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TERMINOLOGY 

Mono 

Open source cross-platform implementation of the .NET framework developed by 

Microsoft. 

Authentication 

Authentication is about verifying who the user is. This differs from authorization in 

that authorization says what the user can do. 

A/B Testing 

Testing two variants of a program. With this kind of testing it is easy to test if users 

like for example some new feature by deploying two versions and asking for 

feedback. 

CD 

Continuous deployment. 

CI / CI Server 

Continuous integration / Continuous integration server. 

C# 

Programming language developed by Microsoft.  

Embedded system 

Computer system usually designed for a single purpose. It is said to be embedded 

since the computer system is part of the whole system often including other 

hardware and mechanical parts. 
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Monodevelop 

Cross-platform mono development IDE. 

NAT 

Network Address Translation. Used usually to share one public IP address with many 

computers in local network. 

SCP 

Secure copy. Used to transfer files between computers using SSH protocol. 

SSH 

Secure Shell. A secure network protocol that is used for example remote command-

line access.  
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1 INTRODUCTION 

1.1 Objectives of this thesis 

This thesis was created for the N4S@JAMK project. The project was part of the 

Need4Speed program managed by DIGILE and financed by Tekes. The program 

researches tools and business models for companies in order to make the companies 

faster and more reactive for the changing needs of customers and digital economy. 

The objective of this thesis was to create a continuous deployment chain for Lego 

Mindstorms EV3 product. Continuous deployment means that the deployment 

process of software is automated as much as possible and deployment is done 

continuously. A new version of software is deployed to production every time when 

new features or bug fixes are introduced to the software. This means that customers 

do not have to wait for a big release when a set of features is released at once but 

features are introduced to customers as soon as they are completed. 

The Lego Mindstorms kit that the continuous deployment chain is implemented for is 

a programmable Lego set. It contains a programmable hardware and parts to make 

programmable robots or other systems that have some fascinating functionality. The 

kit contains motors, sensors and a programmable computer that runs Linux 

operating system. Although the product is intended for kids, it is a great example of 

an embedded system. Nowadays, when embedded systems are everywhere, it is 

hard to imagine life without them. Every device that has some kind of computer or a 

computer chip controlling them can be considered to be an embedded system. There 

must be a huge amount of companies developing software for all these systems. 

Making easier, faster and leaner software development for them could be a valuable 

asset for those companies. Most likely some of these companies are still using 

manual labor in processes that could be automated. This thesis researches how 

continuous deployment could be adapted for the embedded systems development. 

Different tools are studied that could be used in continuous deployment chain and 
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different practices are discussed that could be adopted for software development of 

embedded systems. 

1.2 N4S@JAMK project 

N4S@JAMK is a project at JAMK University of Applied Sciences. The project started in 

2014. It is part of the Need for Speed research program ran by DIGILE. The 

employees of the N4S@JAMK project are mostly students of JAMK University of 

Applied Sciences or fresh graduates. JAMK University of Applied Sciences has 

participated in DIGILE programs also in previous years; in 2010-2013 JAMK 

participated in Cloud Software program. In that program the main goal for JAMK was 

to develop the FreeNEST product platform. The author of this thesis also took part in 

the development of FreeNEST product when that project was running. 

The DIGILE Need for Speed program has three work packages that target different 

problems in digital economy.  One of the work packages is Mercury Business which 

focuses on how a business could behave like liquid mercury. This means the ability to 

adapt to new business conditions and search new business opportunities and react 

to them with minimum effort. (Mercury Business. N.d.) 

The second work package is Deep Customer Insight. It focuses on collecting usage 

and behavioral data and feedback from the customers. This way the company can 

quickly react to customer needs. The package also focuses on analysis and 

visualization of the catered data and tries to understand what data should be 

collected. (Deep Customer Insight. N.d.) 

The third work package is Delivering Value in Real Time. This work package focuses 

on providing approaches, methods and tools for quicker designing, creating and 

prototyping. One of the main goals of this work package is to find ways to increase 

the delivery and deployment speed. This thesis focuses on finding ways to make 

embedded software development quicker by implementing a continuous 

deployment chain for an embedded system, therefore this thesis is closest to target 

of this work package. (Paradigm Change – Delivering Value in Real Time. N.d.) 
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2 CONTINUOUS DEPLOYMENT 

2.1 Definition of continuous deployment 

Continuous deployment is all about automation. When a developer submits changes 

to the version control system a series of automated events start to happen. The end 

result is that the changes that the developer made are automatically released to 

production. Before more in depth explanation the next pages go through three 

different, however, very similar buzzwords.  

Continuous integration 

Before an explanation about continuous deployment, it is good to know what 

continuous integration means. All of the most widely used version control software 

have some kind of branching system. When a developer has a request to add some 

new feature to the main program, s/he then usually makes a new branch of the main 

development branch also known as mainline. In this branch the developer can then 

develop the new feature freely without having to worry that someone else has made 

changes to the same files as s/he. When the feature is ready and set for the 

integration back to the mainline, the developer would merge the changes to the 

mainline locally. Then the developer would locally test the program and fix all the 

found bugs. After making sure that nobody else had time to make changes to the 

mainline the developer can submit his changes to the main repository. This is a 

practice usually used when working with version control software. 

This practice can still be somewhat lacking. Although the software works in the 

developer’s computer, it might be that it will not work on the production machine. 

Maybe the developer forgot to commit something or the settings in development 

machine were different. Anyway, the mainline branch should always have a working 

version there so it can be quickly deployed. 

Continuous integration is a practice that can make the process easier. It tries to solve 

the problem with automation and practices. When a CI server detects change in 
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mainline it starts to build the software automatically. After that, the server then 

proceeds to test the software automatically. If any errors are found, those errors are 

reported back to the developer. Then the developer can fix the bugs and try again. 

(Chletsos, M. 2012) 

This procedure will catch issues early. To get the greatest benefit of continuous 

integration the developers have to devote to certain practices. Committing often is 

the key to avoiding merge hells and making sure that one developer’s changes work 

well with other developer’s changes. This also makes sure that the continuous 

integration chain is often used. 

Testing in continuous integration case is mostly carried out with unit tests. A unit test 

tests the software on code level. Every class method or function should have its own 

tests written. This of course requires devotement from the development team. 

When done right continuous integration can have a very positive effect on code 

quality. Also, when the issues are cached early some time and money can be saved 

afterwards. (Chletsos, M. 2012) 

Continuous delivery 

Continuous delivery takes the continuous integration a step further. The continuous 

integration chain can only run unit tests. The continuous delivery model takes on 

where the continuous integration left. After the same steps that CI ran the CD model 

takes the code that passed unit tests and deploys it to a staging environment. 

In the staging environment the testing can continue. A set of automated acceptance 

tests can now be executed against the software. The acceptance-testing phase can 

for example test the performance or reliability of the software. For example, in the 

case of web software the testing could include automatically clicking through 

navigation bar and expecting certain pages to pop up. 

With this kind of setup one can always be sure that the code in the repository is 

deployable to production or testing environments. In the continuous delivery case 

the deployment to production environment is usually automated and behind one 
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button press; however, the deployment has to be triggered manually. This can be 

useful in cases when some new feature is developed. For example, multiple versions 

of the software can be deployed quite easily for A/B testing, or a version under 

development can be deployed to staging environment for user acceptance testing. 

(Chletsos, M. 2012) 

Continuous deployment 

Continuous deployment is the final state of continuous automation. It takes the 

continuous delivery even further and also automates the final deployment part. If all 

the tests pass, the code is deployed to production automatically. This means that 

there can be multiple production deployments in a day. In continuous delivery 

developers can choose if they deploy the code or not; however, in continuous 

deployment this is automated and every build that passes all testing is deployed. 

(Fowler, M. 2013.) 

With this amount of automation there must be a great deal of testing involved, there 

cannot be any faulty code passing through the chain straight to the production 

environment and for the customers to use. This puts some pressure on the 

developers. Every single class should be fully tested to avoid faulty code. In addition 

to this, it might be a good idea to test if the code is actually ready to be deployed to 

production. It might be that some bug has passed the unit testing phase and the 

program does not even start. Executing some sort of acceptance testing might be a 

good idea. Because everything else in continuous deployment is automated, the 

acceptance testing should be automated too. Unfortunately acceptance testing is not 

as easy to automate as the unit testing. In the case of web development the tools are 

already there. A tester can put a script clicking through web page and confirm that 

right pages appear. In case of embedded systems the acceptance testing might not 

be so straightforward and testers might have to start to be creative to test 

everything that is wanted. This can of course be a project-specific problem. Some 

projects might be easier to test that others. 
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2.2 Continuous deployment pipeline 

The actual implementation of continuous deployment pipeline is a case-by-case 

matter. Different projects require a different set of tools. For example the unit 

testing frameworks are language specific. Nevertheless, all the implementations 

should have about the same parts. 

Version control software 

Some type of version control software is a basic tool in any kind of software 

development. The version control software allows developers to work with same 

files at the same time and not worry about each other’s changes. The changes are 

merged back to the mainline occasionally and they are tested in order to see that 

everything works with other developers’ work. 

There are multiple different version control systems available. Four of the most 

popular are: CVS, Mercurial, Subversion and Git. CVS and Subversion use a Client-

server model and Mercurial and Git use a distributed model for repository control, 

which means that in client-server model the user makes commits to server and in the 

distributed model the user makes commits locally and occasionally submits the 

changes to the server for others to see. (McNab, S. 2014) 

In continuous deployment pipeline the version control software has the role of 

holding the software source code. Also, the deployment scripts for the project can be 

stored in version control repository, thus they are easy to edit. The version control 

software also holds the version history of the software. This allows developers to 

easily go back to an older version if necessary. 

There are many different workflows with version control software. Usually the 

workflow practice depends on team size and company policies. Usually the practice 

includes some kind of branching system where developers develop some feature in a 

branch taken from the mainline. After the feature is complete the branch is then 

integrated back to the mainline. In some cases there might be some forking practice 

involved where the developer forks the main repository, which means that the 
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repository is basically copied for the developer. The developer makes the feature in 

the fork and then makes a pull request to merge the two repositories back together. 

(Distributed Git - Distributed Workflows. N.d.) 

In the case of continuous deployment the workflow does not matter that much. The 

pipeline is usually made in such a way that the deployment pipeline is triggered 

when the mainline on the server gets a new commit. As mentioned in previous 

chapter, developers should often commit to this mainline. The features that the 

developers make should be so small that they can be implemented in a day or less 

time. This means that the developers can often integrate the changes to the 

mainline. This kind of practice saves the developers from merge hells and it means 

that the continuous deployment pipeline is often used. This can reveal issues early 

and save some company money. 

Continuous integration software 

The continuous integration software is the part in the continuous deployment 

pipeline that works tightly together with version control. Depending on 

implementation of the Continuous automation pipeline, the continuous integration 

software can poll changes in version control or the version control software can 

trigger a build job on the continuous integration software. 

CI software is usually not that complex. When a CI server gets triggered it runs a 

predefined job. In this job the user can define what should be run and where.  The 

master computer can run the job locally, or in some CI software the master can have 

slaves where it distributes the workload.  

The features and how the software works can be different across the different CI 

software. Both, commercial CI software and open source and free to use CI software 

exist. Some of the CI software have a web based UI and some are controlled and 

configured with other means. 

The CI software is usually installed on a server. In most cases it does not matter 

where this server is located physically as long as it has an access to the version 
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control repository. Nowadays, the cloud services are so cheap that a virtual machine 

can be purchased from a cloud, therefore in some cases there is no need for physical 

servers anymore. 

Build machine 

The build machine, also known as build server or build agent is the computer that 

runs the job in continuous deployment pipeline. The build machine can be the same 

computer as where the continuous integration software runs, or a slave machine, 

which the CI server controls. The CI software tells the build machine what commands 

should be executed. In many of the CI software you can either use some build 

automation tool for building process, or run a command on command line. 

Unit testing 

Depending on the project, the unit tests can be executed on the build machine or 

somewhere else. In case of embedded systems project, it might be that the unit 

testing requires specific hardware. In that case the build machine could command 

some other device. It is recommended though that the hardware dependencies are 

abstracted away in the earliest possible step. That way no specific hardware is 

needed for unit testing, which might save time and money. 

There are many unit-testing frameworks available for many different languages. 

Many of the frameworks are based on xUnit framework. The unit tests test software 

on function and method level. More on unit testing can be found later, in chapter 4.2 

Unit testing. 

When unit tests are executed, the result file that a unit-testing framework produced 

is reported back to the developer. As mentioned before, most of the CI software 

have some kind of web UI. There developers can see the build history and the test 

execution history. Some of the CI software can produce charts of the test execution 

history. 
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Staging environment 

Staging environment is the environment that is as similar as possible to production 

environment. Before the software is deployed to production it should be tested in a 

production-like environment where automatic acceptance tests are executed. In case 

of embedded systems, the staging environment could simply be a device, which the 

software is developed for. (What is a staging environment? N.d.) 

In case of embedded systems the acceptance testing can be very hard or sometimes 

even impossible to implement. Implementing automatic acceptance tests on 

embedded systems would probably require specific hardware specifically made for 

testing purposes. In that case, this device would be the staging environment. When 

doing web development, a staging environment would be just a server with the same 

software installed and with the same amount of resources as the production server 

has. 

Deployment to production 

The final part in continuous deployment pipeline is to deploy the software to a 

production environment. This could need a very project-specific solution, on how it is 

implemented. For example, in case of simple web development, this step would only 

include the deployment of web page to a server hosting the website. In some cases 

this would only need a simple script that is executed when the software is deployed. 

In case of embedded systems the deployment could be implemented, for example 

with some kind of packaging system and package server. When a new version of 

software is deployed, it would be copied to a package server. Then the devices using 

the software would update themselves from the package server. This could be one 

solution to deploy new software. In the thesis assignment a more simple solution 

was used. The new version of software was simply copied over SSH using fabric 

framework. 
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2.3 Why continuous deployment 

In software development, continuous deployment has some clear benefits against a 

model where features are deployed in large releases. When a set of features is 

developed at the same time in some timeframe and then deployed to production at 

the same time the end of the development cycle can be a hustle. Rarely the 

schedules are perfectly accurate and there probably is always hurry to get all the 

features ready before the deadline, which can mean that developers have to choose 

between quality and time. (Ries, E. 2009) 

Another benefit of continuous deployment is that in case of longer release times, 

often features that have been completed early, would have to wait for a release. 

Also, bug fixes might not be deployed at once and some features might be broken in 

production for a long time. It also might be that the time needed to implement some 

important feature was estimated incorrectly and there was no enough time to finish 

that feature. The deployment would have to wait for the next deployment window 

or it might be deployed to production without all the functionality as planned. With 

continuous deployment, the feature is released when it is ready and the deployment 

does not have to depend on other releases. (Neely, S. 2013) 

Another benefit with continuous deployment could be that in a large release cycle 

style it can take a long time to get a feedback from the users. It could be that 

developers made a feature ready, however, they were waiting for other features to 

be completed before deployment to production. It could take a long time for a 

customer to see and test the feature and give feedback. With continuous 

deployment, where all new features are instantly deployed to production, the 

development team can be very quick at reacting to the customer feedback.  
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3 SANDERO PRODUCTION ENVIRONMENT 

3.1 Sandero 

Sandero is a software production environment developed in N4S@JAMK project. The 

platform loosely integrates different widely used CI and software development 

products for an easy installation and use. In the thesis assignment, the Sandero 

production environment was used in the implementation of continuous deployment 

chain. At the time of making this thesis project, the Sandero environment was also in 

development phase. The author of this thesis also took part in the development of 

the Sandero production environment. 

The core of Sandero product consists of GitLab, Jenkins and OpenLDAP. The following 

figure is a poster showing how the Sandero production environment was used in 

N4S@JAMK project. In addition to GitLab, Jenkins and OpenLDAP the project used 

few commercial software for project management. Flowdock was used for 

communication between project members, Trello was used for tasking and Dropbox 

was used in cases that files had to be shared between the employees. Also pictures 

and such could be uploaded to Dropbox where they can be embedded to web sites 

with ease. The robot in the picture is the icon of Hubot. Hubot is an IRC bot that can 

be used with Flowdock. The other robot in the poster is Robot Framework. Robot 

Framework is a generic testing framework that can be used in acceptance testing and 

acceptance test-driven development. (Robot Framework – Introduction. N.d.) 
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FIGURE 1. Sandero environment 

The Sandero product is mainly designed to be deployed in a cloud environment. At 

the time of working with this thesis assignment, the Sandero environment was 

hosted in DigitalOcean cloud and the Sandero environment was still under 

development. All the features were not implemented yet. The deployment of the 

environment should be automated, however, the feature was not ready at the time. 

In the next chapters there is more information on different tools integrated in 

Sandero. 

3.2 OpenLDAP 

OpenLDAP is an open source implementation of the Lightweight Directory Access 

Protocol or LDAP. LDAP can be used in many purposes. It can store data, for example 

contact information or any kind of directory-like information. Still most often, LDAP is 



17 

 

used for providing single sign on where a single password is shared between many 

services. In Sandero environment LDAP is used just for that. With this kind of setup it 

is possible to manage users in one place. Both GitLab and Jenkins support LDAP 

authentication, although with Jenkins a plugin is required. (What is LDAP? N.d.) 

OpenLDAP does not provide any kind of graphical interface for the user 

management. It only includes a stand-alone LDAP daemon server called slapd, 

libraries and some other tools. OpenLDAP can be administred from command line; 

however, this is difficult. In the N4S@JAMK project a web application called 

phpLDAPadmin was used for user management. (OpenLDAP. N.d.) 

3.3 Git 

Git is a free and open source version control system. Git uses a distributed model for 

controlling the source code. In Git model the developer has a full clone of the entire 

repository in their local computer, which allows the developer to work without 

connection to a shared repository. In Git, branching and other commands are fast 

because they are executed locally. In Sandero environment Git comes with GitLab. 

Git was primarily developed for Linux; however, now it supports all the major 

operating systems. Git is mostly used with command line tool, although official Git 

client comes with a build in GUI tools included for those who prefer to use them. 

Also, third party implementations of Git are available. (Git – About. N.d.) 

With Git and because of its distributed model of repository control, it is possible to 

use different kinds of workflows. For example GitHub uses a workflow where a user 

can clone someone’s public repository to his own independent repository. This is 

called forking. The user who forked the repository can then develop something in his 

own repository and then make a request for the original user to merge the 

repositories back together. This merging request is called pull request. Users can 

discuss the pull request and the changes made with each other. Anyone can 

participate in the conversation. The owner of the repository can then accept or reject 
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the pull request. This is a great workflow for open source project where there are 

plenty of participators. (Git – About. N.d.) 

Git does not come with any kind of server software or it cannot manage what users 

have access to repos. These requirements have to be satisfied with other tools. To 

make a shared repository kind of workflow, like Subversion has, the shared 

repository has to be served some way. The easiest way is to use SSH to access the 

shared repository. SSH access requires only SSH server to be installed on the server 

computer where the shared repository is. The repository access would be handled 

with operating system when SSH access would require password or SSH key. The 

repository can be shared over HTTP or HTTPS too, however, configuring a system like 

that can be time consuming. The better way is to install some software that has Git 

integrated and can serve Git repos over SSH or HTTP or HTTPS out of the box. One 

option is to install GitLab. It has these features and even more. There is more on 

GitLab in the following chapter. 

According to Eclipse Foundation, Git is the most used version control system 

surpassing subversion in 2014. Third of the developers report that they use Git as 

their primary version control system. According to Ohloh, a website that maps the 

landscape of open source software development, git is the second most used version 

control software in open source projects claiming 37% of all repositories. The most 

used version control software in open source projects is still Subversion with 48% 

percentage. (Eclipse Community Survey 2014 Results. 2014, Ohloh - repository 

compare. 2014) 

3.4 GitLab 

GitLab is open source software that offers an easy Git repository management from a 

web UI. GitLab also features project access management, wiki for projects and issue 

tracing capability. GitLab comes with two editions. The Community Edition is free to 

use; however, it lacks some features that Enterprise Edition has. The Enterprise 

Edition is not free and it has a subscription based payment system. Figure 2 
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illustrates the GitLab web UI. From there users can create new repositories and 

manage access to them. 

 

FIGURE 2. Gitlab web UI 

Gitlab was chosen in Sandero production environment because of its easy integration 

with LDAP and for its wide set of features for light project management. It includes 

an issue tracer and a wiki for documentation. With GitLab it is easy to make projects 

and restrict which developers have access to these projects. A different level of 

access modes can be given to different users for projects. GitLab supports different 

kinds of workflows. Forking repositories is supported and users can make merge 

requests. 

GitLab automatically includes Git in its installation. It supports repository cloning 

over SSH or HTTP or HTTPS. When cloning over SSH, developer can save an 

authentication key to GitLab. After that, using Git is easy when no passwords are 

required when using git commands. GitLab also allows easily to set up web hooks. 

Web hooks allow developers to trigger an http POST request to some predefined URL 

when code is pushed to the repository or a new issue is created. In the thesis 
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assignment, web hooks were used to start a Jenkins job when new code was pushed 

to the Git repository. 

3.5 Jenkins 

Jenkins is a Continuous Integration software used in continuous automation. Jenkins 

automates execution and monitoring of jobs that are executed repeated times. It is 

mostly used at building and testing software projects automatically. It has an easy to 

use web UI, where new jobs can be created and configured. Jenkins supports third 

party plugins, which can extend the features, and tool support. Figure 3 illustrates 

the Jenkins web UI. From there users can create and manage Jenkins jobs and see 

the job execution history. 

 

FIGURE 3. Jenkins Web UI with Simple Theme Plugin installed and using jenkins-clean-theme 

Jenkins jobs 

Jenkins jobs are used to define and configure how a project is build and, or tested. 

One software project can have more than one Jenkins job. One job can trigger 



21 

 

another job based on certain conditions, which makes it possible to separate 

software testing and deployment to different jobs. Users can then add a post-build 

action to testing job and trigger the deployment job only if the build is stable. 

Jenkins can automatically build Apache Ant and Apache Maven based projects, 

however, it can also execute shell or windows batch commands. In the thesis 

assignment, building and testing scripts were created using a Python framework 

called Fabric. The Fabric scripts are executed by using a command line tool fab. The 

fabric command was executed in Jenkins job using execute shell build step. (Jenkins - 

Building a software project. N.d.) 

The Jenkins software monitors every job it runs. Users can see the console output 

from web UI captured during a job execution. Jenkins also marks every job to 

Success, Unstable or Failed based on if the job build or testing process passed failed 

or partly passed. When Jenkins is running shell script build jobs, it decides if the job 

was failure or success based on the return value of the shell command. In testing, 

when using xUnit based unit testing frameworks and a xUnit plugin a user can define 

thresholds to Success, Unstable and Failed flags. For example, user can define that if 

any of the tests failed the build is Unstable and if fewer than 90% of tests failed the 

build is Failed as well. 

Starting a job can be done manually from the Jenkins web UI or it can be automated 

in various ways. The job can be configured to be executed between certain intervals, 

for example every night, or it can be built every time some other job is built, or 

another job can trigger the building of this job. The build can also be triggered 

remotely or Jenkins can be configured to poll version control repository for changes.  

Jenkins agents 

Jenkins allows users to distribute the building process to other computers using 

Jenkins agents. Jenkins agents can be used to take the workload off from the master 

computer or they can be used in a testing process when testing has to be done on 

multiple different systems and operating systems. (Jenkins - Distributed builds. N.d.) 
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Jenkins has a few different ways to launch a slave agent. The easiest way on UNIX 

systems is to start Jenkins slaves via SSH. This requires user to make SSH key pairs 

and make sure that the master computer has access to the agent computer over SSH. 

When the connection is established the Jenkins master copies the necessary binaries 

for slave machine and handles the rest. This is a very easy way to start a Jenkins 

agent but it does not work every time. The master computer has to have an access to 

the slave machine over SSH. If these two computers are not in the same network and 

the agent machine does not have a public IP address, then the master cannot easily 

access the agent over SSH. 

If the agent computer is not easily accessible over SSH the connection has to be 

initiated from the agent’s side. This can be done by starting the slave daemon at the 

agent computer manually or automatically at every startup. The agent daemon is a 

java jar package that is started with right parameters to connect to the Jenkins 

master. The jar package can be loaded from the Jenkins instance using the right URL. 

In the thesis assignment this way was used in starting the Jenkins agent. In the demo 

the deployment computer had to be in the same local network as the EV3 brick was. 

In that case the Jenkins master machine was in DigitalOcean cloud environment so 

the SSH method was not possible. When the connection between the agent and 

master machine is initiated from agent’s side the connection works even through 

NAT. 

Jenkins plugins 

Jenkins allows users to install third party plugins. These plugins can change the look 

and feel or the functionality of the web UI or they can add support for different 

developing tools that Jenkins does not support out of the box. For example Jenkins 

does not support Git by default, but with Git Plugin Jenkins can do everything with 

Git as it can do with Subversion, which it supported by default. Table 1 illustrates 

some of the plugins installed in Jenkins instance used in the thesis assignment. 
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TABLE 1. Jenkins plugins used in the thesis assignment 

Jenkins Plugin Explanation 

Build Authorization Token Root Plugin Allows to start build job even if the overall read 
access is denied from anonymous user 

embeddable-build-status Allows Jenkins to expose a build status of a job to 
external websites easily by using a simple html 
tag 

Git Plugin Makes Jenkins to support Git version control 
software 

LDAP Plugin Makes Jenkins to support LDAP authentication 

Matrix Authorization Strategy Plugin Allows more specific authorization rules than 
normally supported 

Matrix Project Plugin Allows the authorization rules to individual 
projects 

Simple Theme Plugin Allows users to use different kind of styling on 
Jenkins 

SSH Credentials Plugin Allows users to save SSH credentials to Jenkins 

xUnit Plugin Makes Jenkins to support different xUnit based 
unit testing frameworks 

 

3.6 Proxy  

Because of security concerns it was decided that all connections to Jenkins, GitLab 

and OpenLDAP servers would go through a proxy machine. The author of this thesis 

did not take part in the installation and setup of the proxy machine. The installation 

and configuration was done by other employee in the project and the author of this 

thesis only took part in debugging and planning how the proxy could work. 

The proxy software used in the reverse proxy implementation was Apache. The 

Apache instance was using mod_proxy plugin so it could proxy the passing traffic. 

The proxy used subdomains as a way of figuring out where the traffic should be 

directed. For example, HTTP packages to jenkins.n4sjamk.org would be directed to 
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Jenkins server and packages to gitlab.n4sjamk.org would be directed to GitLab 

server. 

Unfortunately, for technical reasons the Apache proxy could proxy only HTTP and 

HTTPS packages. This developed a problem when trying to connect a Jenkins agent to 

Jenkins server. The packages could not be directed to right servers because the 

protocol used was no HTTP or HTTPS. The problem was fixed with iptables port 

forwarding trick that may not have been the best solution but it worked. 

3.7 Fabric 

Fabric is a Python framework used for deployment automation and other 

administration tasks. Fabric provides functions to execute local and remote shell 

commands and upload and download files. Fabric comes with a command line tool 

which is used to execute the fabric scripts. Here is an example of fabric script: 

01 from fabric.api import local, run, put 
02 
03 def run_whoami_locally(): 
04     local("whoami") 
05 
06 def run_whoami_remotely(): 
07     run("whoami") 
08   
09 def transfer_file( 
10         local_file   = "local_dir/file", 
11         destination  = "remote_dir/file"): 
12     put(local_file, destination) 
 

The script would run when executing the fab command in same directory as the 

script with right parameters. The file should be named fabfile.py so that the 

fab tool automatically knows to look for it. If the file is not named that way the 

filename can be passed as an argument to fab command with –f or –fabfile= 

options. (Welcome to Fabric! N.d.) 

The previous fabric script defines three tasks, run_whoami_locally, 

run_whoami_remotely and transfer_file. The tasks are executed by 

giving the name of the task as an argument to the fab command. For example, to 

execute the run_whoami_locally task, the fab command would look like this: 
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fab run_whoami_locally. This task simply executes the UNIX whoami 

command on the command line in the local computer.  

The two other tasks are different. They execute commands on remote hosts. To 

execute these tasks the fab tool accepts a host parameter, or if not given the tool 

asks the user to provide the remote hosts during an execution. Host or hosts are 

provided for fab tool using –H option. Commands fab –H 

user@192.51.100.1 run_whoami_remotely and fab –H 

user@192.51.100.1 transfer_file execute the two other tasks. The 

run_whoami_remotely executes UNIX whoami command in the remote host 

and the transfer_file task transfers a file to a remote host over SSH. 

The fabric command line tool can provide arguments to tasks. In the example fabric 

script the third task, transfer_file takes two parameters, local_file and 

destination. A user can provide these arguments to the task by adding them to 

the command. Example command: fab –H exampleuser@192.51.100.1 

transfer_file:local_file=”example.txt”,destination=”~/exa

mple.txt”. The previous command would have transferred example.txt file to 

remote host’s example user’s home directory. 

4 TEST AUTOMATION 

4.1 Test automation with embedded systems 

Testing is a very important part in continuous deployment. When everything in 

deployment process is automated, it is possible that faulty code gets all the way to 

the production environment by accident. That is why there are multiple states of 

testing in continuous deployment chain. Because everything else in this chain is 

automated, also the tests have to be automated.  

Unit testing is easy to automate and there are existing frameworks probably for 

every language. Unit testing with embedded systems is not so much different to 
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some other kind of unit testing if testing is taken into account in the planning phase. 

Embedded systems can have all kinds of input devices, for example sensors that can 

make these systems difficult to test. The software architecture can be built in such a 

way that it makes testing easier. When software architecture is made in a way that 

these sensors or other devices are easy to fake on a software level, it is easy to make 

unit testing possible for these systems.  

Faking a software module, or parts of software is called mocking. The software 

architecture should be designed in such a way that everywhere in an application a 

sensor or other device is accessed in a same way with a same function or class. The 

function or class should be possible to swap to other implementation of the same 

function or class for testing. This way the tester could provide an implementation of 

the function that gives predictable data to the rest of the software. This removes the 

dependency of hardware in testing process when for example sensors can be faked 

on a software level. This enables developers to run unit tests even on their 

computers when no special hardware is needed. More on mocing and unit testing in 

the following chapters. 

Automatic acceptance testing is not always as easy to implement. The acceptance 

testing should verify that the software is ready for deployment to production 

environment. This can include performance testing and functional testing. With web 

development, tools for this kind of testing already exist. It is easy to verify that a 

website can serve for example ten thousand users by bombarding the server with 

bots and a simple script. Also, there are already frameworks for functional testing. 

For example with Selenium framework developers can automate web browsers to 

click through navigation bar and except certain results. With this setup it would be 

easy to execute the tests with different operating systems and browsers. 

With embedded systems the automatic acceptance testing process can be a little 

more complicated. How to test for example, that something that should happen if 

user presses a button, actually happens. Or how to test that sensor data is displayed 

correctly on a screen? Of course implementing the testing is project-specific. In some 
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cases the acceptance-testing phase can be automated and in some cases it could be 

impossible or too expensive to automate. In these cases some manual testing is 

always required, and a fully automated continuous deployment workflow might not 

be right solution in these projects. 

To test the continuous deployment pipeline created in this thesis assignment a demo 

project was made to test it. The demo was demonstrated for other companies 

participating in Need4Speed program, in Q2 review event at Tampere. More on that 

demo later, however, in that Lego Demo automatic acceptance testing was not 

implemented perfectly. During the implementation of the demo, there was a plan 

that a second robot would have been built for testing purposes. That robot would 

have been slightly different and would have packed some extra sensors that could 

have been used for automatic acceptance testing purposes. Unfortunately, because 

of the schedule, there was neither time nor building blocks to make another robot. In 

the end the automatic acceptance testing was implemented just using the NUnitLite 

framework that was used in unit testing too. The tests were not perfect, however, 

they showed how the continuous deployment could be implemented. 

4.2 Unit testing 

Unit test tests the smallest piece of software that is testable. Usually this means 

testing functions and methods or classes in code. The main goal in unit testing is to 

isolate the unit under test from everything else. This way the tester can make 

predictable tests that test only the function or method and is not dependent on 

anything else. The best practices of unit testing includes that one unit test should 

test only one thing. One function or method can have, and should have multiple unit 

tests written to test it. (Microsoft Developer Network - Unit Testing. N.d.) 

Unit testing should be easily automated. The tests should be runnable in developer’s 

computer and they should run fast. Different unit test frameworks exist and there is 

at least one for almost every programming language. Several of the frameworks are 

part of the xUnit family that is a collective name for unit testing framework that are 

similar to Smalltalk’s SUnit framework developed in 1998 by Kent Beck. (xUnit. N.d.) 
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In some cases, e.g. in test driven development, tests are written first and function 

after that. The tests define how the function works and when the tests pass the 

function is ready. This has some benefits. This way there is a written contract how 

the function should behave. Later if a test fails the developer can be somewhat sure 

that the error is in something he changed in code. When unit testing is done right 

refactoring code should be an easy and safe process. If all tests pass after refactoring 

a developer can be sure that the function works just like before. Unit tests also 

provide a documentation of code. When tests define how functions work a 

developer can read tests to see how the functions work. This way the tests also work 

like a documentation tool. More on test driven development in the following chapter 

(Unit testing. N.d.) 

As mentioned in the previous chapter, testing should be taken into consideration 

already in software planning process. The software architecture should be planned in 

such a way that it is easy to write unit tests, which means that interfaces should be 

replaceable with mock objects so that functions and classes can be isolated from the 

rest of the code. Mock objects are a way to mimic class behavior in controlled way. 

There are different frameworks to make mock objects easily, however, it is possible 

to write them by hand. In Lego Demo mock objects were used to mock sensor data. 

This way the unit tests were runnable on a normal computer. In the demo project, a 

third party library was used in sensor data reading and it is not possible or practical 

to mock a whole library. In the demo an abstraction layer was created between the 

library and classes that were using the library to read sensor data. The figure for 

explanation is illustrated below. (Mock object. N.d.) 

 

FIGURE 4. ColoRobot design pattern 
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In diagram, ColoRobot class has a property _monobrick. The property type is 

IMonoBrick which is interface class. This means that the property can be any 

object that implements the IMonoBrick interface. The object can be passed as an 

argument for ColoRobot class in the class constructor. In diagram there is two 

implementations of IMonoBrick interface, MonoBrick and MonoBrickMock. 

The MonoBrick class uses MonoBrickFirmware library and is always used in actual 

code. The MonoBrickMock is a mock class used only in testing. This way there is an 

abstraction layer between ColoRobot class and MonoBrickFirmware library 

that is mockable.  

4.3 NUnit and moq 

NUnit 

In the thesis assignment an open source firmware called MonoBrick was used in the 

EV3 brick. The MonoBrick firmware executes programs on Mono framework, so the 

programs are written with .NET compatible languages. One of these languages is C#, 

and it was chosen for this project. C# has multiple different unit testing frameworks 

available, however, NUnit was chosen at first for this project. In the end half of the 

project the unit-testing framework was changed from NUnit to NUnitLite which is 

just a lightweight version of NUnit, more suitable for embedded systems. All the 

already written tests were compatible with NUnitLite framework, because the 

NUnitLite has the same syntax and the same basic features. (MonoBrick EV3 

Firmware. N.d., NUnitLite. N.d.) 

The difference between NUnit and NUnitLite is that NUnitLite uses only a minimal 

amount of resources. NUnit comes with a console runner and with a GUI based test 

runner. At first the console runner was used for test-execution on the Lego EV3 brick, 

however, because the execution time this way was way over a minute another 

solution had to be found. Normally it might not matter that the execution time on 

the target platform is this long. Usually the unit tests are executed on a normal 

computer anyway. In this case the unit-testing framework was used in acceptance 

testing as well, therefore the tests had to be executed on the target machine. Also, 
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because the demo was to be presented at the demo bazaar to an audience, all the 

excess waiting time would have to be reduced to minimal. 

NUnitLite embeds the test runner to the code. When using NUnitLite the test 

execution time was reduced to about a half from before. The NUnitLite project used 

to have its own independent project, however, with the release version 1.0 NUnitLite 

project is part of the NUnit 3.0 project. At the time of writing this, the NUnit 3.0 

project was still under development. In the thesis assignment the NUnit 3.0 was used 

by compiling the code from GitHub. 

moq 

Moq is a C# framework for mocking. It supports both, mocking classes or interfaces. 

It takes full advantage of .NET Linq and lambda expressions. C# has multiple different 

mocking frameworks available. Moq was chosen for this project for its easy use, easy 

installation and support for mono. It is possible to write mock objects by hand, 

however, it is easier and quicker to use some mocking framework. (moq. N.d.) 

Although mocking is a great tool for testing, it is possible to over use it or use it 

incorrectly. Some mocking frameworks, including moq, have a feature that lets the 

developer see how many times the class that is tested calls the methods of the 

mocked object. This is a great feature when used correctly, however, in some cases it 

can be used in a way that the tests start to test more of the functions internal 

implementation, and not the external behavior as they should. This can be a problem 

for example in case where the code is refactored. Although the function would still 

obey the contract of previous implementation the tests could still fail. (Mock object. 

N.d.) 

Example of using NUnitLite and moq 

Here is a simplified example how to use NUnit and moq from the ColoRobot project. 

The example runs two tests against LoadCard method in ColoRobot class. The 

LoadCard method loads a new card in if no card is already loaded. The two tests test 
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that the feedmotor is started if no card is already loaded, and not started if the card 

is already loaded.  

01 public class ColoRobot { 

02  //... some code 

03  private IMonoBrick _monobrick; 

04  //... some code 

05  public ColoRobot(IMonoBrcik monobrick) { 

06      _monobrick = monobrick; 

07      // ... some code 

08  } 

09  public LoadCard() { 

10      // ... some code 

11      if(!_monobrick.IsCardIn()) { 

12          _monobrick.FeedMotorOn(); 

13          // ... some code 

14      } 

15      // ... some code 

16  } 

17 } 

18  

19 [TestFixture] 

20 public class UnitTests { 

21  [Test] 

22  public void LoadCard_NoCardIn_StartMotor() { 

23      var mock = new Mock<IMonoBrick>(); 

24      mock.Setup(x => x.IsCardIn()).Returns(False); 

25      var colorobot = new ColoRobot(mock.Object); 

26      colorobot.LoadCard(); 

27      mock.Verify(x => x.StartMotor(), Times.Once()); 

28  } 

29  [Test] 

30  public void LoadCard_CardIsIn_NoStartMotor() { 

31      var mock = new Mock<IMonoBrick>(); 

32      mock.Setup(x => x.IsCardIn()).Returns(True); 

33      var colorobot = new ColoRobot(mock.Object); 

34      colorobot.LoadCard(); 

35      mock.Verify(x => x.StartMotor(), Times.Never()); 

36  } 

37 } 

 

In the previous example, there is a simplified skeleton of ColoRobot class on lines 1 

to 17. In the class there is the previously described abstraction layer between 

MonoBrick library and ColoRobot class at line 3. The _monobrick property is 

initialized in ColoRobot constructor on line 6. The simplified method of LoadCard is 

on lines 9 to 16. In the example the method behaves in a very simple way. If the 

IsCardIn method returns false the FeedMotorOn method is called, otherwise nothing 

happens.  
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In lines 19 to 37 there are two simple tests. The first one makes sure that if no card is 

loaded inside ColoRobot, the feed motor is started if the LoadCard method is called. 

The second one makes sure that feed motor is not started if a card is already in 

ColoRobot and the LoadCard method is called. 

Both tests are very similar. The only difference is that other test setups mock object 

to return false when its IsCardIn method is called and other returns true. On the first 

line in both tests a mock object is created using IMonoBrick interface class. On the 

second line the mock object is configured to return a Boolean value when IsCardIn 

method is called. The third line constructs a CoboRobot object and gives the mock 

object as a parameter for it. The fourth line calls the ColoRobot’s LoadCard method. 

The final line in both tests verifies that in case the first test, StartMotor method is 

called exactly once and in the second test, StartMotor method is not called at all. 

4.4 Test-driven development 

Test-driven development is a software development technique where the developer 

writes the tests first and the actual implementation for function after that. When a 

test is first written, it must first fail. This is because the feature is not yet 

implemented. If the test does not fail, it means that the test is poorly written or the 

feature is already implemented. After the test is written and it fails, a minimal 

amount of code is added so that the test passes. The implementation at this point 

does not have to be perfect. When the test is passing it is time to refactor the code. 

All the duplication is removed and the code is cleaned up. After that the whole 

process is repeated for another feature. (Test-driven development. N.d.) 

The test-driven development is claimed to have many benefits over more classical 

test-last software development approach. When using TDD model the developers 

have to pay more attention to use cases and user stories when they are writing tests 

to features to be able to understand the feature requirements and exception 

conditions. Also, TDD can lead to more modularized and that way more easily 

maintainable and expandable code. When using TDD more tests are written and that 

helps to catch defects in code. (Test-driven development. N.d.) 
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Test-driven development has some weaknesses too. Maintaining a large amount of 

tests can be time consuming and expensive if the tests are written poorly. When the 

same developers write both, the tests and the function that is tested, they can share 

the same blind spots. For example, if the developer does not realize that the input 

parameters should be checked, neither the code nor the test either will verify those 

parameters. (Test-driven development. N.d.) 

Test-driven development practice goes well with continuous deployment chain. Tests 

written in test-driven development model are unit tests that are easily automated 

and are of course part of the continuous deployment workflow. In the Lego demo, 

test-driven development was not used in demo implementation phase. This was 

because the nature of this project was very experimental and the size of this project 

was very small. 

4.5 Automatic acceptance testing 

Acceptance testing is a testing phase that should ensure that the software delivers 

the expectations that the customer has for the software. This means testing the 

software from the customer’s point of view and testing the user stories. The 

automatic acceptance testing in continuous deployment chain also serves as a 

regression test suite that makes sure that no bugs that the unit tests did not catch, 

are introduced in code. Automatic acceptance testing should be executed in a 

production-like environment. In case of embedded systems it would be the system or 

device that the software is developed for. There is no one right way to implement 

the automatic acceptance testing phase. The implementation differs from project to 

project. (Humble, J. Farley, D. 2010.) 

In Lego demo, the automatic acceptance phase was implemented using unit testing 

framework and it only tested performance and reliability in a very simple way. This 

was enough for demo purposes, however, in case of a real system maybe another 

system developed just for testing purposes would have been necessary.   
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5 LEGO MINDSTORMS EV3 

5.1 Mindstorms EV3 brick 

The Lego Mindstorms EV3 kit that was used in this thesis was a building kit made by 

Lego. The kit contains a programmable EV3 brick which is the computer part, a set of 

different sensors and building blocks used to build the robots. The kit has 

instructions to build five different robots, however, there are instructions to build 

twelve additional models with instructions that can be loaded from Lego website. 

The Lego EV3 is the third generation of the Lego Mindstorms robotics line. The 

previous version of the series was called Lego Mindstorms NXT 2.0. All the sensors, 

motors and building blocks from NXT 2.0 generation are compatible with the EV3. 

(Lego Mindstorms EV3. N.d.) 

EV3 programmable brick 

The EV3 brick is the computer part of the Lego set. The brick has an ARM9 processor, 

64 MB of RAM, 16 MB of Flash and a microSDHC slot. It supports memory cards up to 

32 GB. The brick also packs an LCD display, USB port and Bluetooth. The device can 

be equipped with WiFi by connecting a supported USB WiFi dongle via USB port. In 

the thesis assignment a Netgear N150 WiFi dongle was used and confirmed to work 

with the brick. Figure 5 illustrates the Lego Mindstorms EV3 brick. (Lego Mindstorms 

EV3. N.d.) 
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FIGURE 5. The Lego Mindstrorms EV3 programmable brick 

The device comes with Lego’s own Linux based operating system installed. The brick 

can be programmed with Lego’s simple icon based development software. This way 

of programming the device is lacking since programming the device this way does 

not have all the advantages as programming with a real programming language. 

Luckily Lego has open sourced the EV3 software for hackers to use. This way there 

are multiple different custom firmware available to users. In the thesis assignment a 

custom firmware called MonoBrick was used. There will be more on that in the next 

chapter. 

Sensors and motors 

The Lego Mindstorms EV3 home edition kit comes with three different sensors and 

three motors. The sensors which are included in the kit are: touch sensor, color 

sensor and infrared sensor. Two of the motors are large and one is medium sized. 

The Lego brick device can have four sensors and four motors connected to it 
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simultaneously. The sensors and motors are connected with special cables with 

connectors very similar to RJ12. Unfortunately RJ12 connectors do not fit in the 

sensor and motor ports of the Lego brick device. Figure 6 illustrates the sensors and 

motors coming in the Lego EV3 kit. 

 

FIGURE 6. Sensors and motors coming in the EV3 home set. From lower left to right: touch 
sensor, infrared sensor, medium motor and large motor. Up left is a remote control device 
and next to it a color sensor. On top of them, there is a cable that is used to connect the 
sensors and motors to EV3 unit 

In addition to Lego’s official sensor set some third party sensors for NXT and EV3 

devices are available. Mindsensors.com website sells sensors for both of these 

devices. The website also sells console adapters for EV3 brick. With the adapter users 

can access the console interface of the operating system from the first sensor port. 

The console access cable can also be made by users themselves, using a USB to UART 

bridge dongle and sacrificing one sensor cable as described by Xander Soldaat in his 

blog. (Console Adapter for EV3. N.d., Soldaat, X. 2013) 
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Building blocks 

The Lego Mindstorms series uses the same building elements as the Lego Technic 

line. The EV3 kit contains large variation of different building blocks including 

different sized gears, tires, tracks, axels and many types of parts and fastener 

elements. It is very easy to build all kinds of different structures with the building 

blocks. The structure used in Lego demo was self-designed and no instructions was 

used in the building process. That is why this device was chosen in this project. It is 

very easy to build different kind of structures with ease and with not much planning. 

With motors these structures can have some fascinating functionality, which attracts 

the interest of by passers. Figure 7 illustrates some of the building blogs available in 

the EV3 home set. 

 

FIGURE 7. Some of the building blogs available in the EV3 home set 
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5.2 MonoBrick firmware 

As mentioned in the previous chapter a custom third party software was used in the 

thesis assignment. There are multiple different firmware available for the EV3 device. 

One of these is MonoBrick firmware. The MonoBrick firmware differs from the 

standard preinstalled Lego’s firmware in that MonoBrick has an integrated mono 

framework installed in the operating system. This allows the EV3 to execute software 

written with any .Net compatible language. This gives much more potential to the 

system when software can be written in a real programming language compared to 

Lego’s own visual, icon-based programming language. (MonoBrick EV3 Firmware. 

N.d.) 

Installation 

The MonoBrick firmware is installed in an external memory card. This is done by 

making the memory card bootable. The MonoBrick firmware is open source and its 

source code can be found from GitHub. The readymade image can be loaded from 

MonoBrick homepage. The firmware installation to the memory card requires the 

image loaded from MonoBrick website and a tool that can create a bootable memory 

card. Programs that can make bootable memory cards exist for every major 

operating system. The easiest way to make a bootable memory card is to use dd tool 

installed in every Linux distribution and in OSX system. When using Windows or 

when wanting to use a graphical interface in OSX or Linux systems, some third party 

software has to be used. It is easy to find guides on the internet by searching 

Raspberrry Pi installation guides and applying them in EV3 installation.  

To make a bootable MonoBrick memory card on OSX system, go to MonoBrick 

website and download the MonoBrick firmware image and extract it by running 

gunzip imagefile.gz. Insert a memory card to the computer. Execute 

diskutil list. Figure out what disk is the memory card. Execute diskutil 

unmountDisk /dev/diskX where diskX is the memory card. Then execute 

command sudo dd bs=1m if=/path/to/image/file.img 

of=/dev/diskX where diskX is again the memory card disk. The command can 
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take a while to execute and it does not provide a progression indicator. When the 

command is executed the memory card can be unmounted and inserted in the EV3 

device. When the device is booted it loads the new firmware from the memory card.  

Use 

The MonoBrick firmware is loaded only when the memory card, in which MonoBrick 

is installed, is inserted in the EV3 device. The standard Lego firmware is not 

overwritten and it can be reloaded by removing the memory card and starting the 

device again. The MonoBrick firmware has a very basic UI which user can use to 

control the device using Lego Brick’s five buttons. With this interface user can 

connect to WiFi if a supported WiFi dongle is in use, execute programs stored in the 

memory card and see information about the device. 

The MonoBrick firmware has a dropbear SSH server included in the installation. 

When using a WiFi dongle the console is accessible over SSH. This feature in the 

firmware had a crucial role in the implementation of the continuous deployment 

pipeline. It was used when transferring files from build machine to EV3 device with 

SCP. Fabric framework also uses SSH to execute commands on the remote system. 

The SSH console can also be used in configuration of the system and for debugging 

purposes.  

As mentioned before the EV3 device has console access in the first sensor port. Users 

can access the Linux console by using a special console access adapter or making one 

by themselves. A console adapter was obtained for this thesis assignment and it was 

tested with MonoBrick firmware. Unfortunately, the console adapter does not work 

well with MonoBrick. It is probably because of the MonoBrick setting the first sensor 

port from console access configuration to sensor configuration during the firmware 

bootup. It was observed that if the booting procedure was interrupted during the 

boot-up the console was in some cases accessible. The plan was to test if the console 

access adapter could be used in some way in the implementation of the continuous 

deployment pipeline but when discovering that the MonoBrick had a SSH server 

included in the installation, it was unnecessary to use it. 



40 

 

Development for MonoBrick 

As mentioned before, the MonoBrick has a mono framework included in the 

installation. This means that the firmware can execute any software developed with 

.Net compatible language. The software for the Lego demo was developed on 

Ubuntu system. The software was written and compiled using MonoDevelop IDE. 

MonoDevelop is a cross platform IDE used in the development with mono and .Net. 

MonoDevelop is available for all the major operating systems. At least in the Ubuntu 

installation, console tools come with the software installation. These console tools 

were used in the automation process. In the building of the program a tool called 

mdtool was used. Fabric executed commands using mdtool in the build machine. 

6 ASSIGNMENT 

6.1 Goal 

In this thesis the goal was to make a continuous deployment system that would 

deploy software to Lego Mindstorms EV3 device. The idea for this thesis came from 

Marko Rintamäki, one of the project leaders in N4S@JAMK project. Mr. Rintamäki 

has a long history in software testing and he teaches the subject at JAMK University 

of Applied Sciences. As mentioned before, JAMK has taken part in other programs 

that DIGILE has managed. In Cloud Software program a project at JAMK developed 

FreeNEST Portable Project Platform that integrated different open source project 

management tools in one place for easy use and installation. That project was also 

managed by Mr. Rintamäki and the author of this thesis took part in this project. In 

that project the development process was somewhat automated. An instance of 

FreeNEST product platform and some other open source automation tools were used 

in the further development of the FreeNEST product. As for now, the development of 

FreeNEST has ended. 

At the start of the N4S@JAMK project it was decided that another software 

development environment would be developed. In that environment the same tools 
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used in the development of the FreeNEST product, would be integrated and the 

installation of these tools would be automated. The new environment would focus 

on automation and not so much on the project management as FreeNEST did. The 

environment was named Sandero Production Environment. 

This thesis was completed for the purpose of showing how the Sandero Production 

Platform handles projects targeting embedded systems. Some of the companies, 

taking part in the Need4Speed program, are developing software to embedded 

systems. The plan was that the Lego demo would create interest from these 

companies when the demo would be presented in N4S Q2-2014 Review demo bazaar 

event. The use of Lego Mindstorms product made it possible to do an interesting 

demo without much planning and in a short time. The demo would still be interesting 

enough to make people stop and come to the presentation stand that JAMK had at 

the review event. 

6.2 Starting point 

Sandero 

Although continuous deployment and other continuous automation practices have 

been in use for a while in the software development industry, there is no one right 

solution how to implement one. The implementation depends on the project itself 

and what tools are available at the company. The workflow in a continuous 

deployment chain is always about the same, however, the tools used in the actual 

pipeline can differ. For example, there are many version control software that can be 

used to hold the source code and version history. 

As mentioned before, the assignment of this thesis used Sandero Production 

Platform as the frame in the implementation of the continuous deployment chain. 

The author of this thesis took part in the making and building the Sandero platform 

with the other employees working in N4S@JAMK project. All the employees working 

in the N4S@JAMK project had participated in the development of FreeNEST product. 

It was decided that the Sandero Production Platform would use to a large extend the 
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same tools that were used in the development of FreeNEST. That way everyone 

working in the project was familiar with the tools. 

In the N4S@JAMK project, Ubuntu was the operating system that was used for 

development and work. Ubuntu server was also used in server computers. It was 

important that the Sandero environment is deployable to a cloud environment. The 

first instance of Sandero was created to DigitalOcean cloud. DigitalOcean is a virtual 

private server provider, which means users can create virtual servers to a cloud 

environment. The service in DigitalOcean has an easy to use web interface where 

users can create new instances and it is cheap. At the time of writing this thesis 

DigitalOcean was the cheapest provider. Their most cost efficient virtual machine 

cost 5$/mo. The cheapest virtual server had 1 CPU, 512MB memory and a 20GB SSD 

Disk. When creating a new instance, or droplet as they are called at DigitalOcean, 

users can choose a preinstalled operating system and some preinstalled software if 

they choose to. The new virtual machine is created under a minute and the password 

is mailed to user’s e-mail. 

As mentioned in previous chapters, Sandero consists of different open source 

software tools. The tools were all installed to different computers in the cloud 

environment. This way there was no need to worry about port conflicts and that the 

applications would somehow disturb each other. The applications included in 

Sandero are: GitLab for light project management and version control, Jenkins as a CI 

software and OpenLDAP as a single-signon provider. In addition to those 

applications, Sandero also has a proxy server where all the traffic to other 

applications is passed. 

These were the tools that the continuous deployment chain would have to be built 

with. The major challenge to be solved was how the software could be deployed 

when the servers were in cloud but the target system was in a local network. 

Otherwise there were not much other problems. All the tools were familiar and 

because of the FreeNEST project a semi similar automation process was already built 

and the experience from that project could be applied to this project. 
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Lego 

As was mentioned before, the Lego Mindstorms EV3 brick is running a custom Linux 

distribution by default. The custom firmware runs programs made with Lego’s own 

visual based programming language. The Lego’s custom Linux is open sourced and 

the code is available at GitHub. This has made it possible for hackers to make custom 

firmware for the EV3. The visual based programming language is no match to a real 

programming language. After some research it was discovered that few custom 

firmware exist that allow users to run programs written with different programming 

languages. 

Two of these custom firmware were tested. One was the MonoBrick firmware that 

was chosen to the thesis assignment, the other was called ev3dev. The ev3dev is 

based on Debian Wheezy and it can make use of the packages available from 

Embedded Debian repositories. The installation of the ev3dev firmware was 

successful, however, the firmware was not used in the thesis assignment. The 

firmware was interesting: it can run all the languages that have an ARM port 

available. The problem was that at the time of making the thesis assignment, the 

supported programming languages had no libraries yet to access the EV3 sensor and 

motor ports. Since then, contributors have written language wrappers for many 

popular programming languages. These are listed on the ev3dev homepage. (Debian 

on LEGO MINDSTORMS EV3! N.d.) 

The ev3dev firmware would have probably been more interesting choice for the EV3. 

The ability to use any language would have been great. The MonoBrick firmware was 

chosen to the thesis assignment, not only because the lack of sensor support of 

ev3dev, but because at first the plan was to make a demo that interacts with 

computer running a Unity demo. Unity is a game creation system and it supports all 

the major operating systems. The Unity’s scripting system is created in a way that it 

uses Mono. The MonoBrick firmware runs programs with Mono, thus the 

communication between Unity and the EV3 brick would have been easy to 

implement. (Unity (game engine). N.d.) 
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The demo idea in the Unity case was to create some sort of virtual 3D world that 

would run on a computer. Then the EV3 brick would communicate with the 

computer over WLAN. A spectator then could interact with EV3 brick’s sensors and at 

the same time something would happen in the virtual 3D world. The plan was not 

implemented, however, MonoBrick was still chosen for the thesis assignment 

because of time spent researching if Unity demo would be possible gathered some 

knowledge about the firmware. 

Fabric 

Fabric automation framework was chosen for this project because of its easy use. 

Fabric is a python framework. The fab scripts are written in python and the author of 

this thesis has some previous experience with this programming language. The other 

option for automation framework was Capistrano. Capistrano is written with Ruby 

and is a more complex but similar automation and deployment tool as Fabric. At the 

time the author of this thesis had no previous experience with this programming 

language. After finding the Fabric framework it was not a hard decision to start using 

it instead of Capistrano. 

Mono development 

The author of this thesis had no previous experience of development with Mono 

framework. Mono is an open source and cross platform implementation of .NET 

framework developed by Microsoft. The author of this thesis had some previous 

experience on development with C# and .NET on Windows systems. This of course 

was a huge help in the development process because the development between the 

two does not differ much.  

The major difference between developing with Mono on Linux versus .NET on 

Windows is development tools. On Windows the most used IDE is by far Visual 

Studio. Visual Studio is not cross-platform compatible. On other than Windows 

systems MonoDevelop is probably the best pick for an IDE. MonoDevelop was also 

chosen for the thesis assignment project. When installing MonoDevelop to Ubuntu 
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using package manager, it comes with some handy command line tools that are great 

for automation. 

6.3 Implementation 

The work on the thesis assignment started in the beginning of April. At first the 

assignment was a somewhat vague. As mentioned before the first assignment 

included the interaction between the EV3 brick and a computer running a 3D virtual 

world on Unity game engine. The Unity side was assigned to another employee 

working in the N4S@JAMK project and the author of this thesis worked with EV3 

side. The work started on implementing a way of communication over network 

between EV3 brick and computer running Unity. Because both Unity and EV3 

supported Mono and that way programs written with C# and .NET it was easy to 

make them to speak to each other. The Unity plan was still scrapped quickly and the 

assignment focused on the EV3. 

In addition to carrying out a continuous deployment chain to EV3 brick, the other 

focus was on unit testing of the EV3 brick. The assignment was to research how it 

would be possible to run unit tests on a normal computer and somehow simulate the 

sensor and motor data. At first it was thought that this would need some sort of 

emulator to be implemented. Afterwards it was discovered that the problem could 

be solved more easily with good software architecture and mocking. 

Jenkins 

As mentioned before, the first problem to solve when starting to implement the 

continuous deployment chain was to figure out how Jenkins could connect to EV3 

brick. The Jenkins instance was on the DigitalOcean cloud and it would have to 

deploy the software to EV3. This would need some sort of communication between 

the two. The problem was that the EV3 brick does not have a public IP address when 

it is connected to local network with WLAN. This is because normally when 

connecting any machine to some local network, it gets an IP address that is visible 

only in that network. Usually all these machines share one public IP and that IP 
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points to the router. This is called NAT. Jenkins cannot connect straight to EV3 if it is 

behind NAT. This could have been solved using port forwarding rules on the router, 

however, that would have been an ugly solution and it was not used to solve the 

problem. 

The problem was solved using Jenkins agents as described in the chapter 5.5 Jenkins. 

The Jenkins agent would be deployed in the same local network as where the EV3 

brick was connected. The agent would create a connection to Jenkins machine in the 

DigitalOcean cloud through NAT and that way the Jenkins server could execute 

commands on that machine. The only step to take in this setup was to get a java jar 

package loaded from the Jenkins server. This jar package would then be executed on 

the agent machine by hand, or on every boot with an init.d script. The executable 

needed Jenkins master URL and a secret token as arguments. The token authorizes 

the connection to the Jenkins master. At first when the project had no SSL Certificate 

for Jenkins machine a noCertificateCheck argument had to be given for the 

jar executable. Since then the project has bought a certificate and the agent connects 

without the argument. 

As described in chapter 5.5 Proxy, the other problem with Jenkins and EV3 

communication emerged from a security concern. It was decided that all the 

connections to Jenkins, GitLab and OpenLDAP would have to go through a reverse 

proxy server. Unfortunately, the proxy server could only proxy HTTP and HTTPS 

packages. No working solution was found how to proxy the traffic from the Jenkins 

agent with Apache, therefore, a quick and dirty solution was made and the port 

where the agent was trying to connect was port forwarded with iptables from the 

proxy server to the Jenkins server.  

After figuring out how the Jenkins agent system works and configuring the proxy 

server the agent setup was easy. The first step to take was to create a new agent to 

Jenkins. In Manage Jenkins -> Mange Nodes settings window, user has to create a 

new node. Jenkins asks for some information about the name of the node and such. 

Special care should be taken when in the node creation Jenkins asks about the node 
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usage. It might be smart to set this to “leave this node to tied jobs only” setting. This 

means that the node is only used if its usage is specifically requested in a Jenkins job. 

The next figure (Figure 8) is a screenshot of node management window on Jenkins. 

 

FIGURE 8. Node management window on Jenkins 

In the node management window seen in the figure, users can load the slave.jar 

package by clicking the link embedded in the java command. When the package is 

loaded the slave can be started by executing the command seen on the node 

management page. The node is ready to be used by Jenkins when the agent 

connects. Now when user creates a new job and sets the “Restrict where this project 

can be run” tag and writes the node name in the text box a job is executed on the 

newly created node. 

As seen in the figure, the ColoRobot-demo deployment job is separate from the 

other job named similarly. The other ColoRobot job is the building and testing job. 

That job is triggered by web hook from GitLab always when a new push has been 

made. After that job has been executed the results from NUnit are checked and if the 

test failure rate has been inside a failure threshold, only then the deployment job is 

triggered. 
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GitLab 

There were no major problems at using and configuring GitLab in the continuous 

deployment chain. GitLab makes it extremely easy to create new repositories and 

manage user access to it using the web UI it provides. GitLab also has a web hook 

setting that can be configured for every project separately. The hook can be set to be 

triggered at push event, tag push event, issues event or at merge request event. The 

only problem with GitLab emerged when overall read access was denied from 

anonymous users at Jenkins and that made the web hook to defunct. The problem 

was solved after Build Token Root Plugin was installed to Jenkins. This allows 

anonymous users to trigger build jobs using a token. 

GitLab allows users to store and enable deploy keys to projects. Deploy keys are 

normal SSH keys that allow read permissions to repos where they are enabled. A 

deploy key has to be enabled in a project that is deployed with Jenkins. In Jenkins the 

private part of the same key has to be saved to credentials and it has to be selected 

in the project settings when configuring the repository. When Jenkins clones the 

repository it uses the key which grants a read permission to it and allows an access to 

the repository.  

Fabric 

The fabric script that the Jenkins server executes on the agent machine was stored in 

the same repository as the code that would be deployed. This makes it easy to 

change something in the script if necessary. The fabric script in this implementation 

of continuous deployment handled the building, testing and deployment 

automation. The Jenkins server executes short fab commands on the slave computer 

and the fabric handles the rest. 

As described in the chapter 5.7 Fabric, the scripting with fabric automation 

framework is very easy. The commands can be run locally or on a remote host. The 

command execution on a remote host requires that the slave machine has access to 

it, which is easy to make possible with SSH keys. This way no passwords are required 

when connecting to the target host. The SSH key is saved in the user’s home 
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directory in the .ssh folder. When the key is named id_rsa it is always used 

automatically when trying to access a remote host over SSH. For this to work when 

Jenkins is controlling the slave, the SSH key has to be saved in the same user’s home 

folder as the one who is running the slave.jar package. Other option is to save the 

SSH key to Jenkins and enable SSH Agent option on the Jenkins job. This makes the 

Jenkins agent to use a SSH key stored in Jenkins master. The SSH key can be 

configured from Jenkins web UI. 

The building and testing automation were very straight forward to implement with 

fabric. Using the command line tool mdtool, which was bundled with MonoDevelop, 

it was easy to build the projects by passing a project file for the tool and giving a 

configuration in which to build the software. The configuration could be debug or 

release or some custom configuration. The testing was easy to automate as well. 

After the project containing the tests was built, the tests were executed simply by 

running mono testfile.exe –result:’results.xml’ –

format:’nunit2’. The result argument states in which file to write the test 

results and the format parameter tells the NUnitLite to use older format in writing 

the result file. This was because Jenkins XUnit plugin could not parse the newer 

version format. 

The only problem with Fabric was that the Dropbear SSH server running on EV3 brick 

did not support SFTP protocol which fabric uses on file transfer. This was quickly 

fixed by running a command line SCP command instead of using the fabric function. 

This solved the problem quickly. It could have been solved probably in other ways as 

well. It might be that changing Dropbear’s configuration would also have solved the 

problem. Changing one line of code on python script was easier. 

Result 

When all was put together the resulting workflow was as shown in the next figure 

(Figure 9). 
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FIGURE 9. Final continuous deployment workflow 

In the figure all the steps are numbered and the workflow is from 1 to 7. The first 

step is when a developer making software to EV3 executes git push command. This 

command updates the repository existing on a server to match the repository at the 

developer’s computer. This means that all the changes the developer made are 

copied to GitLab. 

The second step is when GitLab notices a new push event to the repository. It 

triggers the web hook configured to that project. The GitLab makes a HTTP POST 

request to the URL configured in project settings. If necessary some extra 

information can be embedded to the URL. The Jenkins Build Token Root Plugin 

requires the job name and the token to be passed to Jenkins too. This can be made 
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by appending 

“?job=JobnameAtJenkins&token=tokenConfiguredToJob” without the 

quotation marks. 

The third step is when Jenkins notices the POST request to the URL. Jenkins starts to 

execute the job that is triggered. The job triggered by GitLab is the job that executes 

the unit tests. In the Jenkins job the job is configured to be executed in the specific 

slave. Jenkins connects to that slave and clones the repository specified in the job 

configuration using the deploy key also configured in the job. 

The fourth step is that Jenkins executes unit tests on the slave machine. In this case 

the commands executed are fab commands. Depending on the naming in fab file the 

first command can be for example fab build_and_test. In this case Fabric runs 

mdtool with right parameters to build the NUnitLite project. After that Fabric 

executes the unit tests by running a mono command. 

After the unit tests are executed, in the fifth step Jenkins automatically copies the 

results file to the Jenkins server and starts to parse it. If test failure rate is in the 

threshold limits, Jenkins triggers the deployment job.  

Again in the sixth and seventh step Jenkins connects to the slave machine and 

executes fab commands. This time the fab command can be for example fab 

build_and_deploy. This command would build the actual project and then 

deploy it to staging environment.  

At this point the actual software is in the staging environment. The figure does not 

have steps further than that, but the workflow could continue from this. At this point 

some sort of automatic acceptance tests would be executed to test if the software is 

ready to be deployed to production. If the test passes there could be a third Jenkins 

job which is triggered after this job. In that job the software is built and deployed to 

production. How and where the acceptance tests are executed and how the software 

is deployed to production can be very project-specific. 
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6.4 Demo 

As mentioned before, a demo project was created to test the continuous 

deployment chain created in this thesis assignment. The demo was presented at Q2 

Review in Tampere, at a Demo bazaar event. The demo bazaar was an event where 

all the companies participating in the Need4Speed program could present their work 

done since the last review. Many of the companies presented only posters there but 

JAMK presented many demos including the Lego demo. At the demo bazaar event 

companies rent a spot from the demo area and setup their demo there. People can 

then wander around the demo area and watch the demo presentations or read 

posters. 

ColoRobot 

The name of the project made for demo purposes was ColoRobot. The name comes 

from what the robot does. It identifies a color of a ticket inserted in it and prints the 

color to the EV3’s LCD screen. The image of the robot is illustrated in Figure 10. 
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FIGURE 10. ColoRobot 

The robot uses three sensors and one motor to operate. The sensors used were IR-

sensor, color-sensor and touch sensor. The motor used was one of the two large 

motors. As seen from the figure, the ticket would be inserted from the top of the 

robot. On the top part of the robot is the IR-sensor. The IR-sensor detects the 

distance to the nearest obstacle. This way the ColoRobot knows if a ticket is fed to 
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the ticket slot. If the distance measured by IR-sensor is less than certain number the 

motor is started.  

The motor is connected to tires with an axel. There is a total of four tires in the 

structure even if in the image only two are seen. The third tire in the image is only a 

crank and it is used to turn the motor manually if a ticket is stuck inside the 

ColoRobot. The ticket inserted in ColoRobot goes between the two sets of tires. The 

tires are so close together that even when the motor is connected only to two of the 

tires, all the tires spin. Two of the tires spin clockwise and two of them spin counter-

clockwise. This way when the ticket is fed to the robot it pulls the ticket in. 

At the bottom of the robot is a touch sensor structure that senses when the ticket is 

fully in. The bottom of the ticket inserted makes a contact with a building block that 

presses the touch sensor fully in. When the touch sensor is pressed the robot stops 

the motor pulling the ticket.  

After the ticket is in the robot reads the ticket color with a color sensor. The color 

sensor is on the other side of the robot and is not seen in the picture. When the color 

is sensed it is printed to the LCD-screen of the EV3. Then the motor is started again, 

this time spinning in the opposite direction, which makes the ticket to pop out of the 

robot. 

Planning and implementation 

The planning started few weeks before the Q2-review event. There was not much 

time for planning so the project was implemented very quickly. The structure of 

ColoRobot is not copied anywhere, the structure was improvised at the same time as 

the robot was built. The plan was to make something interesting that draws the 

attention of visitors at the Q2 event. 

The software was divided into three different project inside one MonoDevelop 

solution project. The projects were ColoRobot, ColoRobotDLL and ColoRobotTests. 

The ColoRobot project is the project that runs the real project and has the logic that 

makes the robot work as described before. ColoRobotDLL is a library that hides the 
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low level stuff and makes it easy to write the logic at ColoRobot project. 

ColoRobotTests is a project that has the UnitTests and few very simple acceptance 

tests both implemented using NUnitLite framework. The unit tests also use moq. The 

test project executes test against the DDL library created in the ColoRobotDLL 

project. 

The workflow was meant to go like this. First Jenkins job executes build commands 

on the slave machine for ColoRobotDLL and ColoRobotTests projects. Then Jenkins 

executes command to run the unit tests from the ColoRobotTests project at the slave 

computer. When the unit tests are executed Jenkins parses the results and triggers 

the next job if the test failure count is within limits. The next job copies the compiled 

files from ColoRobotDLL and ColoRobotTests projects to the EV3 brick. On the brick 

the Jenkins server commands the slave server to run the acceptance tests. These 

tests are made with NUnitLite too and the result file is copied to slave computer. 

From there the Jenkins server takes the acceptance testing result file and parses it. If 

failure count is within limits again, then Jenkins triggers the final job. This job makes 

the slave computer to compile also the ColoRobot project and then copies it to the 

EV3 brick and executes it.  

Unfortunately, the time given for the implementation did not quite suffice. The unit 

testing phase was not completed in time because of problems with moq framework. 

The solution for the moq problem was found on the next day after the Q2-review. 

There was a missing using statement at the beginning of the file which the 

MonoDevelop compiler did not point out. There would probably not have been 

enough time to implement many unit tests anyway so it did not matter so much. The 

unit testing phase was dropped off entirely and only the acceptance tests were 

executed when presenting the demo.  

At the demo bazaar event, many interested people come and had a look at the 

demo. Occasionally there were some problems with the internet connection which 

made the demo run slow when Jenkins did not have connection to the agent 
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computer all the time. Otherwise the demo went smoothly and there was some 

positive feedback from people. 

7 CONCLUSION 

All the requirements that were set for this thesis were fulfilled. The focus was on 

creating a continuous deployment chain for Lego Mindstorms EV3 device and 

researching ways to make executing unit tests possible on a normal computer. The 

continuous deployment chain implemented in this thesis uses tools that are in use in 

many companies and in large-scale open source projects. I believe that the CD chain 

created here could be adopted to real software projects, because the tools used here 

are proved to work in real life implementations. 

I also believe that the way of making the unit testing possible on a normal computer 

by mocking interfaces is a good solution. The mocking practice can be adapted for 

any kind of embedded systems project to some extent. If this thesis only researched 

way of unit testing Lego Mindstorms EV3 brick by somehow simulating its behavior 

the result could only be adapted for projects targeting this device. There is probably 

not many projects that target the EV3.  

Of course, testing embedded systems software on a normal computer is not perfect 

and all-inclusive. Embedded systems have lower specs than normal computers and 

different processor architectures. Running unit tests on other than the target device 

does not take into account that. This is not the purpose of unit testing anyway so it 

does not matter much. The automatic acceptance testing phase is executed on the 

target machine so this phase tests the software on the right hardware. If this phase is 

well planned and the tests are comprehensive, this can reveal if the software has 

problems with the hardware. 

This project had the advantage of having an extra layer of abstraction between the 

software and the hardware. When using mono or .NET, the code is executed with a 

CRL virtual machine. A CLR is a hypothetical machine on which all the mono or .NET 
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software is executed. When porting the mono software to a new platform, the CLR 

component is the one that has to be ported. After the CLR is ported to the platform, 

all the mono applications run on that platform.  

The unit test execution on a normal computer trick used in the thesis assignment 

takes an advantage on the abstraction that the CLR gives. I do not know what would 

have changed if the project would have used for example C or C++ as a programming 

language. These languages do not use any kind of virtual machines. The applications 

written with these languages are executed very close to the hardware and that way 

they depend on the hardware they are developed. It might be that the mocking 

practice for unit testing could be used to some extend even if the programming 

language was C, C++ or some other low level programming language. However, this 

was not tested because it was not in the scope of this thesis assignment. 
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