
Förnamn Efternamn 

 

Thermal management and design optimization 

for a high power LED work light 

 

 

Ekaterina Schütt 

 

 

Degree Thesis 

Plastics Technology 

2014 



Ekaterina Schütt 

 

DEGREE THESIS 

Arcada 

 

Degree Programme:  Plastics Technology 

 

Identification number:  

Author: Ekaterina Schütt 

Title: Thermal management and design optimization for a high 

power LED work light 

 

Supervisor (Arcada): Kim Skön 

 

Commissioned by:  

 

Abstract: 

 

 

This thesis work deals with the optimization project of the heat sink and explains in de-

tails the design path of the thermal aspect of a long-life, high quality LED work light, as 

well as some general fundamentals of product design and manufacturing to consider. Alt-

hough the path from an idea to the finished product is described mainly from the thermal 

aspect; the entire process of electronics development and casing mechanical design is not 

included in this thesis work. 

The study was done for Five Watts Oy, a company based in Finland designing, develop-

ing and manufacturing LED work light solutions for heavy duty equipment. The first pro-

totypes of LED work light were made without proper cooling simulations and thus did 

not provide sufficient cooling of the LEDs; in a space with no external airflow the proto-

types always reached overheat protection temperatures. A proper Computational Fluid 

Dynamics simulation was made to optimize the most crucial part of the cooling fins, the 

spacing. The results of the simulation were integrated into overall work light design; 

nowadays the product is on the market and functioning successfully. 

Keywords: LED, heat sink, COMSOL, work light, product design, 

heat resistance model, heat transfer, LED junction tem-

perature 

Number of pages: 59 

Language: English 

Date of acceptance: 11.09.2014 



Ekaterina Schütt 

 

CONTENTS 

Figures ........................................................................................................................................ 5 

Tables ......................................................................................................................................... 5 

1 Introduction ......................................................................................................................... 6 

1.1 Project Background ..................................................................................................... 6 

1.2 Research objectives ..................................................................................................... 7 

2 Key factors in long-life LED system design ....................................................................... 8 

2.1 Efficient thermal management ..................................................................................... 8 

2.2 LED current regulation electronics design .................................................................. 8 

2.3 Enclosure design, casing ingress protection ................................................................ 9 

2.4 Light color temperature and lumen output ................................................................ 10 

3 LEDs technologies ............................................................................................................. 12 

4 Basic concepts of heat transfer .......................................................................................... 16 

4.1 Conduction................................................................................................................. 16 

4.2 Convection ................................................................................................................. 18 

4.3 Radiation .................................................................................................................... 19 

5 Thermal management of LEDs .......................................................................................... 21 

5.1 Importance of proper thermal management ............................................................... 21 

5.2 Thermal resistance model .......................................................................................... 23 

5.3 The practical implementations of heat resistance model ........................................... 28 

5.3.1 Junction temperature calculations ...................................................................... 28 

5.3.1 Thermal resistance of the heat sink calculations ................................................ 29 

6 Heat sinks: various cooling options ................................................................................... 31 

6.1 Heat dissipation options............................................................................................. 31 

6.1.1 Passive heat dissipation ...................................................................................... 32 



Ekaterina Schütt 

 

6.1.2 Active heat dissipation ....................................................................................... 33 

6.2 Heat sink design considerations ................................................................................ 35 

6.2.1 Heat sink type ..................................................................................................... 35 

6.2.2 Surface area of the heat sink .............................................................................. 39 

6.2.3 Air flow rate ....................................................................................................... 39 

6.2.4 Thermal transfer within the heat sink ................................................................. 39 

6.2.5 Surface quality of the contact area ..................................................................... 39 

6.2.6 Mounting method ............................................................................................... 39 

7 Thermal simulations .......................................................................................................... 41 

7.1 CFD simulations and thermal analysis of three suggested heat sink models ............ 42 

7.1.1 10 fins with 11 mm spacing design .................................................................... 43 

7.1.2 12 fins with 9 mm spacing design ...................................................................... 44 

7.1.3 14 fins with 7 mm spacing design ...................................................................... 45 

8 Design of the worklight ..................................................................................................... 47 

9 Thermal camera measurments ........................................................................................... 51 

10 Discussions .................................................................................................................... 54 

11 References ..................................................................................................................... 56 

Appendix 1 ............................................................................................................................... 60 

 

 

 

 

 

 

 

 

 



Ekaterina Schütt 

 

FIGURES 

Figure 1. Structure of a Cree XM-L LED (Compiled by author) ________________________________________ 12 

Figure 2. Light emission process in a LED chip (www.hyperphysics.phy . LED structure, 2013) ______________ 13 

Figure 3.  Haitz's Law(www.sitelightting.com,2013) _______________________________________________ 14 

Figure 4. Convection heat transfer process (a) Forced convection (b) Natural convection (Compiled by author) 19 

Figure 5. Radiation heat exchange (Incropera, 2006 p.7) ___________________________________________ 20 

Figure 6. Relative Flux vs. Junction Temperature (CREE XLamp XM-L LED Datasheet, 2013) ________________ 22 

Figure 7.Detailed thermal resistance circuit of a LED (Compiled by author) _____________________________ 23 

Figure 8. Thermal resistance model including three main resistances (Compiled by author) ________________ 24 

Figure 9.Thermal resistance model for four LEDs (Compiled by author) ________________________________ 25 

Figure 10. Example of a heat pipe sink (www.jimms.fi, 2014) ________________________________________ 33 

Figure 11.Typical extruded heat sink (for TO-220 transistor package) (www.farnell.com, 2014) ____________ 36 

Figure 12. Typical stamped heat sink for TO-220 transistor package (www.farnell.com, 2014) _____________ 36 

Figure 13. Example of a bonded fin heat sink (www.catalog.chtechnology.com, 2014) ___________________ 37 

Figure 14. Example of high-pressure casted heat sink (for TO-3 transistor package) (www.farnell.com, 2014) _ 37 

Figure 15. Example of a folded fins heat sink (www.enertron-inc.com, 2014) ___________________________ 37 

Figure 16. Horizontally extruded plate fin heat sink, (a) front view; (b) top view; (c) isometric configuration. __ 38 

Figure 17. CFD analyses results for 10 fins heat sink design (Compiled by author)________________________ 44 

Figure 18. CFD analyses results for 12 fins heat sink design (Compiled by author)________________________ 45 

Figure 19. CFD analyses results for 14 fins heat sink design (Compiled by author)________________________ 46 

Figure 20. Different LED work light designs during optimization of heat sink geometry. (Compiled by author) _ 48 

Figure 21. Zaurac 4-30 LED work light (www.5watts.fi, 2014) _______________________________________ 50 

Figure 22. Thermal camera image, lamp’s top view (Compiled by author) ______________________________ 52 

Figure 23. Infra-red camera image, air flow at the heat sink, airflow at the heat sink demonstrated with a piece 

of paper hanging above it (Compiled by author) __________________________________________________ 52 

Figure 24. Hottest point of the casing when mounted horizontally (Compiled by author) __________________ 53 

Figure 25. Hottest spot of the casing when mounted vertically (Compiled by author) _____________________ 53 

 

TABLES 

Table 1. Thermal conductivity of typical materials used in electronic industry (Compiled by author) .................. 17 

 

 

 

file:///D:/KATJA/proposal/thesis%20final/thesis%20final%2011.06.2014/Thermal%20management%20and%20design%20optimization%20for%20a%20high%20power%20LED%20work%20light.docx%23_Toc398199412
file:///D:/KATJA/proposal/thesis%20final/thesis%20final%2011.06.2014/Thermal%20management%20and%20design%20optimization%20for%20a%20high%20power%20LED%20work%20light.docx%23_Toc398199413


6 

 

1 INTRODUCTION 

1.1 Project Background 

Heavy construction machinery like excavators, haulers, loaders, bulldozers, harvesters, 

mining machinery etc. needs to be equipped with artificial light sources to make the 

work efficient and productive. Most of today's work lights are often based on older 

technologies like halogen and xenon gas lamps. These traditional lamps draw a lot of 

current, produce large amount of heat and break easily compared to LED lights. Re-

placement of the lamps costs money in terms of parts, working time and downtime. 

 

LED technology offers enormous benefits for construction field applications. The long 

life, durability, and high efficiency of LED lights provide significant savings in service 

costs and power consumption. There is a big variety of LED work lights on the market 

nowadays; however, most of them are awkwardly bulky, low in quality and heavy. Oth-

er issues are cold light color temperatures, insufficient light, insufficient beam angle 

choices, bad water and dust protection. 

 

The proposed thesis topic aims to be written for Five Watts Oy, Finnish designer and 

manufacturer of durable work lights. Company's first product, designed for demanding 

use, the rugged floodlight Zaurac 4-30, was released in the second quarter of 2013 after 

extensive development, rigorous prototyping and testing. 

 

The project of optimizing the cooling system of a LED work light was started when the 

development of the first version of regulating electronics of the light was nearing com-

pletion. It was already known that the LEDs need cooling, but the extent of the cooling 

requirements were unknown. A few prototypes were made, that worked well in a well-

ventilated environment, but not in still air. 

 

If an LED work light is supposed to last long, its cooling, among other things, needs to 

function properly in all possible conditions. 

 

 



7 

 

1.2 Research objectives 

The main objective with this research project is to produce a functional and durable 

cooling profile by understanding how the LED chip’s maximum junction temperature is 

influenced by the geometry of cooling fins. 

 

The aim of this thesis study is to simulate a case of passive cooling where also the vis-

cosity of air is taken into account; The amount of energy that needs to be dissipated is 

known, and thus the aim of research is to find out at what temperature the armature will 

saturate at given ambient temperature. In other words the results of FEM analysis would 

give dimensions of cooling fins and spacing between them in mm. These findings have 

to be integrated into overall look of a lamp as a ready product. 

 

The cooling profile is supposed to be used as such by Five Watts OY, and/or be the ba-

sis of further cooling systems for LED lighting and other devices that need cooling. 
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2 KEY FACTORS IN LONG-LIFE LED SYSTEM DESIGN 

 

Many factors are crucial for the longevity of a product, and any of those, mentioned be-

low points, if not done correctly might cause premature light device failure. There is a 

large number of different LED based lighting systems available on the market nowa-

days. As the number of manufacturers offering LED lights continues to grow, it appears 

that many are not taking full benefit of the potentially very long lifetime of the LEDs. 

The following details cited below just give an overview of basic ideas that are good to 

consider in a LED product development process.  

2.1 Efficient thermal management 

Without a good sink design junction temperature of a LED rises causing its performance 

characteristics to change. This will be discussed later in details, but in short, the temper-

ature the heat sink is allowed to reach greatly affects the lifespan of the product. 

 

Very often the cooling fins of a heat sink are too short or positioned too closely together 

to produce an effective convection to remove the heat from the lamp’s enclosure. This 

in turn will keep the LEDs running at close to, or even over, their maximum junction 

temperatures, rapidly degrading the quality of the LED chip, resulting in reduced output 

and light discoloration. Very small gaps between the cooling fins are also easily filled 

with dirt, making the cooling even less efficient. 

2.2 LED current regulation electronics design 

LEDs are very sensitive to overheating, overvoltage, reverse voltage, overcurrent and 

static electricity, and thus, should be well protected from all of the above, for the whole 

life expectancy stated in LED data sheet (50 000 + hours). The electronics need to be 

carefully designed, keeping in mind the estimated lifetimes of each component in the 

conditions where it will be used. The electronics design should also take into account 

numerous problems, such as long drive cycles in high temperatures, vibrations, thermal 

shocks, input voltage spikes, reverse connections, static discharges etc. For example, 

many switching power supplies, commonly used as current regulators for LEDs due to 
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high efficiency, have heavy components such as inductors and capacitors that cannot 

withstand vibrations very well. 

 

In some cases LED lights are equipped with electronics that do not match the LEDs 

long life, as an example many cheaper electrolytic capacitors, often used in switching 

regulators such as computer power supplies and LED drivers, are rated to last 2000 - 

8000 hours in normal operating conditions. Typical example of a cheap low ESR elec-

trolytic capacitor (most common in switching power systems); the data sheet promises 

to maintain ± 20% of its original capacitance after 2 000 hours of use, and due to the 

composition of the electrolytic capacitor, the characteristics will degrade rapidly when 

they start. [1] 

 

Compared to 50 000 – 150 000 hours of the LEDs themselves, it is obvious that the 

LEDs are not the weak link. There are also other possibilities of failure, such as badly 

optimized switching transitions which can destroy transistors and capacitors much faster 

than intended. 

2.3 Enclosure design, casing ingress protection 

The electronics involved in LED lights often have components or signal conduits that 

are sensitive to moisture and other electrically conductive substances and particles. 

Great care should be taken for a long-life product to stay appropriately well isolated 

from its environment. The casing must also be resistant to impacts, shocks, vibrations, 

temperature changes and other events that might occur within such a long life span. 

Moisture also should not enter the casing through the electrical power input, or any oth-

er way. 

 

There are many LED work lights, in which a cable is pulled directly into the casing 

from outside. This design, although simpler and sometimes cheaper, is a direct way for 

moisture to enter the casing, especially in outdoor conditions. If there is any way for 

water or moist air to enter the cable itself, such as the connector or a crack in the cable 

sleeve, capillary forces combined with the thermal expansion and shrinkage of the air 
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inside the casing, is very likely to pull in moisture which eventually causes the electron-

ics to fail. 

 

Also the choice of production method is usually based on price, which typically leads to 

pressure casted aluminum, iron or magnesium. However these methods have the com-

mon problem that most pressure casting alloys have restrictions to their surface treat-

ment, especially when aesthetics design plays significant role for the product marketing. 

The lights are often desired to have a specific casing color, and this is mostly possible in 

pressure casting only by different methods of painting, which usually do not bond 

chemically with the material, and/or can allow corrosion from inside when damaged, 

meaning that if scratched, the oxidation will spread under the paint. 

 

Another important design consideration for a LED system is the size and weight. Often 

LED work lights, constructed for heavy use, weigh up to 2.9 kg and can be up to 160 

mm high, which causes vibration on the mounting point in dynamic applications, such 

as excavator parts which can very suddenly change speed or direction. [2] 

2.4 Light color temperature and lumen output 

LED chip will deteriorate whenever used, but the rate of it depends on the operating 

conditions. The closer to its maximum rated current the LED is run, the faster the light 

efficiency decreases which can even lead to the product failure. Cree, LED manufactur-

er, provides XM-L white LEDs test data where the diodes are tested in different ambient 

temperatures at the same drive current resulting in percentual decrease of average lumen 

maintenance at 6000 hours with the increase of temperature. [3] It is a matter of product 

price, expected lifetime and size, how many LEDs of what power are chosen to produce 

the desired light output. 

 

A cooler white LED will, for the same amount of electrical energy, produce more radi-

ant energy, simply due to the fact that the phosphor layer used to convert the blue light 

to white has a certain power loss in itself, and a thicker layer will have slightly lower 

efficiency than a thin one. 
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With this in mind, it seems logical to use as cool white LEDs as possible, since there is 

a higher light output to input energy ratio, and thus the same amount of power gives 

more lumens. However, the cooler the light, the less “warm” colors reflect back in the 

light beam, for example a red object is barely visible and looks brown. This in turn 

stresses the human eye a lot making it uncomfortable for usage. 
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3 LEDS TECHNOLOGIES 

 

In order to successfully engineer a high quality LED solution, it is advisable to under-

stand the principles of operation of the LED technology. 

 

Light-emitting diodes (LEDs) are semiconductor devices that generate light via electro-

luminescence when electric current passes across the junction of the semiconductor 

chip. Most semiconductors are made of a poor conductor material that has impurities 

(atoms of another material) added to it. The process of adding impurities is called dop-

ing. [4] 

 

LEDs are p-n junction devices constructed of gallium phosphate (GaP), gallium arse-

nide (GaAs) or gallium arsenide phosphate (GaAsP). For example, in pure GaAs, all of 

the atoms bond perfectly, leaving no free electrons to conduct electric current. In doped 

material, additional atoms change the balance, either adding free electrons or creating 

holes for electrons to move. These alterations make the material more conductive. 

 

Figure 1. Structure of a Cree XM-L LED (Compiled by author) 
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A semiconductor with free electrons, which greatly increase the conductivity of the ma-

terial, is called N-type material. In a N-type material, free electrons move from a nega-

tively charged area to a positively charged area. A semiconductor which has deficien-

cies of valence electrons (holes) acting like a positive charge carrier is called P-type ma-

terial; it has extra positively charged particles. Electrons can jump from hole to hole, 

moving from a negatively charged area to a positively charged area. As a result, the 

holes themselves appear to move from a positively charged area to a negatively charged 

area.  

 

LEDs are combination of p-type material, and n-type material. When p- and n- type ma-

terials are placed in contact with each other, at the junction the electrons and holes com-

bine so that a continuous current can be maintained, current flows in one direction (for-

ward biased), but not in the other, creating a basic diode. At the junction region the elec-

trons diffuse across to combine with holes, creating a depletion zone. When electrons 

cross the junction from n-type to p-type material, the electron- hole recombination pro-

cess produce some photons in the infrared or visible light spectrum, this process is 

called electroluminescence, thus the semiconductor surface emits light. This implies 

that the electron-hole pair drops into more stable bound state, releasing energy by the 

emission of a photon. The wavelength of the light emitted depends on the materials 

forming the P-N junction. [5] 

LEDs have been available as electronic components since 1960. When first developed, 

LEDs were limited to low-power applications like, for example, indicator lights. Then, 

higher-powered LEDs were developed and used in applications like traffic lights. It is 

 

Figure 2. Light emission process in a LED chip (www.hyperphysics.phy . LED structure, 2013) 
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only recently; however, LED lights have attracted the attention of the illumination in-

dustry on big scale and have begun to become a practical light source. Nowadays LEDs 

are used in a variety of applications, such as strip lighting, conventional residential 

space lighting, outdoor and commercial lighting. [4] 

 

The LED lighting market is one of the world's fastest growing at the moment. Old light 

technologies, such as incandescent filament and compact fluorescent lights (CFLs) are 

being overrun by the high efficiency, mechanical ruggedness, safety (due to low voltag-

es and temperatures) and long lifespan of LEDs. 

 

Over the last 50 years LED development has been improving at logarithmic rates, while 

the cost of light from LEDs has been decreasing. This phenomenon is known as Haitz’s 

Law. Haitz's Law states that every 10 years the price of LEDs decreases by a factor of 

10, while the performance, measured in lumen output per unit, increases by a factor of 

20. Since 1960s this rate is illustrated in Figure 3 below. [6] Such a fast development 

might be explained by increased competition in the LED component market. The latest 

revolutionary news on LED market is the development of LED which delivers up to 303 

lumens-per-watt, enabling lighting manufacturers to create the next generation of high 

power, high efficiency lamps. [7] 

 

Figure 3.  Haitz's Law(www.sitelightting.com,2013) 

 



15 

 

LEDs are more and more often used to replace conventional light sources such as in-

candescent, compact fluorescent and halogen. LEDs use about 40% less power than 

CFLs and last six to seven times longer. [4] The main advantage of the LEDs is the effi-

ciency. Conventional incandescent bulbs, for example, can generate up to 95 % heat. 

LEDs produce relatively little heat. A much higher percentage (20-30%) of the electri-

cal power is going directly to light. 

 

LEDs have more lumen output than conventional light sources. For example, Osram's 

LED bulb PARATHOM CL A 60 10 W/827 E27 produces 81 lm/W compared to a 

CLASSIC A 40 W 230 V E27 incandescent bulb's 10,3 lm/W [8] 

 

Up until recently, LEDs were expensive for most lighting applications due to the use of 

advanced semiconductor materials and rather complicated product designs. Rare earth 

metals used in LEDs are subject to price control monopolies by certain nations. The 

price of LEDs can be compensated by their longer lifespan, up to 150000 hours com-

pared to 1200 hours of a regular commercial incandescent light bulb and 8 000 of com-

pact fluorescents. [9] 

 

LEDs have the possibility to a very stable light output and their small size and compact 

structure makes them a lot more durable. They also fit more easily into modern elec-

tronic circuits. 
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4 BASIC CONCEPTS OF HEAT TRANSFER 

 

Heat transfer can be briefly described as energy movement due to differences in thermal 

energy potential. Energy always strives to migrate from higher to lower concentrations, 

and the laws of thermodynamics set of energy conservation indicates that the total ener-

gy in a closed system is always constant. [10] 

 

For proper LED performance and product design it is important to understand the phys-

ical mechanisms which determine the heat transfer and the amount of energy being 

transferred. The heat originates in the LED junction, and is conducted through the LED 

package and circuit board to a heat sink, which then dissipates it. Three basic modes of 

heat transfer are conduction, convection and radiation. In a LED system all three forms 

of heat transfer play a role in maintaining the temperature of a LED chip, generating a 

good thermal path from the LED to the environment is critical in keeping the LED with-

in specified temperatures. 

 

The three modes are briefly described below. 

4.1 Conduction 

Conduction is the transfer of heat through a material by direct contact due to the tem-

perature gradient. The physical mechanism of conduction can be viewed as a flow of 

energy from the more energetic to less energetic particles due to interactions between 

them. An object's temperature depends on the atoms’ and molecules' movements. The 

more energy the particles have the greater their movements. When the movement of the 

atoms increases with warming, they will collide with neighboring atoms and increase 

their energy. 

 

The rate of heat energy transferred through a given surface, per unit area is called heat 

flux. The process of conduction is described in Fourier's law. In 1822 Fourier concluded 

that “the heat flux resulting from thermal conduction is proportional to the magnitude of 

the temperature gradient and opposite to it in sign” [11] 
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For a unidirectional conduction process this observation may be expressed as: 

 

𝑞′′𝑥 = −𝑘
𝑑𝑇

𝑑𝑥
           (4.1) 

 

Figure 4. One-dimensional heat transfer by conduction (diffusion of energy) (Incropera, 2006 p.5) 

The heat flux equation gives the general heat transfer rate per area. If one wants to know 

the heat output q in Watts, one must count with area also. [12] The equation then be-

comes: 

𝑞 = 𝐴 ⋅ 𝑞′′           (4.2) 

 

Thermal conductivity is a unique property of a material; it is measured in watts per me-

ter Kelvin. 

The table below shows some example of the thermal conductivity of typical materials 

used in electronic industry. [13] 

Table 1. Thermal conductivity of typical materials used in electronic industry (Compiled by author) 

Material k (W/mK) at 25 oC 

 

Aluminum 205 

Lead 35 
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Copper 401 

Polyurethane resin 0,65 

Air 0,024 

Poly carbonate 0,19 

Epoxy 0,35 

Fiber glass 0,04 

4.2 Convection 

Convection is the transfer of heat which occurs between the fluid or gas in motion and a 

bounding surface when the two are at different temperatures. Convection consists of 

both conductive heat transfer and heat transfer resulting from the bulk motion of a fluid 

or gas. The energy on the surface of the solid body moves via diffusion to the layers of 

liquid or gas that is in direct contact with the surface in the same manner as in conduc-

tion. 

 

The heated liquid is then led away by the current and replaced by cooler liquid. Convec-

tion can also occur in the other direction that energy moves from the liquid or gas to the 

solid body, such as in liquid filled radiators for indoor heating. Convection can be clas-

sified to two sub-categories according to the nature of the flow: natural and forced. Nat-

ural convection is induced by buoyancy forces, arising from the density differences 

caused by temperature variations in the fluid or gas. Heat flow in forced convection is 

caused by external means such as a fan, pump, and atmospheric winds or may result 

from propulsion of a solid through the fluid. As an example, for cooling electrical de-

vices, fans are often used to provide forced air flow. The difference between forced and 

natural convection is illustrated in the Figure 4 below. 
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Figure 4. Convection heat transfer process (a) Forced convection (b) Natural convection (Compiled by author) 

 

Regardless of the nature of the convection the quantity of heat transferred can be calcu-

lated, the appropriate rate equation is of the form: 

 

𝑞′′ = ℎ(𝑇𝑠 − 𝑇∞)         (4.3) 

 

Convection heat transfer coefficient h denotes the ability of the fluid or gas to convey 

thermal energy to or from the material's surface. Convection is the main mode of heat 

transfer to remove the generated heat from the LED system through heat sink to the am-

bient air. The determination and calculation of heat transfer coefficient (h) can be a real 

challenge. Values for h can vary significantly and depend on many factors, like bounda-

ry conditions (how close the objects that interfere with the air flow are), geometry, sur-

face roughness, velocity of the fluid or gas over the solid surface and many others. [13] 

 

One of the biggest LED manufacturers recommends using the following values for ini-

tial rough calculations: forced convection h values can be as high as 100 W /m2K for air 

and up to 10,000 W/m2K for water, for natural convection in air, values can be in the 

range of 5-20 W /m2K. 10 W/m2K for natural convection coefficient is a good assump-

tion for preliminary calculations. [14] 

4.3 Radiation 

Radiation occurs when radiant energy leaves the surface via electromagnetic waves and 

travels until it meets another surface. The emission happens due to the changes in elec-

tronic configuration in atoms or molecules, the energy produced is transported by elec-
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tromagnetic waves, and thus the transfer of energy does not require the presence of ma-

terial. Radiation transfer is most efficient in vacuum, if the aim is to heat up another ob-

ject. 

 

Radiant energy is emitted by any piece of matter which is at any temperature above ab-

solute zero. The intensity of such energy depends on the temperature and surface emis-

sivity of the object and its material, which is viewed as the ratio of how closely the sur-

face resembles an ideal radiator. 

 

If a surface receives more radiative energy than it emits, its temperature increases. Very 

often in a LED system values of radiant heat transfer are so small that they can be ne-

glected in comparison with convection and conduction. 

 

Figure 5. Radiation heat exchange (Incropera, 2006 p.7) 

 

Equation that describes how to calculate the amount of heat transferred via radiation is: 

 

𝑞′′𝑟𝑎𝑑 = 𝜀𝜎(𝑇𝑠
4 − 𝑇𝑠𝑢𝑟

4 )         (4.4) 

Where: 

σ is the Stefan-Boltzmann constant (5.67x10-8 W/m2K4). Surface with such constant is 

called an ideal radiator. [13] 
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5 THERMAL MANAGEMENT OF LEDS 

5.1 Importance of proper thermal management 

High power LED generally refers to the LED module for which the single chip size is not less that 

1mmx1mm and the drive current is at least 350 mA. [15] 

Despite being one of the most efficient ways to generate light, LED photoelectric con-

version efficiency is still relatively low and much of the power running through the 

LED is output as heat. The efficiency of LEDs varies significantly from one manufac-

turer to another. For example, Cree® XLamp® XM-L LEDs expel nearly 80 % of the 

input electrical energy into heat, this means that 80 % of the power going to the LEDs 

the system must dissipate through conduction, convection and radiation. [16] 

 

The reliability and lifetime of any LED device is affected by the LED junction tempera-

ture. Improper thermal management resulting in exceeding the maximum operating 

temperature specification, which is typically a 150 °C junction temperature, causes fail-

ure or damage to the LEDs over time. [16] 

 

Consequently, LED system designers must consider the heat dissipation challenges and 

their effects on LED performance, lifespan, and product reliability. 

 

The performance characteristics of LEDs are presented in detailed product data sheets. 

Typically LED manufacturers specify the operating conditions which shall be taken in 

account while designing a product. Light output, color, voltage and lifespan are those 

performance characteristics which are directly dependable on junction temperature. 

 

High junction temperatures cause recoverable light output reduction, the relationship 

between the luminous flux and the junction temperature can be found in the LED data 

sheet. As the junction temperature increases, the light output of the LED decreases, but 

recovers when the LED cools down. This can be observed in the Figure 6 below. [16] 

When approaching or exceeding maximum junction temperatures, the LED might fail to 

recover. 
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Figure 6. Relative Flux vs. Junction Temperature (CREE XLamp XM-L LED Datasheet, 2013) 

With increasing junction temperatures, the color of LEDs shifts slightly. This needs to 

be considered in more color sensitive designs, such as stage lighting. For some specific 

applications like, for example, LED modules used in digital displays this phenomenon 

might be unfavorable. If LEDs aren't matched properly, they might produce a rainbow 

effect of different shades. It can be determined from the datasheet that the chromaticity 

coordinate will shift as the ambient temperature increases. The chromaticity coordinate 

also shifts as the forward current increases. An increase in current also results in slightly 

lowered efficiency and thus proportionally higher heat generation. One way to solve this 

is to actively regulate the LED junction temperature by keeping the circuit board under 

thermal control, and adjusting the temperature according to how much power the LEDs 

are run with. [16] 

 

Thermal resistance between the LED junction and ambient also determines maximum 

continuous forward current. It is crucial for the end product to be designed in a manner 

that minimizes the thermal resistance from the solder point to ambient in order to opti-

mize lamp life and optical characteristics. Forward voltage decreases as the junction 

temperature of an LED increases. This is shown on each of Cree’s XLamp data sheets 

as the temperature coefficient of voltage, and varies slightly depending on the color and 

package type. 



23 

 

5.2 Thermal resistance model 

Thermal resistance is defined as the rate of temperature increase for the supplied power 

and also known as the capability to dissipate heat. 

 

Knowledge of the thermal resistance (Rth) of a LED helps to: 

• estimate the LED’s junction temperature under operating conditions 

• calculate the highest allowable ambient temperature for a given power dissipa-

tion 

• determine the thermal management model and design appropriate heat sink 

 

Temperature difference is the driving force of the heat transfer. The thermal path of a 

LED system can be illustrated by a simple resistor network similar to an electrical cir-

cuit. Thermal resistances are represented by the resistors, the heat flow is approximated 

by the electrical current, and the corresponding temperatures within the system corre-

spond to the electrical voltages. [17] 

 

Figure 7.Detailed thermal resistance circuit of a LED (Compiled by author) 

In the Figure 7 above the heat path is illustrated; heat is conducted from the LED junc-

tions through the LED components to the PCB, through the network of different re-

sistances to the heat sink and then convected and radiated to the ambient air. [14] 
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The nodes in the circuit represent the individual sections where temperatures may be 

measured. The individual thermal resistances described above can be calculated from 

Equation (5.1) below. General formula for thermal resistance is: 

 

𝑅𝑎−𝑏 = (𝑇𝑎 − 𝑇𝑏) 𝑃𝑡ℎ          ⁄ (5.1) 

Where: 

R(a-b) is the thermal resistance from point “a” to point “b” (°C/W) 

Ta is the temperature at point “a” (°C) 

Tb is the temperature at point “b” (°C) 

Pth  is the thermal power 

 

The equation (5.1) above represents the thermal resistance for a single LED.  

Usually power LEDs are mounted on metal-core printed circuit boards (MCPCB), 

which are attached to a heat sink. Heat flows from the LED junction through the PCB to 

the heat sink by conduction. The heat sink releases heat to the ambient surroundings by 

convection. In most LED applications, thermal resistances from solder point to PCB 

(Rsp-PCB) and from PCB to thermal interface material (Rpcb-tim) are small with respect to 

the thermal resistance between the junction and thermal pad, thermal pad and heat sink 

and heat sink to ambient, thus they can be omitted in calculations. 

 

 

Figure 8. Thermal resistance model including three main resistances (Compiled by author) 

 

The formula for the total thermal resistance is the series resistances from the junction to 

the solder point, from the solder point to the heat sink and from the heat sink to ambi-

ent: 

 

𝑅𝑗−𝑎 = 𝑅𝑗−𝑠𝑝 + 𝑅𝑠𝑝−ℎ𝑠 + 𝑅ℎ𝑠−𝑎          (5.2) 

Where: 

Rj-a is the thermal resistance from LED junction to ambient (°C/W) 

Rj-sp is the thermal resistance from LED junction to solder point (°C/W) 



25 

 

Rsp-hs is the thermal resistance from solder point to heat sink 

Rhs-a is the thermal resistance from heat sink to ambient (°C/W).  

 

For multiple LEDs, their thermal resistances act in parallel. The thermal resistance from 

junction to solder point shall be divided by the number of LEDs (n). [18] 

Equation 5.3 and Figure 9 below demonstrate that: 

 

𝑅𝑗−𝑎 = 𝑅𝑗−𝑠𝑝 𝑛⁄ + 𝑅𝑠𝑝−ℎ𝑠 + 𝑅ℎ𝑠−𝑎         (5.3) 

 

 

Figure 9.Thermal resistance model for four LEDs (Compiled by author) 

 

For thermal power (Pth) calculations, it is important to realize that total heat dissipation 

is lower than total electrical power input to the system as a certain amount of electrical 

power is converted to the emission of photons (both visible and non-visible) , and that 

the driver causes additional heat in the form of conversion power-loss. 

 

Approximately 70-80 % of the input power consumed by the LEDs themselves, after 

the power losses from the LED driver, is transformed into heat. Assuming LEDs con-

vert 25 % of the input power to light and output 75 % of the input power as heat. This 

estimate varies depending on current density, brightness and LED model, but is a good 

estimate for thermal design. 

 



26 

 

The efficiency of a LED driver also varies from case to case, good drivers can be up to 

95 % efficient, this means that 5 % of the initial input power of the system is converted 

to heat before reaching the LEDs.[14] 

 

Equation (5.4) below shows how to calculate the thermal power. 

 

𝑃𝑡ℎ = 𝑃𝑖𝑛𝑝𝑢𝑡 − 𝑃𝑙𝑖𝑔ℎ𝑡          (5.4) 

Where: 

Pth is the thermal power (W) 

Pinput is the input electrical power (W) 

Plight is the power emitted from the LEDs in the form of light (W) 

Pinput is the product of the forward voltage (Vf) and the forward current (If) of the LED 

 

𝑃𝑖𝑛𝑝𝑢𝑡 = 𝑉𝑓 ⋅ 𝐼𝑓          (5.5) 

 

The Vf and If can be measured directly or calculated, so the thermal power can easily be 

determined. 

In order to know how much power is converted to light the following formula can be 

used: 

 

𝑃𝑙𝑖𝑔ℎ𝑡 = (𝑃𝑖𝑛𝑝𝑢𝑡 ⋅ 𝜂𝑑𝑟𝑖𝑣𝑒𝑟) ⋅ 𝜂𝐿𝐸𝐷          (5.6) 

Where: 

Plight is the power used for light emission (W) 

Pinput is the input power (W) 

ηdriver is the efficiency of driver, running the LEDs (%) 

ηLED is the optical efficiency of LEDs , approximately 20-30 % 

 

One of the most important factors of successful LED product design is a good thermal 

management of the lamp or luminaire. When the LED junction temperature (Tj) increas-

es, the performance of the LED decreases, thus, is resulting in lower light output from 

the system. Increased junction temperatures have also proven to shorten the lifetimes of 

LEDs. [3] 

 



27 

 

The LED junction temperature cannot be measured directly; however it can be calculat-

ed if the solder point temperature (Tsp) is known. 

 

For solder point thermal measurements thermocouples can be used. A thermocouple is 

made of two thin metal wires of two different types of metal (nickel chromium and 

nickel aluminum, for example). The ends of the wires are welded together, and the leads 

are separated with insulation, so that only the welded end is in contact with the device 

under test. When the welded end is heated or cooled, a DC voltage differential is created 

between the two metals. The DC voltage is interpreted by a thermometer to provide a 

temperature reading; the voltage generated is proportional to the temperature of the de-

vice under test. [19] 

 

LED manufacturers provide data characterizing LED performance versus Tj (Figure 6). 

Junction temperature can be calculated using Equation 5.7 below, based on the meas-

ured Tsp, the total power input to the LED and the thermal resistance of the LED as stat-

ed on its data sheet. 

 

Power consumption can be monitored by the power supply’s measurements which have 

been tested for adequate accuracy. 

 

𝑇𝑗 = 𝑇𝑠𝑝 + 𝑅𝑡ℎ ⋅ 𝑃𝑡ℎ          (5.7) 

Where: 

Tj is the junction temperature (°C) 

Tsp is the measured solder point temperature (°C) 

Rth is the thermal resistance of the LED (°C/W) (LED’s thermal resistance can be found 

in its data sheet) 

Pth is the thermal power input to the LED (W) [14] 
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5.3 The practical implementations of heat resistance model 

5.3.1 Junction temperature calculations 

 

LEDs must not exceed their maximum junction temperature specified on the data sheet. 

First, assume the driver circuitry is positioned away from the LED so its heat output 

doesn't affect the LED chip. This is a best practice recommended by LED manufactur-

ers. 

 

In this example a work light with 4 Cree XM-L LEDs is taken for calculations. [7] The 

LEDs are driven with forward voltage of 3.2 V at a forward current of 2500 mA. 

According to the product data sheet, the thermal resistance from the junction to the sol-

der point (Rj-sp) is given as 2.5 °C/W. 

 

The total system power dissipation is the product of number of LEDs, forward voltage 

and forward current. 

 

𝑃𝑖𝑛𝑝𝑢𝑡 = 𝑛𝐿𝐸𝐷 ⋅ 𝑉𝑓 ⋅ 𝐼𝑓= (4) ˣ (3.2 V) ˣ (2.5 A) = 32 W 

 

Total thermal power is calculated using equations 5.4 and 5.6 

 

𝑃𝑡ℎ = 𝑃𝑖𝑛𝑝𝑢𝑡 − 𝑃𝑙𝑖𝑔ℎ𝑡 = ((𝑃𝑖𝑛𝑝𝑢𝑡 ⋅ 𝜂𝑑𝑟𝑖𝑣𝑒𝑟) ⋅ 𝜂𝐿𝐸𝐷)= (32 W)-(((32W) ˣ (0.95) ˣ (0.25)) = 

= 24.4 W 

 

In order to calculate junction temperature (Tj), the temperature of the solder point (Tsp) 

has to be measured, for example by using a thermocouple mounted close to the LED’s 

thermal pad to measure temperature there. 

 

The set up using a thermocouple was made and Tsp was measured to be 66 °C. 

The Tj of an LED cannot be measured directly; it is possible to calculate using equation 

5.7, based on the measured Tsp, the total power input to the LED and the thermal re-

sistance of the LED as stated on its data sheet. 
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𝑇𝑗 = 𝑇𝑠𝑝 +
𝑅𝑗−𝑠𝑝

4
⋅ 𝑃𝑡ℎ= (66 °C) + ((2.5 °C/W))/4 ˣ (24.4 W) = 81.25 °C 

 

81.25 °C is lower than the specified in the datasheet 150 °C maximum junction tem-

perature, consequently the system is not overheated. With a known junction tempera-

ture, it is possible to predict theoretical luminous flux produced by the light system us-

ing the graph from LED datasheet (Figure 6). 

5.3.1 Thermal resistance of the heat sink calculations 

 

The example above is based on an existing product model, when temperature Tsp can 

be measured. 

 

More challenging task is to predict a proper thermal management for a LED product. 

Assumptions and approximations need to be done in order to succeed. The following 

calculations will show how to determine the thermal resistance of the heat sink, later on 

these values can be used for the heat sink design or selection of a ready one. 

 

In this example the same product with 4 Cree XM-L LEDs is used. Max junction tem-

perature Tj max is 150 °C, the thermal resistance from the junction to the solder point Rj-

sp is 2.5 °C/W, and ambient temperature Ta is 25 °C. Therefore: 

 

𝑇𝑗 = 𝑇𝑎 + 𝑃𝑡ℎ(
𝑅𝑗−𝑠𝑝

4
+ 𝑅𝑠𝑝−ℎ𝑠 + 𝑅ℎ𝑠−𝑎) 

 

The thermal resistance between the solder point and heat sink depends on the surface 

quality, material type, thickness of the heat sink base and area of the contact between 

LED and heat sink. Good design Rsp-hs values may be minimized down to 1 °C/W. 

The maximum thermal resistance from the heat sink to ambient Rhs-a can be calculated. 

Using the previous equation and solving for Rhs-a: 

 

𝑅ℎ𝑠−𝑎 =
(𝑇𝑗−𝑇𝑎−𝑅𝑗−𝑠𝑝⋅

𝑃𝑡ℎ
4

⋅𝑃𝑡ℎ)

𝑃𝑡ℎ
= 3.49 °C/W 
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As it was written before, it is recommended to keep the junction temperature lower than 

150 °C for longer lifetime and higher LED efficiency. In order to keep the junction 

temperature below 150°C in worst-case conditions, a heat sink with thermal resistance 

from heat sink to air Rhs-a less than 3.49 °C/W must be chosen. A heat sink with the re-

quired characteristics may be selected using data provided by heat sink manufacturers or 

through modeling and testing. 
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6 HEAT SINKS: VARIOUS COOLING OPTIONS 

 

A heat sink is designed to maximize the surface area in contact with the cooling medi-

um surrounding it, such as the air. Air velocity, choice of material, fin design and sur-

face treatment are factors that affect the performance of a heat sink. Heat sink attach-

ment methods and thermal interface materials also directly affect the thermal resistance, 

and thereby the LED junction temperature. Thermal adhesive or thermal paste improves 

the heat sink's performance by filling air gaps between the heat sink and the device. 

The design considerations are different for every LED application. The essence of LED 

system design is transferring the heat efficiently from the LED chip through enclosure 

or an external heat sink to its surroundings. 

 

Transmission of heat from a heat source (e.g. the junction of a LED) via the heat sink 

into the surrounding medium takes place in four major steps: 

 Transfer from heat source to the heat sink 

 Conduction from within the heat sink to its surface 

 Transfer from surface into the surrounding medium by convection  

 Radiation depending on the temperature and nature of the heat sink’s surface 

[14] 

 

The main aim of a heat sink is to provide a path for heat to be removed from the LED 

system. The heat in the sink must be continuously dissipated to achieve good air flow. If 

the heat remains trapped in the sink, the temperature will rise and LED chips will be 

overheated. [20] 

6.1 Heat dissipation options 

According to the way the heat is dissipated to the environment, the cooling systems can 

be divided into passive and active. 
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Passive cooling is based on free convection heat transfer process and occurs without any 

applied effort. On the contrary the active cooling requires external active heat removal, 

which can be forced air, liquid cooling, semiconductor refrigeration etc. [15] 

6.1.1 Passive heat dissipation 

 

A plate fin heat sink is the most commonly used solution for LED cooling. A plate fin 

heat sink has many advantages, such as low cost, simple structure, and high reliability. 

However, since based on natural convection, it has a relatively low cooling - to - vol-

ume ratio. 

 

Newton’s Law of Cooling (Equation 2.1) shows the relationship of coefficient h and 

heat exchange area A, they are the key factors affecting the heat transfer intensity of 

natural convection. 

 

Heat transfer coefficient h can be improved by enlarging the area A of the heat sink. 

Material, number of fins, fin thickness, space between the fins, the fin height and heat 

sink base thickness are critical factors directly affecting the performance of a heat sink 

and a LED product. 

 

Another solution for enhanced / remote cooling is heat pipes. Heat pipes do not dissi-

pate heat; they move it to another location more efficiently than any common material. 

The heat pipe is filled with a small quantity of fluid. Inside a heat pipe, at the hot interface a fluid in 

contact with thermally conductive solid surface turns to vapor by absorbing heat from that surface. 

The gas naturally flows along the heat pipe and condenses at the cold interface. The liquid forms and 

moves back by capillary action, centrifugal force, or gravity to the hot interface to evaporate again, 

thus the cycle repeats. This effective high thermal conductance helps maintain near constant tempera-

tures along the entire length of the pipe. [21] 

Heat pipes are often also used as parts of a flat fin heat sink, to distribute the heat more 

effectively to the entire cooling assembly, such as a computer processor cooling ele-

ment. This makes thinner cooling fins possible and thus makes the cooling unit lighter 

and more efficient. Heat pipes can also be used in tight spaces to transfer heat to a re-

mote heat sink for both active and passive cooling. 
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Figure 10. Example of a heat pipe sink (www.jimms.fi, 2014) 

6.1.2 Active heat dissipation 

 

Free convection from the plate fin heat sink is limited and quite often is not enough to 

dissipate heat from high-power LED light source. When the thermal load of a LED sys-

tem is too high to be properly dissipated by passive means, active cooling is applied. 

There are many types of actively cooled systems; however the reliability, noise, cost, 

added power consumption and maintenance of these devices need to be compared 

against the benefits of an actively cooled system. Very few active cooling devices can 

equal the long lifetimes of LEDs, many thousands to hundreds of thousands hours, thus 

making active cooling a weak link in a LED system. 

 

Forced air convection is driven by artificial air force or power, such a pump, which ac-

celerates the rate of airflow, thus increasing the heat transfer coefficient h. Comparative-

ly to the natural convection, the heat exchange rate is significantly improved with forced 

convection. However the reliability of the LED device might be reduced because of 

many moving parts such as fans or a pumps, and extra noise is often an issue. 

 

Another active solution is a thermoelectric cooling which provides such advantages like 

high cooling density, compact construction, no moving part, long life time. Thermoelec-

tric cooling uses the Peltier effect to create a heat flux between the junction of two dif-

http://www.jimms.fi/
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ferent types of materials-electrical conductors and semiconductors. A thermoelectric 

cooling system typically consists of a matrix of semiconductor pellets sandwiched in 

between two large electrodes. When current is applied, the negatively-charged side be-

comes cooler while the positively-charged side becomes warmer. The negative elec-

trode is placed in contact with the element to be cooled, while the positive electrode is 

connected to a heat sink that radiates or dissipates thermal energy into the external envi-

ronment. Main disadvantages of this solution are high cost and low electrothermal effi-

ciency. [15] 

 

The element’s “cooling power” is the amount of power (in the form of heat) that is ac-

tively removed from the cooled side, approximately 10-15% of the total electrical power 

requirement for the element. As an example, a 10W LED circuit board is kept at ambi-

ent temperature by a Peltier element by 10 % cooling efficiency. The element requires 

100 W of power to do this, of which 90W of “moved” energy needs to be dissipated. 

This phenomenon makes thermoelectric cooling rare in LED solutions where power 

saving is one of the key goals [22] 

 

One more type of active heat dissipation is liquid cooling, which is based on a pump-

driven fluid flow to remove heat from the system. A liquid cooling system usually in-

cludes pump, heat exchanger and cooling plate as main components. The flow of liquid 

absorbs the heat through the cooling plate and transfers it to the heat exchanger which 

dissipates it to the environment. The main advantage of the liquid cooling is the high 

cooling density; it can be used in high heat flux applications. On the other hand, the 

high cost and reduced reliability due to many required parts and the requirement of wa-

ter/airtight cooling fluid transportation make liquid cooling rare in LED applications. 

[15] 
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6.2 Heat sink design considerations 

6.2.1 Heat sink type 

 

There are many varieties of heat sinks but generally five main types are common in 

terms of manufacturing methods and their final shape: extruded, stamped, bonded fin, 

casted/metal injected and folded fin. The material most commonly used for heat sink 

construction is aluminum, although copper is also used. 

 

Extruded heat sinks are by far the most common types, capable of dissipating large 

amounts of heat loads. Relatively simple manufacturing makes them a cheap and thus 

very attractive cooling solution (Figure 11). After being extruded, they may be cut, 

milled, machined etc. However there are specific extrusion limits, such as the fin height-

to-gap ratio and fin thickness, which usually prevent the flexibility in design options. 

 

Stamped heat sinks are manufactured from copper or aluminum sheets that are stamped 

and folded into desired shapes and mainly designed for low power thermal problems in 

cooling of electronic components (Figure 12). They offer a low cost solution due to 

their simplicity and suitability for high volume production. 

 

Most of natural convection heat sinks have limited heat transfer possibilities, overall 

thermal performance of an air cooled heat sink can often be improved significantly by 

enlarging surface area exposed to the air stream. Bonded fin heat sinks (Figure 13) use 

thermally conductive aluminum-filled epoxy to bond planar fins onto a grooved, ex-

truded base plate. This process allows for a much greater fin height-to-gap aspect ratio, 

with the intent of greatly increasing the cooling capacity without increasing volume re-

quirements. 

 

Casted metal injection molded heat sinks enables complex parts to be formed as easily 

as simple geometries, thereby allowing a certain product design freedom (Figure 14). 

This technology is used in high density pin fin heat sinks which provide maximum per-

formance when using forced air cooling. Metal injection molding can meet the tolerance 
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requirements for heat sinks without the need for additional machining. The disad-

vantages are: high cost of equipment investment, the molded/casted material thermal 

conductivity and structural integrity is usually poorer in comparison with other heat sink 

manufacturing methods. 

 

In case of folded fins heat sink design, fins are pre-folded and then brazed or soldered to 

a plate base, thus surface area increases and, hence the volumetric performance (Figure 

15). It is not suitable for high profile heat sinks, but it allows high performance heat 

sinks to be fabricated for specific applications. [23] 

 

 

 

Figure 11.Typical extruded heat sink (for TO-220 transistor package) (www.farnell.com, 2014) 

 

 

 

Figure 12. Typical stamped heat sink for TO-220 transistor package (www.farnell.com, 2014) 

http://www.farnell.com/
http://www.farnell.com/
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Figure 13. Example of a bonded fin heat sink (www.catalog.chtechnology.com, 2014) 

 

 

 

 

Figure 14. Example of high-pressure casted heat sink (for TO-3 transistor package) (www.farnell.com, 2014) 

 

 

 

 

 

Figure 15. Example of a folded fins heat sink (www.enertron-inc.com, 2014) 

 

 

 

http://www.farnell.com/
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Heat sink models can be very complicated and have restrictions such as dimension con-

straints, cost, weight, manufacturability, etc. Each application has its unique approach 

and requirements to heat sink design, this work is concentrated on optimization of ex-

truded horizontally-located plate fin heat sink (Figure 16). The picture below depicts the 

most important optimization parameters, such as height of the fin (H), thickness of the 

base (tb), width (W), length (L), fin thickness (t), and spacing between the fins (s). 

 

 

Figure 16. Horizontally extruded plate fin heat sink, (a) front view; (b) top view; (c) isometric configuration. 

 (Compiled by author) 

The use of thermal modeling can eliminate repetitive prototyping, indicate design defi-

ciencies and potential areas which can be improved early in the design process. 

Heat sink thermal radiation is a function of surface finish, especially when the heat sink 

is at higher temperatures. A painted surface will have a greater emissivity than a bright, 

unpainted one. The effect is most noticeable with flat plate heat sinks, where about one-

third of the heat is dissipated by radiation. The color of the paint used is relatively un-

important. The thermal resistance of a flat plate heat sink painted gloss white will be 

only about 3% higher than that of the same heat sink painted matte black. With finned 

heat sinks, painting is less effective since heat radiated from most fins will fall on adja-

cent fins, but it is still worthwhile. Both anodizing and etching will decrease the thermal 

resistance. [14] 
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6.2.2 Surface area of the heat sink 

 

Thermal transfer takes place at the surface of the heat sink. Therefore, heat sinks should 

be designed to have a large surface area. This goal can be reached by using a large 

number of fine fins or by increasing the size of the heat sink itself. 

6.2.3 Air flow rate 

 

Heat sinks must be designed in a way that air can flow through easily, considering its 

viscosity. Heat sinks with a large number of fine fins with short distances between the 

fins may not allow good air flow. A compromise between high surface area (many fins 

with small gaps between them) and good aerodynamics must be found. One should also 

consider “choking points” such as ejector placements in high-pressure molded cooling 

systems, which might prevent rather weak natural convection airflow. Heat sink orienta-

tion is also crucial, if a heat sink is designed to be mounted horizontally, it will not be as 

efficient if mounted vertically. 

6.2.4 Thermal transfer within the heat sink 

 

Large cooling fins are ineffective if the heat can’t reach them. The heat sink must be 

designed to allow adequate thermal transfer from the heat source to the fins. Thicker 

fins have better thermal conductivity; so again, a compromise between large surface ar-

ea (many thin fins) and good thermal transfer (thicker fins) must be found. The material 

used has a major influence on thermal transfer within the heat sink. 

6.2.5 Surface quality of the contact area 

 

The portion of the heat sink that is in contact with the LED or MCPCB must be perfect-

ly flat. A flat contact area allows the use of a thinner layer of thermal compound, which 

will reduce the thermal resistance between the heat sink and LED source. 

6.2.6 Mounting method 
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To achieve a good thermal transfer, the pressure between the heat sink and the heat 

source must be high. Heat sink clamping systems must be designed to provide high 

pressure, while still being reasonably easy to install. Heat-sink mountings with screws 

or springs are often better than regular clips. Thermal conductive glue or sticky tape 

should only be used in situations where mounting with clips or screws is not possible. 

[18] 
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7 THERMAL SIMULATIONS 

 

The performance of any heat sink is measured by the temperature difference between its 

base and the ambient air. The geometry of the heat sink quite often follows the product 

design idea and might have complicated shape making it impossible to estimate the 

cooling power with standard heat sink calculations. This is where Computational Fluid 

Dynamics (CFD) becomes a handy tool for engineers. CFD provides a visual and nu-

merical description of the flow field and temperature distribution in and around the heat 

sink. CFD can help with the selection and/or design of a heat sink for electronics cool-

ing applications. With CFD the real world performance of a product can be predicted, 

helping to save time and money by eliminating the need to build multiple physical pro-

totypes. 

 

CFD is used to perform heat transfer and fluid simulation analyses in order to study the 

thermal characteristics of design models and simulate the detailed fluid flow behavior. 

Heat sinks might seem quite simple in function but their interaction with the compo-

nents to be cooled and the air flow is complex. The heat is carried away from the system 

by an air flow which in turn greatly depends on the geometry.  Important areas to model 

are the fluid flow area near the heat sink surfaces, between the fins, the entry and exit 

areas. 

 

In the heat sinks design, heat transfer coefficient (h) is an important factor. The value of 

h is associated with the fin dimensions, and is the subject for optimization. Additionally, 

due to the overall geometry of the heat sink, it is very difficult to calculate the heat 

transfer coefficient in order to identify and resolve thermal issues in the early stages of 

the product design. 

 

CFD modeling tools help study the initial design intent and accurately predict product 

performance. This allows validating and optimizing design before manufacturing, in-

creasing efficiency, minimizing physical prototypes, reducing costs and decreasing er-

rors. Thus, high performance of heat sinks can be acquired through the design optimiza-

tion which maximizes heat transfer and minimizes pressure drop. [24] 
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After simulating a system and optimizing a design it is recommended to build a final 

prototype to accurately measure its performance. Experimental validations provide val-

uable feedback on modeling. The chosen design can be verified experimentally by 

measuring the base temperature relative to the ambient air temperature or by using heat 

camera. Quite often the numerical results do not exactly match the measurements. After 

all, the CFD model gives only an average result, whereas an experimental measurement 

shows the real situation. Even if there is not a perfect agreement between physical and 

numerical models, model performance trends are presented well enough to shorten the 

total design cycle. In the final analysis, the goal of the CFD work is to make a good de-

sign approach, and as long as the physics of the model was presented correctly, the 

trends will be correct. 

7.1 CFD simulations and thermal analysis of three suggested 

heat sink models 

CFD simulation was done using Comsol Multiphysics, in 2D environment taken into 

account the air around the heat sink. The most important factor of the cooling unit, the 

fin spacing, was iterated to produce the lowest heat sink base temperature with a fixed 

input power evenly distributed on the entire surface, while keeping the height and 

length of the cooling fin array fixed. The size of the lamp itself was defined by the in-

ternal electronics, which were made as small as possible, since the compact size was 

one of the main goals of the product design. The width of the fin in all models is 3 mm. 

Three different cooling fin arrangements were tested, with different fin spacing and fin 

amounts. 

 

The following 3 arrangements are: 

1. 10 fins with 11 mm spacing between the fins 

2. 12 fins with 9 mm spacing between the fins 

3. 14 fins with 7 mm spacing between the fins 

 

The cooling system with 12 fins and 9 mm spacing was chosen as the best of the three, 

since its air channels to surface area ratio delivered the most effective cooling. CDF 
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model provides two types of results: air velocity and temperature distribution. Both re-

sults of simulation are shown below for each type of heat sink design. 

 

7.1.1 10 fins with 11 mm spacing design 

 

The pictures below depict the cooling arrangement allowed for quite effective volumet-

ric airflow through the cooling fins. The temperature of the air between the cooling fins 

in a saturated state of natural convection is low. When comparing the three different 

models, the model below, has less cooling surface area and thus cannot dissipate as 

much heat with the same power input as the 12 fin version. 
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Figure 17. CFD analyses results for 10 fins heat sink design (Compiled by author) 

7.1.2 12 fins with 9 mm spacing design 

 

The 12 fin version, despite the smaller fin spacing, still allows enough air to be pulled 

through. This can be seen from the airspeed analyses results between the fins, and from 

the fact that the air between and above the cooling fins is still not very warm. Since it 

has a combination of more cooling fins and adequate spacing between them to allow the 

air to move through relatively fast, it has better cooling power than the 10 fin version. 
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Figure 18. CFD analyses results for 12 fins heat sink design (Compiled by author) 

7.1.3 14 fins with 7 mm spacing design 

 

The 14 fin version, as can be seen, has less volumetric flow between the cooling fins 

than the other two heat sink models, due to the lower airflow and narrower gaps be-

tween the fins. This causes less heat to be dissipated into the air because the air heats up 

relatively fast, as can be seen on the thermal map image, the air has close to cooling fin 

temperature very early in the cooling unit, rendering the rest of the cooling surface very 

inefficient. Despite the added cooling surface area, the fact that this model has insuffi-

cient air gaps between cooling fins makes it worse in comparison to the 12 fin model. 

 



46 

 

 

Figure 19. CFD analyses results for 14 fins heat sink design (Compiled by author) 
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8 DESIGN OF THE WORKLIGHT 

 

The origin of the product that became Zaurac 4-30 was a demand for a better work light 

which came from construction industry. 

 

The key requirements were: 

1. Durable 

2. Compact size 

3. High light output 

4. At least IP 68 rating 

 

The first 2 prototypes had the LED current regulating electronics outside of the LED 

casing, due to the fact that it was developed quickly and there had been no chance to 

optimize the size. 

 

The biggest problem with the first 2 prototype models was the cooling. It was not a fatal 

one, since all the prototypes had overheat protection but further heat sink performance 

optimizations were required. 

 

Then a prototype with integrated electronics was designed and built, shaped optimally 

for high-pressure aluminum casting. Also that model had problems with cooling, so the 

decision was made to properly optimize the cooling based on natural convection, the 

most demanding type of cooling environment. The model was redesigned to use the op-

timized cooling fin profile, and also the production method was changed to extrusion 

and milling, thus the overall design was adjusted to the new manufacturing method and 

mass production. 

 

The main reasons for the change in production plans were the following: 

1. Startup costs. The high pressure aluminum mold price was high. 

2. Surface treatment possibilities. The pressure molding alloy does not allow color-

ized anodization, but has to be painted if a specific color is desired, and paint 

easily peels off in certain conditions. Extruded alloys are very easy to anodize. 
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3. Structural integrity. The pressure casted aluminum is slightly harder than extrud-

ed, but much more brittle and thus more likely to crack from impacts. 

4. Freedom of shaping. If a flaw is detected in the shape, or there is a desire for dif-

ferent versions, the extruded parts can be milled differently with very low extra 

cost but a pressure mold is what it is and is very expensive to change. 

5. Aesthetics and functionality. The high pressure molding sets strict requirements 

to the shape of the parts, whereas extruding and milling gives relatively free 

hands to decide the shape according to looks and practical needs. 

 

Figure 20 below shows various proposed product design which represent product devel-

opment process on different stages. 

 

Figure 20. Different LED work light designs during optimization of heat sink geometry. (Compiled by author) 

 

Model a) was the first design with integrated electronics, as well as the last prototype 

before cooling system optimization. This model had V-shaped cooling fins, to provide 

extra support against mechanical damage, due to the brittleness of high-pressure casted 

aluminum. This model had overheating issues (75 °C casing temperature) due to the in-

sufficient heat sink when used for a long time in a windless environment. Tests per-
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formed outside lab conditions in different weathers showed, however, that casing tem-

perature was quite low and the LEDs were not overheated. 

 

Model b) had the cooling fin dimensions implemented from CFD analyses results, but 

still had small structural impracticalities. Some support structures, not possible for high-

pressure casting but possible to include in an extruded shape, were added to the end of 

the heat sink to support the cooling fins. It was designed to be extruded in 2 profiles, 

and milled to the final shape, one part per extruded profile. Tests of the heat sink per-

formance were very promising, after saturation in room temperature (25°C) the highest 

temperature measurable from the lamp was 53°C, the base between the 2nd and 3rd out-

er cooling fins. This design also gave the lamp a very rigid structure, but had the flaws 

of bad cooling reliability of the LEDs (the LED board was pressed down by the lenses, 

which could shatter at the slightest impact directly on the front of the lamp), and exces-

sive waste material; 1.5 kg of extruded material was required to produce the 0.85 kg 

casing (0.65 kg waste).Also the length of the cooling fins was changed after testing, to 

get the size as compact as possible. 

 

The current production model Zaurac 4-30 (model c)), released in December 2013, is 

milled from extruded aluminum and then either anodized or nickel-plated. 

 

The current production version of the lamp (Figure 21) consists of 4 aluminum parts, of 

which the casing itself consists of parts made from 2 different extrusion profiles, and a 

“front shield”, an aluminum sheet part protecting the polycarbonate spacer underneath. 

In the final version, the LED board is pressed down onto the heat sink by its edges, and 

material losses were reduced to 0.15 kg. 
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Figure 21. Zaurac 4-30 LED work light (www.5watts.fi, 2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.5watts.fi/
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9 THERMAL CAMERA MEASURMENTS  

 

The heat sink designed as a result of this project was tested in completely windless con-

ditions, where the optimization is most crucial. At the moment, at 25°C ambient tem-

perature, running at 32 W, the hottest point on the outside of the casing (heat sink base 

between 2nd and 3rd cooling fin) saturates at around 50°C. 

 

In summer 2013 the product successfully passed official environmental testing for ma-

chine accessories which was performed in VTT labs in Finland, Helsinki. 

 

Before the official testing, the lamp’s performance was examined in different tempera-

tures by measuring the heat sink temperature at the base of it. Also heat camera was 

used to get more detailed visual representation of the heat spreading through the system 

to see potential hot spots and maximum temperature of the casing. 

 

In the pictures below the differences in temperature throughout the casing can be seen. 

The warmest region is at the base of the cooling fins where the LEDs are located; the 

heat sink cools down further away as the thermal resistivity of the material limits the 

heat transfer. The pictures are taken with the lamp in a saturated cooling state, meaning 

that the input energy is equal to the cooling capability. It is visible on the thermal cam-

era that the temperature difference between cooling fins’ base and tips and the different 

saturation temperatures when mounted vertically and horizontally. 
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Figure 22. Thermal camera image, lamp’s top view (Compiled by author) 

 

 

Figure 23. Infra-red camera image, air flow at the heat sink, airflow at the heat sink demonstrated with a piece of paper 

hanging above it (Compiled by author) 
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Figure 24. Hottest point of the casing when mounted horizontally (Compiled by author) 

 

 

Figure 25. Hottest spot of the casing when mounted vertically (Compiled by author) 
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10 DISCUSSIONS 

This thesis study focuses on a problem very common in today’s world; cooling of a 

LED light. The thesis work was requested by Five Watts Oy, as a part of the project to 

create a reliable LED work light in all respects, including cooling. 

 

The company had already decided upon passive cooling, due to the superior mechanical 

ruggedness of such a system, but other methods were looked into for good measure, and 

for possible later use in other projects. 

 

Passive cooling by convection is as such rather ineffective, so in order to provide the 

best cooling for the lamp at all times, different heat sink configurations were simulated 

with CFD (Computational Fluid Dynamics) to get a more accurate cooling fin place-

ment.  Since the physical dimensions of the lamp had already been set, what remained 

was to optimize the spacing between cooling fins and test if the set outer dimensions 

could be used.  A lot of thought was put into the cooling design, since overheating di-

rectly reduces the lifetime of electronics components, including the LEDs themselves. 

 

It is important to be aware of how heat travels inside the casing, and how much the 

thermal path from LED junction to the casing can be affected by the internal design, so 

this was also looked into. 

 

It turned out that great care must be taken when designing LED light cooling systems, if 

not using a ready made heat sink with easily accessible convection cooling values. And 

even with the values, one might get a poor result if the heat sink isn't oriented as intend-

ed.   

 

During this thesis study the heat sink design got improved. A functional and durable 

cooling profile was suggested, CFD simulations were made for different test models out 

of which the model with the best results in terms of air velocity and temperature was 

chosen. These were the main goals to the work which were achieved within this thesis 

study. 
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In this work, thermal management of high power LED system were discussed. This top-

ic is extremely critical and understanding it is essential when designing and developing 

LED systems. Basic information about LEDs, concepts of heat transfer were briefly in-

troduced, covering facts about LEDs, convection, conduction and radiation processes as 

well as thermal resistance model. Different types of heat dissipation to the environment 

were discussed. Based on the theoretical studies, a model of the heat sink was created, it 

was further optimized with the help of CFD analyses. The results from simulation were 

implemented to the CAD model of the product which led to the manufacturing of proto-

types, their testing and finally to the product release. 

 

The knowledge of thermal management of the LEDs helps to design efficient and relia-

ble LED systems. The study done for this thesis has proven very valuable for Five 

Watts Oy, by delivering a working, optimized cooling solution for a LED work light. 

 

As a result of this thesis work, Five Watts Oy now has a finished product, the Zaurac 4-

30, currently with market leading quality-to-price ratio considering size, weight, light 

output, light quality (smoothness of beam and color temperature), internal electrical pro-

tection and cooling. 

 

In today’s world, where resource conservation is crucial, it seems only right to try to 

maximize the lifespan of tools and products, and with the recent emergence of more and 

more LED lights promising 100 000 of hours of lifetime, the importance of a long-term 

design (including effective cooling) that actually delivers those hours should be empha-

sized instead of low prices. 
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