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A B S T R A C T

Capacitated spatial clustering, a type of unsupervised machine learning method, is often used to tackle
problems in compressing data, classification, logistic optimization and infrastructure optimization. Depending
on the application at hand, a multitude of extensions to the clustering problem may be necessary. In this
article, we propose a number of novel extensions to PACK, a recent capacitated partitional spatial clustering
method which uses an optimization algorithm that is based on linear programming tasks. These extensions
relate to the relocation and location preference of cluster centers, outliers, and non-spatial attributes, and they
can be considered jointly. In the context of edge server placement, these improve the spatial location of servers
while considering, for example, application placement on the servers in response to spatial application usage
patterns. We demonstrate the usefulness of an extended version of PACK with an example with simulated data,
as well as a real world example in edge server placement for a city region with various different setups. These
setups are evaluated with summary statistics about spatial proximity and attribute similarity. As a result, the
similarity of the clusters was improved by 53% at best while simultaneously the proximity degraded only by
18%. The extensions provide valuable means for including non-spatial information in the cluster analysis, and
to attain better overall proximity and similarity.
1. Introduction

Clustering, one of the most important tasks and techniques in data
mining and unsupervised machine learning, refers to the unsupervised
classification of patterns into groups. Its primary goals include pre-
processing, compressing and classifying the data, and gaining further
insight into it (Celebi, 2014; Patel and Thakral, 2016; Grubesic et al.,
2014).

This work focuses on partitional clustering, also referred to as non-
hierarchical clustering. Partitional clustering aims to partition a data
set into non-overlapping subsets such that each data point is in exactly
one subset and each cluster can be represented by a single point,
referred to as a prototype of cluster (Jin and Han, 2010; Xiao and Yu,
2012). Partitional clustering is especially useful in applications which
use the partitions for further analyses. As an example, direct marketing
campaigns often start with segmenting customers into groups (see
further examples in the work of Banerjee and Ghosh, 2006).

Further, clustering often involves a spatial dimension with geo-
graphic information related to the studied phenomenon. Such a setting,

∗ Corresponding author.
E-mail address: tero.lahderanta@oulu.fi (T. Lähderanta).

referred to as spatial clustering, requires an appropriate and mean-
ingful treatment of space, spatial relationships, and the attributes of
locations (Grubesic et al., 2014). We focus in particular on partitional
spatial clustering, where points of interest are partitioned into disjoint
clusters. These points contain geographical information of an event
and thus they can be seen as spatial point events in the region of
interest (Gatrell et al., 1996). Partitional spatial clustering is used,
e.g. for the spatial analysis of Internet of Things (IoT) sensor data (Lee
and Lee, 2015) or clustering of web user sessions (Sisodia et al., 2016;
Sisodia, 2017). Partitioning sensor data into local clusters can help in
finding local features of the observed phenomena, and in distributing
the computational burden of the data analytics, especially in the case
local or edge-based computing capacity is available (Yi et al., 2015; Xu
et al., 2017; Lovén et al., 2019, 2021). Traditional partitional clustering
algorithms, such as K-means (Zhao et al., 2018) or CLARANS (Ng and
Han, 2002), and more recent methods such as nonnegative matrix fac-
torization (Peng et al., 2021b) and subspace clustering methods (Peng
vailable online 12 October 2023
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et al., 2021a), have been successfully applied to such partitioning prob-
lems in the field of spatial analysis. However, these general methods
do not consider the special features and constraints that often appear
in partitioning problems, especially in location–allocation (Hale and
Moberg, 2003).

In this article, we present a novel capacitated partitional clustering
approach that jointly considers constraints related to outliers, non-
spatial attributes and the locations of the cluster centers. The main
focus of this method is to partition the data into a set of clusters
based on some application-specific metric and constraints, rather than
provide a density-based approach to clustering. An essential part of the
method is its connection to location–allocation problems, which are a
set of spatial optimization problems (Hale and Moberg, 2003). The term
capacitated clustering refers to a cluster analysis where the sizes of the
clusters, that is, the number of data points or the total weight value
in a cluster, are either constrained or penalized (Mulvey and Beck,
1984). Constraints for center placement correspond to a case where the
location of some cluster heads are known. To elaborate in more detail,
instead of knowing the location of some centers exactly, there may be
more or less vague prior information about their locations. On the other
hand, if some center locations are fixed, it may be possible to relocate
such centers under certain circumstances. Contrary to related works,
we consider all these constraints jointly with capacitated clustering.

Outlier points, on the other hand, may distort solutions to the
clustering problem. Thus it may be beneficial to allow some points to
be assigned as outliers, i.e. not assigned to any cluster. However, to our
knowledge no previous work considers outliers jointly with capacitated
clustering.

Finally, the spatial distribution of points might not be the only
determinative factor in a clustering problem. One example is found
in customer segmentation where customers are divided into clusters
not only based on their spatial location, but also the total number of
their purchases and their geodemographic lifestyle class (Brimicombe,
2007). Furthermore, these types of non-spatial attributes can take into
account the possible temporal aspects of the spatial point events (Ansari
et al., 2020). Again, to the best of our knowledge, no related work
considers such non-spatial attributes in conjunction with capacitated
spatial clustering or the other extensions we presented above.

We demonstrate the feasibility and importance of the joint con-
sideration of the above extensions with a simulated data experiment
as well as with an experiment in edge computing. Edge computing is
recognized as a paradigm shift from centralized, cloud-based processing
towards distributed computing near the sources of the data (Satya-
narayanan, 2017). A key part of the upcoming 5G and beyond-5G
mobile networks among others, edge computing promises more band-
width, lower latency, and improved privacy through virtualization of
cloud-based applications into the network infrastructure, close to the
end user devices. However, distributing application components across
the communication networks introduces challenges in the management
of the computing resources across the potentially massive-scale edge
environment where individual resource nodes may appear or disappear
at arbitrary times.

In the first experiment, we simulate a data set related to a typi-
cal spatial clustering problem. The experiment considers non-spatial
attributes, outliers and capacity limits simultaneously. It provides a
controlled setup to introduce the above mentioned extension to the
clustering analysis as well as to illustrate the balancing between spatial
and non-spatial attributes.

Our second experiment considers edge server placement (Lähder-
anta et al., 2021; Lovén et al., 2020). While topical in its direct
connection to edge computing, edge server placement also provides a
suitable experimental setup for evaluating the multi-objective nature
of our proposed method. Indeed, edge server placement requires si-
multaneously fulfilling a number of requirements. First, edge servers
need to be placed into close proximity of the users and access points,
2

thus minimizing latencies. Second, the allocation of user workloads i
should consider the capacities of edge servers, ideally ensuring a bal-
anced workload division between the servers. Third, placement may
require the consideration of preferred locations (e.g. airports or shop-
ping centres), outliers (e.g. access points whose workload can be readily
uploaded to cloud), and non-spatial attributes (e.g. application usage
profile or the type of user equipment).

We use the Shanghai Telecom data set (Guo et al., 2019; Wang
et al., 2019; Xu et al., 2019) in our server placement evaluation. The
data set contains over 7.2 million sessions from mobile phones to 2732
base stations in the city of Shanghai over a six-month period. In the
field of server placement these extensions have not yet been widely
considered, since only a few papers address preferred location or outlier
extensions (Leyva-Pupo et al., 2019; Wang et al., 2019).

We also provide an extensive, open-source toolkit for conducting the
proposed analyses.1 We refer to the proposed approach with acronym
PACK (PlAcement with Capacitated K-family2). We have proposed ear-
lier versions of PACK, in our previous articles, with less features, for
placing edge servers in the city of Oulu (Lähderanta et al., 2021; Lovén
et al., 2020) and maternity hospitals in Finland (Huotari et al., 2020).
However, compared with these earlier versions, we make a number of
important enhancements. In short, our contributions are as follows:

1. We consider novel extensions for center placement in spatial
clustering, namely relocating fixed centers and a preference for
certain locations over the others.

2. We consider novel extensions for capacitated spatial clustering,
namely outliers that might distort the clustering structure, and
non-spatial attributes of the points of interest.

3. We examine the effects of the above extensions and their com-
binations in edge computing server placement with a real-world
data set of a mobile network in the city of Shanghai, China.

The rest of the article is organized as follows. In Section 2 we
take a detailed look on the existing literature on capacitated clustering
problems. In Section 3 we present the PACK method and its extensions.
In Section 5 we demonstrate PACK with an experiment in edge server
placement with multiple setups. In Section 6 we highlight and discuss
the main findings of our evaluations.

2. Related work

We consider related work along the axes of center placement, bal-
anced and constrained clustering, outliers, and non-spatial attributes.

Center placement. Sometimes the locations of cluster centers need
to be constrained, often to coincide with some of the data points.
Such location-constrained algorithms are referred to as actual point-
prototype-based clustering algorithms (Xiao and Yu, 2012). One of the
most popular of such algorithms is the partitioning around medoids
(PAM) algorithm (Kaufman, 1990).

Further, Rahman and Smith (2000), among others, consider cluster-
ing where some centers have fixed locations, such as the existing health
service infrastructure in a city. In location–allocation literature relocat-
ing fixed centers that result in a sub-optimal partition is referred to as
a facility location relocation problem (see e.g. the work of Farahani
et al., 2009). In practice, the relocation of fixed centers can be seen as
moving existing facilities to a more suitable location, which depends
on the cost of the relocation.

However, we could neither find a study observing that fixed centers
may result in a sub-optimal partition, nor one offering ways to relocate
some of the fixed centers to produce better results.

Finally, we assigned a location preference to some demand points,
indicating they should have a center close to them (Lähderanta et al.,

1 https://github.com/terolahderanta/rpack
2 Here, k-family refers to the family of different variants of K-mean,

.e. K-mean, K-medoid, and K-median.

https://github.com/terolahderanta/rpack
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2021). However, we did not yet consider that location preference
can also be introduced as a soft constraint for cluster centers. Simi-
larly, Leyva-Pupo et al. (2019) addressed location preference by assign-
ing point-wise requirements for the latency from certain points to the
cluster center.

Capacity constraints. Clustering is often used for dissecting data
nto separate groupings for further processing or analysis. Such cases
ften control sizes of clusters, such that too large or too small clusters
re undesirable. These types of clustering methods can be divided
nto two categories called balance constrained and balance driven
pproaches (Malinen and Fränti, 2014). Here we investigate the related
ork on balance constrained clustering.

In balance constrained clustering, the balance between cluster sizes
s of first importance, and the minimization of distances is only a sec-
ndary criterion. This is typically achieved by introducing an additional
ard constraint to the capacity of a cluster. Several approaches have
een proposed (Banerjee and Ghosh, 2006; Malinen and Fränti, 2014;
lliott, 2011). Hu et al. (2018) constrained only the minimum size
f clusters, and both Zhu et al. (2010) and Ganganath et al. (2014)
llowed predefined size constraints to vary between clusters. Li et al.
2018) and Liu et al. (2017) studied balance-driven clustering with a
oft constraint that penalizes large deviations in cluster sizes, and Gupta
2017) recently provided survey on balanced data clustering.

Hard capacity constraints have also been proposed in the clustering
ramework by Mulvey and Beck (1984), who assumed for the weights
nd coefficients that 𝑤𝑖 = 1 and 𝑎𝑖 = 1 for all 𝑖, respectively, and

referred to the problem as the capacitated clustering problem (CCP).
Later, Negreiros and Palhano (2006) used squared Euclidean distances
in a continuous setting and referred to the problem as capacitated
centered clustering problem (CCCP). Another possibility for combining
balance and capacity constraints is to apply both a lower and an upper
bound for the capacity (Borgwardt et al., 2017). Grossi et al. (2016)
considered how hard capacity constraints can be modeled together
with several other constraints and optimization criteria, such as the
selection of the number of clusters. However, no previous studies have
considered capacitated spatial clustering with conjunction with the
extensions presented in Section 3.

Constrained clustering. In this work we impose constraints on
cluster sizes in the form of capacity limits along with constraints on
the placement of cluster centers. However, constrained clustering in
general (see e.g. Basu et al., 2008) is a broader topic that has merited
studies of their own.

For example, Dao et al. (2017) proposed a constrained programming
model which allows the integration of different kinds of instance-level
or cluster-level user constraints with a given optimization criterion of
choice, such as minimizing the maximal diameter of clusters, maximiz-
ing the minimal split between clusters, minimizing the within-cluster
sum of dissimilarities, or minimizing the within-cluster sum of squares.
The authors then also considered the case of bi-criterion optimization
constrained clustering with a Pareto optimal solution.

Recently, Nghiem et al. (2020) also studied post-processing of con-
strained or unconstrained clustering algorithm results as a combinato-
rial optimization problem while enforcing all constraints a-posteriori
and introducing new ones related to cluster overlap, neighborhoods,
property-cardinalates and attribute levels. This integration of existent
and new constraints was implemented in an integer linear program and
demonstrated with large datasets such as MNIST.

Outliers. If a point does not seem to belong to any cluster, a forced
assignment may distort information and the interpretation of the cluster
it is assigned to (Tseng, 2007). In location–allocation problems, this
could produce unnatural partitions that are unwanted and sub-optimal
in terms of minimizing the distances. It may thus be necessary to allow
a point not to be a member of any center. In partitional clustering,
such points that are left unassigned are referred to as outliers. Further,
3

a partition where every point is assigned is referred to as complete a
clustering, and a partition where some points may be left unassigned is
referred to as partial clustering (Steinbach et al., 2019).

In this work, we define an outlier as a remote data point such
that the distance to a cluster center, measured as a weighted combi-
nation of spatial and non-spatial distances, is greater than a predefined
threshold value. Outliers could be removed prior to the clustering by
using some outlier detection method. However, the clustering structure
could be highly dependent on the outliers, and on the other hand, the
determination of the outliers depends on the clustering structure. The
identification of the outliers should thus not be a separate step, but an
integral part of the clustering process (Liu et al., 2019).

Outliers can be identified by determining their number prior to
analysis and then iteratively assigning the most remote points as out-
liers. Such an approach has been proposed by, e.g., Chawla and Gionis
(2013). Whang et al. (2015) allowed overlap between clusters by
combining outlier analysis with a K-means algorithm where a fixed
number of points is assigned to at least one cluster and a fixed number
is not assigned at all. Cygan and Kociumaka (2014) considered a ca-
pacitated k-center problem with outliers, where the algorithm chooses
the number of outliers via dynamic programming.

A third alternative is to formulate the problem as a bi-criterion
optimization task, where a fixed penalty is paid for each outlier
point (Tseng, 2007). Thus, the outliers can be assigned to a 𝑘 + 1’th
cluster by adding a penalty to the loss function. Tseng (2007) further
gives this bi-criterion approach a model-based interpretation, pointing
out that the penalty term corresponds to assuming that outlier points
emerge from a homogeneous Poisson process.

Alternatively, outliers can be identified by keeping track of the
distances of points to their nearest center. Olukanmi and Twala (2017)
determined the related threshold value iteratively. Wang et al. (2007)
determined an upper bound for the distance to each center, which is
used in the decision of number of centers to be placed.

None of the related work, however, consider outliers in conjunction
with spatial capacitated clustering.

Non-spatial attributes. In many real world scenarios it is necessary
o consider also non-spatial or non-geographical attributes. Such a two
omain approach is referred to as dual clustering (Lin et al., 2005).

Dual clustering methods can be divided into two subcategories:
he hybrid distance measure approach, and the separate clustering
perations approach (Zhu et al., 2020). In the first approach, the spatial
nd non-spatial attributes are included with a distance measure which
onsists of both a spatial and a non-spatial similarity measure compo-
ent, each weighted depending on the problem in question. Lin et al.
2005) further developed the Interleaved clustering-classification algo-
ithm with a hybrid-distance measure, with weight 𝑤 ∈ [0, 1] for the
patial attributes and weight 1−𝑤 for the non-spatial attributes. Zhang
t al. (2007) aim to obtain non-overlapping clusters by embedding a
enalized spatial distance measure (PSD). They compare PSD to the
tandard 2-dimensional Euclidean distance with only spatial attributes
nd to the 3-dimensional Euclidean distance with both spatial and non-
patial attributes. Again, however, we did not find any related work
hat considers non-spatial attributes jointly with capacitated clustering.
PACK. We have proposed earlier versions of our PACK approach

see Section 3) with less extensions (Lähderanta et al., 2021; Lovén
t al., 2020). The newest version of PACK includes many of the ap-
roaches presented in the related work and, most importantly, PACK
llows the use of multiple extensions simultaneously, a feature which
one of the previous studies has implemented. A detailed comparison
f server placement algorithms with respect to their properties has
een made by Lähderanta et al. (2021). To highlight the novelty of
his article, we summarize the extensions introduced in the different
ersions in Table 1.

. The PACK method

We propose a capacitated spatial clustering method which intro-
uces a number of novel extensions, while covering a wide range of
xtensions earlier considered only separately. We refer to the proposed

pproach as PACK (PlAcement with Capacitated K-family).
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Table 1
The extensions included in different versions of the PACK algorithm. Extensions newly
introduced in each version are highlighted with green color.

Feature PACK 1 PACK 2 PACK 3

Center Fixed centers – ✓ ✓

Released centers – – ✓

Location preference Point-based ✓ ✓ ✓

Center-based – – ✓

Non-spatial attributes – – ✓

Capacity limits ✓ ✓ ✓

Membership Hard ✓ ✓ ✓

Fractional ✓ ✓ ✓

Overlapping ✓ ✓ ✓

Outliers – – ✓

PACK 1: Lähderanta et al. (2021).
PACK 2: Lovén et al. (2020).
PACK 3: This paper.

3.1. Problem formulation

Table 2 lists the symbols used. Our aim is to minimize distance
𝑑(⋅, ⋅) between all candidate center locations 𝑐∗𝑗 and data point locations
∗
𝑖 , while taking account the total weights of the points 𝑤′

𝑖 and the
dditional penalties regarding outliers and released centers. As a result,
e obtain the memberships 𝑦𝑖𝑗 from each data point 𝑖 to each center 𝑗.
ACK minimizes the following objective function

argmin
𝑐∗𝑗 ,𝑦𝑖𝑗 ,𝐴

𝑛
∑

𝑖=1

𝑘
∑

𝑗=1
𝑤′

𝑖𝑑(𝑥
∗
𝑖 , 𝑐

∗
𝑗 )𝑦𝑖𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
distance

+ 𝜆𝑜
𝑛
∑

𝑖=1
𝑤′

𝑖𝑦𝑖𝑘+1

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
outliers

+ 𝜆𝑓 𝑡

⏟⏞⏞⏟⏞⏞⏟
released centers

(1)

with the following constraints:

1. Center locations 𝑐𝑗 ∈ {𝑝1, 𝑝2,… , 𝑝𝑠}, ∀𝑗,
2. Fixed centers 𝑐𝑙 = 𝑓𝑙 , 𝑙 ∈ {1,… , 𝑚} ⧵ 𝐴,
3. Membership 𝑦𝑖𝑗 ∈ {0, 1}, ∀𝑖, 𝑗
4. Membership ∑𝑘

𝑗=1 𝑦𝑖𝑗 = 1 ∀𝑖,
5. Capacity constraints 𝐿 ≤

∑𝑛
𝑖=1 𝑎𝑖𝑦𝑖𝑗 ≤ 𝑈 ∀𝑗.

The values of the input parameters are first scaled via the so-called
z-scores (see Vesanto, 2001).

Weights and location preference. PACK allows weighted data
points and enables the inclusion of preferred cluster center locations.
These preferred locations are incorporated into the problem by adding
a parameter 𝛾𝑖 > 0 to the weight of the preferred points 𝑤𝑖 i.e. the total
weight 𝑤′

𝑖 = 𝑤𝑖 + 𝛾𝑖. The larger the parameter 𝛾𝑖, the more strongly the
oint 𝑖 attracts a center (Ackerman et al., 2012).
Fixed and released centers. Applying constraint 2, 0 ≤ 𝑚 ≤ 𝑘 cen-

ters can be assigned to have predetermined fixed locations 𝑓1,… , 𝑓𝑚,
meaning that the locations of 𝑚 centers are decided before the opti-
mization. Further, we propose a relaxation where a fixed center at a
preassigned location can be released and relocated if a penalty 𝜆𝑓 is
paid. Thus, if 𝑡 fixed centers are released, the cost is 𝜆𝑓 𝑡. A center is
released if the release decreases the value of the objective function by
more than 𝜆𝑓 .

Distance metrics. PACK is agnostic towards the distance metric
sed. The objective function (1) admits an arbitrary distance measure
. For example standard Euclidean distance and squared Euclidean
istance can be used.

Distance function 𝑑 takes four arguments: {𝑥𝑖, 𝜃𝑖} and {𝑐𝑗 , 𝜃𝑗}, which
orrespond to the spatial coordinates and the non-spatial attributes
f point 𝑖 and center 𝑗. Furthermore, in a dual clustering scenario
hybrid distance measure can be applied in PACK. This is typically

one by dividing the distance measure into a sum of two distances:
(𝑥∗𝑖 , 𝑐

∗
𝑗 ) = 𝑑({𝑥𝑖, 𝜃𝑖}, {𝑐𝑗 , 𝜃𝑗}) = 𝜆𝑑𝑑1(𝑥𝑖, 𝑐𝑗 ) + (1 − 𝜆𝑑 )𝑑2(𝜃𝑖, 𝜃𝑗 ), where 𝜆𝑑

is the weight given to the spatial distance measure 𝑑1 and (1 − 𝜆𝑑 ) is
4

the weight given to the non-spatial distance measure 𝑑2.
Algorithm 1 PACK-algorithm
Input: 𝑥∗𝑖 , 𝑤

′
𝑖 , 𝑘,𝑁𝑖𝑛𝑖𝑡, 𝜆𝑜, 𝜆𝑓 , 𝑓𝑗 , 𝑗 = 1,… , 𝑚

Output: locations of the centers 𝑐′𝑗 and allocations of points to centers
𝑦′𝑖𝑗 , 𝑗 = 1,… , 𝑘 + 1

1: for 𝑙 = 1 to 𝑁𝑖𝑛𝑖𝑡 do
2: Generate initial value for 𝑐∗𝑗 , 𝑗 = 1, 2, ..., 𝑘 using K-means++
3: repeat
4: Allocation-step: minimize (1) with respect to 𝑦𝑖𝑗 with branch-

and-cut algorithm
5: Location-step: minimize (1) with respect to 𝑐∗𝑗 by computing

the medoid
6: 𝑆 = the value of the objective function
7: until 𝑐∗𝑗 does not change
8: if 𝑆 < 𝑆𝑚𝑖𝑛 or 𝑙 = 1 then
9: 𝑆𝑚𝑖𝑛 ← 𝑆

10: 𝑐′𝑗 ← 𝑐∗𝑗
11: 𝑦′𝑖𝑗 ← 𝑦𝑖𝑗
12: end if
13: end for
14: return 𝑐′𝑗 , 𝑦

′
𝑖𝑗

Capacity. Both lower and upper capacity constraints can be applied
to control the amount of weight assigned to a center. Depending on the
upper and lower limits, this constraint can be used for both balancing
the data and constraining only either too large or too small clusters.

Further, PACK allows the capacity constraint and the loss function
to have different constants (𝑎𝑖 and 𝑤𝑖, respectively). This allows, for
example, using a location preference for the objective function but not
for the capacity limits.

Outliers. PACK identifies outliers by applying the bi-criterion ap-
proach (Tseng, 2007; Charikar et al., 2001). Instead of assigning a
constant outlier penalty 𝜆𝑜 for each point, we use a penalty that is
proportional to the weight of the point, 𝜆𝑜𝑤′

𝑖 . As a result, the capacity
limits permitting, a point is assigned as an outlier if 𝑑(𝑥∗𝑖 , 𝑐

∗
𝑗 ) > 𝜆𝑜. In

other words point 𝑖 is assigned as an outlier if the outlier penalty is
greater than the cost of allocation, increasing the value of the objective
function by a minimum of 𝜆𝑜𝑤′

𝑖 . Hence, the selection depends only on
the total distance to the clusters and not on the weight of the point.
Note that this distance measure is a weighted combination of the spatial
and non-spatial distances.

3.2. The block coordinate descent algorithm

PACK employs a block coordinate descent algorithm (Tseng, 2001)
for minimizing function (1) with a fixed number of centers (Algorithm
1). The optimization steps in Algorithm 1 are then linear, which enables
the use of a wide variety of mixed integer linear programming (MILP)
optimization methods, providing faster and solvable computation even
with a high number of points. The parameters 𝜆𝑜, 𝜆𝑓 and 𝑓𝑗 are
considered as inputs to the algorithm. In this work we assume that the
values of the parameters are decided by the experts in the application in
question. However, one option is to use for example a cross-validation
technique to determine those values, see Arlot and Celisse (2010). On
each iteration, a block coordinate descent algorithm minimizes the
objective function with respect to a block of variables while holding
other blocks of variables fixed at the values obtained in the previous
iteration step (Wright, 2015). The two main steps, i.e., the blocks,
for the algorithm are the allocation-step (line 4), where the points are
assigned to the centers, and the location-step (line 5), where the centers
are relocated based on the points assigned to them. The steps are

iterated until convergence is reached.
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Table 2
The symbols utilized in PACK.

Symbol Range Description

Inputs
𝑥𝑖 , 𝑖 = 1,… , 𝑛 R2 the spatial coordinates of point 𝑖
𝜃𝑖 , 𝑖 = 1,… , 𝑛 R𝑄 non-spatial attributes of point 𝑖
𝑥∗𝑖 = {𝑥𝑖 , 𝜃𝑖}, 𝑖 = 1,… , 𝑛 R2+𝑄 the location and the non-spatial

attributes of point 𝑖
𝑄 N dimension of non-spatial attributes
𝑤𝑖 [0,∞[ weight of point 𝑖
𝑑(⋅, ⋅) [0,∞[ distance between two locations
𝛾𝑖 [0,∞[ location preference of point 𝑖
𝑤′

𝑖 = 𝛾𝑖 +𝑤𝑖 [0,∞[ weight of point 𝑖, corrected by its
location preference

𝑝ℎ , ℎ = 1,… , 𝑠 R2 a possible location for a center
𝑚 N the number of centers with fixed

location
𝑓𝑜 , 𝑜 = 1,… , 𝑚 R2 location of a fixed center
𝜆𝑑 [0, 1] trade-off between spatial and non-spatial

distance measures
𝜆𝑜 [0,∞[ the penalty parameter of outliers
𝜆𝑓 [0,∞[ the penalty parameter for releasing a

fixed center
𝐿 [0,∞[ the lower capacity limit
𝑈 [𝐿,∞[ the upper capacity limit
𝑎𝑖 [0,∞[ the weight used in the capacity

constraints
(typically 𝑎𝑖 = 𝑤𝑖)

Outputs
𝐴 {R2} set of released centers
𝑡 = |𝐴| N number of released centers
𝑐𝑗 , 𝑗 = 1,… , 𝑘 R2 the spatial coordinates of center 𝑗
𝑐∗𝑗 = {𝑐𝑗 , 𝜃𝑖}, 𝑗 = 1,… , 𝑘 R2+𝑄 the location and the non-spatial

attributes of center 𝑗
𝑦𝑖𝑗 [0, 1] membership of point 𝑖 to center 𝑗
Further, as block-coordinate descent finds the local minima close
o the initial values, PACK uses a number of initial values to find the
lobal minimum. The initial values are obtained using the K-means
+-algorithm (Arthur and Vassilvitskii, 2007) that spreads the initial

ocations of centers improving both the speed and the accuracy of the
-means method.
Allocation step. The allocation step minimizes the objective func-

ion (1) with respect to 𝑦𝑖𝑗 . Constraints 3, 4 and 5 are applied, and
he locations of the centers 𝑐∗𝑗 are assumed to be fixed. If no capacity

constraints are applied, this step corresponds to assigning each point
to the nearest facility measured in terms of the chosen distance metric.
In addition a point is assigned as an outlier if its distance to the
nearest center exceeds the limit 𝜆𝑜. On the other hand, if capacity
constraints are applied, this step is an NP-hard integer programming
task (Papadimitriou, 1981). If the constraint 3 is changed to 𝑦𝑖𝑗 ∈ [0, 1],
an approach referred to as fractional membership by Lähderanta et al.
(2021), the task is solved in polynomial time (Khachiyan, 1980).

Generally, the integer programming problem in the allocation step
can be solved with the branch-and-cut method, which is a general
method for a variety of MILP problems that can guarantee the global
optimum of an individual allocation-step (Mitchell, 2002). However,
other optimization methods are also applicable.

Location step. Location step minimizes the objective function (1)
with respect to 𝑐∗𝑗 ’s, while keeping the allocations 𝑦𝑖𝑗 fixed. In other
words, each center is separately relocated given the points assigned
to it. This step is omitted for fixed centers. In continuous space with
the squared Euclidean distance metric, 𝑐∗𝑗 is the weighted mean of the
points allocated to cluster 𝑗. In the discrete setting, 𝑐∗𝑗 is the point which
minimizes the sum of pairwise distances among points assigned to 𝑐∗𝑗 .

If the release of fixed centers is allowed, a center is released and
relocated if the sum of distances to the assigned points is reduced
by more than 𝜆𝑓 . Similarly, a previously released fixed center can be
returned to its original location if the increase in the sum of distances
is lower than the release penalty 𝜆𝑓 .

Implementation. The algorithm is implemented as an open source
5

R package called rpack (Lähderanta et al., 2019) available on GitHub.
The allocation step is done with a branch-and-cut algorithm (Mitchell,
2002) on Gurobi (Gurobi Optimization, 2018), a fast optimizer package
with R bindings freely available for academic use. If Gurobi is not
available, PACK uses the lpSolve-package for R (Berkelaar et al., 2015)
in the allocation step.

4. Evaluation with simulated data

In this section, we introduce the properties of PACK extensions with
a controlled setup. First we generate multiple random data sets, where
the original clustering is known and consequently we can analyze the
effectiveness of the algorithm with the selected parameters.

4.1. Data generation

Data points are simulated from a mixture of 10 gamma distributions
with varying shape (0 to 15) and scale (0 to 100) parameters. The
spatial coordinates of these data points are within a [0, 1] × [0, 1]
space. The weights of the data points are simulated from a uniform
distribution such that the weights are between 1 and 100. Furthermore,
we generate 20 data points that are considered as outliers by sampling
uniformly from the region of data points. For each data set, we generate
unique parameters. In total, we simulate 100 data sets each with 520
observations.

Additionally, three non-spatial attributes are simulated for each
point by first dividing the data points into four regions, generating
the border lines from uniform distribution, see Fig. 1. Secondly, the
non-spatial attributes for each data point are simulated from a mul-
tivariate normal distribution with different parameters based on the
point’s section, see Table 3. We refer to these attributes as the Red,
Green and Blue. Please note that even though the parameters of the
distributions of non-spatial attributes depend on the location of the
point, the distributions of non-spatial values for each region overlap
with each other, reducing the spatial dependence (see Fig. 2). Examples

of dividing the data and the distribution of non-spatial attributes can
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Fig. 1. Example of a single simulated data set. Points correspond to data points originated from cluster structure and the outlier points. Size of the point reflects the weight of
the data point. Left panel: The data points are divided into four regions by the randomly generated two red lines from a uniform distribution between 0 and 1. These regions
have a unique distribution for the non-spatial attributes. Right panel: The values of the three non-spatial attributes are coded into single RGB colors (i.e., with red, green, and
blue channels), showing the difference of values depending on the regions.
Table 3
Parameters for the multivariate normal distributions, used in the simulation of
non-spatial attributes ([Red, Green, Blue] respectively).

Region Mean Covariance

1
[

1 5 7
]𝑇

diag(1, 2, 2)
2

[

4 5 6
]𝑇

diag(1, 1
2
, 1)

3
[

8 4 1
]𝑇

diag(2, 2, 2)
4

[

5 7 3
]𝑇

diag(1, 1, 2)

Fig. 2. Example of a single simulated data set. Boxplots correspond to the distribution
of non-spatial attributes (Red, Green and Blue) in each region.

be seen in Figs. 1 and 2. The simulation codes with toy examples in R
can be found on GitHub3 (Lähderanta et al., 2019).

4.2. Analysis with a single data set

In this section, we perform the clustering on a single data set
generated with the simulation procedure in Section 4.1. The simulated
data set is presented in Fig. 1 and the distribution of the non-spatial
attributes is presented in Fig. 2. In the clustering, we assume the num-
ber of clusters to be known, such that 𝑘 = 10, and we utilize upper and
lower size limits for each cluster, such that the sizes must be between
[
∑

𝑖 𝑤
′
𝑖 − 100𝑘,

∑

𝑖 𝑤
′
𝑖 + 100𝑘]. We utilize standard Euclidean distance

as the distance function for both spatial and non-spatial attributes as
they represent practical distance, for example in kilometers in many

3 https://github.com/terolahderanta/rpack
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location–allocation problems. Furthermore, we demonstrate clustering
results with various values for the other clustering parameters:

• 𝜆𝑑 is set to 0.1, 0.2,… , 0.9, 1.0
• 𝜆𝑜 is set to 0.05, 0.1, 1

The summary statistics of the clustering are shown in Fig. 3 and
the plotted clusters are shown in Fig. 5. As the distances are scaled
into the interval [0, 1], the outliers are decided based on the maximum
distance in the data set, such that for example when 𝜆𝑜 = 0.05, then a
data point is marked as an outlier if the distance to its nearest cluster
center is greater than 5% of the maximum distance. In the data set,
we can observe that the mean distance to its center improves as we
increase the value of 𝜆𝑑 , that is the spatial distance is weighted more.
Contrarily, the average standard deviations of the non-spatial attributes
within clusters raise linearly. Furthermore, as can be seen in Fig. 5, with
the lower values for 𝜆𝑑 , the clusters follow the generated region borders
more closely (dashed lines), and with 𝜆𝑑 = 0.2 the overlap between
clusters is evident. With this example data set, no clear conclusions can
be made with the elbow method when choosing the optimal balance
between mean distance and the deviations of non-spatial attributes.
One candidate value for the optimal value of 𝜆𝑑 would be 𝜆𝑑 = 0.7,
as the decrease in mean distance is minimal with greater values.

The impact of the outlier parameter 𝜆𝑜 can be seen in Fig. 3, as
the mean distance is generally lower with smaller values of 𝜆𝑜. This
is illustrated in the clusterings in Fig. 5, where the number of outlier
points (marked as crosses) increases as we decrease the value of 𝜆𝑜,
thus the mean distance from a non-outlier data point to its center is
lower. Furthermore, in the clusterings with a low value of 𝜆𝑑 , the found
outliers can be located spatially near the cluster center, see Fig. 5,
clustering with 𝜆𝑜 = 0.2 and 𝜆𝑑 = 0.2. This is due to the fact that the
outlier detection relies on the total distance between points, including
both spatial and non-spatial distance measures. Similarly, in Fig. 4
illustrates that the similarity of clustering to the original clustering
increases when the value of 𝜆𝑑 increases. For further reading on Jaccard
index, see for example (Tan et al., 2016).

4.3. Analysis with 100 simulated data sets

In this section, we analyze the 100 simulated data sets with different
clustering parameter, similarly to the previous section.

The main summary statistics of each clustering with the 100 data
sets are presented in Fig. 6. Naturally, as the 𝜆 decreases, that is
𝑑

https://github.com/terolahderanta/rpack
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Fig. 3. The summary of clustering results with the single simulated data set, showing
the average standard deviation (S.D.) of each non-spatial attribute (Red, Green and
Blue) within a cluster and the mean spatial distance from each point to its cluster
center. The clusterings have varying values for 𝜆𝑑 and 𝜆𝑜.

Fig. 4. The Jaccard index of each clustering with single simulated data set. The
clusterings have varying values for 𝜆𝑑 (x axis) and 𝜆𝑜 (color).

the non-spatial attributes are weighted more, the mean distance is
increased. At the same time, the average standard deviation of a
non-spatial attribute on a cluster decreases. This is an indication of sim-
ilarity of non-spatial attributes in a cluster. Furthermore, the impact of
the additional outlier penalty is subtle, providing small improvements
to the mean distance (Fig. 6).
7

Fig. 5. The capacitated clustering results with the single simulated data set. Image (a)
represents scenario without outliers, (b) with some outliers and (c) with a high number
of outliers. Colors represent the cluster areas and the data points in that cluster while
crosses denote found outliers. Dashed lines represent the generated non-spatial region
borders. Here, we display three different values of 𝜆𝑑 and three values for 𝜆𝑜.

5. Evaluation with edge server placement

We demonstrate the feasibility and the practical benefits of PACK
with an experiment focusing on the placement of edge servers in the
city center of Shanghai, China (Guo et al., 2019; Wang et al., 2019;
Xu et al., 2019). The Shanghai Telecom data set contains the locations
of 2732 base stations in the Shanghai region and the mobile user
connections to those base stations in a six-month period. Spatial dis-
tribution of the base stations and their workloads are shown in Fig. 7.
We demonstrate the use of capacity constraints, non-spatial attributes,
fixed server location, releasing fixed servers, location preference and
outliers.

The experiment optimizes the telecommunications infrastructure in
Shanghai, placing edge computing servers (ES) to reduce the communi-
cation latency experienced by the mobile phone users. Edge comput-
ing (Shi et al., 2016) refers to computing infrastructure that facilitates
data processing for user applications directly at the points of interest,
at one hop distance from the users’ equipment. Deploying edge infras-
tructure, characteristics such as backbone network topology, wireless
network coverage and users’ applications requirements, largely dictate
the physical placement options for the servers (Lähderanta et al., 2021).

ES placement is an offline problem, as opposed to online problems
such as offloading tasks to cloud or migrating virtual machines between
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Fig. 6. The summary of clustering results with the 100 simulated data sets, showing
the average standard deviation (S.D.) of each non-spatial attribute (Red, Green and
Blue) within a cluster and the mean spatial distance from each point to its cluster
center. The clusterings have (a) no outliers, (b) some outliers and (c) a high number
of outliers with varying values for 𝜆𝑑 .

ES’s. The goal of ES placement is to deploy a number of edge computing
servers in the city region such that the latencies (i.e. distances) between
the servers and the base stations assigned to each server are minimized.
Each base station is assigned to exactly one ES, and the workload
(i.e., weight) of the base station, that is, its maximum number of
concurrent users in the recorded data, is allocated to that server.

Each ES, represented by a cluster center, has a limited computing
capacity for the workload it can handle, represented by the sum of
the weights of the base station locations in the corresponding cluster.
Further, each edge server can only be placed at the same location as
one of the base stations. Since the topology of the backbone network
is unknown, we use geospatial distances to approximate the latencies
between the base stations, as discussed in Lähderanta et al. (2021).

ES placement provides an ideal setting for studying the PACK ex-
tensions, as these extensions have clear real-world interpretations. We
explore the effect of extensions in two scenarios:

1. Adding the non-spatial attribute average session length to the
placement problem as an additional parameter and the inclusion
of outliers.

2. Joint consideration of (1) fixed server locations, with ten servers
already deployed or having preferred locations, and (2) includ-
ing the average session length in the placement.
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In the evaluations, we assume a budget for the number of servers
that could be placed to be between 35 and 45 servers. To determine
the optimal number of servers in terms of server costs and minimizing
latency, baseline clustering was performed with varying values for 𝑘
and the value 𝑘 = 38 was decided with the elbow method (Yuan and
Yang, 2019). Furthermore, we apply capacity limits for each server to
guarantee a reasonable distribution of workload in the scenarios.

We use the average session duration as a proxy to end-user appli-
cation usage profiles, which were unavailable in the open data set.
Bohmer et al. list distinctly varying usage durations for different mobile
applications, with e.g. an average of 68.11 s for news applications,
and 114.25 s for game usage (Böhmer et al., 2011). Clustering similar
application usage patterns for individual edge servers helps in, for
example, caching and pre-loading of popular content to that ES, greatly
reducing user latency and communication burden on the core network.

Each base station has spatial coordinates in longitudes and latitudes
𝑥𝑖, and an average session length 𝜃𝑖, which we then combine into the
vector {𝑥𝑖, 𝜃𝑖}. We study the impact of average session duration by
implementing a hybrid distance function 𝑑 which is a sum of the spatial
and non-spatial components: 𝑑({𝑥𝑖, 𝜃𝑖}, {𝑐𝑖, 𝜃𝑗}) = 𝜆𝑑𝑑1(𝑥𝑖, 𝑐𝑗 ) + (1 −
𝜆𝑑 )𝑑2(𝜃𝑖, 𝜃𝑗 ). In our evaluations, we assign 𝑑1 as the squared Euclidean
distance function, and 𝑑2 as the squared difference between average
session lengths. Squared distance is chosen as it contributes towards
better worst-case latency in the deployment (Lähderanta et al., 2021).
In the evaluations, we test four different weights 𝜆𝑑 : 0.9, 0.99, 0.999
and 1. 𝜆𝑑 = 1 corresponds to a placement without any non-spatial
attributes (Lähderanta et al., 2021). We scale the distances to the range
[0, 1].

Each clustering is evaluated with regard to the spatial proximity
between ESs (i.e., cluster centers) and base stations, and the session
length similarity among the ESs. In the evaluations, proximity is defined
as the mean of the squared Euclidean distance between an ES and
its base stations, and similarity is defined as the standard deviation
of session duration on the base stations. We explore the means of
weighted distances between servers and base stations, and the standard
deviations of session lengths in each server.

The whole list of setups from both scenarios studied in this paper
can be seen on Table 4.

5.1. Scenario 1: Clustering with non-spatial attribute and outlier feature

In this section we analyze the impact of four different weights 𝜆𝑑 for
the spatial distance measure and the impact of outliers. In the scenario
we have in total eight different setups for the placement, corresponding
to varying intensities of the weight value 𝜆𝑑 for dual clustering, and
the consideration of outliers (see Table 5). Furthermore, we compare
these setups to standard K-means and K-medoid methods (Rajarajeswari
and Ravindran, 2015) with three dimensions (spatial location and the
non-spatial attribute).

In ES placement, outlier base stations may not be served by an ES,
but instead they can be connected straight to cloud. While this increases
the communication latency of those outlier significantly, it improves
the overall quality of service of the system. For the outlier penalty, we
set 𝜆𝑜 = 0.05. As discussed in Section 3.1, this corresponds to a distance
threshold to the nearest cluster center. In practice, if the distance from
a base station to its ES exceeds 5% of the maximum distance in the
data set, then the base station is marked as an outlier. Note that in the
algorithm the distances are scaled to [0, 1].

In Fig. 8 we have selected four setups for closer inspection. The
impact of the weight value 𝜆𝑑 for dual clustering is clearly seen as
spatially overlapping server regions: As we increase the weight value
of the non-spatial distance measure, that is, the value of 𝜆𝑑 decreases,
the resulting server regions overlap with each other more. This can be
seen in the bottom left panel of Fig. 8, where for example the pink
and purple regions on the south-east have isolated points in each other
regions.
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Fig. 7. Base stations in Shanghai area. Left panel: the locations of base stations, color representing the workload and the red crosses the 10 fixed edge server locations. Right
panel: the workload distribution of the base stations.
Fig. 8. The optimal placement of 38 edge servers with selected four setups. Colors represent a set of base stations that are covered by a single edge server, the edge servers
are marked as crosses and outliers as plus-signs. The lower the 𝜆𝑑 , the more the regions overlap spatially.
Meanwhile, without outliers, the mean of the server-wise session
duration standard deviations is cut down by 45% when compared to
the placement without non-spatial attributes (Table 5). On the other
hand, spatial proximity worsens by 35%. With outliers, the reduction
in the standard deviation is as high as 53%, while proximity degrades
only by 18%. This observation is further detailed in Fig. 9, where a
trend in the standard deviations can be seen. When 𝜆𝑑 is decreased,
the session lengths in each cluster are more similar.

Including outliers improves the placement in each setup when com-
pared to not allowing outliers. Mean distances to server are slightly
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smaller in each setup, and the standard deviation of the session length
has decreased. With 𝜆𝑑 = 0.99, both proximity and similarity are
improved, by 2% and 13% respectively (Table 5).

When comparing to standard clustering methods, K-means and K-
medoid, we observe that these approaches do not provide reasonable
results in the server placement scenario. In the K-medoid setup, the
spatial proximity somewhat improves and session similarity is only 1%
worse, workload balance is significantly worse (45%). As the K-means
do not constraint the locations of the servers, session similarity is much
better than the baseline setup (61%). However, a price is paid for the
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Table 4
Placement setups for evaluations in Shanghai, China.

Setup Centers 𝜆𝑑 Outliers Explanation

BASE – 1 No Clustering with capacity constraints but
without non-spatial attributes or outliers
(Lähderanta et al., 2021).

DUAL1 – 0.999 No Dual clustering (i.e. considering both
spatial and non-spatial attributes) with
minimal weight on session duration.

DUAL2 – 0.99 No Dual clustering with medium weight on
session duration.

DUAL3 – 0.9 No Dual clustering with high weight on
session duration.

OUT – 1 Yes Outliers, No dual clustering.
DUAL1-OUT – 0.999 Yes Outliers, dual clustering with minimal

weight on session duration.
DUAL2-OUT – 0.99 Yes Outliers, dual clustering with medium

weight on session duration.
DUAL3-OUT – 0.9 Yes Outliers, dual clustering with high

weight on session duration.

KMEANS – 1 No K-means method with three dimensions.
KMEDOID – 1 No K-medoid method with three dimensions.

FIXED Fixed 1 No Same as BASE, but 10 edge servers have
fixed locations (Lovén et al., 2020).

FIXED-DUAL Fixed 0.9 No As above, but with dual clustering with
medium weight on session duration.

FIXED-DUAL-OUT Fixed 0.9 Yes As above, but with outliers and dual
clustering with medium weight on
session duration.

REL Release 1 No 10 fixed servers can be released with
given cost 𝜆𝑑 on the objective function.

REL-DUAL Release 0.9 No As above, but with dual clustering with
medium weight on session duration.

REL-DUAL-OUT Release 0.9 Yes As above, but with outliers and dual
clustering with medium weight on
session duration.

PREF Preference 1 No A location preference 𝛾𝑖 = 200 for the
ten fixed server location candidates. This
value is larger than the largest weight
(i.e. 156) in the data.

PREF-DUAL Preference 0.9 No As above, but with dual clustering with
medium weight on session duration.

PREF-DUAL-OUT Preference 0.9 Yes As above, but with outliers and dual
clustering with medium weight on
session duration.
Fig. 9. Distribution of standard deviations in each setup without outliers.

improvement, as the spatial proximity and workload balance suffer
greatly (53% and 191%, respectively).

5.2. Scenario 2: Placement with fixed server locations

In this scenario, we place a total of 38 edge servers in which session
length is taken into account, with ten of the server locations fixed in
four alternative ways, corresponding to the following setups:

1. No fixed cluster center locations. This setup corresponds to the
baseline placement case studied by Lähderanta et al. (2021) and
is identical to the setup in previous section with 𝜆 = 1.
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𝑑

2. The locations of the ten edge servers are fixed. This corresponds
to the deployment of 28 servers, with ten servers already de-
ployed. This setup corresponds to the method studied by Lovén
et al. (2020).

3. There is a release cost (𝜆𝑓 = 0.02) to the ten servers such that
if the benefit (i.e., reduction in the objective function (1)) of
relocating any of those servers is greater than the release cost,
then that server is relocated.

4. A location preference is set for the ten fixed server location
candidates. Those locations are considered more important and
attract the servers more than the other locations. Location pref-
erence in edge server placement would correspond to a situation
where, for example, mobile connectivity in a certain area would
be above that of the surrounding areas and especially good at
the center of that area. Such an area, and especially its center,
would thus be a preferred location for an edge server. We set
the value of the additional weight to 𝛾𝑖 = 200 for each preferred
server location 𝑖 = 1,… , 10. This value refers to the number of
users in a base station and is larger than the largest weight value
(i.e. 156) in the data set.

Furthermore, we incorporate the session length attribute and the
possibility of outliers in the placement. In this scenario a weight value
for spatial attributes 𝜆𝑑 = 0.99 is used with each setup mentioned
above, so that in total of nine setups are evaluated.
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Table 5
Summary statistics for Scenarios. Improvements are marked in green, while degradations are in red, compared to baseline. See Table 4 for setup explanations.

Setup Spatial proximity Session similarity Workload balance Outliers
(distance to ES) (SD. of session duration) (SD. of ES workloads) (% of total)

Mean Diff. SD Diff. SD Diff.

Scenario 1

BASE 3.31 (baseline) 1474 (baseline) 131.10 (baseline) –

DUAL1 3.29 −1% 1476 0% 129.20 −1% –
DUAL2 3.36 +2% 1334 −9% 138.60 +5% –
DUAL3 4.02 +34% 809 −45% 129.30 −1% –
OUT 3.25 −2% 1500 +2% 131.00 0 1.8
DUAL1-OUT 3.24 −2% 1474 0% 123.30 −6% 0.8
DUAL2-OUT 3.24 −2% 1280 −13% 130.40 −1% 1.9
DUAL3-OUT 3.89 +18% 698 −53% 123.60 −6% 4.7
KMEANS 5.07 +53% 576 −61% 380.90 +191% –
KMEDOID 3.24 −2% 1485 +1% 249.20 +47% –

Scenario 2

FIXED 3.70 (baseline) 1480 (baseline) 132.30 (baseline) –

FIXED-DUAL 3.79 +2% 1228 −17% 128.90 −3% –
FIXED-DUAL-OUT 3.77 +2% 1287 −13% 132.40 0 2.0
REL 3.46 −6% 1485 0% 131.70 0 –
REL-DUAL 3.55 −4% 1280 −14% 137.20 +4% –
REL-DUAL-OUT 3.52 −6% 1310 −11% 131.90 0 1.6

BASE 3.31 (baseline) 1474 (baseline) 131.10 (baseline) –

PREF 3.28 −1% 1483 +1% 127.50 −3% –
PREF-DUAL 3.36 +2% 1273 −14% 133.10 +2% –
PREF-DUAL-OUT 3.36 +2% 1274 −14% 121.90 −8% 1.3
ig. 10. The optimal placement of 38 edge servers with selected four setups. Colors represent a set of base stations that are covered by a single edge server, the edge servers
re marked as crosses and the fixed servers as squares.
C
w
s
f

Fig. 10 compares four selected setups without non-spatial attributes.
verall, each setup produces deployment of servers with some impor-

ant differences. First, the benefit of relocating the fixed servers is clear:
ome of the fixed servers in the south-west and in the south-east are
ocated on the edge of the map which overall worsens the average
istance to the center, that is, latency to the server.
11
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Table 5 further details the changes in proximity and similarity.
ompared with a baseline method (Lovén et al., 2020), fixed servers
ith the non-spatial attributes indeed improves similarity by 17% while

lightly (−2%) degrading in proximity. Just allowing the releasing of
ixed servers, on the other hand, only improves on proximity (+6%).

hereas, jointly considering both the non-spatial attributes as well as
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the releasing of fixed servers improves proximity by 4% and similarity
by 14%. On the other hand, the center-based location preference, com-
pared to a baseline method (Lähderanta et al., 2021), affects proximity
only by little. Including the non-spatial attributes, however, improves
similarity by 14% while reducing proximity just slightly (−2%).

The inclusion of outliers provided a minor improvement to the
spatial proximity as well as to the workload balance, when compared
to the setups without outlier detection (Table 5). However, session
similarity worsened in all of these setups.

Overall, average latency is decreased as we allow the servers to
be relocated. The setup with location preference can be seen as a
‘‘relaxed’’ version of the setup with release cost on pre-determined
center locations, as it pulls the servers closer to the predetermined
locations rather than forcing the servers to be located exactly at the
predetermined locations. Furthermore, the mean and median distances
in setups with location preference are much smaller than in the other
setups. When it comes to setups with average session length, the non-
spatial attribute improved session similarity as expected, while still
maintaining reasonable spatial proximity in each setup.

All four setups produce clusters which appear feasible, considering
domain knowledge. The differences in the resulting clusters are mainly
due to the locations of the predetermined spots: forcing the servers to
the fixed locations can cause worse average latency in the deployment,
which can be solved by allowing servers at the fixed locations to
relocate.

6. Discussion and conclusion

In this article, we introduced new extensions to the PACK method
for capacitated clustering. The new extensions included support for
multidimensional attributes for points of interest, outliers, releasing
fixed centers, and a location preference for cluster centers. The PACK
method allows the joint consideration of all these extensions.

We first introduced the extensions with a controlled data set, where
the original simulated clustering was known. The simulation consid-
ered a scenario with weighted data points, outliers and non-spatial
attributes. In the experiment, the emphasis was on demonstrating the
effect of penalty parameters 𝜆𝑑 and 𝜆𝑜, which are related to the impact
of non-spatial attributes and outliers, respectively. With a single sim-
ulated data set, we were able to illustrate the balance between spatial
and non-spatial attributes in the data set. While the final decision on
the values of clustering parameters depends on the application at hand,
we argued that with this simulated data set, the optimal value for 𝜆𝑑
could be either 0.7 or 0.8. With 100 simulated data sets, we were
able to generalize the impact of non-spatial attributes, decreasing the
average standard deviation of the attributes linearly. On the contrary,
the mean distances from points to the center naturally increased as we
put more weight on the non-spatial attributes, as was expected. This
trade-off between non-spatial attributes and distances is a key part in
dual clustering.

To evaluate PACK with edge server placement application, we
demonstrated the use of non-spatial attributes together with outliers
and pre-determined server locations in a real-life data set with in total
of 2732 base stations with mobile user connections. We used a non-
spatial attribute, the average session duration, as a proxy for user
application usage profiles. As a result, the average standard deviation of
the user session durations on edge servers was reduced by 53% at best.
On the edge servers such an improvement would allow specialization
and a more efficient use of available computational resources, allowing
edge servers to cater for location-specific application usage and user
profiles. Regarding the infrastructure, such insights simplifies the selec-
tion of physical server hardware, possibly reducing deployment budgets
and maintenance efforts.

Furthermore, the inclusion of outliers impacted the placement of
servers in a positive way, decreasing both the mean distances between
servers and base stations and the standard deviations of session lengths
12

a

in each server. Service level agreements allowing, accepting that certain
base stations always offload user workload to cloud instead of an edge
server improves the quality of service of the remaining network, as
measured by latency. The outlier detection method presented here
could consider spatial data with nonspatial attributes, however for a
complicated spatial point event data there is a lack of such detection
method. Moreover, we proposed an extension to the placement algo-
rithm which allowed the release of fixed centers. Compared with the
location preference extension, which favored the neighborhoods of the
given points, the proposed releasing of fixed centers emphasized only
the given points, either locating a center exactly on them or allowing a
free placement for the center. Such functionality gives edge operators
more flexibility in placement, allowing them, for example, to give a
number of potential hot-spots an increased chance to gain an edge
server, with the final placement depending on the overall quality of
service.

Furthermore, we provided a comparison to the standard clustering
methods of K-means and K-medoid. Even though these methods per-
formed well in terms of spatial proximity and/or session similarity,
they are unsuitable for edge server placement because the methods do
not consider workload balance, resulting in an uneven distribution of
workload between edge servers. Furthermore, the execution times of
these classic algorithms are far less than those of the proposed methods.

Considering the size of the data sets, the experiments presented
here were performed in reasonable time. Overall, if scalability is a
concern, fractional membership can be used instead of hard member-
ship (Lähderanta et al., 2021). Moreover, parallel computing can be
used as the algorithm uses different starting values that are independent
of each other.

In conclusion, we proposed the PACK method for capacitated spatial
clustering, with number of extensions related cluster center locations,
outliers and non-spatial attributes. We demonstrated these extensions
with a example with simulated and controlled data and with an edge
server placement problem, where two different scenarios were exam-
ined. We concluded that the inclusion of non-spatial attributes allows
a greater control between spatial proximity and attribute similarity.
Furthermore, in the edge server placement problem a better overall
proximity and similarity was achieved when outlier points were de-
tected and discarded from the cluster analysis. Control over the cluster
centers provided a way to apply preference to certain locations without
affecting the overall clustering quality. We argue that the inclusion of
the novel extensions and the flexibility of the PACK method, combined
with the easy-to-use open-source R software package rpack, provides
a versatile toolbox for spatial clustering, especially in relation to edge
server placement.
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