Bachelor’s thesis

Information and Communication Technology

2023

Konstantin lonin

Comparing performances
between different methods of
using large numbers of
ParticleSystem effects in Unity
games on Android OS

TURKU AMK

TURKU UNIVERSITY OF
APPLIED SCIENCES

Bachelor’s Thesis | Abstract
Turku University of Applied Sciences
Information and Communication Technology

2023 | 48 pages
Konstantin lonin

Comparing performances between different methods
of using large numbers of ParticleSystem effects in
Unity games on Android OS

Unity game engine makes creating new entities in games easy at runtime with
its Instantiate method. However, rapidly creating short lived objects results in
more memory management tasks for the CPU. One method of reducing the
frequency of allocating and releasing memory is the object pool pattern, also
referred to as pooling, which consists of allocating the required memory in
advance and reusing allocated objects rather than allocating memory for a new
object each time and releasing it later.

The purpose of this thesis was to determine how pooling reusable particle effect
objects can affect performance, compared to allocating new objects as needed
with Unity’s Instantiate method, on smartphones running Android operating
system, particularly on older devices. Testing was conducted with several Unity
applications that would create various amounts of particle effects on the screen
with these methods, and logged time and memory use during each frame over a
period of time, and results were then analyzed and compared. The results
indicate that even with frequent use, pooling may not be significantly faster and
mostly affects memory use. However, more detailed profiling may be needed
with specialized tools.

Keywords:

object pool pattern, memory, RAM, garbage collection, GC, Unity, Android.

Opinnaytety6é (AMK) | Tiivistelma
Turun ammattikorkeakoulu
Tieto- ja viestintatekniikka

Opinnaytetyon valmistumisajankohta | 48 sivua
Konstantin lonin

Suorituskyvyn vertailu erilaisten ParticleSystem
efektien kayttomenetelmien valilla Unity peleissa
Android kayttojarjestelmalla

Unity-pelimoottori mahdollistaa uusien olioiden helpon luomisen pelin ajon
aikana Instantiate-metodin avulla. Uusien olioiden luominen tihedan tahtiin ja
lyhyeksi ajaksi toisaalta lisaa muistin kasittelyn tyota prosessorille. Yksi tapa
vahentaa muistin jatkuvaa varaamista ja vapauttamista on object pool pattern -
eli pooling -menetelma, jolloin varataan tarvittava muistimaara ja luodaan
tarvittavat tietorakenteet etukateen, minka jalkeen niita kaytetaan toistuvasti
uusien luomisen ja tuhoamisen sijaan. Taman tyon tarkoitus on selvittaa miten
uudelleenkaytettavien particle-efekti -olioiden kayttd voi vaikuttaa sovelluksen
suoritukseen, uusien olioiden luomiseen ja tuhoamiseen verrattuna, Android-
kayttojarjestelmaa kayttavilla alypuhelimilla, varsinkin hieman vanhemmilla
laitteilla. Menetelmien testausta varten oli toteutettu useita samankaltaisia
sovelluksia Unity-pelimoottorilla, joissa ruudulle luotiin suuria maaria particle-
efekteja. Sovellukset kirjasivat ajan ja muistin kayton jokaisella framella tietylla
aikavalilla, minka jalkeen tuloksia verrattiin ja analysoitiin. Tulokset viittaavat
siihen, etta pooling ei valttamatta nopeuta suoritusta suurellakaan olioiden
maaralla ja vaikuttaa ensisijaisesti muistin kayttoon, mutta kattavampi tutkimus
erikoistuneilla tydkaluilla voi olla tarpeellista.

Asiasanat:

object pool pattern, muisti, RAM, GC, Unity, Android

Contents

List of abbreviations
1 Introduction

2 Managed memory in Unity, C#, and Android OS
2.1 Android memory management.
2.2 C# and Unity memory management

2.3 Memory fragmentation
3 Object pool pattern as an optimization method

4 Test applications and devices

4.1 Important Unity application and programming terms
4.2 Important application classes

4.3 Device information

4.4 Data recording

4.5 A bug with use of FrameTimeManager for recording

5 Testing protocol
5.1 Connecting devices and installing test applications

5.2 Test application configurations

6 Test results
6.1 Rapid use of simple PaticleSystems
6.2 Rapid use of more complex ParticleSystems

6.3 ParticleSystem pooling with additional allocations in the background
7 Conclusion

References

10

12
12
13
14

15

16
16
17
22
22
24

25
25
25

27
27
33
37

42

44

Figures

Figure 1. ParticleSpawnRequester class diagram 18
Figure 2. ParticleSystemLibrary class diagram 18
Figure 3. ParticleSystemPool 19
Figure 4. ParticleSystemObjectPool class diagram 19
Figure 5. LargeAllocationSimulator class diagram 20
Figure 6. CustomProfiling class diagram 21

Figure 7. ParticleSystem count over 30 approximately seconds, without pooling,
simple systems. 28
Figure 8. Memory used by live objects and memory not yet released by GC over
approximately 50 seconds, without pooling, simple systems. 28
Figure 9. ParticleSystem count over 30 approximately seconds, with pooling,
simple systems. 29
Figure 10. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, with pooling, simple systems. 30
Figure 11. ParticleSystem count over 30 approximately seconds, after 80
seconds of run time, without pooling, on Samsung Galaxy A6 31
Figure 12. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, without pooling,
simple systems. 31
Figure 13. ParticleSystem count over 30 approximately seconds, after 80
seconds of run time, with pooling, simple systems. 32
Figure 14. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, with pooling,
simple systems. 32
Figure 15. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, without pooling, complex systems. 33
Figure 16. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, with pooling, complex systems. 34

Figure 17. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, without pooling,
complex systems. 35
Figure 18. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, with pooling,
complex systems. 35
Figure 19. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, without pooling, 3 complex systems at a time.
36
Figure 20. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, with pooling, 3 complex systems at a time. 36
Figure 21. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, without pooling,
complex systems, with additional allocations, 1. 38
Figure 22. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, without pooling,
complex systems, with additional allocations, 2. 38
Figure 23. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, with pooling,
complex systems, with additional allocations 1. 39
Figure 24. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, with pooling,
complex systems, with additional allocations 2. 40
Figure 25. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, without pooling, 3
simple systems at a time, with additional allocations. 41
Figure 26. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, with pooling, 3

simple systems at a time, with additional allocations. 41

Tables

Table 1. Tested devices and their specifications. 22
Table 2. Measurements taken and data types they are recorded as in binary
files. 23

Table 3. Additional memory allocation sizes and intervals 37

List of abbreviations

Abbreviation Explanation of abbreviation (Source)

abd Android Debug Bridge (Google 2023b)

CPU central processing unit (Lemonaki 2021)

GC Garbage Collector / Garbage Collection (Microsoft
2021)

(O] operating system (Finto 2018)

RAM Random-access memory (Oxford University Press

2023)

10

1 Introduction

In many games there is a need to create a temporary visual effect in response
to some player action or an event. Unity facilitates this with the Instantiate
method (Unity Technologies 2022d). If events that require temporary objects
happen rapidly, frequent memory allocation and then garbage collection can
create significantly more work for the central processing unit (CPU) of the

device that runs the game or application (Unity Technologies 2023d).

This seems to be a particularly important issue on mobile devices because of
more limited random-access memory (RAM), battery capacity and processing

power.

This study was inspired by development work at Pikkuli Group Oy, with

newfound interest in memory use optimization.

The structure of this thesis is as follows: Chapter 1 is the introduction to the
goals and structure of this study. Chapter 2 briefly explains managed memory
and how it’s relevant to this study. Chapter 3 describes the object pool pattern
in detail and presents its general advantages and drawbacks. Chapters 4
explains the structure of test applications and Chapter 5 describes how the tests
were conducted. Chapter 6 presents the test results and chapter 7 describes

their implications.

The object pool pattern is a design pattern and a memory optimization method
for reducing the frequency of memory allocation. (Nystrom 2021; SourceMaking
2023; Koulaxidis et al. 2022; Bonet 2021.) It has potential drawbacks, such as
requiring allocation of large amount of memory for an extended period and
generally requiring objects to be reset or otherwise modified between uses,
which also adds different tasks for the CPU. (Nystrom 2021; Bonet 2021.) This
design pattern is not new but can be easily overlooked and takes more effort to

implement in Unity scripts than just instantiating new objects as needed.

The goal of this study is to determine how pooling ParticleSystem objects can

affect the performance of mobile games, when it may be better to pool them

Turku University of Applied Sciences Thesis | Konstantin lonin

11

and when it may be better to not pool them. Having concrete results could
benefit mobile game developers in general, but particularly those who use the

Unity game engine.

This study focused on older and low end to non-high end mobile devices
because those would be more easily affordable to more people and are still in
use, and because high end ones would be more likely to run even inefficient
software well. Similar tests on more powerful mobile devices may be

worthwhile.

The methodology consisted of running different variations of an application that
would create numerous particle effects on the screen, either by creating new
objects in memory or by using a pool of objects, and logged specific
performance metrics, that could then be compared and analysed. The metrics
recorded were total memory used by specific objects, including particle effect
objects, total memory reserved by the application, the number of particle effect
objects, the time between start of the frame and the main task (thread) finishing
the job, and the time elapsed from the start of the game at each frame. The time
elapsed was also translated to total times between frames. Reusable objects
differed from non-reusable ones only by not destroying themselves
automatically and by having an additional component that allowed the object

pool to reuse them.

Turku University of Applied Sciences Thesis | Konstantin lonin

12

2 Managed memory in Unity, C#, and Android OS

In C-like languages, including C#, the heap is a portion of memory from which a
program can reserve some amounts for its use in addition to the memory
reserved automatically for the program code (Albahari et al. 2015a; Chen et al.
2020). Unlike the memory that is automatically reserved for the program during
its execution, memory reserved from the heap by the program is not
automatically freed and remains reserved until the program is closed (Chen et
al.). Programmers can write instructions for when to free specific parts of
reserved heap memory as part of their code, like in C++ language, or they can
rely on an automated process that tracks which parts of heap memory are used
and frees the parts that are not used anymore. An automated method of freeing
unused memory is called garbage collection, and the process or the
implementation is called a garbage collector, abbreviated as GC. (Chen et al.;
Microsoft 2023b; Wienholt 2004.) Garbage collection can be a feature of a
programming language as is the case with C#, implemented in a code library for
a language that developers can use, feature of a game engine like Unity, or
even a feature of an operating system as is the case with Android. (Microsoft
2023b; Boehm et al. 2014; Unity Technologies 2023e; Google 2023Q)

2.1 Android memory management.

Android tries to use all available memory, keeping apps in memory after they
are closed, so that the user can quickly switch to them if needed (Google
2023f).

If an application reserves memory for itself, it generally can’t be released by
Android unless the application releases it by itself, the application has
mechanisms for Android to reclaim parts of the memory used by that
application, or Android decides to kill the process to use its memory for
something else. The latter may happen if available memory is scarce and the
application in question is not on the foreground (Google 2023f; Google 2023f).

Turku University of Applied Sciences Thesis | Konstantin lonin

13

Android has generational garbage collection, meaning objects that are recently
allocated are expected to have shorter lifespan, and are checked more often,
whereas objects that have existed for longer are expected to last and are

checked less often (Google 20239).

2.2 C# and Unity memory management

In C#, a managed heap refers to a portion of memory reserved by the garbage
collector for any temporary memory allocations (Microsoft 2023d). The
purposes of garbage collection and a managed heap are to reduce the need to
write memory management code, and to make memory allocation more efficient
and safer (Microsoft 2023b).

C# language, like Android OS has generational garbage collection. Dynamically
allocated objects that are not released for a longer time are then checked less
often, so the garbage collector can focus on objects that are more likely to be

released soon (Microsoft 2023c).

Unity has a managed memory system, in a form of C# scripting environment,
that manages the releasing of dynamically allocated memory, so that
developers don’t have to do it manually. Unity can expand the managed heap to
accommodate the need for more memory. If managed heap expands regularly,
Unity won’t release the memory allocated for it, even if most of it is not used.
(Unity Technologies 2023f.)

This implies that Android’s garbage collection is not as significant for memory
use of a Unity game / application and Unity engine handles temporary objects
itself unless it needs to reserve more memory or decides to release some of it.

In some ways, a managed heap can be thought of as a memory pool.

Turku University of Applied Sciences Thesis | Konstantin lonin

14

By default, Unity games will use incremental garbage collection, which means
that the GC will split its workload over multiple frames, avoiding the need to
pause other tasks to process all the reserved memory (Unity Technologies
2022c). Test applications used this setting because it is the default and is

recommended.

2.3 Memory fragmentation

When memory is allocated from the heap, it is done in contiguous region. When
that region of allocated memory is released later, there may be other parts of
memory adjacent to it that are still reserved, and as a result the released portion
of memory can only be used for allocations that are small enough to fit in that
free segment. This is known as memory fragmentation. Even if there is free
memory in the managed heap, it cannot be used for allocations that are larger
than any of the free segments. (Nystrom 2021; Unity Technologies 2023f.) This
could lead to Unity having to expand its managed heap (Unity Technologies
2023f). However, according to C# documentation, managed heap and garbage
collector will move live objects closer together during garbage collection
process to avoid this (Microsoft 2023d). Unity generally uses C# scripting
environment (Unity Technologies 2023f), so memory fragmentation may not be

a significant issue.

Turku University of Applied Sciences Thesis | Konstantin lonin

15

3 Object pool pattern as an optimization method

As mentioned in the introduction, object pool pattern, or pooling, is a design
pattern / memory optimization method that is used to reduce frequency of
dynamic allocation and freeing of memory by allocating the required memory in
advance and initializing a set number of reusable objects, referred to as an
object pool. Processes can then retrieve and return these objects as needed

instead of creating new objects and then destroying them.

Main trade-off is that the memory is not released for a longer time, and the pool
has to be able to accommodate the number of objects that can be used at a
time. This can mean reserving a lot of memory and not freeing it even when
significant portion of it is not used, depending on how pooled objects are used.
(Nystrom 2021; Bonet 2021.)

Different languages and game engines allow for different implementations of
object pools. Unity has its own built-in generic object pool interface
IObjectPool<T0>, and classes ObjectPool<T0> and LinkedPool<T0> that
implement it. (Unity Technologies 2023g.)

Improvements to garbage collection have led to object pools being considered
unnecessary, and in some cases even detrimental in some situations (Goetz
2005).

Turku University of Applied Sciences Thesis | Konstantin lonin

16

4 Test applications and devices

The application used to compare performance of continuous creation and
destruction to that of pooling was a simple Unity application with one scene and

scripts for a few classes. Unity version used for this was 2022.1.22f1.

4.1 Important Unity application and programming terms

GameObiject

GameObijects can represent various props, scenery and characters. Their
functionalities are defined by components attached to them. GameObjects can
be enabled and disabled, which also enables and disables functionalities of

their components, respectively. (Unity Technologies 2022a.)

ParticleSystem

ParticleSystem component can be attached to GameObjects to create particle

effects in games / applications (Unity Technologies 2022f).

ParticleSystem objects in application description will refer to GameObjects with
ParticleSystem components attached. A pooled object would consist of a
GameObiject with a ParticleSystem component and a simple component that

allowed it to interact with the object pool.

Prefabs

Unity has a way of saving templates of GameObijects and groups of
GameObijects with various components as reusable assets known as prefabs
(Unity Technologies 2022g). The applications used for testing relied on prefabs

that consisted of GameObjects with ParticleSystem components.

Turku University of Applied Sciences Thesis | Konstantin lonin

17

Thread

In computing, threads are execution paths that can run concurrently with each
other and independently of each other (Albahari et al. 2015b; Duffy et al. 2013).

4.2 Important application classes

In Unity, custom classes can be attached to GameObijects as script components
(Unity Technologies 2022e).

UML diagrams do not fully describe the classes, and focus on more important

variables.

ParticleSpawnRequester class requested particle effects in form of
GameObijects with ParticleSystem components from one of two different
classes, ParticleSystemLibrary and ParticleSystemPool, depending on settings
(Figure 1). Both classes used prefabs to create new objects as needed.
ParticleSpawnRequester had a timer to keep requesting particle effects for a
specified duration and could request a specific number of particle effects at a

time. The tests were done with 1 and 3 effects at a time.

In addition to controlling the use of ParticleSystems, ParticleSpawnRequester
alsoperformed a slow calculation on each frame to simulate the application

having other tasks in addition to causing particle effects on the screen.

Turku University of Applied Sciences Thesis | Konstantin lonin

18

ParticleSpawnRequester

pool: ParticleSystemPool

library: ParticleSystemLibrary
duration: floating point number
startDelay: floating point number
cooldown: floating point number
objectsAtATime: integer

(internal variables omitted)

Start ()

Update ()

Figure 1. ParticleSpawnRequester class diagram

ParticleSystemLibrary class would use Instantiate method to create new game
objects on request, which would be destroyed after performing their function,
allowing the memory to be released by the garbage collector (Figure 2).
ParticleSystem components were set to play when created and to destroy

GameObijects they were attached to after their set duration.

ParticleSystemLibrary
particleEffectPrefabs: GameObject[0..*]

SpawnEffectAtPosition (type: enumeration,

position: Vector3, relativeTo: Transform)

Figure 2. ParticleSystemLibrary class diagram
ParticleSystemPool class maintained an array of object pools. The reasoning

for an array of pools was that this could be a usable implementation for a game

with several particle effects that could all be pooled (Figure 3).

Turku University of Applied Sciences Thesis | Konstantin lonin

19

ParticleSystemPool

pools: ParticleSystemObjectPool [0..*]
Start ()

SpawnEffectAtPosition (type: enumeration,

position: Vector3, relativeTo: Transform)

Figure 3. ParticleSystemPool

Each object pool was an instance of a ParticleSystemObjectPool class that
contained an instance of Unity’s generic ObjectPool<T0> class and methods
that this class instance (object) could use (Figure 4). Reasons for using
ObjectPool<T0> objects are their ability to grow to accommodate higher number
of pooled objects, up to a limit, and being a built-in feature with provided
examples, making them likely to be used by newer developers. Pooled game
objects also had a script component for interactions with object pool that

managed them.

ParticleSystemObjectPool

prefab: GameObiject
poolObjectContainer: Transform
minPoolSize: integer
maxPoolSize: integer

pool: ObjectPool<GameObject>

InitializePool ()

CreatePooledltem (): GameObiject
OnReturnedToPool (GameObject)
OnTakeFromPool (GameObiject)
OnDestroyPoolObject (GameObject)

Figure 4. ParticleSystemObjectPool class diagram

LargeAllocationSimulator class was added after initial tests to add larger
memory allocations, to test cases where memory fragmentation was presumed
by the author to be more likely due to more varying sizes of memory allocations
(Figure 5).

Turku University of Applied Sciences Thesis | Konstantin lonin

20

LargeAllocationSimulator

allocationSize: integer
allocationChunk: integer[0..*]
allocationlInterval: floating point number
timer: floating point number

Update ()

Figure 5. LargeAllocationSimulator class diagram

Lastly, the CustomProfiling class recorded Unity’s total reserved memory size,
memory used by objects, including the memory that was no longer used but not
yet released by garbage collector, using GetMonoUsedSizeLong method, and
numbers of objects for each frame, as well as the time CPU spent executing
Unity’s main thread job and total time elapsed at each frame (Unity
Technologies 2022b). Data was recorded for each frame to arrays of arrays that
were allocated at the start of the application run time and the recorded data was
written to a file after all the data was recorded. (Figure 6.) Reason for using
arrays of arrays was to possibly reduce the chances of not being able to reserve
a large enough single array, although this might not have been necessary.
Memory allocation was done at the start to avoid additional memory allocations

during the tests that could affect the profiling.

Turku University of Applied Sciences Thesis | Konstantin lonin

21

CustomProfiling

memoryUseObijects: unsigned integer[0..*][0..*]
memoryUseReservet: unsigned integer[0..*][0..*]
objectCount: unsigned short integer[0..*][0..¥]
frameTimes: double precision floating point
number[0..*][0..*]

timeElapsed: floating point number[0..*][0..*]
countdown: floating point number

requester: ParticleSystemRequester
objectContainer: Transform

(some variables omitted)

Awake ()

AllocateLogArrays ()

Update ()

WriteRoutine (): IEnumerator

WriteToBIN

Figure 6. CustomProfiling class diagram

The API used for retrieving CPU main thread times per frame was
FrameTimingManager. Using it required enabling the Frame Timing Stats option
in Project Settings, or Player Settings creating a build of the application. It is
primarily intended for use with Dynamic Resolution option and required that

feature to be enabled in the main camera. (Unity Technologies 2023c.)

Turku University of Applied Sciences Thesis | Konstantin lonin

22

4.3 Device information

The devices used for testing were Samsung SM-J500FN and Samsung SM-
AB00OFN/DS (Table 1).

Table 1. Tested devices and their specifications.

Device Samsung Galaxy J5 Samsung A6

(Model number) | (SM-J500FN) (SM-AG600FN/DS)

CPU Quad-core 1.2 GHz Octa-core 1.6 GHz
Cortex-A53 Cortex-A53

RAM available 450 MB 1.3 GB

(approximately)

Android version | 10 6.0.1

Model numbers and OS versions were taken from devices’ “About device” and
“About phone” sections in their settings menus. Available RAM was taken from
Smart Manager and Device care sections in options menus of Samsung Galaxy
J5 and Samsung Galaxy A6, respectively. CPU information was taken from
GSMARENA based on phone model numbers. (GSMARENA 20233;
GSMARENA 2023b)

Due to the number of charts produced during testing, Samsung Galaxy J5 test
results are not included in this document, but are available on GitHub along with

the Unity project.

4.4 Data recording

Arrays for recording data were allocated at the start and sizes are kept the

same for all versions of the application to keep their memory uses as close to

Turku University of Applied Sciences Thesis | Konstantin lonin

23

each other as possible during each test. The data in the arrays was written to a

binary file after each test (Microsoft 2023a).

The log files consisted of series of binary representations of recorded values in

the same order for each frame (Table 2).

Table 2. Measurements taken and data types they are recorded as in binary
files.

Measurement Data type

Total memory used by game objects | unsigned 32-bit integer

Total memory used reserved by Unity | unsigned 32-bit integer

Number of ParticleSystem objects unsigned 16-bit integer

CPU main thread frame time 64-bit floating point number

Time elapsed from application start 32-bit floating point number

during this frame

This pattern could then be simply translated into rows of a comma-separated
values (CSV) file (Digital Preservation Home 2021). The time elapsed from
application start was also translated to time between frames in the

spreadsheets.

The translation to CSV was done with a simple C# program but could also be
done program or script that would read binary data according to the specified

pattern. The CSV files were then turned into spreadsheets.

Applications were tested with both simple ParticleSystems that just emitted a
burst of particles, that would be cheaper to create, and ParticleSystems with
more complex behaviours, like changing particles’ velocities and colours, that

would be more taxing for the CPU to create.

Turku University of Applied Sciences Thesis | Konstantin lonin

24

4.5 A bug with use of FrameTimeManager for recording

CustomProfiling class had a bug with how CPU main thread times were logged.
FrameTimeManager retrieves data with a set 4 frame delay (Unity Technologies
2023c), which lead to an erroneous solution, leading to times being delayed by
additional 3 frames. This was corrected for in spreadsheets by removing first 7
values in the CPU main thread time column and shifting the remaining values in

that column up.

Turku University of Applied Sciences Thesis | Konstantin lonin

25

5 Testing protocol

5.1 Connecting devices and installing test applications

Developer Options were enabled on the smartphones used for testing, including
allowing installing without verification over a USB cable from the development
machine (Google 2023c). A connection was then established using Android
Debug Bridge, or adb (Google 2023a). Development machine was a desktop

computer running Windows 10.

To disconnect devices, command “adb kill-server” was used through Windows’

Command Prompt before ejecting a connected device.

The app was built and installed and launched on the devices over USB cable
with “Build And Run” option in build settings window. The test application
versions were launched and left to run the tests for at least 3 times including
initial launch as part of installing over USB connection, after which the log files
were copied from the device. Test application closed automatically at the end,
but remained in memory in the background, and was removed from background
between running tests to make sure test runs were as similar as possible,

although this may not be necessary.

5.2 Test application configurations

For non-pooling tests, variables were ParticleSystem object creation quantities

and created ParticleSystem object types.

For pooling tests, pooling versions were made to match each non-pooling
version, with both minimal sized pools and larger than necessary pools, to test
both optimally sized and larger than necessary object pools affect performance,
but it turned out that ObjectPool<T0> objects would not create more pooled
objects than they needed to accommodate the demand for those objects.

Turku University of Applied Sciences Thesis | Konstantin lonin

26

Each configuration was tested both during first 20 seconds of run time and as a

separate test for 20 seconds after 80 seconds of running.

Additionally, repeat tests were done with other mock memory allocations at
regular intervals to increase chances of memory fragmentation due to varying

allocation sizes.

Turku University of Applied Sciences Thesis | Konstantin lonin

27

6 Test results

Due to a large number of charts of recorded data, only some charts are
presented here, focusing on tests done on Samsung Galaxy A6. Spreadsheets
with data and charts are available together with the project used at GitHub
(lonin 2023).

One important thing to that became apparent about Unity’s ObjectPool<T0>
class is that it fills over time as pooled objects are requested and does not fill
more than needed, which does introduce some potential new created objects
after some application run time and does not accommodate the intended tests

with too many pooled objects, making those tests runs effectively the same.

The charts below show total frame times over application run times as a green
line, and time between start of the frame and when main thread finished the job

for that frame as a blue line.

6.1 Rapid use of simple PaticleSystems

With simple ParticleSystems, use of object pool pattern may or may not show
improvements to performance or reduction in memory use by the application,
even when ParticleSystem objects are created at a high rate, in this case

around 10 objects per second.

In the case of an application that creates new objects to use for approximately
20 seconds we see fluctuating number of objects over time and increase of

used memory. (Figure 7; Figure 8).

Turku University of Applied Sciences Thesis | Konstantin lonin

28

1 simple system at a time - on Samsung Galaxy A6 - test run 2

35

30

25

20

15

10

-

Y

120

100

80

60

(ms}

20

L59£29°CE
€0LST'TE

96689 TE
911ZC'TE

€9F¥SL0E
S0188C0t
8EBBIR'6C
S8ISE6T

TL6EBR'BL
959TH'8T

VIL0SE LT
L0918¥' LT
TIPYIOLT
¥£55¥5'9¢
€168L09C
vIPII9'6E
20EFT’ST
8969977
79E60T'FT
60LTVLET
SBIS9TET
T6VLTLTE
t8ceree
LELOTS'TT
T1£90T6'02
TreTZE0L
LPLYTLET
LIELET6L
€0Z0ES'BT
6C8ZE6' LT
SLEBEELT
EEPEVLIT
SL66VT9T
€TETSS'ST
637956+ T
LTOLSEFT
9S909L°ET
SBETLTET
TT6TLSCT
T/87L6'TT
VLLELETT
67608.°0T
68073T°0T
£T0EBS'6

TEPTRE'S

°5918E'8

96/9T8L°L
Y969LT L

50/0985°9
€59£66'G

20L86E'S

S637IEt

Elardad

TBIBET'E

ELYBYSE T

Application run time (s)

CPU main thread time (ms) Particle-System count

w— Frame time (ms)

Figure 7. ParticleSystem count over 30 approximately seconds, without pooling,

simple systems.

1 simple system at a time - on Samsung Galaxy A6 - test run 2

475000

470000

465000

460000

455000

bytes

120

100

80

60

(ms)

450000

445000

40

A

i

P TRpToeT §

440000

20

435000

430000

6I7ES'ZS
7€999'1S
8TEL6L'0S
T9VET6 6F
£090°6F
TriZel 8t
8BELE LY
PSTSSror
£TRI8S'SY
BYBTL VY
BLIDSEEV
6r186'ZY
LIBETITCY
[dang
S6Y9LE O
L5%805'6€
LT6E9'8E
6TLILLE
964868 9¢
CTL0EQ 9E
POETIT SE
£91¥6T FE
ELI9CYEE
BTLLSSTE

796689 TE -

9EV0C8 0L
9T5ES6'6C

LEBYBO'ET -
870LTT'8T

3708YeE LT
SL6LY 9T

PIPTTY9'ST
859evL ¥
T6ESLBEL
TT90L6'TT
TL6998'TT
88L67L0C
8790r9'6T
£0Z0ES'8T
PITSCY'LT
BEPOTEST
9ZSTTIZ'ST
LEETOT'FT
Te8ee'CT

Sror88 Tl
676082'0T
9ET699'6

€06£S5'8

TBOLEY L

L8E9Tee’9
9SLETET'S
TresrT v

ELVBYSE'T

Application run time (s)

Allocated object memory size

CPU main thread time (ms)

—Frame time (ms)

Figure 8. Memory used by live objects and memory not yet released by GC over

approximately 50 seconds, without pooling, simple systems.

Turku University of Applied Sciences Thesis | Konstantin lonin

29

If we compare the frame durations and memory use to equivalent application
that uses Unity’s ObjectPool<T0> class, we see similar frame durations and
objects being created at the first few seconds. More memory is reserved early,
which then reaches a similar amount as with the equivalent application that did

not pool ParticleSystem objects. (Figure 9; Figure 10)

1 simple system at a time - on Samsung Galaxy A6 - test run 2

120 35
30
100
25
80
20
(ms) 60 #
15
el A
40
Wp—. 10

mmmmmmm

P R T T R R T - IR - IO B N i S v R T T - R R e T

35.794994
36.329453

Application run time (s)

= Frame time (ms) CPU main thread time (ms) Particle-System count

Figure 9. ParticleSystem count over 30 approximately seconds, with pooling,
simple systems.

Turku University of Applied Sciences Thesis | Konstantin lonin

1 simple system at a time - on Samsung Galaxy A6 - test run 2

120

100

(ms) 60

40

Application run time (s)

—Frame time (ms) CPU main thread time (ms) Allocated object memory size

475000

470000

465000

460000

455000

450000

445000

440000

435000

430000

30

bytes

Figure 10. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, with pooling, simple systems.

However, if these applications are left to run for longer, the one that uses

pooling is more efficient in its use of memory.

It should be noted that this is probably a very niche situation and that most

games probably do not need to use independent ParticleSystems on the screen

at a rate of 10 per second for a total of 100 seconds or more.

Notice that memory reserved for objects is greater than it was when application

was set to create new ParticleSystems for only 20 seconds, and that this

memory seems to not be released for a significant time after ParticleSystems

are destroyed (Figure 11; Figure 12)

Turku University of Applied Sciences Thesis | Konstantin lonin

31

1 simple system at a time - after 80s - on Samsung Galaxy A6 - test run 3

45

40

35

30

25

20

15

10

120

100

80

60

(ms)

20

98668 C1T
98PS9ECTT
S0TER'TIT
FOT96TTTT
£8T94°0TT
9rLZTOTT
YI6T69'60T
9r8ST'60T
¥9LETIBOT
71680801
958LP35L0T
98€070°L0T
£5587'90T
Z8156'S0T
69LTF'SOT
EVEBEFOT
6Z6VEFOT
566718 E0T
S9vFZiEOT
28589707
£S0TT'Z0T
68F7STOT
60P66'00T
6L6E7'00T
£89/8'66
TIETE'66
96994°86
ST6TT'86
ZE¥09°L6
TILS00'LE
950t5F'96
56€06'56
T4¥5E'S6
9L2708'F6
EELVT'FE
6TSE69'E6
LBLTIT'EE
67/95°76
6ETTOT6
TET9P' 16
56606'06
9reLSE06
910%08'68
7183768
7S0E69°'88
9ERET'E]
706065L8
8rER0'L8
71956798
9rrEE'S8
91661E'58
S6TOLLYS
PEFOLC VB
S9€559'€8
£650T'E8

Application run time (s)

Particle-System count

e CPU i thread time (ms)

Frame time (ms)

Figure 11. ParticleSystem count over 30 approximately seconds, after 80

seconds of run time, without pooling, on Samsung Galaxy A6

1 simple system at a time - after 80s - on Samsung Galaxy A6 - test run 3

475000

470000

465000

460000

455000

bytes

450000

120

100

80

60

(ms)

445000

40

440000

20

435000

430000

6ELICET
GELTET
SrE0R0ET
£7898'6C1
ETCER'BCT
98966°LTT
S8YT90°/CT
9r6STT'9LT
9668T°SCT
99THSTHET
SBBIEELT
SSTPBETTT
68T TCT
FOr1S0CT
TBLS'ETT
SO0EP9'8TT
STLOLLTT
TZTLL9TT
IrLLER'STT
EEQGFTT
9E98I6ETT
SEEEQETT
£0660°7TT
979T'TTT
9vLTTOTT
98167601
£595E°80T
S9CTEr L0T
£5G8%°90T
Z0T55790T
€Z9T9F0T
STIBYE0T
75589°70T
SYEBITOT
SYSITL 00T
T86EL°66
9699486
£699L7L6
Z¥RZL196
2089/°56
9.208'F6
TL0ERE6
SBIEVRT6
STOSL8'T6
56606°06
¥S0EY6'68
TELE'BE
8£T00°88
8TrEV0LB
£9080'98
YITZPO'S8
7S9EL0'Y8
E£6G0T'E8

Application run time (s)

Allocated object memory size

CPU main thread time (ms)

—Frame time (ms)

Figure 12. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

le systems.

simp

Turku University of Applied Sciences Thesis | Konstantin lonin

32

In comparison, an equivalent application that used pooling predictably did not

require noticeably more memory even over a total of 100 seconds of run time

(Figure 13; Figure 14).

1 simple system at a time - after 80s - on Samsung Galaxy A6 - test run 1

45

120

40

35

30

25

20

15

100

80

(ms) 60

40

10

20

SI69LTIT
FEPET'TTT
64669 TTT
6059T'TTT
SSFOE90TT
TZ960°0TT
+00295°60T
85/20'601
£6Z67'80T
979856 /0T
FEIPTYL0T
£59688'901
9TS5E'90T
559TZ8'S0T
8E987'S0T
959154701
TZ41Tv0T
COEBIEDT
SL9PT'E0T
12865701
8rEFOTOT
SEBZEYTOT
ELFE°00T
FSEL6E°00T
TET58'66
£8867'66
LTOEL'BE
9ELLT'EE
602E9°26
SZ8180'L6
50422596
SL0LLE'SE
¥8STE'S6
9969/ '¥6
S8ZRIT'Y6
ISTL9'E6
FSECT'EB
20956
£85F6'T6
LSLBE'TE
98045806
TLOTE'06
£869/'68
TTITT68
T1/99'88
SS9ETT'88
£6455'/8
STL066'98
564898
T4/98'68
FILTE'SE
£9E94°F8
6EBET ¥
#Z5/59'€8
ZEBOT'E8

Application run time (s)

CPU main thread time (ms) Particle-System count

— Frame time (ms)

Figure 13. ParticleSystem count over 30 approximately seconds, after 80

seconds of run time, with pooling, simple systems.

1 simple system at a time - after 80s - on Samsung Galaxy A6 - test run 1

475000

470000

465000

460000

455000

bytes

450000

445000

Al e sl o

120

100

30

60

(ms)

440000

20

435000

430000

=}

S96¥STET
98ETYTET
TBLYDET
89ZVL'6TT
SLLOBZTT
TPZL8LTT
FITLEG ITT
€¢00°9TT
§99490'SZT
9TZETVTT
1896T°€CT
6ETITTLT
SE9TETTT
S9ET6E0CT
9895F'61T
E61CS8IT
TL98S7LTT
991439911
T960L°STT
0FLLTTT
898E8'EIT
SBZ06'TIT
S66996'TTT
6PTEQTIT
T{960°01T
PLETOT 60T
85ZZ°80T
SL06Z°£0T
9T55€90T
CEETS0T
8FPEEYOT
€88F5°€0T
TZ865°70T
994EE9'TOT
8T£9°00T
969TL°66
LTOEL'B6
tFOLOL L6
STLI6L'96
TEQPL'96
9F969L 6
£8L08°¢€6
FFO9EB TE
LSE0BT6
98045806
1150668
SLIvE'88
ERLEL8
ST/06698
8090098
SFOEVD'S8
FBPEI0' ¥R
CEBOT'ES

Application run time (s)

Allocated object memory size

CPU main thread time (ms)

—Frame time (ms)

Figure 14. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, with pooling,

simple systems.

Turku University of Applied Sciences Thesis | Konstantin lonin

33

Notice that decrease in main thread work times, depicted by the blue line,
correlates well with the end of ParticleSystem use. The remaining charts
presented will focus on memory, while keeping time measurement lines for

context.

6.2 Rapid use of more complex ParticleSystems

ParticleSystems can have complex behaviors, such as particle size, color and /

or velocity changes over time (Unity Technologies 2022f).

These were presumed to increase how much memory they use and presumably
affect how long it would take for the CPU to create them. Following charts
demonstrate how pooling can affect applications if they create more complex

ParticleSystems instead of very simple ones (Figure 15).

1 complex system at a time - on Samsung Galaxy A6 - test run 3

120 475000

470000
100
465000

80 460000
455000

(ms) 60 bytes
450000

[WOrEw FRYTH | L & .

w0 ‘M

445000

s
}
= 3

440000

435000

430000

7.642384
8.764215
9.889214

R R R R R RS B I I s S IR S

= Frame time (ms) CPU main thread time (ms) Allocated object memory size

Figure 15. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, without pooling, complex systems.

Turku University of Applied Sciences Thesis | Konstantin lonin

1 complex system at a time - on Samsung Galaxy A6 - test run 1

120

(ms) 60

40 — e —L

(=)

2.995764
4.203555
5.311784
6.4255824

—Frame time (ms) CPU main thread time (ms)

4494262

45.81

Allocated object memory size

~

mmmmmmmmm

46.68

475000

470000

465000

460000

455000

450000

445000

440000

435000

430000

34

bytes

Figure 16. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, with pooling, complex systems.

The pattern remains the same, with both methods taking similar amounts of

memory with rapid ParticleSystem use over 20 seconds. Like the applications

that used simple ParticleSystems, results after a longer run time show that

pooling can be more efficient in terms of memory use (Figure 17; Figure 18).

Turku University of Applied Sciences Thesis | Konstantin lonin

35

bytes

475000
470000
465000
460000
455000
450000
445000
440000
435000
430000

1 complex system at a time - after 80s - on Samsung Galaxy A6 - test run 1

120
100
80
60
40
20

(ms)

66ETE'TET
TSt0'ZET
£99LT'TET
LZLOE'0ET
698EY'6ZT
YLOLS'BLT
TYTOLLTT
YHEER'ICT
961796'SC1
5560°5CT
LITTWTT
7S6SEECT
65061721
SOETOTZT
0¥SL°0TT
S6988°61T
868T06TT
9£¢0ST'81T
ELTBTLIT
SZOETPOTT
S0Sb5'STT
£99L9FTT
8TLOB'ETT
9£LBE6CTT
S69690°7TT
ZIT0T'TIT
6ZZEEOTT
997’601
69PES'80T
ST85Z4°L0T
T€458°90T
25886'S0T
9461T°S0T
£805Z' 70T
SZEOBEEOT
950€E'20T
59981101
€6450°00T
¥T09%6'86
66618°L6
79966996
TPLLS'S6
80TaY 76
C90ZE'E6
TEGPET'TE
80v/0'T6
9€8056'68
BETZY'88
968E04°L8
£6085'98
SrL97'S8
965FE ¥
9TSLTCER

bytes

475000
470000
465000
460000
455000
450000
445000
440000
435000
430000

Allocated object memory size

Application run time (s)
CPU main thread time (ms)

A M

—Frame time (ms)
1 complex system at a time - after 80s - on Samsung Galaxy A6 - test run 2

120
100
80
60
40
20

(ms)

Figure 17. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems.

S9969°CET
TTLTZTET
¥8L56°0€T
99680°0ET
L01TT6LT
YECSEBTT
YSEBYLLT
595719 9T
1957L°92T
L69/8'PLT
66800°FCT
YELOVT ECT
TreLTTCT
SSrOv'IZT
6L5ES°0ZT
S¥/99°61T
S8SL6L'BTT
9¥I6T6°LTT
TTIT90°LTT
v81E6T 91T
PETSTESTT
CELSYPIT
BEGBSETT
LIOTLETT
891S8°TIT
60€86°0TT
TEPIT'OTT
185¥C°60T
99ZLLE°80T
€£805°40T
£00%9°90T
L069£750T
SL006°70T
L9TE0°70T
SBETIT'EOT
£0290°Z0T
¥109¥600T
£68£8°66
S687.°86
TrerT19'LE
12005796
S6rT6E'a6
SSEBTPE
T60LT°E6
LT£90°Z6
$99Z176°06
£LETR 6]
2190L°88
£9989°(8
SEST91'98
SS9PETa8
YEVEZT'FB
660T°E8

ing,

, with pooli

ime

Allocated object memory size

Application run time (s)
CPU main thread time (ms)

—Frame time (ms)

tely 50 seconds, after 80 seconds of run t

complex systems.

Figure 18. Memory used by live objects and memory not yet released by GC
over approxima

Turku University of Applied Sciences Thesis | Konstantin lonin

36

Differences in memory use during short duration of ParticleSystem use became

more pronounced when the quantity of ParticleSystems was increased to 3 at a

time (Figure 19; Figure 20).

3 complex systems at a time - on Samsung Galaxy A6 - test run 2

475000

470000

465000

460000

455000

bytes

450000

445000

120

100

80

60

(ms)

L

20

440000

435000

430000

96989525
75699915
9vr9s'0s
€85798'6F
GTR096'8F
7985081
TTLST' LY
687579
95TSE'SH
SLEYY ti
LIPS EY
9ETPI Lt
oerLy
€0r80r
GS8B/E6'6E
ET6Z0'6E
EBYLTT BE
PL09TTLE
T9rZE'9¢
95ZETYSE
96SETSFE
LL60T9'EE
£980LCE
FITLOB'TE
£9506'0€
EST00'0E
BPBLOT 6T
T6800Z'8C

EOLL6T LT |

GET96E'9T
LTrreY'ST
B06TZS'FT
YLEOLSET
8080¥5CT
¥206St 1L
69048F'0C
ThPTIr 6T
9TT6E'8T

6BETIE/LT
E6TTEIT

6LBTST'ST
S6SZ6TPT
99/8TTET
96ZEBQ'CT
£9TTS0'TT
9T96T00T
9EGTEE'S

LPTISP96°L
#SSTZ69

9609716'S
99BEIEG'T
TLLBLBE'E
PEEETBE'T

Application run time (s)

Allocated object memory size

CPU main thread time (ms)

= Frame time (ms)

Figure 19. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, without pooling, 3 complex systems at a time.

3 complex systems at a time - on Samsung Galaxy A6 - test run 2

475000

470000

465000

460000

455000

bytes

120

100

80

60

(ms)

450000

445000

L abale,

v
Hpe—rrean

40

440000

20

435000

430000

ELLSPOES
PILLT'TS
EPTEO0ETS
9686EY0S
9STTLS 6
EETZOL 'Y
LPFEER LT
#00596°9%
€2960'9%
SESLCLSY
85TESE Y
£806F'EY
€909y
956€SL°TY
558807
96ZLTOOF
L9581 6E
8116428
S9FOTVLE
9257¢5°9¢€
S9FL9'SE
95T908°vE
SE06EE'EE
S16040°EE
SL0E0T'TE
9ETSEETE
¥30L97°0€
80865'6Z

T086ZL'8T -

SB0198LCT
80L266°9T
YA Tan-T4
8P0T5T°9T
PBEIBT VT
93085T°ET
S0£690°2C
£96068°0C
SPL669°6T
PoTrZS 8T
8LLBEETLT
TI89T'9T

196986 7T
88598L°ET
¥16685°CT
£¥986E°TT
809STZ'0T
93¥0r0'6

brivS8L

EFPEBII9

9965505°S
€56Z09E'Y
Z9¢6EI0'E

Application run time (s)

Allocated object memory size

CPU main thread time {ms)

—Frame time {ms)

Figure 20. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, with pooling, 3 complex systems at a time.

Turku University of Applied Sciences Thesis | Konstantin lonin

6.3 ParticleSystem pooling with additional allocations in the background

37

It should be noted that these situations are not very realistic, as the applications

have no complex behaviors that games could have. Notably, there are almost

no other memory reserving mechanics in addition to ParticleSystems and arrays

for recording profiling data. The following tests were done with same rapid rate

of using ParticleSystems, but with additional, larger memory allocations at

regular intervals.

Table 3. Additional memory allocation sizes and intervals

Memory allocation size

Allocation intervals

(bytes) (seconds)
Allocator 1 25600 1
Allocator 2 51200 1.5
Allocator 3 102400 4

With these additional allocations, differences in memory use amounts become

less significant, although with even higher frequency of using ParticleSystems,

such as 30 per second, more specifically 3 every 0.1 seconds, pooling can

make a difference (Figures 25; Figure 26).

Figures 21 and 22 show memory reserved for objects fluctuating significantly

over time with no object pooling being used (Figure 21; Figure 22).

Turku University of Applied Sciences Thesis | Konstantin lonin

38

1 complex system at a time - w/ extra allocations - after 80s - on Samsung Galaxy A6 - test run 1

500000

490000

480000

470000

bytes

460000

120

100

80

60

(ms)

40

450000

T
e

440000

20

430000

go8°ZET
S6866°TEL
E0ETTET
Y9T9T0ET
95T6E6LT
E0ETS 8T
80¥S9°LZT
S098L79ZT
$65.T6'5ET
TS670°SCT
9v0T8T'FET
L8TTEECT
VOEVY ZZT
9LpLSTET
7850L°0ZT
CELERBTT
SL5L96'BTT
80660°8TT
LIOETLTT
TECOE9TT
YOEEY'STT
8rIIvIT
S9SLETT
£T888°ZTIT
SL6T0CIL
LITST'TITT
9TT8T0TT
TLTTY 60T
98F¥S 80T
2T9L9°L0T
11.08°90L
958£6°50T
TT0L0°50T
S0C0TPOT
YZEEEEQT
S6¥LTZ0T
¥esST 10T
TOFPC0 00T
888886
9B9LL°16
S8¥659'96
¥B5ESSE
8091t ¥6
98887 'e6
9505T°Z6
EBLTI0'TH
£81/8°'68
gE6YL88
62529°/8
666798
T09LE°98
TrS6ST T8
98FOET EB

Application run time (s)

Allocated object memory size

CPU main thread time (ms)

w—Frame time (ms)

Figure 21. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems, with additional allocations, 1.

1 complex system at a time - w/ extra allocations - after 80s - on Samsung Galaxy A6 - test run 2

500000

490000

480000

470000

bytes

460000

120

100

80

60

(ms)

40

450000

440000

20

430000

TETSTET
LBEVETET
€65L0TET
L9L0T0ET
¢6EE6CT
9ETLY'BLT
9LZ09°LTT
18€££°92T
9r/598°5ZT
CLLEEFCT
PO6TTFIT
SLPTITECT
S8SERETET
SOPZSTICT
rrss90et
98TL8L'EIT
TL8T6'8TT
CTS08TT
PRISTLIT
SLETEILT
SSLSPESTL
CSLLSPIT
9LLOLETT
FZEERTIT
EE0L6°TTT
SCPIOT'TIT
162£T°0TT
SOT#9E'60T
L6VET80T
£7929°/0T
S6/54°90T
k068501
870Z0°50T
6ETSTHOT
6FEBTEOT
€STZTTOT
vS90T T0T
19/.6°66
119886
97EOVL LG
E1619°96
BLIEY'SE
12806
rSe6IT E6
SLWETTE
S5CT66'06
1199868
68TYL 88
605T9°L8
ezl
SS065E'S8
609EC'T8
PBI60T EB

Application run time (s)

Allocated object memory size

CPU main thread time (ms)

= Frame time (ms)

Figure 22. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems, with additional allocations, 2.

Turku University of Applied Sciences Thesis | Konstantin lonin

With pooling, memory use follows a similar pattern, although the drop in the

39

amount happens later in both test cases, and lowest amount of memory used

for objects is higher (Figure 23: Figure 24).

1 complex system at a time - w/ extra allocations - after 80s - on Samsung Galaxy A6 - test run 3

120
100
80
{ms) 60
40 l i

20
0

CSHNY O HOUORTROQUNEHOT ON ORI NNNNNY YRR LN NGOG 08NS N M N

FE AR N XY OMUOITNRNINLISIOTDNNOAN NS A DD N AL NN TN ARFTNOWE ey

N MO M@RDROMNS S I 0DRDIN A0 IS NMANRSMOPONO WY NSNS OmMENSTm o O @

SN MW WSO MWV ST N WD WO oS M0V NG WLNOMWOYO OO MOOoOS S oS WML wmooTnrsm

ANMY N8 gao—-memMnEYTRarREaRENS INAXI~RMImMAN ARG~ NY MRS D M S DX~

TgnurnsonNmYunorNoe T anen 1 AdYlarnon Nwood N TN oo o oo

MB DR DO ETNNNLNONDFTOOO DO DO Mmoo o NN ;NN NN AN MMM

% &> SIS R R R == SRS [= i pn [aian Jan i Jom R R SRR I QA SR JRA IS R R JE R bl

=73 == = = o A
Application run time (s)

—Frame time (ms) CPU main thread time (ms) Allocated object memory size

500000

430000

480000

470000

460000

450000

440000

430000

bytes

Figure 23. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, with pooling,

complex systems, with additional allocations 1.

Turku University of Applied Sciences Thesis | Konstantin lonin

1 complex system at a time - w/ extra allocations - after 80s - on Samsung Galaxy A6 - test run 2

120
100
80
(ms) &0
40
.I) & ad pou L . |
" T il v) L

20
v}

DO MM OOME TN AMN MO T TN TSN OWMN WO OGN DD NN QI = DO QS M

R LM INNNRINNIDOTANRTOLMOLYNRD O OMONTNUOXONORNT OO0 N g O

AL MoOFT O NN SN TORANITINNSED NI MO MO DI RORDOMS D00

dMh R A oM A BR NONRNN S MINIA D OINT DI MOBMO ITORBONNAT NN ADANRDMO B MO~

SAmT R o g AT glngoHdNd RN nkbmac it dsgRnEimAganonsndaan

[l S - I A= R R B P B R - R R Y B e A e e B B B B T IR Sl B A I =T B A B Y IR R I = R B A

WO HHBRBOOMOND MO OO0 FOLOBSO A mad AN AN ANNFANNSNNNMD MM

o R I R R = R = B R R B R R B I e IR IR IS SRS R PR RS R R S R

=T =T e A = - =
Application run time (s)
w—Frame time (ms) CPU main thread time (ms) Allocated object memory size

500000

490000

480000

470000

460000

450000

440000

430000

40

bytes

Figure 24. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

complex systems, with additional allocations 2.

As previously mentioned, pooling can result in noticeable difference with

excessive use of ParticleSystems with other significant allocations (Figures 25;

Figure 26).

Turku University of Applied Sciences Thesis | Konstantin lonin

41

3 simple systems at a time - w/ extra allocations - after 80s - on Samsung Galaxy A6 - test run 1

510000

120

500000

100

430000

80

480000

470000 bytes

=1
©°

(ms)

460000

40

450000

20

440000

430000

280¢6'CET
G6RTT'TET
969TETET
ETPTSOET
S6ZTL6TT
64TT6'8CT
S860T'8TT
TLOELTT
78505921
8TF0LSTT
824106'vTT
79r660 T
B086Z'ETT
tPSS6F TTT
Tre9 1Tl
985768071
S8060'0ZT
9I687'6IT
SOL8V'BTT
LPS8Y'LTT
SLEBBOTT
6640917
£68/Z'STT
S69LPPIT
SPSSLETT
9T0vL8'TTT
86CL0TTT
STLTTIT

£0697°0TT |

Tr{99'60T
792998'80T
74¥90°80T
65¢9Z°L0T
9¥09%'90T
£4519°50T
T99TL V0T
L799°€0T
LTT9F'T0T
E16SZ'T0T
86/8'66
7977586
960C€E'LE
LB3E'S6
TLE8S'V6
678EEE
PITIBT'T6
9067806
9TPry'68
L4 7474
7080698
94775998
STFOE'T8
T860T'E8

)

Application run time (s

(bytes)

Allocated object memory size

CPU main thread time (ms)

— Frame time (ms)

Figure 25. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling, 3

simple systems at a time, with additional allocations.

3 simple systems at a time - w/ extra allocations - after 80s - on Samsung Galaxy A6 - test run 1

510000

120

500000

100

430000

=}
®

480000

470000 bytes

60

(ms)

460000

ﬂ 450000

40

20

440000

430000

L9E0EET
8DEET'ZET
LBOEV'TET
SLBTYOET
TLEB6LT
SPST06LT
8PETTBIT
SETTV LT
8r6TY 9T
[ATAS:3-T4Y
SSTO0SCT
SPLETTPET
POTTY ETT
WoT9ZeT
S6L08°TLT
STTL00'TZT
£6507°0ZT
YB86E0T'6TT
9EC09'BTT
99L008'LTT
LP666°ITT
65/6T°9TT
7956€°STT
TSPESFIT
EEEBLETT
VECEE'TTT
SPTET'ZTT
TLBBETTT
883011
98T/8.'60T
995%86'80T
€08T°80T
TUBLELOT
STLLS 90T
80ELLGOT
57583 ¥0T
ThEBEEQT
LF799° 20T
8SBLTTOT
LLLLOOOT
975.8°86
YOrP L6
9TTIT' 96
9026’76
€98TLER
86616
L186°06
T08L 68
T/8.£°88
98965078
915578'58
STFZ9F8
9/6ETT EB

(s)

Application run time

(bytes)

Allocated object memory size

CPU main thread time (ms)

— Frame time (ms)

Figure 26. Memory used by live objects and memory not yet released by GC
over approximately 50 seconds, after 80 seconds of run time, with pooling, 3

simple systems at a time, with additional allocations.

Turku University of Applied Sciences Thesis | Konstantin lonin

42

7 Conclusion

The purpose of this study was to compare the performance between Unity
applications that use Instantiate method to create new ParticleSystem objects
and applications that use object pool pattern, specifically Unity’s
ObjectPool<T0> class.

Testing of excessively large object pools was not successful due to the

implementation of Unity’s ObjectPool<T0> class.

Different implementations of object pools may be worth testing. Unity’s
ObjectPool<T0> class was used because it comes together with Unity’s other
features and allows for growth of pool size if needed, but there may be more

efficient implementations.

With just ParticleSystems being pooled or created regularly, there was a
noticeable difference in the amount of memory used. However, these situations
are not necessarily realistic, as many games would have other objects created
and destroyed during their run-time. With additional memory allocations at
regular intervals, the differences can become less noticeable compared to
memory use overall, unless the frequency at which particle effects are needed

is excessively high.

On the other hand, the additional allocations are something that should
probably be avoided and may be a better focus for object pooling. It may be that
ideally almost all often-used objects should be pooled to achieve the best

performance.

ParticleSystems that do not use additional behaviour modules, such as particle
size change over time, seem to be easy and cost effective to create, which
means that unless the GameObjects that ParticleSystems are attached to also
have components that require more work from the CPU to create, implementing
an object pool for them probably should not be a priority during development.
On the other hand, performance costs of ParticleSystem pooling also seem to

Turku University of Applied Sciences Thesis | Konstantin lonin

43

be small, and if implementing an object pool for them is not too difficult in a

game, it may be worth implementing.

The tests raised several questions regarding testing performance itself, as there
are numerous factors that can affect results and the software design of Unity

applications / games can vary in structure.

Measured total times between frames and main thread work times at each
frame are close to each other when ParticleSystem object are actively created
or requested from the pool, but recorded values for main thread work times are
oocasionally higher than total times between frames, which should not be
possible. This makes the reliability of these measurements questionable. Times
between frames were derived from the measured time from the application start
at each frame, which suggests that either Unity’s clock was inaccurate or that

main thread work times are inaccurate, or possibly both.

The names of the produced log files could be more descriptive, to make
processing them easier, and the binary to CSV converter should probably be

able handle entire folders with subfolders to make accessing test data easier.

More importantly, recording data points over time produces a lot of charts, while

showing variation in data, making analysis of the gathered data a slow process

More definitive results may be possible to obtain with different analysis and
profiling tools, such as Memory Profiler component of Android Profiler and Unity
Profiler. The decision to not use the latter was made due to concern of Unity

Profiler taking up too much of device resources, but this may not be an issue.

Turku University of Applied Sciences Thesis | Konstantin lonin

44

References

Albahari, B. Albahari, J. 2015a. ‘Chapter 2. C# Language Basics’ in C#6.0in a
Nutshell : The Definitive Reference. 6" ed. ProQuest Ebook Central: O'Reilly
Media. pp. 42. ISBN 978-1-491-92706-9 (printed).

Albahari, B. Albahari, J. 2015b. ‘Chapter 14. Concurrency and Asynchrony’ in
C# 6.0 in a Nutshell : The Definitive Reference. 6" ed. ProQuest Ebook Central:
O'Reilly Media. pp. 564. ISBN 978-1-491-92706-9 (printed).

Boehm, H-J. Demers, A. J. 2014. A garbage collector for C and C++.
Referenced 7.6.2023. https://www.hboehm.info/qc/

Boehm, H-J. Dubois, P. F. 1995. Dynamic Memory Allocation And Garbage
Collection. American Institute of Physics. Referenced 1.6.2023.
https://pubs.aip.org/aip/cip/article-abstract/9/3/297/509106/Dynamic-Memory-
Allocation-and-Garbage-Collection?redirectedFrom=fulltext

Bonet, R. T. 2021. Object Pooling in Unity 2021+. The GameDev Guru.
Referenced 1.6.2023. https://thegamedev.qguru/unity-cpu-performance/object-

pooling/

Chen, J. Guo, R. 2020. Stack and Heap Memory. CS 225. Referenced
1.6.2023. https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/

Christou, T. loannis. Efremidis, S. 2018. To Pool or Not To Pool? Revisiting an
Old Pattern. arXiv. Referenced 1.6.2023. https://arxiv.org/abs/1801.03763

Digital Preservation Home. 2021. CSV, Comma Separated Values. Format
Description Categories. Referenced 1.6.2023.
https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml

Duffy, D. J. Germani, A. 2013. ’24.4 An Introduction To Threads In C# in C# for
Financial Markets. pp. 638. ISBN: 978-1-118-50281-5 (electronic). 978-0-470-
03008-0 (printed).

Finto. 2018. OS/2. AFO - Natural resource and environment ontolog.
Referenced 1.6.2023.
https://finto.fi/afo/en/page/?uri=http%3A%2F % 2Fwww.yso.fi%2Fonto%2Fyso %

2Fp20555

Turku University of Applied Sciences Thesis | Konstantin lonin

https://www.hboehm.info/gc/
https://pubs.aip.org/aip/cip/article-abstract/9/3/297/509106/Dynamic-Memory-Allocation-and-Garbage-Collection?redirectedFrom=fulltext
https://pubs.aip.org/aip/cip/article-abstract/9/3/297/509106/Dynamic-Memory-Allocation-and-Garbage-Collection?redirectedFrom=fulltext
https://thegamedev.guru/unity-cpu-performance/object-pooling/
https://thegamedev.guru/unity-cpu-performance/object-pooling/
https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/
https://arxiv.org/abs/1801.03763
https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml
https://finto.fi/afo/en/page/?uri=http%3A%2F%2Fwww.yso.fi%2Fonto%2Fyso%2Fp20555
https://finto.fi/afo/en/page/?uri=http%3A%2F%2Fwww.yso.fi%2Fonto%2Fyso%2Fp20555

45

Goetz, B. 2005. Java theory and practice: Urban performance legends,
revisited. developerWorks. Referenced 1.6.2023.
https://web.archive.org/web/20111229023158/http://www.ibm.com/developerwo
rks/javal/library/j-jtp09275/index.html

Google. 2023a. Android Debug Bridge (adb). Android Developers. Referenced
1.6.2023. https://developer.android.com/tools/adb

Google. 2023b. Android Runtime (ART) and Dalvik. Android Developers.
Referenced 1.6.2023. https://source.android.com/docs/core/runtime

Google. 2023c. Referenced 1.6.2023. Enable Developer options. Android
Developers. https://developer.android.com/studio/debug/dev-options#enable

Google. 2023d. Inspect your app's memory usage with Memory Profiler.
Android Developers. Referenced 1.6.2023.
https://developer.android.com/studio/profile/memory-profiler

Google. 2023e. Manage your app’s memory. Android Developers. Referenced
1.6.2023. https://developer.android.com/topic/performance/memory

Google. 2023f. Memory allocation among processes. Android Developers.
Referenced 1.6.2023.
https://developer.android.com/topic/performance/memory-management

Google. 2023g. Overview of memory management. Android Developers.
Referenced 1.6.2023.
https://developer.android.com/topic/performance/memory-overview

GSMARENA. 2023a. Samsung Galaxy A6. Referenced 1.6.2023.
https://www.gsmarena.com/samsung galaxy a6 (2018)-9155.php

GSMARENA. 2023b. Samsung Galaxy J5. Referenced 1.6.2023.
https://www.gsmarena.com/samsung galaxy j5-7184.php

lonin, K. 2023. ParticleSystemPoolingTestingProject. GiHub. Referenced
8.6.2023. https://github.com/jodeConstant/ParticleSystemPoolingTestingProject

Koulaxidis, G. Xinogalos, S. 2022. Improving Mobile Game Performance with
Basic Optimization Techniques in Unity. MDPI. Referenced 1.6.2023.
https://www.mdpi.com/2673-3951/3/2/14

Turku University of Applied Sciences Thesis | Konstantin lonin

https://web.archive.org/web/20111229023158/http:/www.ibm.com/developerworks/java/library/j-jtp09275/index.html
https://web.archive.org/web/20111229023158/http:/www.ibm.com/developerworks/java/library/j-jtp09275/index.html
https://developer.android.com/tools/adb
https://source.android.com/docs/core/runtime
https://developer.android.com/studio/debug/dev-options#enable
https://developer.android.com/studio/profile/memory-profiler
https://developer.android.com/topic/performance/memory
https://developer.android.com/topic/performance/memory-management
https://developer.android.com/topic/performance/memory-overview
https://www.gsmarena.com/samsung_galaxy_a6_(2018)-9155.php
https://www.gsmarena.com/samsung_galaxy_j5-7184.php
https://github.com/jodeConstant/ParticleSystemPoolingTestingProject
https://www.mdpi.com/2673-3951/3/2/14

46

Lemonaki, D. 2021. What is CPU? Meaning, Definition, and What CPU Stands
For. freeCodeCamp. Referenced 1.6.2023.
https://www.freecodecamp.org/news/what-is-cpu-meaning-definition-and-what-
cpu-stands-for/

Microsoft. 2021. Garbage collection. Documentation. Referenced 1.6.2023.
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/

Microsoft. 2023a. BinaryWriter Class. Documentation. Referenced 1.6.2023.
https://learn.microsoft.com/en-
us/dotnet/api/system.io.binarywriter?view=netframework-4.8

Microsoft. 2023b. Fundamentals of garbage collection. Documentation.
Referenced 1.6.2023. https://learn.microsoft.com/en-
us/dotnet/standard/garbage-collection/fundamentals

Microsoft. 2023c. Memory allocation - Generations. Documentation. Referenced
1.6.2023. https://learn.microsoft.com/en-us/dotnet/standard/garbage-
collection/fundamentals#generations

Microsoft. 2023d. The managed heap. Documentation. Referenced 1.6.2023.
https://learn.microsoft.com/en-us/dotnet/standard/garbage-
collection/fundamentals#the-managed-heap

Nystrom, R. 2021. Object Pool. Game Programming Patterns. Referenced
1.6.2023. http://gameprogrammingpatterns.com/object-pool.html

Oxford University Press. 2023. Definition of RAM noun from the Oxford
Advanced American Dictionary. Oxford Learner’s Dictionaries. Referenced
1.6.2023.
https://www.oxfordlearnersdictionaries.com/definition/american_english/ram_2

SourceMaking. 2023. Object Pool Design Pattern. sourcemaking.com.
Referenced 1.6.2023. https://sourcemaking.com/design_patterns/object pool

Unity Technologies. 2022a. GameObject. Unity Documentation. Referenced
1.6.2023. https://docs.unity3d.com/ScriptReference/GameObject.html

Unity Technologies. 2022b. GetMonoUsedSizeLong. Unity Documentation.
Referenced 1.6.2023.
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Profiling.Profil
er.GetMonoUsedSizelLong.html

Turku University of Applied Sciences Thesis | Konstantin lonin

https://www.freecodecamp.org/news/what-is-cpu-meaning-definition-and-what-cpu-stands-for/
https://www.freecodecamp.org/news/what-is-cpu-meaning-definition-and-what-cpu-stands-for/
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/api/system.io.binarywriter?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.io.binarywriter?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#generations
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#generations
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#the-managed-heap
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#the-managed-heap
http://gameprogrammingpatterns.com/object-pool.html
https://www.oxfordlearnersdictionaries.com/definition/american_english/ram_2
https://sourcemaking.com/design_patterns/object_pool
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Profiling.Profiler.GetMonoUsedSizeLong.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Profiling.Profiler.GetMonoUsedSizeLong.html

47

Unity Technologies. 2022c. Incremental Garbage Collection. Unity
Documentation. Referenced 7.6.2023.
https://docs.unity3d.com/Manual/performance-incremental-garbage-
collection.html

Unity Technologies. 2022d. Instantiate. Unity Documentation. Referenced
1.6.2023.
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Object.Instanti
ate.html

Unity Technologies. 2022e. MonoBehaviour. Unity Documentation. Referenced
1.6.2023. https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Unity Technologies. 2022f. ParticleSystem. Unity Documentation. Referenced
1.6.2023. https://docs.unity3d.com/2022.1/Documentation/Manual/class-
ParticleSystem.html

Unity Technologies. 2022g. Prefabs. Unity Documentation. Referenced
1.6.2023.
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/ParticleSyste

m.html

Unity Technologies. 2023a. Debugging on an Android device. Unity
Documentation. Referenced 1.6.2023.
https://docs.unity3d.com/Manual/android-debugging-on-an-android-device.html

Unity Technologies. 2023b. FrameTiming. Unity Documentation. Referenced
1.6.2023.
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/FrameTiming.
html

Unity Technologies. 2023c. FrameTimingManager. Unity Documentation.
Referenced 1.6.2023.
https://docs.unity3d.com/2022.1/Documentation/Manual/frame-timing-
manager.html

Unity Technologies. 2023d. Garbage collection best practices. Unity
Documentation. Referenced 1.6.2023.
https://docs.unity3d.com/Manual/performance-garbage-collection-best-

practices.html

Turku University of Applied Sciences Thesis | Konstantin lonin

https://docs.unity3d.com/Manual/performance-incremental-garbage-collection.html
https://docs.unity3d.com/Manual/performance-incremental-garbage-collection.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Object.Instantiate.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Object.Instantiate.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2022.1/Documentation/Manual/class-ParticleSystem.html
https://docs.unity3d.com/2022.1/Documentation/Manual/class-ParticleSystem.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/ParticleSystem.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/ParticleSystem.html
https://docs.unity3d.com/Manual/android-debugging-on-an-android-device.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/FrameTiming.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/FrameTiming.html
https://docs.unity3d.com/2022.1/Documentation/Manual/frame-timing-manager.html
https://docs.unity3d.com/2022.1/Documentation/Manual/frame-timing-manager.html
https://docs.unity3d.com/Manual/performance-garbage-collection-best-practices.html
https://docs.unity3d.com/Manual/performance-garbage-collection-best-practices.html

48

Unity Technologies. 2023e. Garbage collector overview. Unity Documentation.
Referenced 1.6.2023. https://docs.unity.cn/Manual/performance-garbage-
collector.html

Unity Technologies. 2023f. Managed memory. Unity Documentation.
Referenced 1.6.2023. https://docs.unity3d.com/Manual/performance-managed-

memory.html

Unity Technologies. 2023g. ObjectPool<T0>. Unity Documentation. Referenced
1.6.2023. https://docs.unity3d.com/ScriptReference/Pool.ObjectPool 1.html

Wienholt, N. 2004. ‘Garbage Collection and Object Lifetime Management.’ in
Maximizing .NET Performance. Apress, Berkeley, CA. pp. 101-119. ISBN: 978-
1-4302-0784-9 (electronic). ISBN: 978-1-59059-141-3 (printed).

DOI: 10.1007/978-1-4302-0784-9_7

Turku University of Applied Sciences Thesis | Konstantin lonin

https://docs.unity.cn/Manual/performance-garbage-collector.html
https://docs.unity.cn/Manual/performance-garbage-collector.html
https://docs.unity3d.com/Manual/performance-managed-memory.html
https://docs.unity3d.com/Manual/performance-managed-memory.html
https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1.html

	List of abbreviations
	1 Introduction
	2 Managed memory in Unity, C#, and Android OS
	2.1 Android memory management.

	2.2 C# and Unity memory management
	2.3 Memory fragmentation
	3 Object pool pattern as an optimization method
	4 Test applications and devices
	4.1 Important Unity application and programming terms

	4.2 Important application classes
	4.3 Device information
	4.4 Data recording
	4.5 A bug with use of FrameTimeManager for recording
	5 Testing protocol
	5.1 Connecting devices and installing test applications
	5.2 Test application configurations

	6 Test results
	6.1 Rapid use of simple PaticleSystems

	6.2 Rapid use of more complex ParticleSystems
	6.3 ParticleSystem pooling with additional allocations in the background
	7 Conclusion
	References

