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Abstract—Optimal control of electric vehicle (EV) batteries
for maximal energy efficiency, safety and lifespan requires that
the Battery Management System (BMS) has accurate real-
time information on both the battery State-of-Charge (SoC)
and its dynamics, i.e. energy supply capacity, at all times.
However, these quantities cannot be measured directly from
the battery, and, in practice, only SoC estimation is typically
carried out. Moreover, the so-called Equivalent Circuit Models
(ECM) commonly utilized in BMS solutions only display a
memoryless algebraic dependence of voltage and current on SoC,
without an ability to predict battery energy supply capacity
based on its recent charge/discharge history. In this article, we
propose a novel parametric algebraic voltage model coupled
to the well-known Manwell-McGowan dynamic Kinetic Battery
Model (KiBaM), which is able to predict both battery SoC
dynamics and its electrical response. We present an offline model
parameter identification procedure that yields SoC-dependent
model parameters from standard dynamic battery tests, and we
introduce an algorithm based on the Extended Kalman Filter
(EKF) for standard SoC estimation on the proposed model.
Numerical simulations, based on laboratory measurements, are
presented for prismatic Lithium-Titanate Oxide (LTO) battery
cells. Such cells are prime candidates for modern heavy offroad
EV applications.

Index Terms—Energy Storage Systems, Battery Management,
KiBaM model, Battery state-of-charge.

I. INTRODUCTION

Lithium-ion batteries, typically composed of several inter-
connected cells, are important for modern energy storage and
mobility applications, because they can help to combat the
climate change. For example, the net lifetime emissions of
hybrid and electric vehicles have been reported to be up to
89% lower than for internal combustion engine vehicles [1].
In practice, though, batteries can be inefficient and be made of
raw materials that have high environmental and energy impacts

[2]. Recently, researchers have increasingly been focusing on
optimal control problems for battery powered smart systems
to increase their energy efficiency, safety and lifetime — and
thus reduce their environmental impact (e.g., [3]–[5]). Such
smart systems are typically equipped with an implicit digital
twin of the energy source, i.e., models that mathematically
represent the physical dynamics and constraints in different
cycling situations, which are the focus of this article.

A substantial challenge in optimal control of battery systems
is that the energy content is not directly measurable outside the
battery. Indeed, in practice, mathematical modeling of battery
energy dynamics in different charge and discharge conditions
has to be based on electrical, i.e. voltage (V ) and current (I),
measurements. Typically, these measurements are utilized to
first identify an Equivalent Circuit Model (ECM) that predicts
the electrical response of the battery (see e.g. [6]–[9] and the
references therein). For run-time state estimation, the ECM
model is then typically coupled to a simple SoC model, such
as Coulomb counting or its derivatives [10]. This approach
has been demonstrated to yield remarkably accurate estimates
of the SoC during battery operation by many researchers (see
e.g. [11]–[13]). However, it is important to emphasize that
the SoC estimate thus obtained is static and memoryless: It
does not address the effect of the recent past usage history
of the battery on the energy (or power) available from that
battery in the immediate future. This missing information,
namely dynamic performance bounds on the battery based on
the available capacity, is crucial for energy-optimal control of
the battery, and is addressed in the present work.

In this article, we take an opposite battery modeling ap-
proach relative to that described above: We propose a sim-
ple algebraic electrical subsystem model coupled to a more



complex dynamical model of the energy subsystem. The
energy model considered herein is the Kinetic Battery Model
(KiBaM) specification introduced by Manwell and McGowan
in 1993 [14], see Fig. 1(a). It is well known to be able to
represent the recovery and rate-capacity effects seen in real
batteries [15], among others. The challenge with the KiBaM
model is relating it to the battery voltage and current, which
is necessary for parameter identification and practical use.
Manwell et al. [16] proposed the simple algebraic specification
V = Voc−RsI , where Voc denotes the open-circuit voltage and
Rs the internal resistance of the battery, but without relation
to SoC. Further, Bako et al. [17] and Manwell et al. [16]
proposed a rational voltage models with SoC dependence.
On the other hand, Fenner et al. [18] proposed a parametric
rational-exponential voltage law targeted at replicating the
response seen in constant current discharge tests. However, the
nonlinearities in these electrical subsystem models potentially
make parameter identification complex, and also impose a
heavier computational burden on the battery SoC estimation
during runtime. It is, therefore, of considerable theoretical and
practical interest to establish a simple and computationally
lightweight but accurate electrical subsystem model to be
augmented with the KiBaM model. Such a model is presented
herein, along with its offline parameter identification method,
which utilizes standard dynamic discharge profile laboratory
test data [19]. Moreover, we present an algorithm, based on the
extended Kalman filter (EKF) to estimate the unknown internal
states of the battery based on real-world measurements. As an
application, we consider LTO battery cells that are the prime
candidates for heavy off-road electric vehicles due to their
robustness to high currents, repeated cycling and operation in
cold temperatures [19], [20]. The presented numerical results
for LTO cells show that the out-of-sample voltage predic-
tion for the proposed model is in good agreement with the
measurement data, and EKF-based SoC estimation converges
to the true SoC accurately and quickly. As a consequence,
the presented model and estimation method are potentially
useful as such in modern electric vehicle Battery Management
Systems (BMS). More importantly, presented method is also
capable of estimating the internal dynamics of the battery
energy system, providing necessary information for optimal
control applications in mobile resource-constrained smart sys-
tems.

This paper is based on the preliminary idea in [21] that
is an extended abstract. In the current paper, we enhance
the work by utilizing extended Kalman filter to estimate the
internal hidden states of the model based on measurable input
and output of the battery system. This gives us capability to
estimate the battery parameters while the initial state of the
battery is unknown. Moreover, we elaborate the description
and formulations of the battery models along with compre-
hensive discussion on the obtained results.

II. BATTERY MODEL

We employ Kinetic Battery Model (KiBaM) to model the
electro-chemical dynamics of battery’s internal states and rep-

resent the energy/charge balance. Then, we introduce a simple
linear voltage model to predict battery’s terminal voltage based
on its energy/charge state.

A. Kinetic Battery Model

Fig. 1(a) illustrates the structure of the well-known KiBaM
that resembles the charge in the battery to liquid split into two
tanks, i.e., the bound charge tank and the available charge
tank, attached through a limited-rate valve. The liquid volume
represents the battery charge and the flow represents current.
Variables y1 and y2 show the amount of available charge and
bound charge, respectively. The relative capacity of the tanks is
specified by the parameter c ∈ (0, 1). Additionally, parameter
k controls the flow rate: amount of charge transferred from
bound to available charge tank (or vice versa) based on their
height difference. The dynamics of charge in each tank is
modeled by the following differential equations:

dy1
dt

=
k

1− c
y2(t)−

k

c
y1(t)− I(t) (1a)

dy2
dt

= − k

1− c
y2(t) +

k

c
y1(t) (1b)

We defined the battery SoC level at each time by:

SoC(t) =
y1(t) + y2(t)

Q0
(2)

where Q0 is the nominal capacity of the battery.
In this model, variables y1 and y2 are the measures of energy

level in the battery, while in practice, these values cannot be
measured and measurements are restricted only to the battery
instantaneous terminal voltage and applied current. Therefore,
an energy-to-voltage conversion model is needed to relate the
energy measures to voltage predictions.

k

y2

y1

I(t)

Available chargeBound charge
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h2
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(a) KiBaM
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Fig. 1. Conceptual illustration of the KiBaM and circuit model

B. Voltage Model

Our proposed voltage model is a linearly parameterized
equation describing voltage response of the battery based on
the Rint equivalent circuit model [22] (Fig. 1(b)). Having the
values of KiBaM states (available and bound SoC, Eq. 2),
terminal voltage V (t) at time t is modeled by the equation:

V (t) = VOC −Rs · I(t) +E0 +E1 ·
y1(t)

Q0
+E2 ·

y2(t)

Q0
(3)



where Rs is the battery internal resistance, VOC is the battery
open-circuit voltage and E0, E1 and E2 are the parameters of
the linear voltage model.

It is essential to mention that, in our experiments, param-
eters of Rint, KiBaM and voltage model are all dependent
on current SoC level. Therefore, all should be subscripted
with SoC(t) in equations 1a, 1b and 3, but for notational
convenience, this dependence is not explicitly denoted.

III. PARAMETER IDENTIFICATION

To use the model in equations (1)-(3) in practice, we must
identify the parameters c, k, E0, E1 and E2 so that the
predicted voltage in Eq. (3) and predicted SoC in Eq. (2) are
close to those seen in laboratory measurements. It has been
experimentally verified for many different battery chemistries
that VOC and Rs are SoC-dependent. Consequently, it makes
sense to also allow for SoC-dependence in c, k, E0, E1 and
E2.

The training data Dtrain for parameter identification con-
sists of measurement data as follows:

Dtrain = {(Ii(t), Vi(t), SoCi(t)) | t ∈ [0, Ti], i = 1 · · ·N}
(4)

as a set of triplets: measured current, voltage and SoC profiles,
for different N experiments. The battery is assumed to be
fully charged at the beginning of each experiment, current
profile Ii(t) is applied and battery’s terminal voltage Vi(t)
and capacity change are observed at discrete times. Note that
the capacity change is measured in terms of ampere hours
and SoCi(t) is calculated based on its integration divided by
nominal capacity.

For model identification, we aim to minimize the multivari-
ate constrained error function e(p) defined as:

e(p) =

N∑
i=0

∥Vi(t)− V̂ p
i (t)∥ (5)

w.r.t. the model parameters p = (c, k, E0, E1, E2), subject to
inequality conditions 0 ≤ y1 ≤ cQ0 and 0 ≤ y2 ≤ (1− c)Q0,
where Vi(t) is measured voltage and V̂ p

i (t) is the predicted
voltage via parameter set p at time t. The optimization is
performed only using measured voltage data, but the model
implicitly provides an accurate fit on SoC data, due to the
imposed model constraints.

The objective (5) can be minimized by using the interior-
point optimization method [23]. However, to mitigate the
effect of choice of initial point in parametric interior point
optimization, we propose a four-stage procedure, described
below. It consists of first establishing a reasonable initial point
incrementally and then seeking an optimal parameter set start-
ing from that point. The first three stages seek parameters that
do not depend on SoC, whereas the last stage addresses SoC
dependence. The stages of parameter identification procedure
are as follows:

1) First, Eq. 2 is used to predict the SoC level and only
the KiBaM parameters c and k are identified by fitting
predicted SoC to the measured SoC on the whole training

dataset (by minimizing the SoC error function similar to
voltage as described in Eq. 5).

2) Then, Eq. 3 is exploited to predict the terminal voltage
with fixed KiBaM parameters c and k (the solution of
stage 1) and then only the voltage model parameters E0,
E1 and E2 are identified by fitting the predicted voltage
and measured voltage on the whole training dataset.

3) Afterwards, the solution of the previous two stages are
used as the starting point and the interior-point optimiza-
tion is run for identifying all parameters c, k, E0, E1 and
E2 by fitting the predicted voltage and measured voltage
on the whole training dataset, exactly as represented in
Eq. (5).

4) Finally, for the SoC-dependent parameters, the SoC range
(0-to-100%) is divided into K equal subranges, and for
each subrange the corresponding voltage and current
data are extracted. Then, the optimization procedure is
performed for each subrange (starting from the SoC-
independent parameters found in stage 3). Subsequently,
the optimal parameter set of each subrange is assigned
to its centeral SoC value. These K optimal parameter
samples are used to linearly interpolate the whole SoC
range (see figure 3 for the demonstration).

The validation phase is mainly computing the error function
in Eq. (5) for the optimal parameter set over validation
dataset Dval. The validation dataset is similar to training
dataset in shape. However, since the model should perform
well on any applied current, the current (and consequently,
measured terminal voltage and SoC) profiles are different in
the validation dataset (out-of-sample data).

IV. STATE-OF-CHARGE ESTIMATION

In this paper, we also propose a model-based state esti-
mation method, as a practical application of our developed
battery model, by using extended Kalman filters (EKF) [24].
Algorithm 1 describes the EKF-based SoC estimation. The
objective is to estimate the unknown internal state of the
KiBaM dynamical system, i.e., available and bound charges
(y1(t), y2(t)), only by observing measurable signals I(t) and
V (t). The inputs are optimized SoC-dependent parameter
set (Section III) and measured current and voltage profiles.
Starting from an initial state value (Line 1), the update rule
of EKF (Lines 8-16) tries to minimize the error between
estimated voltage Vpred and measured voltage V[t] (Line 12)
at each time step. We used the Jacobian of dynamical model
(KiBaM) and Jacobian of measurement model (voltage), F
and H respectively, as:

F = I2 + dt ·
[
−k/c k/(1− c)
k/c −k/(1− c)

]
(6)

H =
(∆VOC −∆Rs) · I(t)

Q0
·
[
E1 E2

]
(7)

where ∆VOC and ∆Rs are derivatives of VOC and Rs w.r.t.
state (y1, y2), which are computed programmatically. Finally,



Algoritm 1 Extended Kalman filter for SoC estimation
Input: params, I, V
Output: SoC

1: y← [yinit
1 , yinit

2 ]
2: t← 0
3: P← I2 ▷ Identity Matrix
4: Q,R, dt← constant
5: while TRUE do
6: SoC[t]← sum(y)/Q0

7: paramsoc ← params[SoC[t]]
8: F,H← MODELJACOBIANS(paramsoc, I[t], dt) ▷ Eq. 6, 7
9: y− ← KIBAMSTEP(paramsoc,y, I[t], dt) ▷ Eq. 1a, 1b

10: P− ← FPFT +Q
11: Vpred ← VOLTAGEMODEL(paramsoc,y−, I[t]) ▷ Eq. 3
12: v ← V[t]− Vpred

13: S← HP−HT +R
14: K← P−HTS−1

15: y← y− +Kv
16: P← P− −KSKT

17: t← t+ dt
18: end while

TABLE I
SPECIFICATIONS OF THE BATTERY CELL

Type Prismatic high-energy cell Anode material LTO

Rated capacity 23Ah Nominal Voltage 2.3V

Lower cutoff voltage 1.5V Upper cutoff voltage 2.7V

process noise (Q) and measurement noise (R) are assumed to
be Gaussian random noise with constant amplitude.

V. EXPERIMENTS

In this section, we explain details of the conducted experi-
ments, e.g., specifications of battery cell of interest, datasets,
results of parameter identification and model validations, and
finally the results for battery SoC estimation.

A. Battery specifications and dataset

The battery cell considered herein is a prismatic high-energy
23Ah Toshiba SCiBTM LTO battery cell, with 1.5V and 2.7V
as lower and upper cutoff voltage, respectively (Table I). To
train the model and validate the results, we used data from
Discharge Pulse Power Characterization (DPPC) tests [19]
which are common tests to capture the battery cell’s dynamics
in response to repeatedly changing discharge current. The
test was performed in room temperature at two different
charge rates (which will be referred to by “1C” and “4C”
C-rates). The C-rate refers to the speed charging/discharging
relative to battery’s rated capacity. 1C means that the battery
is charged/discharged from 0% to 100% in 1 hour. We refer
the reader to [19], [25] for detailed description of battery
specification and DPPC tests. We used 1C data as the training
dataset for parameter identification and 4C dataset for model
validation (shown by red in Figures 2(a) and 2(b), respec-
tively).

B. Parameter identification and validation

For identifying five parameters of the KiBaM and voltage
model (Section III), we implemented the KiBaM differential
equations and voltage model and imposed model constraints
in MATLAB code, and then used MATLAB built-in non-
linear optimization method fmincon to find minimum of the
constrained nonlinear multivariable error function in Eq. 5.
The optimization is performed over 1C training data and the 0-
to-100% range of SoC is divided into K = 10 equal subranges.
The Rint model parameters VOC and Rs are determined
based on the voltage drop caused by applied non-zero current
immediately after a rest period in DPPC test. By definition,
this drop occurs because of the algebraic part of Eq. (3)
which depends on the internal resistance, therefore according
to the Ohm’s law, Rs = (Va − Vb)/I (Va being the voltage
at top, and Vb the voltage at the bottom of the drop). The
optimized parameters are presented in Fig. 3 as functions
of SoC. The change in SoC-dependent parameters show that
the battery behaves significantly differently at various SoC
levels. Considering the parameter k, for example, Fig. 3 shows
that, interestingly, when the battery is full, the charge transfer
rate from the bound charge tank to available charge tank is
higher than when it is drained, thus faster energy recovery can
obtained at fully charge. Additionally, the trend in parameter c
suggests that the bound charge tank is used to store the charge
as a reserved energy unit which is released as the SoC drops.
Trends in VOC and Rs are as expected, and E0 almost similar
trend to VOC , affecting the predicted voltage as a correction
value for VOC . Also, the negative range in E2 supports the
fact that in order to utilize the charge in the bound tank, it
must be first transferred to available tank. This is evident in
the voltage increase in the recovery effect, when the battery
is let to rest after a non-zero current, and transferring charge
from bound to available tank increases the voltage response.

Fig. 2 shows the SoC and voltage predictions of the opti-
mized model over 1C and 4C data. It can be observed that the
model is able to predict the SoC and voltage of the battery with
high accuracy for in-sample and out-of-sample data. Table V-B
contains the mean and max percentage and absolute errors for
optimized voltage response model. We compared MPE of the
proposed method to the published results in [19], with relative
improvement of 54% and 80% on voltage prediction accuracy
over training and validation datasets, respectively.

TABLE II
VOLTAGE PREDICTION PERFORMANCE, IN TERMS OF MAX AND MEAN

PERCENTAGE AND ABSOLUTE ERROR.

Max %
Error

Mean %
Error

Max Abs.
Error (V)

Mean Abs.
Error (V)

Training 0.88% 0.092% 0.0228 0.0021

Validation 1.20% 0.065% 0.0297 0.0016
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Fig. 2. Performance of SoC and voltage prediction over in-sample (1C, in the left) and out-of-sample (4C, right) data, computed using optimized parameter
set..
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C. Application: EKF for SoC estimation

The results of the SoC estimation using EKF is presented in
Fig. 4 for 1C and 4C datasets with different initial values for
unknown model state. The plots show that the proposed EKF-
based state estimation method is able to converge to the actual
SoC value after a transient period (shown as close-up view
inside the plots in Fig. 4), regardless of the initial value. The
high variation in the estimated value in this period is due to the
model SoC-dependent parameters, which are varying as the
estimated SoC is changing. Nevertheless, after convergence,
the estimated state steadily follows the actual state dynamics.
Table V-C shows the mean percentage and absolute errors and
the convergence time of SoC estimation with 60% initial state
and 1 Hz sampling frequency. We define the convergence time
as the first time that the error between estimated SoC and
true SoC is within the 5% error bound (similar to [26]). The
transition period can be shortened by better initialization of
SoC value or increasing sampling frequency to achieve faster
convergence.

VI. CONCLUSION

In this article, we introduced a novel light-weight voltage
model based on the battery internal energy dynamics repre-
sented by KiBaM. Also, a four-stage parameter identification
procedure based on interior-point constrained optimization is
described that avoids local convergence and provides high

TABLE III
EKF PERFORMANCE, IN TERMS OF MEAN PERCENTAGE AND ABSOLUTE

ERROR AND CONVERGENCE TIME OF SOC ESTIMATION, INITIALIZED
FROM SOC 60% AND ON 1HZ SAMPLING FREQUENCY.

Mean %
Error

Mean Abs.
Error

Convergence
time (Sec)

1C SoC 0.76% 0.28% 46

4C SoC 0.23% 0.12% 43

voltage prediction accuracy on out-of-sample data due to our
SoC-dependent parameter scheme. We successfully applied
our optimized model on the fundamental SoC estimation
problem by using extended Kalman filter. The estimated
output of the proposed algorithm is converged to the true
SoC value shortly and accurately. In the proposed model,
the effect of operation temperature on the battery’s volt-
age response is not considered. Also, battery aging is not
considered in this work which is another factor that affects
model parameters. However, designing such temperature- and
aging-dependant parameters (given the training dataset) is
technically feasible with the proposed parameter identification
procedure. One interesting future direction of this work is
to utilize this battery model and SoC-estimation in optimal
control of resource-constrained mobile robots. Specifically,
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Fig. 4. Estimation of SoC using extended Kalman filtering with different (guessed) initial states.

proposed battery model can be integrated into robotic control
systems to address energy-efficient resource-aware operation
planning. Additionally, studying parameter drift and effect of
temperature and aging on the battery model is another future
direction.
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