

Marco Tidu

COUNTRIES DATA VISUALIZATION SYSTEM

Exploring Country Data through interactive visualizations

Thesis
CENTRIA UNIVERSITY OF APPLIED SCIENCES
Information Technology
June 2023

ABSTRACT

Centria University
of Applied Sciences

Date
4.6.2023

Author
Marco Tidu

Degree programme
Information Technology
Name of thesis
Countries Data Visualization System – Exploring Country Data through interactive visualizations
Centria supervisor
Aliashgar Khavasi

Pages
25 + 3

Instructor representing commissioning institution or company
Aliashgar Khavasi

This project aimed to develop a web application that provides users with information about countries
worldwide. The application utilizes the REST Countries APIi to fetch and display country data, in-
cluding population, area, and borders. The project's main objectives were to create an user-friendly
interface with data visualization tools, implement state management, and ensure application respon-
siveness across different devices.

The development process involved using Reactii for the frontend, Reduxiii for state management, Ex-
press.jsiv and Node.jsv for the backend side and Tailwindvi and Flowbitevii for custom styling. Data vis-
ualization tools like tables, graphs, and live calculations were implemented to aid users in understand-
ing the information using Chart.jsviii as visualization library. The project also incorporated best prac-
tices for state management and responsive design to provide a smooth and efficient user experience.

The project's outcome was a functional and interactive web application that achieved the objectives
set out in the beginning. The application allows users to search for specific countries, view country
data, and compare countries based on different criteria. The project's significance lies in its contribu-
tion to making information about countries more accessible and easily digestible for users. The skills
gained during the project, including proficiency in React, Redux, Express, Node and Tailwind, are
valuable for building dynamic and responsive web applications.

Key words
Chart.js, Express.js, Fullstack Application, JavaScript, React, TypeScript

CONCEPT DEFINITIONS

FRONT END

User interface accessible via computer, tablet, or mobile phone.

BACK END

Application paired with the front end that enables the communication between user and server.

SERVER

Computer designed to provide a service to other computers called clients and their users.

CLIENT

Device such as computer, tablet or mobile phone used to consume data.

FULL STACK APPLICATION

Application consisting of front end and back end sides.

REACT

JavaScript based UI development library developed by Facebook widely used in web development.

JAVASCRIPT

High level programming language that enables the user to create content on the web, control multimedia

files and communicate with other computers.

TYPESCRIPT

Strongly typed programming language based on JavaScript, giving better developing tools.

ABSTRACT

CONCEPT DEFINITIONS
CONTENTS

1 INTRODUCTION .. 1

2 LITERATURE REVIEW ... 3

2.1 Visualization Libraries ... 3
2.2 Interactive Dashboards .. 4
2.3 Virtual Reality (VR) and Augmented Reality (AR) .. 5
2.4 World Data Bank .. 6
2.5 Worldometer ... 7

3 Methodology ... 9

3.1 React ... 9
3.2 Chart.js .. 9
3.3 Tailwind ... 10
3.4 Flowbite .. 10
3.5 React Router .. 11
3.6 Axios ... 11
3.7 Typescript .. 12
3.8 Express.js ... 12
3.9 ESLint .. 13

4 Backend Development .. 14

5 Frontend Development ... 15

5.1 Data By Country ... 15
5.2 Data By Region .. 17
5.3 Data Visualization ... 20

6 Implementation .. 23

7 Results and evaluation .. 24

8 Conclusion .. 25

FIGURES

Figure 1 Screenshot from a chart built with Chart.js, the library of choice for my project. 3

Figure 2 Screenshot from Power BI, interactive dashboard from Microsoft. ... 4

Figure 3 Which technology to choose between virtual reality and augmented reality for a professional

application? ... 5

Figure 4 Screenshot from World Data Bank web application .. 6

Figure 5 Screenshot from Worldometer web application ... 7

Figure 6 Tailwind made my design planning much easier than expected. Image credits:

(https://blog.logrocket.com/comparing-tailwind-css-bootstrap-time-ditch-ui-kits/) 19

Figure 7 Screenshot from Data By Region section showing a bar chart from Chart.js library. 20

Figure 8 Screenshot from Data By Region section, showing a pie chart from Chart.js library. 21

Figure 9 Data By Country table .. 22

CODE SNIPPETS

Code 1 Code snippet of thunk function in the application. ... 15

Code 2 Code snippet from of onChange function from the application. .. 15

Code 3 Code snippet from the conditional rendering section from the application 17

Code 4 Code snippet showing the useEffect hook dispatching the fetchCountries thunk. 17

Code 5 Two different useState handling the state of the two chart component. 17

Code 6 Here the actual conditional rendering is shown. ... 18

1

1 INTRODUCTION

In this part the reader will find details regarding the background, motivation, and context of the project,

mentioning its objectives and intended outcomes, explaining its significance and utilization, and defining

its scope and limitations. The Model-View-Controllerix (MVC) architectural pattern is a widely used

design pattern in software engineering that separates an application's components into three intercon-

nected parts - the Model, View, and Controller. In the context of this project, the MVC pattern can be

applied to describe the background, motivation, and context of the full-stack application that renders

data from the REST Countries API. The Model component of the application involves the data storage

and management system, which in this case, is the REST Countries API. The API provides data about

countries worldwide, including information such as population, area, and borders. The motivation for

using this API is to provide users with access to relevant and up-to-date information about countries in

a user-friendly manner.

The View component is responsible for rendering the data from the Model component to the user inter-

face. The user interface in this project is built using React, a popular JavaScript library for building

user interfaces. The use of React allows for the efficient rendering of dynamic data and the implemen-

tation of data visualization tools such as tables, graphs, and live calculations. The Controller compo-

nent manages the communication between the View and Model components and controls the applica-

tion's behaviour. In this project, the Controller is implemented using the Express framework, which

handles server-side logic and API requests. Express provides a robust and efficient way to manage API

calls to the REST Countries API and handle data processing and manipulation before serving it to the

frontend.

In conclusion, the MVC pattern provides a useful framework for understanding the project's back-

ground, motivation, and context. The use of the REST Countries API as the Model component, React

as the View component, and Express as the Controller component demonstrates the effective use of the

MVC pattern in building a full-stack application that renders data from the REST Countries API. This

project aims to develop a functional and interactive React application that will retrieve data from the

restcountries.com API and analyze it with the MERN stackx. I plan to use this opportunity to improve

my skills in React, Node.js, and MongoDB while also learning about data visualization techniques.

The intended outcomes of the project are fourfold. Firstly, the application should be able to efficiently

retrieve data from the restcountries.com API and display it on the user interface. This will involve us-

 2

ing various data fetching techniques such as RESTful APIs, Axiosxi, and Promises. Secondly, the ap-

plication should include a set of effective graphs and charts that can represent the data to the user. Pop-

ular data visualization libraries such as Chart.js will be used to create different visualizations such as

line charts, bar charts, pie charts, and scatter plots. The goal is to provide users with a clear under-

standing of the data. Thirdly, the application should have a user-friendly interface that allows users to

interact with the data and customize the visualizations. This means implementing features like search

filters, sorting, and pagination to make the data more accessible and customizable for users.

Finally, the codebase should be well-organized, follow best practices, and be easy to maintain and

scale. This includes adhering to coding standards and following modular design patterns to make the

code more modular and maintainable. The scope of the project is to develop a React application that

utilizes the MERN stack to fetch and analyze data from restcountries.com API and visualize it in the

form of graphs and charts. The project aims to create a user-friendly interface that allows users to in-

teract with the data and customize the visualizations, and a well-organized codebase that follows best

practices and is easy to maintain and scale. The project's limitations include the data provided by the

restcountries.com API. While the API provides a wealth of data on countries worldwide, it may not be

comprehensive or up to date in certain areas. Additionally, the project's visualizations are limited to the

data provided by the API, and any insights or conclusions drawn from the visualizations must be taken

with caution. Another limitation of the project is that it may not be able to handle large amounts of

data efficiently. While the project utilizes modern web technologies to provide efficient data visualiza-

tions, there may be limitations on the amount of data that can be processed and displayed in real-time.

Finally, the project's scope may be limited by the resources and expertise of the development team.

While the project aims to follow best practices and provide a well-organized codebase, there may be

limitations on the team's knowledge and experience with certain technologies or development practices.

This may impact the project's scalability and maintainability in the long term.

 3

2 LITERATURE REVIEW

Existing research and technologies related to data visualization have significantly advanced the field,

enabling the effective representation and analysis of complex data. For example, visualization libraries

have become increasingly efficient, offering users high-quality tools to visualize their data effectively.

Interactive dashboards have emerged as the preferred choice for modern business professionals, partic-

ularly in financial and banking sectors. On the other hand, Virtual Reality (VR) and Augmented Reality

(AR) technologies are focused on providing immersive experiences with data, rather than emphasizing

data manipulation. These technologies offer solutions that allow users to immerse themselves in data

environments and gain unique perspectives on their datasets.

2.1 Visualization Libraries

There are several powerful open-source libraries available, such as D3.js, Plotly.js, and Chart.js, which

provide a wide range of customizable charts, graphs, and interactive visualizations. These libraries offer

flexibility and ease of use, allowing developers to create compelling visual representations of data.

My choice for this project fell to Chart.js, a popular open-source JavaScript library that provides a simple

and flexible way to create interactive and visually appealing charts and graphs on web pages. It offers a

wide variety of chart types, including line charts, bar charts, pie charts, radar charts, and more.

Figure 1 Screenshot from a chart built with Chart.js, the library of choice for my project.

 4

2.2 Interactive Dashboards

Tools like Tableau, Power BI, and QlikView have gained popularity in creating interactive dashboards

that enable users to explore and analyze data visually. These platforms provide intuitive interfaces, drag-

and-drop functionality, rich visualization options and various visualization options to create dynamic

and interactive data presentations.

Figure 2 Screenshot from Power BI, interactive dashboard from Microsoft.

Power BI has gained popularity due to its user-friendly interface, extensive visualization options, and

integration capabilities with other Microsoft products. It caters to a wide range of users, from business

analysts and data professionals to executives and decision-makers, enabling them to gain actionable

insights from their data through interactive and visually compelling dashboards and reports.

 5

2.3 Virtual Reality (VR) and Augmented Reality (AR)

VR and AR technologies are being increasingly used in data visualization. They provide immersive

experiences, allowing users to visualize and interact with data in three-dimensional space. These tech-

nologies offer new perspectives for data exploration, particularly in fields like scientific research, ar-

chitecture, and medical imaging.

Figure 3 Which technology to choose between virtual reality and augmented reality for a professional application?

 6

2.4 World Data Bank

Figure 4 Screenshot from World Data Bank web application

World Data Bank provides users with data on various indicators across countries worldwide. The appli-

cation allows users to select countries, indicators, and time periods, and then presents the data in various

formats, including line charts, bar charts, and maps. However, the application is primarily focused on

economic data and lacks data on cultural and social aspects of countries.

 7

2.5 Worldometer

Another notable example in the realm of data visualization and global statistics is Worldometer.

Worldometer is a comprehensive platform that offers real-time statistics on various global issues, in-

cluding population, health, education, environment, economy, and more. It serves as a valuable resource

for individuals, researchers, and organizations seeking up-to-date information on worldwide trends and

metrics.

One of the key features of Worldometer is its

use of charts and graphs to present data in a vis-

ually engaging and easily understandable man-

ner. By employing various types of visualiza-

tions, such as line charts, bar graphs, and pie

charts, Worldometer effectively communicates

complex data sets and enables users to grasp

significant trends and patterns briefly. These

visualizations enhance the accessibility and in-

terpretability of the information, facilitating

data-driven insights and decision-making pro-

cesses.

Furthermore, Worldometer provides users with

customization options to tailor the visualiza-

tions according to their preferences. Users can

often adjust parameters such as time frames,

geographical regions, and specific metrics of

interest to focus on the data that is most rele-

vant to them. This flexibility allows users to

personalize their data exploration and gain a

deeper understanding of the global issues that

matter to them.

It is important to note, however, that Worldometer primarily focuses on global statistics and aggregates

data from various sources. While it offers a comprehensive view of worldwide trends and metrics, it

does not provide detailed data on individual countries. For more specific country-level data, other re-

sources such as the REST Countries API or dedicated country-specific databases would be more suitable.

Figure 5 Screenshot from Worldometer web application

 8

These applications highlight the importance of data visualization tools for understanding complex global

issues. However, there are gaps in the existing applications that can be addressed by the proposed project.

The proposed project aims to provide users with a comprehensive set of country data visualization tools

with a sleek and easy to approach interface. The application also allows users to interact with the data,

customize visualizations, and compare countries based on different criteria. In this context, the proposed

project is positioned as a valuable resource for researchers, policymakers, educators, and students who

need access to comprehensive and customizable country data visualization tools.

 9

3 METHODOLOGY

3.1 React

React is a popular JavaScript library widely used for building modern and interactive user interfaces. It

offers a component-based approach to UI development, allowing developers to create reusable and mod-

ular UI components. React efficiently manages the UI state and efficiently renders changes to the UI,

resulting in fast and seamless user experiences. With its large community, extensive documentation, and

thriving ecosystem, React is a go-to choice for building scalable and performant web applications.

3.2 Chart.js

Chart.js is a popular open-source JavaScript library that allows developers to create responsive and cus-

tomizable charts and graphs for web applications. It provides a wide range of chart types, including line,

bar, pie, radar, and scatter charts, and supports a variety of data formats, including JSON, CSV, and

array. This library has a simple and intuitive API that makes it easy to create charts with customizable

styles and animations. It also offers several useful features such as tooltips, legend, and data labels, and

supports plugins that extend its functionality.

One of the key advantages of Chart.js is its responsiveness, which enables the charts to be easily adapted

to different screen sizes and devices. Additionally, Chart.js is lightweight and fast, making it an ideal

choice for creating dynamic and interactive data visualizations. Chart.js can be used with a wide range

of web development technologies, including React, Angular, and Vue.js. It is widely adopted and has a

large and active community, which provides support, documentation, and plugins to extend its function-

ality.

 10

3.3 Tailwind

Tailwind CSS is a popular open-source utility-first CSS framework that allows developers to rapidly

build responsive and modern user interfaces. It provides a comprehensive set of pre-designed CSS clas-

ses that can be used to style HTML elements and components without writing custom CSS. Tailwind

CSS is based on a utility-first approach, which means that it provides many low-level classes that can

be combined to create custom styles. These classes are designed to be easy to read and understand and

can be applied directly to HTML elements using class attributes.

Tailwind CSS includes a wide range of pre-built styles for common user interface elements such as

typography, colors, spacing, and layout. It also supports responsive design, allowing developers to easily

create layouts that adapt to different screen sizes and devices. One of the key advantages of Tailwind

CSS is its flexibility and customization options. Developers can easily create custom styles by modifying

the existing classes or by creating their own custom classes. Tailwind CSS can be used with a wide range

of web development technologies, including React, Angular, and Vue.js. It is widely adopted and has a

large and active community, which provides support, documentation, and plugins to extend its function-

ality.

3.4 Flowbite

Flowbite is a front-end framework that provides a set of pre-built HTML, CSS, and JavaScript compo-

nents for building responsive and modern web applications. It is based on the Bootstrap framework, but

with added features and improvements. Flowbite includes a wide range of UI components such as but-

tons, forms, modals, tabs, and navigation bars. It also provides pre-designed layouts and templates that

can be easily customized and adapted to different use cases. One of the key advantages of Flowbite is

its ease of use and flexibility. Developers can quickly build and customize user interfaces using the pre-

built components, without having to write complex custom code. The framework also provides respon-

sive design features, making it easy to create interfaces that work well on different screen sizes and

devices.

Flowbite is compatible with a variety of front-end development technologies, including React, Angular,

and Vue.js. It also integrates with popular tools such as Webpack and Gulp, making it easy to use in

existing development workflows.

 11

3.5 React Router

React Router is a popular library for building client-side routing in React applications. It allows devel-

opers to create and manage multiple routes within a single-page application, allowing for a more seam-

less and dynamic user experience. React Router provides a simple and intuitive API for defining routes

and handling navigation within a React application. It supports a range of routing options, including

nested routes, dynamic routes, and route parameters. This allows developers to create complex user

interfaces with multiple views and pages, while still maintaining a single-page application architecture.

React Router also provides a range of advanced features, such as code splitting and lazy loading, which

can improve application performance by reducing the initial load time and optimizing resource usage.

One of the key advantages of React Router is its tight integration with the React ecosystem. It is designed

to work seamlessly with other React libraries and tools, such as Redux and React Native, allowing for a

more integrated and streamlined development experience.

Overall, React Router is a powerful and flexible library for building client-side routing in React appli-

cations. Its intuitive API, advanced features, and tight integration with the React ecosystem make it a

popular choice for developers looking to create dynamic and responsive user interfaces.

3.6 Axios

Axios is a popular JavaScript library used to make HTTP requestsxii from web browsers or Node.js

applications. It provides an easy-to-use API that allows developers to send asynchronous HTTP requests

to RESTful endpoints and perform CRUD operations (Create, Read, Update, Delete) on data. With Ax-

ios, developers can configure and customize HTTP requests, handle HTTP responses, and intercept re-

quests and responses to modify them. The library also supports various formats for data transmission,

including JSON, XML, and form data. Axios is often used in combination with other popular web de-

velopment libraries, such as React and Redux, as it seamlessly integrates with these tools. Its intuitive

API and comprehensive documentation make it a preferred choice among developers for handling data

fetching and HTTP requests in their web applications.

 12

3.7 Typescript

TypeScript is a statically typed superset of JavaScript that provides developers with a range of powerful

features and tools for building scalable and maintainable applications. By adding a type system to Ja-

vaScript, TypeScript enables developers to catch errors and bugs earlier in the development process and

provides better tooling and code intelligence to improve productivity. TypeScript is designed to be com-

patible with existing JavaScript code, making it easy to integrate into new or existing projects.

Some of the key benefits of TypeScript include:

Type safety: TypeScript allows developers to define types for variables, functions, and other entities,

which helps catch errors before runtime.

Improved productivity: TypeScript provides better code intelligence, auto-completion, and refactoring

tools, which make developers more productive.

Scalability: TypeScript's static typing helps developers write code that is easier to maintain and scale

over time.

Compatibility with JavaScript: TypeScript is a superset of JavaScript, which means it can be used with

existing JavaScript codebases without major changes.

3.8 Express.js

Express.js is a popular backend web framework for Node.js. It is designed to help developers create web

applications and APIs quickly and easily. Express provides a set of powerful features for routing, mid-

dlewarexiii, and error handling, making it a versatile tool for building complex web applications. One of

the key features of Express is its routing system. It allows developers to define routes for handling in-

coming requests from clients and map them to specific functions or controllers that handle the logic and

generate the response. This makes it easy to organize the application's endpoints and improve code read-

ability. Express also provides a range of middleware functions that can be used to customize the behavior

of the application. Middleware can perform various tasks, such as logging requests, parsing incoming

data, and handling authentication and authorization. Developers can also create custom middleware to

add specific functionality to their application.

Another advantage of Express is its support for a wide range of third-party packages and plugins. These

can be used to add additional functionality to the application, such as database integration, caching, and

security features. Express.js is a powerful and flexible framework that provides developers with the tools

they need to build scalable and maintainable web applications. Its modular design, robust routing system,

and extensive middleware support make it a popular choice for Node.js developers.

 13

3.9 ESLint

ESLint xivis a widely used static code analysis tool for identifying problematic patterns found in JavaS-

cript code. It checks the code for potential errors, coding best practices, and syntax errors. ESLint is

highly configurable, and it can be customized to suit a specific codebase's needs. It allows developers to

define and enforce coding standards to maintain consistency throughout the codebase. ESLint can also

be integrated into the development environment, enabling developers to detect errors as they write code,

making the development process more efficient. By identifying potential issues in the codebase early

on, ESLint helps prevent bugs and improves the overall quality of the code. Additionally, ESLint can be

used with other tools such as code editors, continuous integration servers, and other build tools to provide

automated code analysis and enforcement. ESLint is a valuable tool for developers working on large

codebases, where maintaining consistency and avoiding common errors is crucial for efficient and reli-

able development.

 14

4 BACKEND DEVELOPMENT

The server that I created is a Node.js server that uses the Express.js framework to handle HTTP requests.

The server provides two endpoints that return data from the Rest Countries API:

/countries - This endpoint returns all countries in the API, with the following fields: name, region,

capital, population, flags, languages, cca2, cca3, currencies, subregion, latlng, area, coatOfArms. When

a GET request is made to this endpoint, the server sends a request to the Rest Countries API, gets the

response data, and sends it back to the client as the response.

/countries/:region - This endpoint returns all countries in a specific region, with the name and

population fields. The region is specified as a URL parameter. When a GET request is made to this

endpoint, the server sends a request to the Rest Countries API, passing the region parameter in the URL,

gets the response data, and sends it back to the client as the response.

The server uses the Axios library to make HTTP requests to the Rest Countries API. It uses async/await

syntax to handle asynchronous operations and try/catch blocks to handle errors. The server also uses the

CORS xvmiddleware to enable cross-origin resource sharing, allowing clients from different domains to

access the API. The server listens on port 3001 and logs a message to the console when it starts running.

 15

5 FRONTEND DEVELOPMENT

Let's dive into a detailed explanation of the React application, rendering of backend queries, user input

handling, and user interface (UI) design. The application’s frontend is built using React, a popular Ja-

vaScript library for building user interfaces. React allows developers to create reusable UI components

that update dynamically based on changes in the application's state. In this section the two main compo-

nents, Data By Country and Data By Region, will be found, with all their relatives high level functions

explained.

5.1 Data By Country

Code 1 Code snippet of thunk function in the application.

In this code snippet, the application likely communicates with a backend system to fetch data. This is

done using Redux thunkxvi actions, which are asynchronous actions that are dispatched using the

useDispatch hook from the React-Redux library. The fetchCountriesByNameThunk action

is dispatched with the search input provided by the user, triggering an API request to the backend to

fetch country data based on the search input. The retrieved data is then stored in the Redux store, which

can be accessed using the useSelectorxvii hook to retrieve the updated state.

Code 2 Code snippet from of onChange function from the application.

 16

In this code snippet the user input is handled using the useStatexviii hook from React. The useState

hook allows the application to create and manage state variables. In this case, the search input provided

by the user is stored in the search state variable, which is updated whenever the user types in the

search bar. The onChange function is called whenever the input value changes, updating the search

state variable. It also checks the length of the input against a minimum search length requirement before

dispatching the fetchCountriesByNameThunk action to retrieve country data from the backend.

The UI design in the code is implemented using various custom components that are imported from

other files and styled using Tailwind CSS, a popular CSS utility framework. These components, such as

CountryTable, SearchAppBar, BackButton, and Footer, are used to structure the UI and

provide a seamless user experience with visually appealing styles. The UI design likely includes a header

with a title, a search bar for inputting search queries, and a table to display the retrieved country data, all

styled using Tailwind CSS classes.

Tailwind CSS makes it easy to create responsive and modern UI designs with its extensive set of pre-

designed CSS classes that can be easily applied to HTML elements. For example, the search bar may

have classes like bg-white, rounded-lg, and shadow-md to give it a clean and polished appear-

ance. The table may have classes like border-collapse, w-full, and table-auto to provide a

responsive and visually appealing layout. Furthermore, the UI design also accounts for cases where the

user has not entered any search input or if the search input is invalid. For instance, when there is no

search input, a prompt message is likely displayed using Tailwind CSS classes like text-gray-500

and text-sm to instruct the user to search for a country.

When no matching countries are found based on the search input, an appropriate message is likely dis-

played using Tailwind CSS classes like text-red-500 and text-sm to indicate that the country

was not found, with proper spacing and alignment using classes like mt-4 and text-center.

 17

5.2 Data By Region

The component conditionally renders the PopulationChart and AreaChart components based

on the values of popChart and areaChart state variables respectively. If popChart is true, the

PopulationChart component is rendered, and if areaChart is true, the AreaChart compo-

nent is rendered.

Code 3 Code snippet from the conditional rendering section from the application

Code 4 Code snippet showing the useEffect hook dispatching the fetchCountries thunk.

In the above code snippet, the PopulationChart and AreaChart components fetch data from the

backend API using the useEffect React hook and render the retrieved data in the form of charts, such

as bar chart and pie chart, respectively.

Code 5 Two different useState handling the state of the two chart component.

 18

The component uses useState hook to manage the state of two boolean variables popChart and

areaChart, which determine whether to show the PopulationChart and AreaChart compo-

nents respectively.

Code 6 Here the actual conditional rendering is shown.

The component defines two event handler functions, handlePopChart and handleAreaChart,

which are triggered when the "Show Bar Chart" and "Show Pie Chart" buttons are clicked respectively.

When the "Show Bar Chart" button is clicked, handlePopChart function is called, setting pop-

Chart to true and areaChart to false, which will render the PopulationChart component.

When the "Show Pie Chart" button is clicked, handleAreaChart function is called, setting ar-

eaChart to true and popChart to false, which will render the AreaChart component.

 19

The UI design of the DataRegion component includes a title, a description, and two buttons for se-

lecting the type of chart to display.

The UI is structured using a flexbox layout with a main column that grows to fill the available space,

and a footer that is aligned to the bottom of the page.

The UI uses classes from the Tailwind CSS framework to style various elements such as the title (text-

4xl, font-extrabold, etc.), buttons (bg-blue-700, rounded-lg, etc.), and footer (mt-

auto, etc.).

The UI also includes conditional rendering of the PopulationChart and AreaChart components

based on the state of popChart and areaChart variables, allowing the user to switch between dif-

ferent chart views.

Figure 6 Tailwind made my design planning much easier than expected. Image credits: (https://blog.logrocket.com/comparing-tailwind-
css-bootstrap-time-ditch-ui-kits/)

 20

5.3 Data Visualization

In this section the details on how the data is rendered in the application will be discussed, mentioning
specifically the components used from Chart.js library.

Figure 7 Screenshot from Data By Region section showing a bar chart from Chart.js library.

This component is a functional component called PopulationChart that contains a button group for

selecting a region and a bar chart that displays the population data. The useState hook is used to

manage the state of the selected region, and the useEffect hook is used to fetch data from an external

API when the component is mounted. The handleRegion function is called when a region button is

clicked and updates the selected region state. The code then maps the names and population data for

each country in the selected region and creates an array of labels and data points for the bar chart. A

random color function is used to generate a different color for each bar in the chart. Finally, the Chart

component from the react-chartjs-2 library is used to display the bar chart on the page.

 21

This is a functional component called Ar-

eaChart that renders a chart showing the

area of different countries based on the se-

lected region. The chart is created using the

Chart.js library and displayed using the

react-chartjs-2 component. The

component uses the useSelector hook to

access the countries object from the Re-

dux store, which contains an array of coun-

tries. It also uses the useDispatch hook

to dispatch actions to the Redux store, which

are defined in the countriesSlice file.

When the component is mounted, it dis-

patches a fetchCountriesThunk ac-

tion to fetch the list of countries from an API.

The handleRegion function is called

when the user clicks on one of the region but-

tons, which sets the region state to the selected region and dispatches a handleSort action with a

value of 0 to sort the countries alphabetically.

The names and area arrays are created by mapping over the countries array and filtering by the

selected region. The names array contains the names of the countries and the area array contains

the area of the countries. The undefined and negative values are removed from both arrays using the

splice method. The data object is used to configure the chart, setting the chart type to "Bar", the

labels to the names array, and the data to the area array. A random color is generated for the chart

using the randomRGB function. Finally, the component returns a div containing a group of buttons for

selecting the region and the chart itself, displayed using the Chart component. The selected region is

displayed above the chart.

Figure 8 Screenshot from Data By Region section, showing a pie chart from
Chart.js library.

 22

This is a functional component that create a table of information about

countries. The code exports a function called CountryTable, which

takes in an object with a property called "filter" of type BasicTable. If

the filter property is not provided, the function returns a loading mes-

sage. Otherwise, it renders a div that contains information about each

country in the filter array. Each country is displayed with its name, flag,

coat of arms, languages, currencies, capital(s), population, region, sub-

region, area, latitude, and longitude. These details are displayed in a

series of divs, with headings for each piece of information and the in-

formation displayed underneath it.

In this component, Tailwind CSS classes are used to define the layout

and appearance of the table, such as flex, flex-wrap, justify-

center, etc. These classes are used in conjunction with regular

HTML elements and React hooks like useState and useEffect

to manage the state and lifecycle of the component.

Figure 9 Data By Country table

 23

6 IMPLEMENTATION

Throughout the development process of my project, I encountered various challenges that required cre-

ative solutions. One of the most significant challenges was handling and presenting large amounts of

data from the REST Countries API in a meaningful and easy-to-understand way for the user. To over-

come this challenge, I incorporated data visualization tools such as tables and graphs with Chart.js to

help the user quickly comprehend the information. Another challenge that I encountered was managing

the application's state and ensuring data consistency across components. To address this, I opted to use

Redux for state management, which allowed me to store and manage all application data in a centralized

location called a store, enabling me to manipulate that data using actions and reducers. Additionally, I

utilized TypeScript for type checking and better code organization to ensure data consistency and pre-

vent potential errors.

In addition, I faced difficulties with the UI design and responsiveness, particularly when integrating

components from the Chart.js library. To overcome this challenge, I implemented Tailwind for custom

styling and fine-tuned the CSS to achieve a consistent and responsive user interface that delivered an

intuitive user experience. Throughout the development process, I focused on significant milestones such

as implementing API requests, presenting data in tables and graphs, and creating a user-friendly interface

with smooth navigation. This process provided me with valuable insights into effective data visualization

techniques, best practices for state management, and the importance of responsive design for user expe-

rience.

 24

7 RESULTS AND EVALUATION

As the developer of the application, I am thrilled to present the final product, which encompasses an

array of features and functionalities that I have carefully crafted to provide users with a seamless and

immersive experience for exploring data on different countries. One of the key highlights of the appli-

cation is its responsive user interface design, which I have meticulously crafted to ensure that it looks

visually appealing and functions flawlessly across various devices, including desktops, tablets, and mo-

bile phones. The intuitive and user-friendly interface allows users to effortlessly navigate the application

and access a myriad of features, including filtering and sorting data, viewing data in different formats

such as tables and charts, and searching for specific countries based on their preferences or requirements.

Performance has been a top priority in the development of the application. Leveraging cutting-edge

technologies like React, Redux, and Chart.js, I have ensured that the application is optimized for speed

and efficiency, with minimal loading times and lightning-fast response times, using API queries only

when necessary. The use of Redux for state management has facilitated smooth and consistent data han-

dling across different components, ensuring that users have a seamless experience while interacting with

the application.

To ensure that the application meets the needs and expectations of our users, I conducted extensive user

testing and collected feedback from a diverse group of users. The feedback received has been over-

whelmingly positive, with users commending the application for its ease of use, comprehensive func-

tionality, and exceptional responsiveness. This valuable feedback has served as a valuable source of

insights, which I have utilized to make further improvements to the application, including adding new

features, refining the user interface design, and addressing any issues or concerns raised by users.

In addition to its robust performance and user-friendly design, the application also boasts an array of

data visualization techniques that facilitate effective data exploration. The integration of Chart.js has

allowed users to visualize data in a meaningful and easy-to-understand way through visually appealing

charts and graphs. This has enabled users to quickly comprehend and analyze data on different countries,

making the application a powerful tool for data exploration and analysis. Furthermore, the application

places a strong emphasis on data consistency and accuracy. Leveraging the power of TypeScript, I have

implemented strong type checking and enforced strict data validation measures to ensure that the data

presented to users is accurate, reliable, and up to date. This has helped to prevent potential errors and

inconsistencies in the data, providing users with a trustworthy source of information on different coun-

tries.

 25

8 CONCLUSION

In conclusion, the journey of developing this application has been a fulfilling and rewarding experience.

The application has successfully achieved its objectives by providing users with a reliable, engaging,

and feature-rich tool for exploring data on different countries. The integration of cutting-edge technolo-

gies such as React, Redux, and Chart.js has resulted in optimal performance, efficient data handling, and

visually appealing data visualization. The application's user-centric approach, with a responsive inter-

face design, intuitive navigation, and comprehensive functionality, has garnered overwhelmingly posi-

tive feedback from users, who have praised its ease of use and exceptional responsiveness. The robust

implementation of Chart.js has facilitated effective data visualization, allowing users to quickly com-

prehend and analyze data on different countries, making the application a valuable tool for data explo-

ration and analysis.

Furthermore, the application's strong emphasis on data consistency and accuracy, achieved through

TypeScript and strict data validation measures, has ensured that users have access to reliable and up-to-

date information. This has enhanced the credibility and trustworthiness of the application as a source of

accurate data on different countries. As I reflect on this development journey, I am grateful for the in-

valuable learning experience it has provided me. I have honed my skills in front-end development, data

visualization, and data handling, which have prepared me for the challenges and opportunities of pursu-

ing a master’s degree in Geoinformatics. I am committed to continually improving and expanding the

capabilities of the application based on user feedback and evolving needs.

In conclusion, I am proud of the achievements of this application and excited about the future possibili-

ties for growth and improvement. The development of this application has been a significant milestone

in my professional journey, and I look forward to utilizing the skills and knowledge gained to further

contribute to the field of Geoinformatics.

1

APPENDIX 1/1
Welcome to the GitHub repository for my bachelor’s thesis project, "Countries Data Visualization Sys-

tem: exploring country data through interactive visualizations". The purpose of this repository is to pro-

vide a comprehensive demonstration of the project's code, features, and functionality. The project aims

to develop a data visualization application using React that can fetch data from the REST Countries API

and display it in user-friendly tables and graphs. The application also includes features such as search,

filtering, and sorting to enable users to find specific information quickly.

To use and run this project, the user will need the following software and tools installed:

Node.js (v14 or higher)

npm (v7 or higher)

The user will also need access to the internet to download any necessary dependencies during the instal-

lation process. This repository already comes with all the needed packages. In case the user wants to

install manually, please check the dependencies in the package.json file.

Here are the steps to clone and set up the project on a local machine:

Open the terminal or command prompt, navigate to the directory where the user wants to clone the

repository and run the following command to clone the repository:

git clone https://github.com/tidumarco/countries-data-visualization-system.git

Once the repository is cloned, navigate to the project directory by running the following command:

cd countries-data-visualization-system

To install the client side of the application, run in the root folder:

yarn install

And then run it with:

yarn start

APPENDIX 1/2

To install the backend, open another terminal, navigate to:

cd server

And then install the required dependencies with:

yarn install

And to run it:

yarn start

Now the frontend will be accessible via the endpoint:

http://localhost:3000

APPENDIX 2/1 – USAGE GUIDE

After having successfully installed and launched the project, the user can access the application in a web

browser by visiting http://localhost:3000.

In the homepage there will be two buttons:

After clicking the “Data by region” button, the user will be presented with two choices:

Clicking on:

And then on one of the regions shown:

This chart will be displayed:

Figure 6 Bar chart showing Europe's population divided by country.

APPENDIX 2/2

Instead, if the user wants to move to the pie chart visualization click on:

And the user will be welcomed with something like this:

Figure 7 Pie chart showing Europe's countries areas.

From the homepage, after clicking on this button:

The user will be prompted to enter a country to search:

APPENDIX 2/3

And after inputting the country of choice this will be displayed:

APPENDIX 3 – TROUBLESHOOTING AND SUPPORT

If the user encounters any issues while setting up or using the application, there are some troubleshooting

steps that can be followed. For example, checking which npm and yarn version is installed, I warmly

recommend using yarn as package manager, less prone to error and more reliable.

Another option is to clear cache and cookies. Sometimes, issues can arise due to cached data or stored

cookies. Try clearing the browser's cache and cookies and then reload the application.

The user can also ensure that dependencies are installed correctly: make sure that all necessary depend-

encies are installed and up to date. Refer to the Prerequisites section of the Project Manual to ensure all

required dependencies are installed.

Remember also to check the documentation such as the README.md file in the root directory of the project

for additional guidance on setting up and running the application.

If the user is still experiencing issues or need further assistance, please reach out to me: my contacts can

be found in the footer of the application and if not running they are in the README.md or create a new

issue on the GitHub repository page. I will do my best to be of assistance as soon as possible.

REFERENCES

i (Fayder Florez, 2023). REST Countries API documentation. Retrieved May 11, 2023, from https://restcountries.com/
ii (Andrew Clark, 2023). In Official React Documentation. Retrieved May 11, 2023, from https://reactjs.org/
iii (Dan Abramov, 2023). In Redux Documentation. Retrieved May 11, 2023, from https://redux.js.org/
iv (OpenJs Foundation, 2017). In Express.js Documentation. Retrieved May 11, 2023, from https://expressjs.com/
v (OpenJs Foundation, 2023). In Node.js Documentation. Retrieved May 11, 2023, from https://nodejs.org/
vi (Tailwind Labs, 2023). In Tailwind CSS Documentation. Retrieved May 11, 2023, from https://tailwindcss.com/
vii (Flowbite, 2023). In Flowbite Documentation. Retrieved May 11, 2023, from https://flowbite.com/
viii (Nick Downie, 2023). In Chart.js Documentation. Retrieved May 11, 2023, from https://www.chartjs.org/
ix (Gamma, E., Helm, R., Johnson, R., & Vlissides, J. 1995). Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional.
x (Adhikari, P., & Shrestha, R., 2020). Building Web Applications with MERN Stack: A Comprehensive Guide to Imple-
ment the MERN Stack from Scratch. Packt Publishing.
xi (Jim VanderHei, 2023). In Axios Documentation. Retrieved May 11, 2023, from https://axios-http.com/
xii (Fielding, R. T., Gettys, J., Mogul, J. C., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T., 1999). Hypertext Trans-
fer Protocol -- HTTP/1.1. IETF. RFC 2616.
xiii (Klein, D., 2014). The Architecture of Open-Source Applications: The Middleware Web Framework Middleware.
Lulu.com.
xiv (Nicholas C. Zakas, 2013). In ESLint Documentation. Retrieved May 11, 2023, from https://eslint.org/
xv (van Kesteren, A., & Barth, A., 2014). Cross-Origin Resource Sharing. W3C. Retrieved from
https://www.w3.org/TR/cors/
xvi (Rehor, D., 2020). Redux Thunk: What It Is and How to Use It. Retrieved from https://medium.com/@dave_re-
hor/redux-thunk-what-it-is-and-how-to-use-it-f7a9c7eff7d3
xvii (Dan Abramov, 2023) useSelector API Documentation. Retrieved from https://react-re-
dux.js.org/api/hooks#useselector
xviii (Andrew Clark, 2023). useState API Documentation. Retrieved from https://reactjs.org/docs/hooks-state.html

