A.D., & Poellabauer, C. 2008). USB devices in the system 

are mostly idle and rarely see any writes. This means the measured power draw is close to what is ex-

pected in the operating environment. This would indicate that the 500 mA available to a 4-port USB 2.0 

hub would be adequate for most of the USB devices in use in the original system.  

 

  



20 

TABLE 2. Measured power consumption of common USB 2.0 devices in the original system 

Device name Size Descriptor  Measured (read/write) 

Kingston DTSE9 (flash drive) 8 GB 200 mA 60 / 70 mA 

Kingston DataTraveler G2 (flash drive) 16 GB 300 mA 140 / 200 mA 

Tranzip (flash drive) 16GB 300 mA 60 / 80 mA 

SanDisk Cruzer Blade (flash drive) 64 GB 224 mA 100 / 200 mA 

iLok - 60 mA 30 / 30 mA 

 

In the later stages of the project more Amazon 7-port hubs were acquired and a total of six were con-

nected to the RPi trough an additional Amazon 7-port hub acting as a distributor. This though proved to 

problematic with uhubctl power cycle times of up to 6s when used in USB 3.0 mode. Using a D-Link 

DUB-H7 as distributor hub forcing the use of USB 2.0 the power cycle time was 2.0s which was ac-

ceptable. A more serious issue was the limited number of devices enumerated. System logs on the RPi 

reported that the max number of devices the xHCI host supported was 32. Although the xHCI standard 

itself supports up to 256 devices with 31 endpoints each, the actual numbers a particular controller needs 

to support is not defined (Intel 2019).  

 

The number of endpoints is also a concern in addition to the device count. USB devices must have a 

control endpoint, but they tend to have multiple endpoints. USB hubs also consume endpoints for ports 

and controllers. (USB-IF 2000.) In this case, the combination of USB devices and hubs resulted in the 

enumeration of only 16 devices on the RPi, considerably less than the available ports of 42. Using only 

the USB 2.0 D-Link model as a test, 24 devices were enumerated which still was not sufficient. 

 



21 

6 DEVELOPED SYSTEM 

This section presents the developed system along with some additional comments and discussions. The 

development process began with an evaluation of the existing system to identify the issues to be ad-

dressed. Once the primary objectives were identified, research on USB and its use in Linux began and 

various hubs were acquired and evaluated. VirtualHere was then investigated to determine its different 

options and capabilities and it was found that keep using scripts was a more fitting approach than devel-

oping a continuously running application. JSON was chosen for the configuration files, and a configu-

ration file structure was defined. Python scripts were developed first, followed by the Node.js backend 

and React frontend. Finally, scaling up the system with more hubs and devices revealed some critical 

concerns. 

 

The section structure is as follows. The development environment used is briefly described first, fol-

lowed by a short introduction to the entire system. The JSON configuration files are then presented 

followed by the Python scripts that interact with VirtualHere. Then, the web interface backend and 

frontend are described. Afterward, the enclosure in which the system is housed is presented, followed 

by a discussion of security and reliability concerns. 

 

 

6.1 Development environment 

 

The editor used during development was Visual Studio Code (VS Code), which is a free, open-source 

code editor developed by Microsoft. This editor provides a flexible and powerful editing environment, 

which can be enhanced with various extensions. It supports numerous programming languages and plat-

forms and is compatible with Windows, macOS, and Linux. (Microsoft 2023.) Almost all development 

was conducted on the RPi itself using the SSH-Remote extension for Visual Studio Code.  

 



22 

 
FIGURE 7. Working locally on RPi using VS code and SSH-remote extension 

 

With this extension, a remote machine with a SSH server can be used as a development environment, 

and commands and many extensions can be run directly on the remote machine. Any folder on the re-

mote machine can be opened and worked with as though it were on the local machine and this allows to 

use more specialized hardware than the local machine, thereby simplifying and improving the develop-

ment process. (Microsoft 2021.) Figure 7 shows an example of VS Code connected to the RPi during 

development where local files are visible to the left and three terminals on the bottom are used to show 

the Node.js backend, React frontend, and VirtualHere server output running on the RPi. Additionally, 

git and GitHub were used for version control and as code repository. The overall structure of the project 

can be seen in figure 8 below. 

 
├── config   JSON configuration files 
├── log   Log files  
├── node 
│   ├── vh-web-backend Node.js backend folder. 
│   │   ├── controllers Files responsible for serving endpoints 
│   │   ├── requests  (used during development only) 
│   │   └── utils  Mainly functions.js (common functions) 
│   └── vh-web-frontend React frontend folder. 
│       ├── build  Build folder for frontend. Served by backend. 
│       └── src 
│           ├── components React components 
│           └── services Files used for communication with backend 
├── python   Python scripts 
└── symlink -> /run/user/1000/ Path for RAM disk. Used for temporary files. 
 

FIGURE 8. Overview of project folder structure 



23 

6.2 Overview 

 

The system is composed of several separate components but has two distinct parts. Scripts that interact 

with VirtualHere using Python and a web interface used for user interaction and configuration, powered 

by Node.js and React. Both parts share the same configuration files and use uhubctl for controlling power 

of USB hub ports. Figure 9 below provides an overview. 

 

 
FIGURE 9. Overview of system components 

 

The Python scripts extends the functionality of the VirtualHere server primarily by adding the ability to 

power cycle a USB device thus also the ability to disconnect a user after a specified time. This enables 

iLok devices to power cycled and consequently used by another user. In addition, scripts run at set in-

tervals to check if devices are disconnected and attempts to power cycle the USB ports to restore them 

if possible. Another script alerts by email at the end of day if a device has disconnected more than a set 

threshold. The VirtualHere client running on the RPi is connected to the VirtualHere server on the same 

host and serves as a source for detecting connected devices by using XML state output of client. The 

Node.js backend serves a REST API as well as a web interface developed in React. The backend pro-

vides a variety of REST API endpoints that the React frontend utilizes to read and write configuration 

data. Furthermore, there are endpoints that enable the system to be rebooted or shut down. 

 

Raspberry PI

Node.js backend VirtualHere server

Python scripts

USB hubs

USB device

Triggers

JSON configuration 
files

Reads / writes

Triggers

Communicates

System timer 
(crontab)

UHUBCTL
(Port power control)

Controls

VirtualHere client

XML state

Triggers

USB device

Communicates

User's computer

Web browser / 
React frontend

VirtualHere client

Accesses web interface

Uses Devices

Communicates

Connects

User



24 

To re-use code the Python scripts use a vh_functions.py module that each script imports. It contains 

common functions, such as reading and writing configuration, translation functions, as well as function-

ality for power cycling USB ports with uhubctl. The same applies to Node.js where a corresponding 

vh_functions.js file is used. Additionally, there is also an environment file used by both Python and 

Node.js.  

 

 

6.3 Raspberry Pi 

 

The required steps to get the system up and running on a RPi running a fresh install of Raspberry Pi OS 

Lite is to install Git, Node.js, uhubctl, VirtualHere server, and VirtualHere client. Then clone the git 

repository for the project from GitHub and copy the environment variables, as they are not part of the 

repository. To start all services at boot they need to be added to systemd. Lastly, crontab need to be 

configured to run required Python scripts at intervals. 

 

The choice of the RPi for this project was based on several factors. First, the RPi has an excellent track 

record within the company, with multiple devices operating continuously for years without issues. Sec-

ond, the RPi has strong support from both the RPi Foundation, community, and VirtualHere. The small 

size of the RPi further makes it easy to fit in a small enclosure. Additionally, the GPIO pins provide the 

option for a hardware interface with buttons and displays. In the end, however, a hardware interface was 

not required, as the user interface was implemented using a web interface. During the thesis process, a 

component shortage made it difficult to obtain RPi devices. The use of another platform was considered 

but never realized as the advantages still outweighed the disadvantages. 

 

 

6.4 Configuration files 

 

JSON was chosen for the configuration files as it is a commonly used technology and therefore works 

well with both the web interface and Python scripts. Initially, USB device path addresses in Linux were 

used to identify devices in the configuration files. While this method was functional, it resulted in an 

inflexible structure, which was one of the issues with the old system. Using USB serial numbers rather 

than addresses enabled a more flexible structure, since the JSON file did not need to reflect the physical 

arrangement of hubs and devices in any way. As unique serial numbers are required, USB devices with-



25 

out them cannot be used, which is a limitation of the new system. Observations from devices tested 

during development showed that a selection of USB flash drives did not have a proper serial number. 

 

The use of a database was considered, but files were chosen for simplicity to avoid the Python scripts 

being dependent on a database to function as configuration changes are rare. It is expected that the sys-

tem will have minimal writes over time. However, there could be issues if a Python script and the 

backend write to a file simultaneously. To solve possible issues with write conflicts a file locking mech-

anism could be used for writes (Molay, B. 2003). The REST API could also be used in Python for file 

access via HTTP requests, although this would make the scripts dependent upon the backend and a 

database could as well be used. 

 

The project contains two types of configuration files. Firstly, USB device configuration, which provides 

information about USB devices used in the system. Secondarily, port locations containing physical port 

names. The device JSON configuration file consists of an array of objects. Each object holds key-value 

pairs concerning a specific device and code 1 below depicts a single entry. The serial number is the 

primary identifier used to locate the device. Usually, the address of the device is passed from VirtualHere 

but when the device is disconnected, and the system tries to power cycle the port the latest known address 

is needed. The product ID is used in the web interface to sort devices by type. The state of the device 

indicates whether it is in use or not. The timer is for power cycle of devices and is expressed in seconds, 

where zero is no timer. The nickname is only intended for ease of reference in logs and the web interface 

and is the nickname used in VirtualHere. Logging if set to zero means no data will be logged, and if 

above zero logging is on. Typically, notes are used to provide extra information, such as if the device is 

disconnected and used elsewhere which helps organization and labelling. In the future more key-value 

pairs can be added as needed.  

 
[ 
    { 
        "serial": "3988A22A_7F293214",  
        "address": "1-1.1.2.4.4",   
        "product_id": "5036",   
        "state": 1,    
        "timer": 300,    
        "nickname": "ilok - test",    
        "logging": 1, 
        "notes": "This is just a test note" 
    } 
] 
 

CODE 1. Single device JSON device configuration example 

 



26 

The port location JSON file consists of the USB port address as key and location name as value. It is 

used to show device location in the web interface and as such help with organization and labelling of 

devices. The hub addresses provided below in code 2 refer to the Amazon Basics 7-port hub which is 

labelled HUB A within the enclosure. 

 
[ 
    {"1-1.3.4.3.3": "HUB A - port 1"}, 
    {"1-1.3.4.3.2": "HUB A - port 2"}, 
    {"1-1.3.4.3.1": "HUB A - port 3"}, 
    {"1-1.3.4.3.4.3": "HUB A - port 4"}, 
    {"1-1.3.4.3.4.2": "HUB A - port 5"}, 
    {"1-1.3.4.3.4.1": "HUB A - port 6"}, 
    {"1-1.3.4.3.4.4": "HUB A - port 7"} 
] 
 

CODE 2. Port location JSON example 
 

 

6.5 Python scripts 

 

Python scripts are used for the integration with the VirtualHere server. The following VirtualHere server 

events are used, onBind, onUnbind and onEnumeration. OnBind occurs when a device is used in the 

client and the start_use.py script is then executed by the VirtualHere server. Whenever a device is 

stopped from being used on the client, the onUnbind event is triggered, which executes the stop_use.py 

script. Finally, the onEnumeration event occurs at device enumeration and executes the device_enumer-

ation.py script that updates the device configuration if necessary. Using crontab, the port_check.py script 

is executed every ten minutes to check for disconnected devices, and the email_alert.py script is executed 

at the end of the day to alert the administrator if any devices have disconnected more frequently than a 

set threshold. The scripts will be described in detail below with flowcharts available in appendix 4. 

 

To pass device data between VirtualHere and Python scripts, the VirtualHere server is configured to 

write data to a file on events which is then read by the Python scripts. Using files for communication 

between processes can be problematic. The writing process must finish before reading can begin, result-

ing in files generally being unsuitable for real-time communication (Molay, B. 2003). In this case, the 

VirtualHere server consistently finishes writing before triggering the Python scripts. Named pipes could 

otherwise been used as an alternative. The code 3 below is from the VirtualHere config.ini file where 

the behaviour is specified for events. The onBind event depicted occurs when a device is being used in 

the client. Each item between dollar signs represents data provided by VirtualHere. Rest are standard 

Linux commands. For readability, file paths have been removed. The process involves echoing a JSON 



27 

object into the vh_start_arguments.json file, and then executing the start_use.py script, which then in-

ternally reads the JSON file to pass the data.  
 
onBind=echo  
'{ 
   "address":"$ADDRESS$", 
   "devpath":"$DEVPATH$", 
   "vendor_id":"$VENDOR_ID$", 
   "product_id":"$PRODUCT_ID$" 
}' 
> vh_start_arguments.json && python3 start_use.py& 
 

CODE 3. VirtualHere server event config example for onBind 

 

 

6.5.1 Enumeration 

 

The enumeration script is triggered by the VirtualHere server whenever a device is enumerated, which 

occurs when a device is plugged into a USB port or when a port is power cycled. VirtualHere is config-

ured to pass the data that can be seen in code 4 below. The purpose of the script is to update the device 

address and nickname in the configuration if they have changed. Otherwise, if a device is removed and 

replaced by another, the system would assume that the old device is missing. This would result in an 

incorrect power cycle of the port by the port check script.  

 
{ 
   "address":"$ADDRESS$", 
   "devpath":"$DEVPATH$", 
   "vendor_id":"$VENDOR_ID$", 
   "product_id":"$PRODUCT_ID$", 
   "nickname":"$NICKNAME$", 
   "serial":"$SERIAL$", 
   "product":"$PRODUCT$" 
} 
 

CODE 4. VirtualHere onEnumeration data 

 

 

6.5.2 Start use 

 

The start use script is triggered by VirtualHere server when a user starts using a device in the client. The 

main purpose of the script is to allow timers for iLok devices. The data shown in code 5 is passed from 

VirtualHere. Unfortunately, VirtualHere does not pass the device's serial which is needed to find the 



28 

device configuration as the serial is used as the identifier. The script instead retrieves it from the Linux 

sysfs filesystem using the device devpath which is passed. 

 
{ 
   "address":"$ADDRESS$", 
   "devpath":"$DEVPATH$", 
   "vendor_id":"$VENDOR_ID$", 
   "product_id":"$PRODUCT_ID$" 
} 
 
CODE 5. VirtualHere onBind data 

 

Once the serial is retrieved the script checks if it is found in the device configuration file. In that case 

the script checks if a timer other than zero is set. If true, the script waits for the specified time and power 

cycles the port. To cycle ports using uhubctl, the Python subprocess module is utilized, which allows 

new processes to be created while also connecting to the input and output of the process (Python Soft-

ware Foundation 2023b). This enables the uhubctl utility to be run from within Python while passing 

required variables as hub and port. An example of this can be seen in code 6 below.  

 
subprocess.run(['sudo', 'uhubctl', 
                '-a',               # action 
                '2',                # cycle power 
                '-d',               # cycle time 
                '2', 
                '-l',               # limit to hub 
                hub, 
                '-p',               # port 
                port]) 
 
CODE 6. Python subprocess with uhubctl 

 

The script continues to run until the timer has elapsed. A user may however stop using the device before 

the timer expires and another user may now use the device. To prevent power cycles in this case, incor-

rectly disconnecting the current user, the script writes a file with a random timer ID with a filename of 

the address. Before power cycling the port, the script confirms whether the timer ID still matches. If 

another user would have started using the device, the timer ID would have been overwritten and would 

no longer match. Additionally, the timer ID gets a pending status for a brief period after the power cycle 

before the ID file is deleted. This state is used by the stop use script to prevent further unnecessary power 

cycling.  

 

 



29 

6.5.3 Stop use 

 

Stop use is triggered by the VirtualHere server when a user stops using a device in the client or when 

power is cycled for a device. The script is primarily used to power cycle iLoks. Unfortunately, this script 

is also triggered whenever the start use script power cycles a device. To prevent unnecessary power 

cycles the timer ID is checked for the pending state, which indicates that the device has recently been 

power cycled by the start use script and should not be power cycled again.  

 

 

6.5.4 Port check and alert 

 

The port check script is executed by crontab at 10-minute intervals. Its primary function is to identify 

disconnected devices and initiate a power cycle to potentially bring them back. Additionally, if logging 

is enabled for a device, an entry is added to a power cycle log to keep track of problematic devices. 

Testing was done to determine whether it is possible to detect disconnected USB devices directly in 

Linux. Reproducing the intermittent fault of disconnected devices was extremely difficult, making con-

sistent testing almost impossible. Reading the systfs directories and USB descriptors proved challenging 

and therefore using VirtualHere client state was deemed more robust and simpler. The script determines 

connected devices by utilizing the VirtualHere client operating locally on the RPi, which can output its 

state in XML format. The library xmltodict is used to, as the name implies, convert the XML to a Python 

dict which is a data structure which resembles the structure of JSON (PyPI  2022). By comparing the 

serial numbers found in the XML output to the devices expected in the JSON device configuration file, 

the script can determine whether a device is missing, and a power cycle should be done for a device.  

 

An additional alert script is executed by crontab at the end of each day. Its primary purpose is to notify 

the system administrator via email about any problematic devices for that day. The script searches the 

power cycle log generated by the port check script and counts the occurrences of each device. The logs 

are rotated every day meaning only one day of entries are counted. If a device's count surpasses a set 

threshold, an email alert is sent to the administrator. The email is sent using the standard Python smtplib 

library.  

  



30 

6.6 Web interface 

 

When developing the web interface, the primary focus was on the functionality provided rather than the 

specific technology used. The main purpose of it is to enable user interaction with the system, offering 

options to edit device configuration and perform actions such as shutdown and reboot. This section first 

presents the REST API backend followed by the React based frontend. 

 

 

6.6.1 Backend 

 

The Node.js backend functions as a REST API that provides endpoints to the React frontend that it also 

serves. The main resource URL endpoints of the API can be found in table 3 below. The endpoints are 

described in more detail in appendix 1. Important endpoint functionality includes device JSON config-

uration file access to be able to add, edit and delete devices. Further, endpoints for the execution of shell 

commands are important. This includes uhubctl for power cycling ports and the VirtualHere client for 

obtaining state data in XML format. A similar approach as in Python is used to execute shell commands, 

but with Node.js the exec method from the module child_process is used (Node.js Foundation 2023). To 

parse the XML to suitable JavaScript objects the library node-xml2js is used (Leonidas-from-XIV 2023). 

 

TABLE 3. REST API resource URLs 

/api/devices  Endpoints concerning devices 

/api/ports  Endpoints concerning ports 

/api/logs Endpoints for logs 

/api/utility  Endpoints for utility functions as reboot and shutdown 

/api/login  Endpoint for login 

 

One issue encountered while working with the VirtualHere client to output XML was that the client 

would not reliably work. This caused issues in the frontend as it needed the data. To solve this the 

backend tries to run the command three times with a delay in between before aborting. This solved the 

issue completely. Another solution would have been to make the frontend fetch the data several times 

until successful. 

 

 



31 

6.6.2 Frontend 

 

The react web interface frontend has two parts: the device list and the utility page. The central part is the 

device list, where devices can be listed in a tabular format. By selecting a device from the list, it can be 

added, edited, or deleted. Another useful feature is the ability to manually power cycle devices, which 

also helps in locating devices as this causes the LEDs on the USB hub ports to blink. The utility page 

provides other functionality such as restarting and shutting down the system. To access key features, 

user login is first required. At the time of writing, however, there is no central user database imple-

mented.  

 

 
FIGURE 10. Frontend in mobile view 

 

Mobile was the priority in the development of the frontend since it would likely be used in the server 

room on a mobile device. Above in figure 10 are examples of pages in mobile view. The desktop views 

with further descriptions of the interface can be found in appendix 3. The web interface does not require 

authorization for access to the device list, though any other operation requires login, or the option will 

be greyed out or the operation will cause a notification and fail. If username and password is correct at 

login a JWT token is received and stored in a variable and in the browser's localStorage. The logout 

functionality clears localStorage and stored variables. 

 

A DataGrid table from MUI is used to show device lists, and each column can be sorted and hidden 

without additional frontend code. The most important information is visible at first, including nickname, 

Login / Utility Device list Edit device Edit/Delete device Add device



32 

a power cycle button, and timer setting. Scrolling to the right of the main device list reveals the other 

columns as notes, location, serial and other information. By clicking on the device nickname the device 

can be edited. On this page the device power can be controlled as well, and device configuration as timer, 

notes, state, and logging be edited. Aside from saving device data, the device can be deleted, which will 

display an additional confirmation dialog. Unconfigured devices can be added by clicking the serial in 

the main device list and this provides the same user interface as when editing a device. The different 

device lists are created by comparing devices found in the JSON configuration file and connected de-

vices detected by the VirtualHere client. Besides configured and connected devices, disconnected and 

unconfigured device lists can this way be created. Port names are added separately to all the lists. 

 

The utility page’s main purpose is to make it possible to reboot and shutdown the RPi. There is also a 

power cycle all function that triggers a power cycle of all ports found in the ports JSON configuration 

file to quickly reset all the USB devices in the system. Selecting any of the options will show an addi-

tional dialog to confirm the action. The VirtualHere log functionality is experimental at the time of 

writing and currently shows the main VirtualHere server output. It has a simple auto-update function 

that polls the backend every 2 seconds. The current implementation of fetching logs from the backend 

is by capturing the screen output of the VirtualHere server and writing it to a file served by the backend. 

As it turns out, when writing screen output to a file it gets buffered, resulting in not everything being 

written to the file in the right order. This needs further attention, although the most appropriate solution 

is to implement proper logging instead of using screen output. 

 

At first much of the business logic of creating different device lists was in the backend. Most types of 

device lists are dependent on getting the XML status from the VirtualHere client running on the RPi, 

and this is a much slower process than reading JSON files. This was making the response of the frontend 

slow as it had to wait for the VirtualHere client XML output on all requests. Fetching data from separate 

endpoints on the backend and then combining the data on the frontend solved the issue.  

 

 

6.7 Enclosure and USB hubs 

 

It was necessary for the enclosure to fit within a 19" rack since these racks are used in the server rooms. 

The idea of using a rack drawer was considered at first, but internal cabling and heat concerns ruled that 

out in favour for a 10” rack cabinet that also could be moved more easily. For the enclosure design 

overall the most important part was easy access to the USB devices and adequate cooling. Having a lock 



33 

was also advantageous to prevent theft. The enclosure selected for the project is a 10-inch, 6U steel 

server cabinet manufactured by HMF. The cabinet has a lockable safety glass door and removable side 

panels for easy access. Furthermore, it has good airflow and provides space for a 120 mm fan at the top. 

(HMF  2023.) The case used for the RPi is manufactured by Flirc and made of aluminium. The whole 

case serves as a large heat sink which can be seen in picture 4 below. GPIO and all the main connectors 

are accessible through slots at the bottom, as is the SD card. (Flirc 2023.) 

 

 
PICTURE 4. Flirc RPi 4 aluminium case (Flirc 2023) 

 

The hubs used are mentioned in section 5.2. The Amazon Basics 7-port hub is used for devices and to 

connect the Amazon hubs to the RPi the D-Link DUB-H7 is used. The 10-port variant of the Amazon 

basics hub could have been used if being careful with not exceeding the six tiers permitted by Virtu-

alHere. The 10-port though uses a 20V power supply that could be harder to quickly source if it would 

break. The 7-port version uses 12V which is commonly used within the company. Using self-powered 

4-port hubs was deemed impractical in the end due to the large number of hubs that would be required. 

 

To address the problem with limited device enumeration on the RPi encountered when scaling up the 

system with more hubs, tests were carried out using the RPi USB-C port. This port has the legacy USB 

2.0 controller used in previous RPi models (RPi Foundation 2023c). By distributing the USB hubs be-

tween the primary USB 3.0 xHCI controller and the legacy eHCI controller associated with the USB-C 

port, an increased number of devices could be enumerated. In addition, this resolved the problem of the 

slow power cycle of six seconds that occurred when USB 3.0 was used alone. Unfortunately, only 31 

USB devices were available for testing during this process, a number that the legacy controller was able 

to handle by itself. As a result, the system is expected to be able to utilize all 42 USB ports available 

from the six 7-port hubs used. 

 



34 

 
FIGURE 11. Overview of case 

 

Two extra shelves were added. One for the RPi, while the other is for future expansion. The six Amazon 

USB hubs were installed horizontally on empty rack panels in the front to facilitate easy organization 

and accessibility. Figure 11 above illustrates how the cabinet space is utilized. To save space and reduce 

heat generation, the number of power supplies for the USB hubs was decreased from six to two. This 

was based on the observation that the power consumption of most USB devices was much less than 

reported by the device descriptors. On the right side of the enclosure, two 12V 36W power supplies are 

used to power the six USB hubs via a power distribution block. The RPi has its own power supply. The 

other side is dedicated to connecting the device USB hubs to the RPi. 

 

 

6.8 Security and reliability 

 

One of the means to keep the system safe is to keep it isolated both physically and network wise. The 

system will be used in a locked server room with no access to unauthorized third parties. Further, a wired 

network connection will be used, and the system will not be directly exposed to the Internet as it is 

behind company firewalls. Remote access to the system will be provided by the company's VPN solu-

tion. As a low-cost device, the design of the RPi is not primarily focused on security, and it should be 

protected from nonauthorized access (Sainz-Raso, Martin, Diaz & Castro 2019). The fact that the system 

is locked away and not directly connected to the Internet solves some security concerns. The licenses 

cannot easily be stolen without access to both the physical USB device and the license credentials. For 



35 

the Raspberry Pi OS the default username and password on Raspbian are significant security risks and 

should be changed. Further, considering how to secure SSH if it will be used should be done as well. 

(Le, Grande, Carmine, Thompson & Khan Mohd 2022). In addition to using a strong password, the 

password-based SSH access will be disabled on the system, and only key-based access permitted. Cur-

rently, the web interface uses unsecured HTTP communication which presents a risk, although the web 

interface is only intended to be used on the local network. While used remotely, the connection is en-

crypted by the company VPN service. It is possible that SSL will be added in the future. The login 

functionality using JWT tokens prevents unauthorized access to the web interface itself. Reliability of 

the system can be ensured partly by operating multiple systems with extra capacity in the event of failure. 

Spare parts will also be available for quick replacement. Open-source project Pi clone will be used to 

make bootable backups of the system SD card for quick recovery (Raspberry Pi-UI 2023). 



36 

7 CONCLUSIONS 

The aim of this thesis was to further develop an existing VirtualHere-based system used for sharing USB 

license devices over a network. The original system, in operation for over five years, had several short-

comings, including the lack of detection of improperly disconnected USB devices, hard-coded settings 

in the code, and limited user interaction. The main goals were to add detection and automatic power 

cycle of disconnected USB devices to the VirtualHere server, as well as provide a user interface for 

interaction with the system. The original system was poorly coded using BASH scripts and thus the code 

interfacing with VirtualHere was rewritten in Python with the settings defined within separate JSON 

configuration files. The ability to detect disconnected devices was added, along with the possibility of 

automatically power cycling devices, logging the event, and alerting an administrator by email. The 

power cycle on the new system employs USB hub per-port power switching instead of mechanical relays 

used in the old system. A web interface using Node.js and React was developed to enable user interac-

tion, allowing easy editing of USB device configurations as well providing means for rebooting and 

shutting down the system. In the end, the components were placed in a suitable enclosure. 

 

The system meets the initial requirements and presents a more reliable and easy-to-use system, although 

not all features are completed. Viewing logs via the web interface is an experimental feature, and there 

is no user database for the login functionality. The web interface also uses unencrypted HTTP traffic. 

Further field testing is also necessary to identify any unforeseen issues and test performance in the field. 

To address potential issues and improve functionality, further development is likely to be required. 

 

Many valuable lessons were learned during the development process. One significant lesson was the 

importance of testing for scalability early on. It was not until a relatively late stage in the development 

process that the system was scaled up with more USB devices and hubs attached. This resulted in per-

formance issues and revealed limitations in how the RPi 4 handles an increased number of USB devices. 

A better approach would have been to anticipate scalability issues from the beginning and plan the sys-

tem accordingly. It was also learned that a consistent programming language and function definition 

would have improved the development process. Initially, it was intended to minimize the use of Node.js 

and focus more on Python. Nevertheless, as the project progressed, more functionality was added to the 

web interface and more functions were ported to Node.js, resulting in several versions of functions that 

needed to be maintained.  The development process would have been simplified if there was a more 

cohesive approach, either by utilizing Node.js or Python fully. The chip shortage issue also impacted the 



37 

project, making it challenging to obtain RPi devices. Considering a more general approach, rather than 

one centred around the RPi ecosystem, could reduce supply chain limitations in the future. 

 

Further development suggestions include developing the logging capability. This could provide valuable 

insights into device usage, which in turn could help make informed business decisions about license 

needs. To reduce the disconnection rate of USB flash drives, further power consumption measurements 

could be conducted on devices running in both USB 2.0 and USB 3.0 modes to determine whether power 

consumption and consequently heat generation differ greatly between the two modes. The system now 

uses USB 2.0 but USB 3.0's improved power management and architecture may decrease heat and pos-

sibly increase reliability. Implementing unit, integration, and stress tests could improve system reliability 

and performance as well as identify potential issues. The most effective option would be to implement 

a deployment pipeline with automated testing, build, and deployment. At this stage, however, due to the 

small number of systems that will be in use, it has not been considered a priority.  

 

  



38 

8 REFERENCES 

Amazon. 2023. Amazon basics USB 3.1 hub. Available at: https://www.amazon.de/AmazonBasics-

USB-Hub-Anschl%C3%BCssen-Netzadapter-Schwarz/dp/B076YRSWH3. Accessed 24 May 2023. 

 

Bojinov, V. 2018. RESTful Web API Design with Node. js 10, Third Edition: Learn to Create Robust 

RESTful Web Services with Node. js, MongoDB, and Express. js, 3rd Edition. 

 

Digi. 2023. AnywhereUSB Plus. Available at: https://www.digi.com/products/networking/infrastruc-

ture-management/usb-connectivity/usb-over-ip/anywhereusb. Accessed 9 May 2023. 

 

D-Link. 2023. DUB‑H7 7-Port USB 2.0 Hub. Available at: https://eu.dlink.com/fi/fi/products/dub-h7-

7-port-usb-2-0-hub. Accessed 24 May 2023. 

 

Ecma International. 2017. ECMA-404 The JSON Data Interchange Standard. 2nd edition. Geneva: 

Ecma International. 

 

Eltima. 2023. Eltima Software. Available at: https://www.eltima.com. Accessed 9 May 2023. 

 

FabulaTech. 2023. USB over Network - Share USB devices over network or the Internet. Available at: 

https://www.fabulatech.com/usb-over-network.html. Accessed 9 May 2023. 

 

Flirc. 2023. Flirc Raspberry Pi 4 Silver. Available at: https://flirc.tv/products/flirc-raspberrypi4-silver. 

Accessed 9 May 2023. 

 

HMF. 2023. 10-Zoll Serverschränke. Available at: https://hmf.de/10-zoll-serverschraenke. Accessed 9 

May 2023. 

 

IncentivesPro. 2023. IncentivesPro - USB Redirection and Remote Scanning over Network, Remote 

Desktop or Internet. Available at: https://www.incentivespro.com. Accessed 9 May 2023. 

 



39 

Intel. 2019. eXtensible Host Controller Interface for Universal Serial Bus (xHCI) Requirements Speci-

fication. Available at: https://www.intel.com/content/dam/www/public/us/en/documents/technical-

specifications/extensible-host-controler-interface-usb-xhci.pdf. Accessed 10 January 2023. 

 

Jose, M., Jones, M., & Bradley, J. 2015. JSON Web Token. Available at: 

https://tools.ietf.org/html/rfc7519. Accessed 9 May 2023. 

 

Le, C., Grande, A. M., Carmine, A., Thompson, J. & Khan Mohd, T. 2022. Analysis of Various Vul-

nerabilities in the Raspbian Operating System and Solutions. 

 

Leonidas-from-XIV. 2023. node-xml2js. Available at: https://github.com/Leonidas-from-XIV/node-

xml2js. Accessed 11 May 2023. 

 

Linux Foundation. 2015. Filesystem Hierarchy Standard. Available at: https://refspecs.linuxfounda-

tion.org/FHS_3.0/fhs/index.html. Accessed 18 April 2023. 

 

Linux Kernel Organization. 2023a. USB Driver API. Available at: https://www.ker-

nel.org/doc/html/latest/driver-api/usb/index.html. Accessed 20 January 2023. 

 

Linux Kernel Organization. 2023b. Sysfs filesystem documentation. Available at: https://www.ker-

nel.org/doc/html/latest/filesystems/sysfs.html. Accessed 20 January 2023. 

 

Microsoft. 2021. Developing on Remote Machines using SSH and Visual Studio Code. Available at: 

https://code.visualstudio.com/docs/remote/ssh. Accessed 9 May 2023. 

 

Microsoft. 2023. Visual Studio Code. Available at: https://code.visualstudio.com. Accessed 9 May 

2023. 

 

Mozilla. 2023. Window.localStorage. Available at: https://developer.mozilla.org/en-

US/docs/Web/API/Window/localStorage. Accessed 9 May 2023. 

 

MUI. 2023. MUI: A popular React UI framework. Available at: https://mui.com. Accessed 9 May 

2023. 

 



40 

Negus, C. 2015. Linux Bible, 9th Edition. 

 

Node.js Foundation. 2023. Child Process. Available at: https://nodejs.org/api/child_process.html. Ac-

cessed 9 May 2023. 

 

O'Brien, K., Salyers, D., Striegel, A. & Poellabauer, C. 2008. Power and performance characteristics 

of USB flash drives. 

 

Python Software Foundation. 2023a. Python Documentation. Available at: https://www.py-

thon.org/doc. Accessed 24 May 2023. 

 

Python Software Foundation. 2023b. subprocess - Subprocess management. Available at: 

https://docs.python.org/3/library/subprocess.html. Accessed 11 May 2023. 

 

PyPI. 2022. xmltodict 0.13.0 - XML to Python dictionary. Available at: https://pypi.org/pro-

ject/xmltodict/. Accessed 9 May 2023. 

 

Raspberry Pi-UI. 2023. PiClone. Available at: https://github.com/raspberrypi-ui/piclone. Accessed 9 

May 2023. 

 

React. 2023. React – A JavaScript library for building user interfaces. Available at: https://react.dev. 

Accessed 9 May 2023. 

 

RPi Foundation. 2023a. Raspberry Pi OS. Available at: https://www.raspberrypi.com/software/. Ac-

cessed 9 May 2023. 

 

RPi Foundation. 2023b. Raspberry Pi. Available at: https://www.raspberrypi.org. Accessed 18 April 

2023. 

 

RPi Foundation. 2023c. RPi documentation - the config.txt file. Available at: https://www.raspber-

rypi.com/documentation/computers/config_txt.html. Accessed 18 April 2023. 

 

Sainz-Raso, J., Martin, S., Diaz, G. & Castro, M. 2019. Security Vulnerabilities in Raspberry Pi-Anal-

ysis of the System Weaknesses. IEEE consumer electronics magazine, 47-52.  



41 

 

Stern, A. 2014. Power Management for USB. Available at: https://www.ker-

nel.org/doc/html/v4.16/driver-api/usb/power-management.html. Accessed 20 April 2023. 

 

Systemd Project. 2023. systemd. Available at: https://systemd.io. Accessed 2 February 2023. 

 

USB-IF. 2000. USB 2.0 Specification. Available at: https://www.usb.org/document-library/usb-20-

specification. Accessed 27 July 2023. 

 

USB-IF. 2022. USB 3.2 Revision 1.1. Available at: https://usb.org/document-library/usb-32-revision-

11-june-2022. Accessed 18 April 2023. 

 

VirtualHere. 2023a. Purchase. Available at: https://www.virtualhere.com/purchase. Accessed 8 June 

2023. 

 

VirtualHere. 2023b. VirtualHere. Available at: https://www.virtualhere.com/. Accessed 18 April 2023. 

 

VirtualHere. 2023c. USB Server Software. Available at: https://www.virtualhere.com/usb_server_soft-

ware. Accessed 18 April 2023. 

 

VirtualHere. 2023d. USB Client Software. Available at: https://www.virtualhere.com/usb_client_soft-

ware. Accessed 18 April 2023. 

 

 

 

 

  



42 

 

APPENDIX 1/1 

REST API endpoints 

 
HTTP Routes Description Auth Expected JSON Object 

Devices 

GET /api/devices/connected Returns a list of connected devices from XML data 

of VirtualHere client 

No 
 

GET /api/devices/portinfo Returns data from a Python script regarding port in-

formation. Experimental. 

No 
 

GET /api/devices/:serial Returns a device by its serial number. No 
 

GET /api/devices/:serial/powercycle Power cycles a device by its serial number. Yes 
 

POST /api/devices/powercycle Power cycles a device by its address. Com-

mandType: 0 = off, 1 = on, 2 = power cycle. 

Yes {"address": "string", “com-

mandType: “int”} 

PUT /api/devices/update/:serial Updates a device by its serial number. Yes {"location": "string", "descrip-

tion": "string"} (rest optional) 

POST /api/devices/add Adds a new device. Yes {"serial": "string", "location": 

"string", "description": 

"string"} (rest optional) 

DELETE /api/devices/:serial Deletes a device by its serial number. Yes 
 

GET /api/devices Returns a list of all devices found in device JSON 

config file. 

No 
 

Ports 

GET /api/ports Returns a list of all ports found in ports JSON con-

fig file. 

No 
 

GET /api/ports/powercycleall Power cycles all ports found in ports JSON config 

file. 

Yes 
 

Login 

POST /api/login Authenticates a user and returns a JWT token, 

username, and role. 

No {"username": "string", "pass-

word": "string"} 

Logs 

GET /api/logs/vh_server Returns the vh_server.log file. No 
 

GET /api/logs/vh_server/:day Returns the vh_server.log file for a specific day. 

Experimental. 

No 
 

Utility 

GET /api/utility Returns a list of all ports. No 
 

GET /api/utility/reboot Reboots the system. Yes 
 

GET /api/utility/shutdown Shuts down the system. Yes 
 

GET  /api/utility/powercycleall Power cycles all ports found in ports JSON config 

file. 

Yes  

 

 

   



43 

APPENDIX 2 

MUI components used in React frontend  

 

Appbar  Used for branding, screen titles, navigation, and actions related to current screen. 

Box Manages layout. Used to arrange and structure elements. 

Button Clickable button  

DataGrid Show data in a grid format. Has interactive functions as sorting, filtering, and pagination. 

Dialog Informs users. Can contain critical information that require input from user. 

Grid Manages layout. Creates a grid of items that adapt to screen size and orientation. 

Select Select option from list of options. 

Snackbar Provide brief notifications (also known as a toast) 

Stack Manages layout. Creates vertical or horizontal one-dimensional layouts. 

Textfield For text input.   

Tooltip Provide users with information when hovering over an element. 

  



44 

 

APPENDIX 3/1 

 Web interface frontend in desktop view 

 

 
 

 

 
 

  

Login

Menu row
Login / Logout

Filter devices shown

Device list

Button to power- 
cycle device

Missing device
(disconnected)

Click nickname
to edit

Show logs

Powercycle all devices

Reboot / shutdown



45 

APPENDIX 3/2 

 
 

 
 

 

 

 

 

  

Editable fields

Save device

Basic info

Toggle power

Save device config

Editable fields
Basic info

Delete device config

Toggle power



46 

APPENDIX 4/1  

Python script flowcharts 

 

device_enumeration.py  

 

 

 

 

 

  



47 

APPENDIX 4/2 

 

start_use.py stop_use.py 

 

 



48 

APPENDIX 4/3 

 

port_check.py email_alert.py 

 

 

 


