

Bachelor’s thesis

Information and Communication Technology

2023

Konstantin Ionin

Comparing performances

between different methods of

using large numbers of

ParticleSystem effects in Unity

games on Android OS

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communication Technology

2023 | 48 pages

Konstantin Ionin

Comparing performances between different methods

of using large numbers of ParticleSystem effects in

Unity games on Android OS

Unity game engine makes creating new entities in games easy at runtime with

its Instantiate method. However, rapidly creating short lived objects results in

more memory management tasks for the CPU. One method of reducing the

frequency of allocating and releasing memory is the object pool pattern, also

referred to as pooling, which consists of allocating the required memory in

advance and reusing allocated objects rather than allocating memory for a new

object each time and releasing it later.

The purpose of this thesis was to determine how pooling reusable particle effect

objects can affect performance, compared to allocating new objects as needed

with Unity’s Instantiate method, on smartphones running Android operating

system, particularly on older devices. Testing was conducted with several Unity

applications that would create various amounts of particle effects on the screen

with these methods, and logged time and memory use during each frame over a

period of time, and results were then analyzed and compared. The results

indicate that even with frequent use, pooling may not be significantly faster and

mostly affects memory use. However, more detailed profiling may be needed

with specialized tools.

Keywords:

object pool pattern, memory, RAM, garbage collection, GC, Unity, Android.

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

Opinnäytetyön valmistumisajankohta | 48 sivua

Konstantin Ionin

Suorituskyvyn vertailu erilaisten ParticleSystem

efektien käyttömenetelmien välillä Unity peleissä

Android käyttöjärjestelmällä

Unity-pelimoottori mahdollistaa uusien olioiden helpon luomisen pelin ajon

aikana Instantiate-metodin avulla. Uusien olioiden luominen tiheään tahtiin ja

lyhyeksi ajaksi toisaalta lisää muistin käsittelyn työtä prosessorille. Yksi tapa

vähentää muistin jatkuvaa varaamista ja vapauttamista on object pool pattern -

eli pooling -menetelmä, jolloin varataan tarvittava muistimäärä ja luodaan

tarvittavat tietorakenteet etukäteen, minkä jälkeen niitä käytetään toistuvasti

uusien luomisen ja tuhoamisen sijaan. Tämän työn tarkoitus on selvittää miten

uudelleenkäytettävien particle-efekti -olioiden käyttö voi vaikuttaa sovelluksen

suoritukseen, uusien olioiden luomiseen ja tuhoamiseen verrattuna, Android-

käyttöjärjestelmää käyttävillä älypuhelimilla, varsinkin hieman vanhemmilla

laitteilla. Menetelmien testausta varten oli toteutettu useita samankaltaisia

sovelluksia Unity-pelimoottorilla, joissa ruudulle luotiin suuria määriä particle-

efektejä. Sovellukset kirjasivat ajan ja muistin käytön jokaisella framellä tietyllä

aikavälillä, minkä jälkeen tuloksia verrattiin ja analysoitiin. Tulokset viittaavat

siihen, että pooling ei välttämättä nopeuta suoritusta suurellakaan olioiden

määrällä ja vaikuttaa ensisijaisesti muistin käyttöön, mutta kattavampi tutkimus

erikoistuneilla työkaluilla voi olla tarpeellista.

Asiasanat:

 object pool pattern, muisti, RAM, GC, Unity, Android

Contents

List of abbreviations 9

1 Introduction 10

2 Managed memory in Unity, C#, and Android OS 12

2.1 Android memory management. 12

2.2 C# and Unity memory management 13

2.3 Memory fragmentation 14

3 Object pool pattern as an optimization method 15

4 Test applications and devices 16

4.1 Important Unity application and programming terms 16

4.2 Important application classes 17

4.3 Device information 22

4.4 Data recording 22

4.5 A bug with use of FrameTimeManager for recording 24

5 Testing protocol 25

5.1 Connecting devices and installing test applications 25

5.2 Test application configurations 25

6 Test results 27

6.1 Rapid use of simple PaticleSystems 27

6.2 Rapid use of more complex ParticleSystems 33

6.3 ParticleSystem pooling with additional allocations in the background 37

7 Conclusion 42

References 44

Figures

Figure 1. ParticleSpawnRequester class diagram 18

Figure 2. ParticleSystemLibrary class diagram 18

Figure 3. ParticleSystemPool 19

Figure 4. ParticleSystemObjectPool class diagram 19

Figure 5. LargeAllocationSimulator class diagram 20

Figure 6. CustomProfiling class diagram 21

Figure 7. ParticleSystem count over 30 approximately seconds, without pooling,

simple systems. 28

Figure 8. Memory used by live objects and memory not yet released by GC over

approximately 50 seconds, without pooling, simple systems. 28

Figure 9. ParticleSystem count over 30 approximately seconds, with pooling,

simple systems. 29

Figure 10. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, with pooling, simple systems. 30

Figure 11. ParticleSystem count over 30 approximately seconds, after 80

seconds of run time, without pooling, on Samsung Galaxy A6 31

Figure 12. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

simple systems. 31

Figure 13. ParticleSystem count over 30 approximately seconds, after 80

seconds of run time, with pooling, simple systems. 32

Figure 14. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

simple systems. 32

Figure 15. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, without pooling, complex systems. 33

Figure 16. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, with pooling, complex systems. 34

Figure 17. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems. 35

Figure 18. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

complex systems. 35

Figure 19. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, without pooling, 3 complex systems at a time.

 36

Figure 20. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, with pooling, 3 complex systems at a time. 36

Figure 21. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems, with additional allocations, 1. 38

Figure 22. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems, with additional allocations, 2. 38

Figure 23. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

complex systems, with additional allocations 1. 39

Figure 24. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

complex systems, with additional allocations 2. 40

Figure 25. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling, 3

simple systems at a time, with additional allocations. 41

Figure 26. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling, 3

simple systems at a time, with additional allocations. 41

Tables

Table 1. Tested devices and their specifications. 22

Table 2. Measurements taken and data types they are recorded as in binary

files. 23

Table 3. Additional memory allocation sizes and intervals 37

List of abbreviations

Abbreviation Explanation of abbreviation (Source)

abd Android Debug Bridge (Google 2023b)

CPU central processing unit (Lemonaki 2021)

GC Garbage Collector / Garbage Collection (Microsoft

2021)

OS operating system (Finto 2018)

RAM Random-access memory (Oxford University Press

2023)

10

Turku University of Applied Sciences Thesis | Konstantin Ionin

1 Introduction

In many games there is a need to create a temporary visual effect in response

to some player action or an event. Unity facilitates this with the Instantiate

method (Unity Technologies 2022d). If events that require temporary objects

happen rapidly, frequent memory allocation and then garbage collection can

create significantly more work for the central processing unit (CPU) of the

device that runs the game or application (Unity Technologies 2023d).

This seems to be a particularly important issue on mobile devices because of

more limited random-access memory (RAM), battery capacity and processing

power.

This study was inspired by development work at Pikkuli Group Oy, with

newfound interest in memory use optimization.

The structure of this thesis is as follows: Chapter 1 is the introduction to the

goals and structure of this study. Chapter 2 briefly explains managed memory

and how it’s relevant to this study. Chapter 3 describes the object pool pattern

in detail and presents its general advantages and drawbacks. Chapters 4

explains the structure of test applications and Chapter 5 describes how the tests

were conducted. Chapter 6 presents the test results and chapter 7 describes

their implications.

The object pool pattern is a design pattern and a memory optimization method

for reducing the frequency of memory allocation. (Nystrom 2021; SourceMaking

2023; Koulaxidis et al. 2022; Bonet 2021.) It has potential drawbacks, such as

requiring allocation of large amount of memory for an extended period and

generally requiring objects to be reset or otherwise modified between uses,

which also adds different tasks for the CPU. (Nystrom 2021; Bonet 2021.) This

design pattern is not new but can be easily overlooked and takes more effort to

implement in Unity scripts than just instantiating new objects as needed.

The goal of this study is to determine how pooling ParticleSystem objects can

affect the performance of mobile games, when it may be better to pool them

11

Turku University of Applied Sciences Thesis | Konstantin Ionin

and when it may be better to not pool them. Having concrete results could

benefit mobile game developers in general, but particularly those who use the

Unity game engine.

This study focused on older and low end to non-high end mobile devices

because those would be more easily affordable to more people and are still in

use, and because high end ones would be more likely to run even inefficient

software well. Similar tests on more powerful mobile devices may be

worthwhile.

The methodology consisted of running different variations of an application that

would create numerous particle effects on the screen, either by creating new

objects in memory or by using a pool of objects, and logged specific

performance metrics, that could then be compared and analysed. The metrics

recorded were total memory used by specific objects, including particle effect

objects, total memory reserved by the application, the number of particle effect

objects, the time between start of the frame and the main task (thread) finishing

the job, and the time elapsed from the start of the game at each frame. The time

elapsed was also translated to total times between frames. Reusable objects

differed from non-reusable ones only by not destroying themselves

automatically and by having an additional component that allowed the object

pool to reuse them.

12

Turku University of Applied Sciences Thesis | Konstantin Ionin

2 Managed memory in Unity, C#, and Android OS

In C-like languages, including C#, the heap is a portion of memory from which a

program can reserve some amounts for its use in addition to the memory

reserved automatically for the program code (Albahari et al. 2015a; Chen et al.

2020). Unlike the memory that is automatically reserved for the program during

its execution, memory reserved from the heap by the program is not

automatically freed and remains reserved until the program is closed (Chen et

al.). Programmers can write instructions for when to free specific parts of

reserved heap memory as part of their code, like in C++ language, or they can

rely on an automated process that tracks which parts of heap memory are used

and frees the parts that are not used anymore. An automated method of freeing

unused memory is called garbage collection, and the process or the

implementation is called a garbage collector, abbreviated as GC. (Chen et al.;

Microsoft 2023b; Wienholt 2004.) Garbage collection can be a feature of a

programming language as is the case with C#, implemented in a code library for

a language that developers can use, feature of a game engine like Unity, or

even a feature of an operating system as is the case with Android. (Microsoft

2023b; Boehm et al. 2014; Unity Technologies 2023e; Google 2023g)

2.1 Android memory management.

Android tries to use all available memory, keeping apps in memory after they

are closed, so that the user can quickly switch to them if needed (Google

2023f).

If an application reserves memory for itself, it generally can’t be released by

Android unless the application releases it by itself, the application has

mechanisms for Android to reclaim parts of the memory used by that

application, or Android decides to kill the process to use its memory for

something else. The latter may happen if available memory is scarce and the

application in question is not on the foreground (Google 2023f; Google 2023f).

13

Turku University of Applied Sciences Thesis | Konstantin Ionin

Android has generational garbage collection, meaning objects that are recently

allocated are expected to have shorter lifespan, and are checked more often,

whereas objects that have existed for longer are expected to last and are

checked less often (Google 2023g).

2.2 C# and Unity memory management

In C#, a managed heap refers to a portion of memory reserved by the garbage

collector for any temporary memory allocations (Microsoft 2023d). The

purposes of garbage collection and a managed heap are to reduce the need to

write memory management code, and to make memory allocation more efficient

and safer (Microsoft 2023b).

C# language, like Android OS has generational garbage collection. Dynamically

allocated objects that are not released for a longer time are then checked less

often, so the garbage collector can focus on objects that are more likely to be

released soon (Microsoft 2023c).

Unity has a managed memory system, in a form of C# scripting environment,

that manages the releasing of dynamically allocated memory, so that

developers don’t have to do it manually. Unity can expand the managed heap to

accommodate the need for more memory. If managed heap expands regularly,

Unity won’t release the memory allocated for it, even if most of it is not used.

(Unity Technologies 2023f.)

This implies that Android’s garbage collection is not as significant for memory

use of a Unity game / application and Unity engine handles temporary objects

itself unless it needs to reserve more memory or decides to release some of it.

In some ways, a managed heap can be thought of as a memory pool.

14

Turku University of Applied Sciences Thesis | Konstantin Ionin

By default, Unity games will use incremental garbage collection, which means

that the GC will split its workload over multiple frames, avoiding the need to

pause other tasks to process all the reserved memory (Unity Technologies

2022c). Test applications used this setting because it is the default and is

recommended.

2.3 Memory fragmentation

When memory is allocated from the heap, it is done in contiguous region. When

that region of allocated memory is released later, there may be other parts of

memory adjacent to it that are still reserved, and as a result the released portion

of memory can only be used for allocations that are small enough to fit in that

free segment. This is known as memory fragmentation. Even if there is free

memory in the managed heap, it cannot be used for allocations that are larger

than any of the free segments. (Nystrom 2021; Unity Technologies 2023f.) This

could lead to Unity having to expand its managed heap (Unity Technologies

2023f). However, according to C# documentation, managed heap and garbage

collector will move live objects closer together during garbage collection

process to avoid this (Microsoft 2023d). Unity generally uses C# scripting

environment (Unity Technologies 2023f), so memory fragmentation may not be

a significant issue.

15

Turku University of Applied Sciences Thesis | Konstantin Ionin

3 Object pool pattern as an optimization method

As mentioned in the introduction, object pool pattern, or pooling, is a design

pattern / memory optimization method that is used to reduce frequency of

dynamic allocation and freeing of memory by allocating the required memory in

advance and initializing a set number of reusable objects, referred to as an

object pool. Processes can then retrieve and return these objects as needed

instead of creating new objects and then destroying them.

Main trade-off is that the memory is not released for a longer time, and the pool

has to be able to accommodate the number of objects that can be used at a

time. This can mean reserving a lot of memory and not freeing it even when

significant portion of it is not used, depending on how pooled objects are used.

(Nystrom 2021; Bonet 2021.)

Different languages and game engines allow for different implementations of

object pools. Unity has its own built-in generic object pool interface

IObjectPool<T0>, and classes ObjectPool<T0> and LinkedPool<T0> that

implement it. (Unity Technologies 2023g.)

Improvements to garbage collection have led to object pools being considered

unnecessary, and in some cases even detrimental in some situations (Goetz

2005).

16

Turku University of Applied Sciences Thesis | Konstantin Ionin

4 Test applications and devices

The application used to compare performance of continuous creation and

destruction to that of pooling was a simple Unity application with one scene and

scripts for a few classes. Unity version used for this was 2022.1.22f1.

4.1 Important Unity application and programming terms

GameObject

GameObjects can represent various props, scenery and characters. Their

functionalities are defined by components attached to them. GameObjects can

be enabled and disabled, which also enables and disables functionalities of

their components, respectively. (Unity Technologies 2022a.)

ParticleSystem

ParticleSystem component can be attached to GameObjects to create particle

effects in games / applications (Unity Technologies 2022f).

ParticleSystem objects in application description will refer to GameObjects with

ParticleSystem components attached. A pooled object would consist of a

GameObject with a ParticleSystem component and a simple component that

allowed it to interact with the object pool.

Prefabs

Unity has a way of saving templates of GameObjects and groups of

GameObjects with various components as reusable assets known as prefabs

(Unity Technologies 2022g). The applications used for testing relied on prefabs

that consisted of GameObjects with ParticleSystem components.

17

Turku University of Applied Sciences Thesis | Konstantin Ionin

Thread

In computing, threads are execution paths that can run concurrently with each

other and independently of each other (Albahari et al. 2015b; Duffy et al. 2013).

4.2 Important application classes

In Unity, custom classes can be attached to GameObjects as script components

(Unity Technologies 2022e).

UML diagrams do not fully describe the classes, and focus on more important

variables.

ParticleSpawnRequester class requested particle effects in form of

GameObjects with ParticleSystem components from one of two different

classes, ParticleSystemLibrary and ParticleSystemPool, depending on settings

(Figure 1). Both classes used prefabs to create new objects as needed.

ParticleSpawnRequester had a timer to keep requesting particle effects for a

specified duration and could request a specific number of particle effects at a

time. The tests were done with 1 and 3 effects at a time.

In addition to controlling the use of ParticleSystems, ParticleSpawnRequester

alsoperformed a slow calculation on each frame to simulate the application

having other tasks in addition to causing particle effects on the screen.

18

Turku University of Applied Sciences Thesis | Konstantin Ionin

ParticleSpawnRequester

pool: ParticleSystemPool

library: ParticleSystemLibrary

duration: floating point number

startDelay: floating point number

cooldown: floating point number

objectsAtATime: integer

(internal variables omitted)

Start ()

Update ()

Figure 1. ParticleSpawnRequester class diagram

ParticleSystemLibrary class would use Instantiate method to create new game

objects on request, which would be destroyed after performing their function,

allowing the memory to be released by the garbage collector (Figure 2).

ParticleSystem components were set to play when created and to destroy

GameObjects they were attached to after their set duration.

ParticleSystemLibrary

particleEffectPrefabs: GameObject[0..*]

SpawnEffectAtPosition (type: enumeration,

position: Vector3, relativeTo: Transform)

Figure 2. ParticleSystemLibrary class diagram

ParticleSystemPool class maintained an array of object pools. The reasoning

for an array of pools was that this could be a usable implementation for a game

with several particle effects that could all be pooled (Figure 3).

19

Turku University of Applied Sciences Thesis | Konstantin Ionin

ParticleSystemPool

pools: ParticleSystemObjectPool [0..*]

Start ()

SpawnEffectAtPosition (type: enumeration,

position: Vector3, relativeTo: Transform)

Figure 3. ParticleSystemPool

Each object pool was an instance of a ParticleSystemObjectPool class that

contained an instance of Unity’s generic ObjectPool<T0> class and methods

that this class instance (object) could use (Figure 4). Reasons for using

ObjectPool<T0> objects are their ability to grow to accommodate higher number

of pooled objects, up to a limit, and being a built-in feature with provided

examples, making them likely to be used by newer developers. Pooled game

objects also had a script component for interactions with object pool that

managed them.

ParticleSystemObjectPool

prefab: GameObject

poolObjectContainer: Transform

minPoolSize: integer

maxPoolSize: integer

pool: ObjectPool<GameObject>

InitializePool ()

CreatePooledItem (): GameObject

OnReturnedToPool (GameObject)

OnTakeFromPool (GameObject)

OnDestroyPoolObject (GameObject)

Figure 4. ParticleSystemObjectPool class diagram

LargeAllocationSimulator class was added after initial tests to add larger

memory allocations, to test cases where memory fragmentation was presumed

by the author to be more likely due to more varying sizes of memory allocations

(Figure 5).

20

Turku University of Applied Sciences Thesis | Konstantin Ionin

LargeAllocationSimulator

allocationSize: integer

allocationChunk: integer[0..*]

allocationInterval: floating point number

timer: floating point number

Update ()

Figure 5. LargeAllocationSimulator class diagram

Lastly, the CustomProfiling class recorded Unity’s total reserved memory size,

memory used by objects, including the memory that was no longer used but not

yet released by garbage collector, using GetMonoUsedSizeLong method, and

numbers of objects for each frame, as well as the time CPU spent executing

Unity’s main thread job and total time elapsed at each frame (Unity

Technologies 2022b). Data was recorded for each frame to arrays of arrays that

were allocated at the start of the application run time and the recorded data was

written to a file after all the data was recorded. (Figure 6.) Reason for using

arrays of arrays was to possibly reduce the chances of not being able to reserve

a large enough single array, although this might not have been necessary.

Memory allocation was done at the start to avoid additional memory allocations

during the tests that could affect the profiling.

21

Turku University of Applied Sciences Thesis | Konstantin Ionin

CustomProfiling

memoryUseObjects: unsigned integer[0..*][0..*]

memoryUseReservet: unsigned integer[0..*][0..*]

objectCount: unsigned short integer[0..*][0..*]

frameTimes: double precision floating point

number[0..*][0..*]

timeElapsed: floating point number[0..*][0..*]

countdown: floating point number

requester: ParticleSystemRequester

objectContainer: Transform

(some variables omitted)

Awake ()

AllocateLogArrays ()

Update ()

WriteRoutine (): IEnumerator

WriteToBIN

Figure 6. CustomProfiling class diagram

The API used for retrieving CPU main thread times per frame was

FrameTimingManager. Using it required enabling the Frame Timing Stats option

in Project Settings, or Player Settings creating a build of the application. It is

primarily intended for use with Dynamic Resolution option and required that

feature to be enabled in the main camera. (Unity Technologies 2023c.)

22

Turku University of Applied Sciences Thesis | Konstantin Ionin

4.3 Device information

The devices used for testing were Samsung SM-J500FN and Samsung SM-

A600FN/DS (Table 1).

Table 1. Tested devices and their specifications.

Device

(Model number)

Samsung Galaxy J5

(SM-J500FN)

Samsung A6

(SM-A600FN/DS)

CPU Quad-core 1.2 GHz

Cortex-A53

Octa-core 1.6 GHz

Cortex-A53

RAM available

(approximately)

450 MB 1.3 GB

Android version 10 6.0.1

Model numbers and OS versions were taken from devices’ “About device” and

“About phone” sections in their settings menus. Available RAM was taken from

Smart Manager and Device care sections in options menus of Samsung Galaxy

J5 and Samsung Galaxy A6, respectively. CPU information was taken from

GSMARENA based on phone model numbers. (GSMARENA 2023a;

GSMARENA 2023b)

Due to the number of charts produced during testing, Samsung Galaxy J5 test

results are not included in this document, but are available on GitHub along with

the Unity project.

4.4 Data recording

Arrays for recording data were allocated at the start and sizes are kept the

same for all versions of the application to keep their memory uses as close to

23

Turku University of Applied Sciences Thesis | Konstantin Ionin

each other as possible during each test. The data in the arrays was written to a

binary file after each test (Microsoft 2023a).

The log files consisted of series of binary representations of recorded values in

the same order for each frame (Table 2).

Table 2. Measurements taken and data types they are recorded as in binary

files.

Measurement Data type

Total memory used by game objects unsigned 32-bit integer

Total memory used reserved by Unity unsigned 32-bit integer

Number of ParticleSystem objects unsigned 16-bit integer

CPU main thread frame time 64-bit floating point number

Time elapsed from application start

during this frame

32-bit floating point number

This pattern could then be simply translated into rows of a comma-separated

values (CSV) file (Digital Preservation Home 2021). The time elapsed from

application start was also translated to time between frames in the

spreadsheets.

The translation to CSV was done with a simple C# program but could also be

done program or script that would read binary data according to the specified

pattern. The CSV files were then turned into spreadsheets.

Applications were tested with both simple ParticleSystems that just emitted a

burst of particles, that would be cheaper to create, and ParticleSystems with

more complex behaviours, like changing particles’ velocities and colours, that

would be more taxing for the CPU to create.

24

Turku University of Applied Sciences Thesis | Konstantin Ionin

4.5 A bug with use of FrameTimeManager for recording

CustomProfiling class had a bug with how CPU main thread times were logged.

FrameTimeManager retrieves data with a set 4 frame delay (Unity Technologies

2023c), which lead to an erroneous solution, leading to times being delayed by

additional 3 frames. This was corrected for in spreadsheets by removing first 7

values in the CPU main thread time column and shifting the remaining values in

that column up.

25

Turku University of Applied Sciences Thesis | Konstantin Ionin

5 Testing protocol

5.1 Connecting devices and installing test applications

Developer Options were enabled on the smartphones used for testing, including

allowing installing without verification over a USB cable from the development

machine (Google 2023c). A connection was then established using Android

Debug Bridge, or adb (Google 2023a). Development machine was a desktop

computer running Windows 10.

To disconnect devices, command “adb kill-server” was used through Windows’

Command Prompt before ejecting a connected device.

The app was built and installed and launched on the devices over USB cable

with “Build And Run” option in build settings window. The test application

versions were launched and left to run the tests for at least 3 times including

initial launch as part of installing over USB connection, after which the log files

were copied from the device. Test application closed automatically at the end,

but remained in memory in the background, and was removed from background

between running tests to make sure test runs were as similar as possible,

although this may not be necessary.

5.2 Test application configurations

For non-pooling tests, variables were ParticleSystem object creation quantities

and created ParticleSystem object types.

For pooling tests, pooling versions were made to match each non-pooling

version, with both minimal sized pools and larger than necessary pools, to test

both optimally sized and larger than necessary object pools affect performance,

but it turned out that ObjectPool<T0> objects would not create more pooled

objects than they needed to accommodate the demand for those objects.

26

Turku University of Applied Sciences Thesis | Konstantin Ionin

Each configuration was tested both during first 20 seconds of run time and as a

separate test for 20 seconds after 80 seconds of running.

Additionally, repeat tests were done with other mock memory allocations at

regular intervals to increase chances of memory fragmentation due to varying

allocation sizes.

27

Turku University of Applied Sciences Thesis | Konstantin Ionin

6 Test results

Due to a large number of charts of recorded data, only some charts are

presented here, focusing on tests done on Samsung Galaxy A6. Spreadsheets

with data and charts are available together with the project used at GitHub

(Ionin 2023).

One important thing to that became apparent about Unity’s ObjectPool<T0>

class is that it fills over time as pooled objects are requested and does not fill

more than needed, which does introduce some potential new created objects

after some application run time and does not accommodate the intended tests

with too many pooled objects, making those tests runs effectively the same.

The charts below show total frame times over application run times as a green

line, and time between start of the frame and when main thread finished the job

for that frame as a blue line.

6.1 Rapid use of simple PaticleSystems

With simple ParticleSystems, use of object pool pattern may or may not show

improvements to performance or reduction in memory use by the application,

even when ParticleSystem objects are created at a high rate, in this case

around 10 objects per second.

In the case of an application that creates new objects to use for approximately

20 seconds we see fluctuating number of objects over time and increase of

used memory. (Figure 7; Figure 8).

28

Turku University of Applied Sciences Thesis | Konstantin Ionin

Figure 7. ParticleSystem count over 30 approximately seconds, without pooling,

simple systems.

Figure 8. Memory used by live objects and memory not yet released by GC over

approximately 50 seconds, without pooling, simple systems.

29

Turku University of Applied Sciences Thesis | Konstantin Ionin

If we compare the frame durations and memory use to equivalent application

that uses Unity’s ObjectPool<T0> class, we see similar frame durations and

objects being created at the first few seconds. More memory is reserved early,

which then reaches a similar amount as with the equivalent application that did

not pool ParticleSystem objects. (Figure 9; Figure 10)

Figure 9. ParticleSystem count over 30 approximately seconds, with pooling,

simple systems.

30

Turku University of Applied Sciences Thesis | Konstantin Ionin

Figure 10. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, with pooling, simple systems.

However, if these applications are left to run for longer, the one that uses

pooling is more efficient in its use of memory.

It should be noted that this is probably a very niche situation and that most

games probably do not need to use independent ParticleSystems on the screen

at a rate of 10 per second for a total of 100 seconds or more.

Notice that memory reserved for objects is greater than it was when application

was set to create new ParticleSystems for only 20 seconds, and that this

memory seems to not be released for a significant time after ParticleSystems

are destroyed (Figure 11; Figure 12)

31

Turku University of Applied Sciences Thesis | Konstantin Ionin

Figure 11. ParticleSystem count over 30 approximately seconds, after 80

seconds of run time, without pooling, on Samsung Galaxy A6

Figure 12. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

simple systems.

32

Turku University of Applied Sciences Thesis | Konstantin Ionin

In comparison, an equivalent application that used pooling predictably did not

require noticeably more memory even over a total of 100 seconds of run time

(Figure 13; Figure 14).

Figure 13. ParticleSystem count over 30 approximately seconds, after 80

seconds of run time, with pooling, simple systems.

Figure 14. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

simple systems.

33

Turku University of Applied Sciences Thesis | Konstantin Ionin

Notice that decrease in main thread work times, depicted by the blue line,

correlates well with the end of ParticleSystem use. The remaining charts

presented will focus on memory, while keeping time measurement lines for

context.

6.2 Rapid use of more complex ParticleSystems

ParticleSystems can have complex behaviors, such as particle size, color and /

or velocity changes over time (Unity Technologies 2022f).

These were presumed to increase how much memory they use and presumably

affect how long it would take for the CPU to create them. Following charts

demonstrate how pooling can affect applications if they create more complex

ParticleSystems instead of very simple ones (Figure 15).

Figure 15. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, without pooling, complex systems.

34

Turku University of Applied Sciences Thesis | Konstantin Ionin

Figure 16. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, with pooling, complex systems.

The pattern remains the same, with both methods taking similar amounts of

memory with rapid ParticleSystem use over 20 seconds. Like the applications

that used simple ParticleSystems, results after a longer run time show that

pooling can be more efficient in terms of memory use (Figure 17; Figure 18).

35

Turku University of Applied Sciences Thesis | Konstantin Ionin

Figure 17. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems.

Figure 18. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

complex systems.

36

Turku University of Applied Sciences Thesis | Konstantin Ionin

Differences in memory use during short duration of ParticleSystem use became

more pronounced when the quantity of ParticleSystems was increased to 3 at a

time (Figure 19; Figure 20).

Figure 19. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, without pooling, 3 complex systems at a time.

Figure 20. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, with pooling, 3 complex systems at a time.

37

Turku University of Applied Sciences Thesis | Konstantin Ionin

6.3 ParticleSystem pooling with additional allocations in the background

It should be noted that these situations are not very realistic, as the applications

have no complex behaviors that games could have. Notably, there are almost

no other memory reserving mechanics in addition to ParticleSystems and arrays

for recording profiling data. The following tests were done with same rapid rate

of using ParticleSystems, but with additional, larger memory allocations at

regular intervals.

Table 3. Additional memory allocation sizes and intervals

 Memory allocation size

(bytes)

Allocation intervals

(seconds)

Allocator 1 25600 1

Allocator 2 51200 1.5

Allocator 3 102400 4

With these additional allocations, differences in memory use amounts become

less significant, although with even higher frequency of using ParticleSystems,

such as 30 per second, more specifically 3 every 0.1 seconds, pooling can

make a difference (Figures 25; Figure 26).

Figures 21 and 22 show memory reserved for objects fluctuating significantly

over time with no object pooling being used (Figure 21; Figure 22).

38

Turku University of Applied Sciences Thesis | Konstantin Ionin

Figure 21. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems, with additional allocations, 1.

Figure 22. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling,

complex systems, with additional allocations, 2.

39

Turku University of Applied Sciences Thesis | Konstantin Ionin

With pooling, memory use follows a similar pattern, although the drop in the

amount happens later in both test cases, and lowest amount of memory used

for objects is higher (Figure 23: Figure 24).

Figure 23. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

complex systems, with additional allocations 1.

40

Turku University of Applied Sciences Thesis | Konstantin Ionin

Figure 24. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling,

complex systems, with additional allocations 2.

As previously mentioned, pooling can result in noticeable difference with

excessive use of ParticleSystems with other significant allocations (Figures 25;

Figure 26).

41

Turku University of Applied Sciences Thesis | Konstantin Ionin

Figure 25. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, without pooling, 3

simple systems at a time, with additional allocations.

Figure 26. Memory used by live objects and memory not yet released by GC

over approximately 50 seconds, after 80 seconds of run time, with pooling, 3

simple systems at a time, with additional allocations.

42

Turku University of Applied Sciences Thesis | Konstantin Ionin

7 Conclusion

The purpose of this study was to compare the performance between Unity

applications that use Instantiate method to create new ParticleSystem objects

and applications that use object pool pattern, specifically Unity’s

ObjectPool<T0> class.

Testing of excessively large object pools was not successful due to the

implementation of Unity’s ObjectPool<T0> class.

Different implementations of object pools may be worth testing. Unity’s

ObjectPool<T0> class was used because it comes together with Unity’s other

features and allows for growth of pool size if needed, but there may be more

efficient implementations.

With just ParticleSystems being pooled or created regularly, there was a

noticeable difference in the amount of memory used. However, these situations

are not necessarily realistic, as many games would have other objects created

and destroyed during their run-time. With additional memory allocations at

regular intervals, the differences can become less noticeable compared to

memory use overall, unless the frequency at which particle effects are needed

is excessively high.

On the other hand, the additional allocations are something that should

probably be avoided and may be a better focus for object pooling. It may be that

ideally almost all often-used objects should be pooled to achieve the best

performance.

ParticleSystems that do not use additional behaviour modules, such as particle

size change over time, seem to be easy and cost effective to create, which

means that unless the GameObjects that ParticleSystems are attached to also

have components that require more work from the CPU to create, implementing

an object pool for them probably should not be a priority during development.

On the other hand, performance costs of ParticleSystem pooling also seem to

43

Turku University of Applied Sciences Thesis | Konstantin Ionin

be small, and if implementing an object pool for them is not too difficult in a

game, it may be worth implementing.

The tests raised several questions regarding testing performance itself, as there

are numerous factors that can affect results and the software design of Unity

applications / games can vary in structure.

Measured total times between frames and main thread work times at each

frame are close to each other when ParticleSystem object are actively created

or requested from the pool, but recorded values for main thread work times are

oocasionally higher than total times between frames, which should not be

possible. This makes the reliability of these measurements questionable. Times

between frames were derived from the measured time from the application start

at each frame, which suggests that either Unity’s clock was inaccurate or that

main thread work times are inaccurate, or possibly both.

The names of the produced log files could be more descriptive, to make

processing them easier, and the binary to CSV converter should probably be

able handle entire folders with subfolders to make accessing test data easier.

More importantly, recording data points over time produces a lot of charts, while

showing variation in data, making analysis of the gathered data a slow process

More definitive results may be possible to obtain with different analysis and

profiling tools, such as Memory Profiler component of Android Profiler and Unity

Profiler. The decision to not use the latter was made due to concern of Unity

Profiler taking up too much of device resources, but this may not be an issue.

44

Turku University of Applied Sciences Thesis | Konstantin Ionin

References

Albahari, B. Albahari, J. 2015a. ‘Chapter 2. C# Language Basics’ in C# 6.0 in a

Nutshell : The Definitive Reference. 6th ed. ProQuest Ebook Central: O'Reilly

Media. pp. 42. ISBN 978-1-491-92706-9 (printed).

Albahari, B. Albahari, J. 2015b. ‘Chapter 14. Concurrency and Asynchrony’ in

C# 6.0 in a Nutshell : The Definitive Reference. 6th ed. ProQuest Ebook Central:

O'Reilly Media. pp. 564. ISBN 978-1-491-92706-9 (printed).

Boehm, H-J. Demers, A. J. 2014. A garbage collector for C and C++.

Referenced 7.6.2023. https://www.hboehm.info/gc/

Boehm, H‐J. Dubois, P. F. 1995. Dynamic Memory Allocation And Garbage

Collection. American Institute of Physics. Referenced 1.6.2023.

https://pubs.aip.org/aip/cip/article-abstract/9/3/297/509106/Dynamic-Memory-

Allocation-and-Garbage-Collection?redirectedFrom=fulltext

Bonet, R. T. 2021. Object Pooling in Unity 2021+. The GameDev Guru.

Referenced 1.6.2023. https://thegamedev.guru/unity-cpu-performance/object-

pooling/

Chen, J. Guo, R. 2020. Stack and Heap Memory. CS 225. Referenced

1.6.2023. https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/

Christou, T. Ioannis. Efremidis, S. 2018. To Pool or Not To Pool? Revisiting an

Old Pattern. arXiv. Referenced 1.6.2023. https://arxiv.org/abs/1801.03763

Digital Preservation Home. 2021. CSV, Comma Separated Values. Format

Description Categories. Referenced 1.6.2023.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml

Duffy, D. J. Germani, A. 2013. ’24.4 An Introduction To Threads In C#’ in C# for

Financial Markets. pp. 638. ISBN: 978-1-118-50281-5 (electronic). 978-0-470-

03008-0 (printed).

Finto. 2018. OS/2. AFO - Natural resource and environment ontolog.

Referenced 1.6.2023.

https://finto.fi/afo/en/page/?uri=http%3A%2F%2Fwww.yso.fi%2Fonto%2Fyso%

2Fp20555

https://www.hboehm.info/gc/
https://pubs.aip.org/aip/cip/article-abstract/9/3/297/509106/Dynamic-Memory-Allocation-and-Garbage-Collection?redirectedFrom=fulltext
https://pubs.aip.org/aip/cip/article-abstract/9/3/297/509106/Dynamic-Memory-Allocation-and-Garbage-Collection?redirectedFrom=fulltext
https://thegamedev.guru/unity-cpu-performance/object-pooling/
https://thegamedev.guru/unity-cpu-performance/object-pooling/
https://courses.engr.illinois.edu/cs225/fa2022/resources/stack-heap/
https://arxiv.org/abs/1801.03763
https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml
https://finto.fi/afo/en/page/?uri=http%3A%2F%2Fwww.yso.fi%2Fonto%2Fyso%2Fp20555
https://finto.fi/afo/en/page/?uri=http%3A%2F%2Fwww.yso.fi%2Fonto%2Fyso%2Fp20555

45

Turku University of Applied Sciences Thesis | Konstantin Ionin

Goetz, B. 2005. Java theory and practice: Urban performance legends,

revisited. developerWorks. Referenced 1.6.2023.

https://web.archive.org/web/20111229023158/http://www.ibm.com/developerwo

rks/java/library/j-jtp09275/index.html

Google. 2023a. Android Debug Bridge (adb). Android Developers. Referenced

1.6.2023. https://developer.android.com/tools/adb

Google. 2023b. Android Runtime (ART) and Dalvik. Android Developers.

Referenced 1.6.2023. https://source.android.com/docs/core/runtime

Google. 2023c. Referenced 1.6.2023. Enable Developer options. Android

Developers. https://developer.android.com/studio/debug/dev-options#enable

Google. 2023d. Inspect your app's memory usage with Memory Profiler.

Android Developers. Referenced 1.6.2023.

https://developer.android.com/studio/profile/memory-profiler

Google. 2023e. Manage your app’s memory. Android Developers. Referenced

1.6.2023. https://developer.android.com/topic/performance/memory

Google. 2023f. Memory allocation among processes. Android Developers.

Referenced 1.6.2023.

https://developer.android.com/topic/performance/memory-management

Google. 2023g. Overview of memory management. Android Developers.

Referenced 1.6.2023.

https://developer.android.com/topic/performance/memory-overview

GSMARENA. 2023a. Samsung Galaxy A6. Referenced 1.6.2023.

https://www.gsmarena.com/samsung_galaxy_a6_(2018)-9155.php

GSMARENA. 2023b. Samsung Galaxy J5. Referenced 1.6.2023.

https://www.gsmarena.com/samsung_galaxy_j5-7184.php

Ionin, K. 2023. ParticleSystemPoolingTestingProject. GiHub. Referenced

8.6.2023. https://github.com/jodeConstant/ParticleSystemPoolingTestingProject

Koulaxidis, G. Xinogalos, S. 2022. Improving Mobile Game Performance with

Basic Optimization Techniques in Unity. MDPI. Referenced 1.6.2023.

https://www.mdpi.com/2673-3951/3/2/14

https://web.archive.org/web/20111229023158/http:/www.ibm.com/developerworks/java/library/j-jtp09275/index.html
https://web.archive.org/web/20111229023158/http:/www.ibm.com/developerworks/java/library/j-jtp09275/index.html
https://developer.android.com/tools/adb
https://source.android.com/docs/core/runtime
https://developer.android.com/studio/debug/dev-options#enable
https://developer.android.com/studio/profile/memory-profiler
https://developer.android.com/topic/performance/memory
https://developer.android.com/topic/performance/memory-management
https://developer.android.com/topic/performance/memory-overview
https://www.gsmarena.com/samsung_galaxy_a6_(2018)-9155.php
https://www.gsmarena.com/samsung_galaxy_j5-7184.php
https://github.com/jodeConstant/ParticleSystemPoolingTestingProject
https://www.mdpi.com/2673-3951/3/2/14

46

Turku University of Applied Sciences Thesis | Konstantin Ionin

Lemonaki, D. 2021. What is CPU? Meaning, Definition, and What CPU Stands

For. freeCodeCamp. Referenced 1.6.2023.

https://www.freecodecamp.org/news/what-is-cpu-meaning-definition-and-what-

cpu-stands-for/

Microsoft. 2021. Garbage collection. Documentation. Referenced 1.6.2023.

https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/

Microsoft. 2023a. BinaryWriter Class. Documentation. Referenced 1.6.2023.

https://learn.microsoft.com/en-

us/dotnet/api/system.io.binarywriter?view=netframework-4.8

Microsoft. 2023b. Fundamentals of garbage collection. Documentation.

Referenced 1.6.2023. https://learn.microsoft.com/en-

us/dotnet/standard/garbage-collection/fundamentals

Microsoft. 2023c. Memory allocation - Generations. Documentation. Referenced

1.6.2023. https://learn.microsoft.com/en-us/dotnet/standard/garbage-

collection/fundamentals#generations

Microsoft. 2023d. The managed heap. Documentation. Referenced 1.6.2023.

https://learn.microsoft.com/en-us/dotnet/standard/garbage-

collection/fundamentals#the-managed-heap

Nystrom, R. 2021. Object Pool. Game Programming Patterns. Referenced

1.6.2023. http://gameprogrammingpatterns.com/object-pool.html

Oxford University Press. 2023. Definition of RAM noun from the Oxford

Advanced American Dictionary. Oxford Learner’s Dictionaries. Referenced

1.6.2023.

https://www.oxfordlearnersdictionaries.com/definition/american_english/ram_2

SourceMaking. 2023. Object Pool Design Pattern. sourcemaking.com.

Referenced 1.6.2023. https://sourcemaking.com/design_patterns/object_pool

Unity Technologies. 2022a. GameObject. Unity Documentation. Referenced

1.6.2023. https://docs.unity3d.com/ScriptReference/GameObject.html

Unity Technologies. 2022b. GetMonoUsedSizeLong. Unity Documentation.

Referenced 1.6.2023.

https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Profiling.Profil

er.GetMonoUsedSizeLong.html

https://www.freecodecamp.org/news/what-is-cpu-meaning-definition-and-what-cpu-stands-for/
https://www.freecodecamp.org/news/what-is-cpu-meaning-definition-and-what-cpu-stands-for/
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/api/system.io.binarywriter?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.io.binarywriter?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#generations
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#generations
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#the-managed-heap
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#the-managed-heap
http://gameprogrammingpatterns.com/object-pool.html
https://www.oxfordlearnersdictionaries.com/definition/american_english/ram_2
https://sourcemaking.com/design_patterns/object_pool
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Profiling.Profiler.GetMonoUsedSizeLong.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Profiling.Profiler.GetMonoUsedSizeLong.html

47

Turku University of Applied Sciences Thesis | Konstantin Ionin

Unity Technologies. 2022c. Incremental Garbage Collection. Unity

Documentation. Referenced 7.6.2023.

https://docs.unity3d.com/Manual/performance-incremental-garbage-

collection.html

Unity Technologies. 2022d. Instantiate. Unity Documentation. Referenced

1.6.2023.

https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Object.Instanti

ate.html

Unity Technologies. 2022e. MonoBehaviour. Unity Documentation. Referenced

1.6.2023. https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Unity Technologies. 2022f. ParticleSystem. Unity Documentation. Referenced

1.6.2023. https://docs.unity3d.com/2022.1/Documentation/Manual/class-

ParticleSystem.html

Unity Technologies. 2022g. Prefabs. Unity Documentation. Referenced

1.6.2023.

https://docs.unity3d.com/2022.1/Documentation/ScriptReference/ParticleSyste

m.html

Unity Technologies. 2023a. Debugging on an Android device. Unity

Documentation. Referenced 1.6.2023.

https://docs.unity3d.com/Manual/android-debugging-on-an-android-device.html

Unity Technologies. 2023b. FrameTiming. Unity Documentation. Referenced

1.6.2023.

https://docs.unity3d.com/2022.1/Documentation/ScriptReference/FrameTiming.

html

Unity Technologies. 2023c. FrameTimingManager. Unity Documentation.

Referenced 1.6.2023.

https://docs.unity3d.com/2022.1/Documentation/Manual/frame-timing-

manager.html

Unity Technologies. 2023d. Garbage collection best practices. Unity

Documentation. Referenced 1.6.2023.

https://docs.unity3d.com/Manual/performance-garbage-collection-best-

practices.html

https://docs.unity3d.com/Manual/performance-incremental-garbage-collection.html
https://docs.unity3d.com/Manual/performance-incremental-garbage-collection.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Object.Instantiate.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Object.Instantiate.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2022.1/Documentation/Manual/class-ParticleSystem.html
https://docs.unity3d.com/2022.1/Documentation/Manual/class-ParticleSystem.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/ParticleSystem.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/ParticleSystem.html
https://docs.unity3d.com/Manual/android-debugging-on-an-android-device.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/FrameTiming.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/FrameTiming.html
https://docs.unity3d.com/2022.1/Documentation/Manual/frame-timing-manager.html
https://docs.unity3d.com/2022.1/Documentation/Manual/frame-timing-manager.html
https://docs.unity3d.com/Manual/performance-garbage-collection-best-practices.html
https://docs.unity3d.com/Manual/performance-garbage-collection-best-practices.html

48

Turku University of Applied Sciences Thesis | Konstantin Ionin

Unity Technologies. 2023e. Garbage collector overview. Unity Documentation.

Referenced 1.6.2023. https://docs.unity.cn/Manual/performance-garbage-

collector.html

Unity Technologies. 2023f. Managed memory. Unity Documentation.

Referenced 1.6.2023. https://docs.unity3d.com/Manual/performance-managed-

memory.html

Unity Technologies. 2023g. ObjectPool<T0>. Unity Documentation. Referenced

1.6.2023. https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1.html

Wienholt, N. 2004. ‘Garbage Collection and Object Lifetime Management.’ in

Maximizing .NET Performance. Apress, Berkeley, CA. pp. 101–119. ISBN: 978-

1-4302-0784-9 (electronic). ISBN: 978-1-59059-141-3 (printed).

DOI: 10.1007/978-1-4302-0784-9_7

https://docs.unity.cn/Manual/performance-garbage-collector.html
https://docs.unity.cn/Manual/performance-garbage-collector.html
https://docs.unity3d.com/Manual/performance-managed-memory.html
https://docs.unity3d.com/Manual/performance-managed-memory.html
https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1.html

	List of abbreviations
	1 Introduction
	2 Managed memory in Unity, C#, and Android OS
	2.1 Android memory management.

	2.2 C# and Unity memory management
	2.3 Memory fragmentation
	3 Object pool pattern as an optimization method
	4 Test applications and devices
	4.1 Important Unity application and programming terms

	4.2 Important application classes
	4.3 Device information
	4.4 Data recording
	4.5 A bug with use of FrameTimeManager for recording
	5 Testing protocol
	5.1 Connecting devices and installing test applications
	5.2 Test application configurations

	6 Test results
	6.1 Rapid use of simple PaticleSystems

	6.2 Rapid use of more complex ParticleSystems
	6.3 ParticleSystem pooling with additional allocations in the background
	7 Conclusion
	References

