

Sajid Hameed

IOT SENSOR NODE DESIGN WITH NFC DATA COMMUNICATION

USING OFF-THE-SHELF COMPONENTS

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES

Bachelor of Engineering, Information Technology

October 2023

ABSTRACT

Centria University

of Applied Sciences

Date

October 2023

Author

Sajid Hameed

Degree program

Bachelor of Engineering, Information Technology

Name of thesis

IOT SENSOR NODE DESIGN WITH NFC DATA COMMUNICATION USING OFF-THE-
SHELF COMPONENTS

Centria supervisor

Jari Isohanni

Pages

40 + 13

Instructor representing commissioning institution or company.

Kari Halonen, Aalto University

Near-field communication (NFC) technology was introduced and specified for short-range

wireless connectivity during the first decade of the 21st century. It allows the exchange of

information wirelessly between two radio frequency identification (RFID) compatible devices.

In addition to its widespread use in mobile payments, data transfer, secure access control,

digital authorization, and authentication, the NFC protocol has expanded its applicability to

wearable medical devices. Recent advances in integrated electronics have enabled battery-

free operations by optimizing the power efficiency of medical devices and implants. These

gadgets absorb energy from their surroundings and store data on-chip memory for later

retrieval.

This project describes the development of an internet-of-things (IoT) sensor node utilizing an

Arduino-based NFC system to transmit pre-recorded data using the NFC handshake protocol.

A sensor node hardware platform is conceived with battery operated power management

block and built to sense and store environmental data with timestamps in the local memory.

The validation of the platform's functionality enables the formulation of specifications to design

an on-chip NFC communication block. The work further contributes to the development of self-

powered medical sensor nodes based on the IoT employing printed integrated circuit

technology. The project is managed by Professor Kari Halonen's research group at the

research and development (R&D) facilities of Aalto University.

Key words

Biomedical sensor node, data recording and organization, environmental monitoring, internet

of things (IoT), near field communication (NFC), radio-frequency-identification (RFID),

wearable medical devices, wireless communication.

CONCEPT DEFINITIONS

ADC Analog to Digital Converter

ASIP Application Specific Instruction Set Processor

ASIC Application Specific Integrated Circuit

CS Chip Select

EEPROM Electrically Erasable Programmable Read Only Memory

IDE Integrated Development Environment

I2C Inter-integrated Circuit

IEC International Electrotechnical Commission

IoT Internet of Things

ISP In System Programming

LED Light Emitting Diode

LiPo Lithium-Ion Polymer

LSB Least Significant Bit

LDO Low Drop Out

MISO Master In Slave Out

MOSI Master Out Slave In

MSB Most Significant Bit

NFC Near Field Communication

PCB Printed Circuit Board

PC Personal Computer

RAM Random Access Memory

RFID Radio Frequency Identification

RTC Real Time Clock

RD Research and Development

RF Radio Frequency

SD Secure Disk

SCK Serial Clock

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SS System Select

SISO Serial In Serial Out

TWI Two Wire Interface

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

VNA Vector Network Analyzer

ROM Read Only Memory

ABSTRACT
CONCEPT DEFINITIONS
CONTENTS

1 INTRODUCTION ... 1

2 TECHNICAL BACKGROUND .. 2

2.1 Near field communication (NFC) .. 2

2.1.1 NFC Forum ... 3

2.1.2 NFC Modes ... 4

2.1.3 NFC tag types .. 5

2.2 Microcontroller ... 6

2.2.1 Internal structure of microcontroller ... 8

2.2.2 Central processing unit (CPU) .. 8

2.2.3 Memory unit ... 8

2.2.4 Input-output unit .. 9

2.2.5 Ports ... 9

2.2.6 Serial communication ... 10

2.2.7 Clock oscillator .. 10

2.2.8 Timer ... 10

2.2.9 ADC converters ... 11

2.2.10 Reset and brownout detector .. 11

2.3 Communication protocols .. 11

2.3.1 I2C communication interface .. 12

2.3.2 Serial peripheral interface (SPI) ... 12

2.3.3 Single-bus communication interface ... 14

2.3.4 UART communication interface ... 14

3 MATERIALS AND METHODS.. 16

3.1 Sensor node hardware .. 16

3.1.1 Power management ... 17

3.1.2 Microcontroller .. 18

3.1.3 NFC controller .. 19

3.1.4 NFC antenna design .. 20

3.1.5 Environmental sensor ... 23

3.1.6 Data recording ... 24

3.1.7 On-board communication interfaces ... 24

3.1.8 Charge controller and programming interface board....................................... 24

3.1.9 LiPo charging circuit ... 25

3.1.10 USB to serial communication .. 26

3.2 Firmware design .. 26

3.2.1 Algorithm development ... 27

3.2.2 Flowchart .. 27

3.2.3 Programming code .. 29

4 MEASUREMENTS AND RESULTS ... 33

5 CONCLUSION .. 38

REFERENCES .. 39

APPENDICES ... 1

Appendix 1 .. 1

Appendix 2 .. 4

Appendix 3 .. 5

FIGURES

FIGURE 1. Electromagnetic Spectrum (Lehpamer 2012, 5.) ... 2

FIGURE 2. Reader/Writer Mode. ... 4

FIGURE 3. Peer-to-peer Mode. ... 5

FIGURE 4. Card Emulation Mode. ... 5

FIGURE 5. Architecture of Microcontroller (Dawoud, Shenouda 2022,135.) 7

FIGURE 6. SPI Interface (Dawoud, Shenouda 2020,193.) .. 12

FIGURE 7. Initial State (Dawoud, Shenouda 2020, 195.) .. 13

FIGURE 8. First Clock Cycle (Dawoud, Shenouda 2020,195.) .. 13

Figure 9. Eighth Clock Cycle (Dawoud, Shenouda 2020,196.) .. 14

FIGURE 10. Block diagram of IoT sensor node. .. 16

FIGURE 11. (a) Front-side and (b) back-side of IoT sensor node. .. 17

FIGURE 12. Voltage regulator circuit with two inputs. ... 17

FIGURE 13. Schematic circuitry of microcontroller for IoT sensor node. 19

FIGURE 14. NFC Controller PN532 with its interfaces, matching network, and antenna 20

FIGURE 15. Equivalent circuit for the NFC controller and antenna (NFC antenna, 2019). 21

FIGURE 16. The NFC antennas designed and fabricated in Aalto University. 22

FIGURE 17. Temperature and humidity sensor (Gravity, 2022.) ... 23

FIGURE 18. (a) Front-side and (b) back-side of charge controller and interface board. 25

FIGURE 19. LiPo charging circuit (MCP73831 2023.) ... 25

FIGURE 20. USB to serial communication circuit (FT232R, 2023.) 26

FIGURE 21. Flowchart diagram of firmware for IoT sensor node. ... 29

FIGURE 22. Measurement set-up to validate the functionality of IoT sensor node. 33

FIGURE 23. The set temperature of the climate test chamber and measured temperature. . 36

FIGURE 24. The set humidity level of climate test chamber and measured humidity. 37

TABLES

TABLE 1. Antenna Specification .. 22

TABLE 2. Measurements of the designed NFC antennas. .. 34

TABLE 3. Communication distance of each antenna with all other designed antennas. 35

CODES

Code 1. Libraries initialization and global variable declaration. .. 30

Code 2. Setup section of firmware to initialize various communication protocols. 31

Code 3. The IoT sensor firmware code for the main loop function. .. 32

1

1 INTRODUCTION

Due to security reasons, the widespread use of near field communication (NFC) in mobile

payments, secure access control, digital authorization, and authentication has confined its

readable range protocols. The aim of this thesis research was to demonstrate how wearable

medical devices leverage NFC technology. The use of NFC on the internet-of-things (IoT)

based sensor nodes has gained attention after its integration in smartphone devices. There

have been efforts to extend the communication range of NFC technology for data exchange

and wireless power transmission. The applications the NFC based devised can considerably

be extended by increasing the usable distance. For example, the extended use of NFC

technology in wearable biomedical devices. An important benefit of NFC technology is that it

makes it possible to monitor physiological parameters in real-time when users are engaged in

daily activities. NFC technology does not require complicated procedures like pairing,

transmission control protocols and high-power consumption as in the case of Bluetooth and

Wi-Fi.

In this work the challenges to adopt the NFC in the medical field of wearable medical devices

due to its limited communication distances are accessed and analyzed. An Arduino based IoT

sensor node was designed and developed with NFC data communication using off-the-shelf

components. The sensor node is capable of sensing, recording, and transmitting important

environmental parameters such as temperature and humidity. A power management block with

lithium-ion polymer (LiPo) battery was developed to ensure wireless applications of the

proposed IoT sensor node. The validation of the platform's functionality enables the formulation

of specifications to design an on-chip NFC communication block. Recent technological

advancements have made it possible to optimize the power consumption of electronic devices

to reduce the device size and improve the operation time. The work further contributes to the

future developments of self-powered medical sensor nodes based on the IoT employing printed

integrated circuit technology.

The background information and literature review of this research is presented in Chapter 2.

Chapter 3 elaborates the materials and techniques carried out to conduct this study. The results

are explained in Chapter 4. Finally, Chapter 5 concludes the study and provides the future

prospects.

2

2 TECHNICAL BACKGROUND

This chapter provides the background and literature review of radio-frequency-identification

(RFID) and NFC and discusses their operation modes and tag types. It also provides a review

of the hardware and software components used to develop the proposed IoT sensor node.

2.1 Near field communication (NFC)

RFID was initially introduced during World War II as part of the identification system known as

"friend or foe,". It was developed to authenticate an allied aircraft and it has continued to serve

the same purpose afterwards. RFID employs both read-and-write functions to accomplish

wireless data communication. The reader can modify and update the information stored in a

tag at any time of a tracking cycle (Lehpamer 2012, 1.)

FIGURE 1. Electromagnetic Spectrum (Lehpamer 2012, 5.)

In FIGURE 1 The electromagnetic spectrum encompasses all the distinct manifestations of

electromagnetic energy, ranging from very low frequency electric waves to very high frequency

cosmic rays. Long wavelengths are associated with low frequency while short wavelengths are

associated with high frequency. Radio waves have higher frequency as compared to electric

3

waves, followed by radio waves, microwaves, visible light, and ultraviolet radiation on

electromagnetic frequency spectrum. The radio frequency (RF) part of the electromagnetic

spectrum has frequencies that range from about 3 kHz to 300 GHz (Lehpamer 2012, 4-5.) In

the last couple of decades, the RFID systems have witnessed a significant expansion in the

range of applications. There are several different tag families available in the market, and each

family fulfills a different group of requirements. An RFID tag consists of an antenna, a memory

to record information and an on-chip support circuitry. Some of the tags contain batteries and

are called active tags. Whereas passive tags do not contain batteries. (Perret and Etienne

2014, 3.)

In the late 1800s, when Thomas Edison was conducting research on radio frequencies, he had

the idea of NFC, which stands for near-field communication. The NFC was first developed in

1983 by Charles Walton. In 2002 marked, Sony and NXP Semiconductors had a collaboration

to develop an innovative form of NFC technology. The official NFC forum was founded in 2004,

when Sony, Philips, and Nokia centered their efforts on incorporating NFC into their production

processes. In 2006, Nokia unveiled the world's first phone that was equipped with NFC. This

event marked the beginning of the use of NFC as a medium for information exchange, in

addition to its traditional use as a payment method. (Kang SG, Song MS, Kim JW, Lee JW,

Kim J 2021, 2.)

2.1.1 NFC Forum

The NFC Forum is an association that was established for the goal of defining the NFC

standards built on the standards established by international standard organization (ISO) and

international electrotechnical commission (IEC). The NFC Forum was established with the

intention of easing the process of implementing NFC technology and fostering its spread

around the world. To make sure that different products and services can communicate with

one another, the NFC Forum promotes the development of new NFC technology as well as the

standardization of existing NFC products. (Vedat Coskun, Kerem Ok, Busra and Ozdenizci

2012, 9.)

The NFC Forum selected the 13.56 MHz frequency because it offers a good balance between

range and performance for short-range wireless communication. The NFC Forum was pioneer

4

to develop the peer-to-peer (P2P) standards in 2009. These standards make it possible to send

and receive data using NFC equipped. From 2010 to 2016, several mobile applications were

developed for safe financial transactions using NFC equipped Android phones, smart tags, and

Felica cards. by 2020, the NFC has already been used in a wide range of sensors, Internet of

Things (IoT) nodes, and smart home applications. (Kang SG, Song MS, Kim JW, Lee JW &

Kim J 2021, 2.)

2.1.2 NFC Modes

There are three distinct NFC modes; reader/writer mode, peer-to-peer mode, and card

emulation mode. These modes are further described below.

The reader and writer modes of the tag are described in FIGURE 2, when both the NFC

smartphone and the NFC tag are working in reader/writer mode, they can communicate with

one another and share information. This is because both devices can read and write

information. This mode may be divided into two separate sub modes. Each sub mode has its

own unique characteristics. If a mobile phone is set to read mode, then it will be able to access

the information stored on an NFC tag. Whereas in a write mode, the mobile phone can write

data to the NFC tag. (Coskun, Ok, Busra & Ozdenizci 2012, 9.)

FIGURE 2. Reader/Writer Mode.

FIGURE 3 depicts the peer-to-peer communication between two NFC enabled devices. In this

mode, two mobile devices can communicate with one another and share data using NFC

communication protocol. Both NFC devices are powered by their own power supply to

complete the communication process. It is necessary for the second device to maintain its

listening position to receive the data transmitted by the first device. Once the first device has

finished its transmission, only then will the second device start send data. (Coskun, Ok, Busra

& Ozdenizci 2012, 9.)

5

FIGURE 3. Peer-to-peer Mode.

FIGURE 4 demonstrates the operation of an NFC device in card emulation mode. A mobile

device with NFC capability may be able to behave as a contactless smart card in this mode.

Most of the contactless smart cards that have been successfully emulated are credit cards and

debit cards. (Coskun, Ok, Busra & Ozdenizci 2012, 9.)

FIGURE 4. Card Emulation Mode.

2.1.3 NFC tag types

The NFC Forum has standardized five distinct types of tags, all are governed by the defined

control protocols. The ISO-14443A standard serves as the basis for types 1, 2, and 4, whereas

the ISO-18092 standard provides the foundation for type 3. All types of tags can be purchased

from a broad variety of vendors. (Igoe, Coleman & Jepson 2014, 17.)

Type 1 tag adheres to the ISO-14443A specification. It can either have read-only access or

read/ write access. The range is supported from 96 bytes to 2 kilobytes of memory. It has a

baud rate of up to 106 KB. However, data collisions are not protected in this data type.

Examples include the "Broadcom BCM20203" and the "Innovision Topaz". (Igoe, Coleman &

Jepson 2014, 17.)

Type 2 tags are the same as type 1 tags and are built on the ISO-14443A-based NXP/Philips

Mifare Ultralight Tag ISO-14443A standard. It has the option of either being read-only or having

read/write access. It supports memory range from 96 bytes up to 2 data transfer rates up to

106 KB per. The tags are featured with anti-collision support. An example of this tag type is the

NXP Mifare Ultralight. (Igoe, Coleman & Jepson 2014, 17.)

6

Type 3 tags are based on the Sony FeliCa tag standards (ISO-18092 and JIS-X-6319-4).

However, they lack FeliCa's capabilities for encryption and authentication. These are factory

configured to operate either in read-only or in read/write modes. It is commonly used for peer-

to-peer communication. It has variable memory with a 1MB exchange limit. Data

communication speed is either 212 or 424 Kbps. It also supports protection against data

collisions. An example of this tag is Sony FeliCa. (Igoe, Coleman & Jepson 2014, 17-18.)

Type 4 tags are based on the NXP DESFire tag (ISO-14443A) specification similar to type 1

tags. These are also factory-configured either in read-only or in read/write mode. They have

memory capacity of 2, 4, or 8KB. These support variable memory up to 32KB for each

exchange. Three communication speeds of 106Kbps, 212Kbps, and 424 Kbps are supported.

These tags are protected against collisions. NXP DESFire and SmartMX-JCOP are examples

of tag 4 types. (Igoe, Coleman & Jepson 2014, 17-18.)

Type 5 The fifth well-known tag type is supported by most of the devices. This type is exclusive

to NXP Semiconductors and is the most prevalent in NFC use as present Tag Mifare Classic

(ISO–14443A). It has various memory choices like 192, 768, and 3,584 bytes. It supports the

transmission data rate of 106 Kbps and provides anti-collision support. NXP Mifare Classic 1K,

the Mifare Classic 4K, and the Mifare Classic Mini are examples of these tag types. (Igoe,

Coleman & Jepson 2014, 18.)

2.2 Microcontroller

 A microcontroller is an application-specific instruction-set processor (ASIP) that can act as a

link between a general-purpose central processing unit (CPU) and an application-specific

integrated circuit (ASIC). An application-specific integrated circuit, or ASIP, is a programmable

processor made for a group of related applications, like embedded control, digital signal

processing, or telecommunications. The person who makes this kind of machine can change

the data path to fit the needs of the application class. This could mean adding certain functional

units for processes that happen frequently and getting rid of other units that are not used very

frequently. The microcontroller is a central processing unit made for embedded control

purposes. It is used in different applications like PC Keyboard, Mobiles phones, satellite

phones and in different instruments. (Dawoud & Shenouda 2022,134.)

7

Microcontroller is a full computer system that has been optimized for hardware control and has

the CPU, memory, and all I/O peripherals on a single chip. Because of this, the chip can work

as a single unit. Serial clock and power, these are two requirements for a microcontroller to

start work. Compared to parts that are linked to the outside of the chip, parts that are on the

same chip as other parts make processing go faster. This is because internal I/O ports on the

same chip as other parts take less time to read or write data. Input and output devices, as well

as memory, are often all put on a single chip for most of the different kinds of microcontrollers.

(Dawoud & Shenouda 2022,135.)

FIGURE 5. Architecture of Microcontroller (Dawoud, Shenouda 2022,135.)

FIGURE 5 shows the architecture of microcontroller. With a timer module, the microprocessor

can do things in predetermined amounts of time. Data moves (synchronously or

asynchronously) between the microcontroller and other devices via Serial I/O, like a PC or

another microcontroller. analogue input and output, which can be used to get information from

sensors. This can be used to control things and find out things. It has interrupt capability.

Connections between the ROM or RAM inside the computer and the external bus. It has tools

for solving bugs and a built-in monitor. It can be used to get data from different devices like

sensors and motors. It processes the collected data for required result and for implementation

of required tasks, it uses the output devices. (Dawoud, Shenouda 2022,135.)

8

2.2.1 Internal structure of microcontroller

 All microcontroller chips must contain a certain set of components (resources) for chips to

work properly. The CPU, input/output units (ports), memory units, serial communication, timers,

watchdog timers, reset and brownout detectors, oscillators, and, in many cases, analogue-to-

digital converters are among these resources. The input/output unit (ports) and memory unit

consist of the computer's working memory, while the central processing unit (CPU) is its brain.

In addition to these hardware resources, every microcontroller also needs software resources,

commonly known as programs. (Dawoud & Shenouda 2022,135.)

2.2.2 Central processing unit (CPU)

The CPU is the most important part of any microcontroller. It runs code correctly based on what

the user wants. There are memories and registers. The designer's code can run correctly

because of these registers and memory. A microprocessor is the core of every microcontroller,

and every company that makes them uses it as a key part. Intel's 8051 microprocessor, for

example, has a CPU core that is an 8085. The core of Motorola's M68HC11 microcontroller,

which is like this, is a 6800 microprocessor. (Dawoud & Shenouda 2022,137.)

2.2.3 Memory unit

All microcontrollers have internal memory as a basic element of their structure, which is located

on the chip. This memory is used by a microcontroller to program and store data. In cases

where more memory is required by some applications, external memory units are used by

microcontrollers due to the low capacity of internal on-chip memory. These external memories

are in the form of semiconductor memory chips. These memories are known as RAM and

ROM. There are two types of memories: one is program memory, which is used for program

instructions. The second type of memory is data memory, which is used for data storage. Static

Random Access Memory (SRAM) offers high-speed, volatile data storage, enabling rapid

access for processors in devices. Electrically Erasable Programmable Read-Only Memory

(EEPROM) is non-volatile, retaining data without power, vital for microcontrollers to store

9

configuration and critical information, ensuring reliability and functionality across power cycles.

(Dawoud & Shenouda 2022,137-138.)

2.2.4 Input-output unit

A machine may perform tasks when its CPU, internal memory, and lines are all integrated onto

a single chip. The device can do some tasks if it can communicate with objects outside of itself.

The computer makes use of buses. A module with numerous memory slots connects the CPU

to both the internal data bus and devices outside of it. To be more precise, one end of these

memory locations is attached to the chip's pins, and the other end is connected to the chip's

internal data bus. The locations where these connections take place are referred to as ‘ports,’

and the objects that link to the outside world are referred to as ‘I/O devices’ or ‘computer

peripherals.’ Each port has a specific position for both reading and writing. When reading the

port address, the microcontroller receives data. Data is transmitted to the port address when it

is written. The three levels of a microcontroller's connection to its surroundings are ports,

interfaces, and accessories. (Dawoud & Shenouda 2022,138.)

2.2.5 Ports

The terminals of the microcontroller are identical to the microprocessor's external lines. Each

port can only communicate with one device, whereas each bus can connect to multiple devices.

In other words, the port is like a bus in that only one device (either an input or output device)

can be connected to it simultaneously. A microcontroller's port is a collection of receptacles,

like a bus is a collection of lines. The microprocessor registers are where the buses begin, and

the port is a data register within the microcontroller. The lines connect the central processing

unit to the remainder of the computer. Similarly, the registers reveal how the CPU

communicates with the rest of the world. Ports can either receive or transmit data, or they can

do both. (Dawoud & Shenouda 2022,139.)

10

2.2.6 Serial communication

The ability to send and receive data in the form of words or bytes between the computer system

and the outside world is made possible by I/O devices. This approach, known as "parallel

communication”. It has several drawbacks, such as the requirement of numerous lines (or

channels) to send data. The number of bits in a word determines how many lines are required.

Serial communication allows sending and receiving serial data from external devices through

a port. One bit at a time, the serial connection delivers data words from the computer to the

output. This process is known as "converting from parallel to serial." By taking in external data

one bit at a time, joining those bits to form words, and then giving those words to the computer

system, it similarly converts serial data to parallel data. (Dawoud & Shenouda 2022,140.)

2.2.7 Clock oscillator

The processor executes the program stored in memory at a set rate. The frequency at which

the clock oscillator operates determines how quickly instructions are executed. The time is

controlled by the clock. The clock is responsible for ensuring that the system timer, CPU

machine cycle, and central processing unit (CPU) each have the time they require. An internal

RC oscillator, an oscillator that incorporates a quartz crystal, an LC resonant circuit, or an RC

circuit as a time component are all possible choices for the clock oscillator. (Dawoud &

Shenouda 2022,140.)

2.2.8 Timer

 When dealing with a microprocessor, timers are typically the component that is responsible

for generating a consistent delay. Timers are used in microcontrollers for a great many different

purposes. The microcontroller system makes use of the timer for a variety of purposes,

including timing events, counting events (both external and internal), and several other tasks.

(Dawoud, Shenouda 2010,140.) The watchdog timer monitors the error-free operation of the

microcontroller. A free-running counter functions as a timer. The watchdog timer waits for a

tick generated by the software, which indicates that the program is operating accurately, as

opposed to generating one itself. If a pulse does not reach the watchdog within a predetermined

11

amount of time, the watchdog timer will cause the microcontroller to reset. (Dawoud &

Shenouda 2022,141.)

2.2.9 ADC converters

Most control systems use analogue signals, which are very different from the 0 and 1 signals

that a microprocessor can understand. The information must be changed into a digital form so

that a microcontroller can understand. This is done with an analogue-to-digital converter

(ADC). Under software control, the ADC block changes analogue data into binary numbers

and sends them to a CPU block so that the CPU block can do more work with them. Most

controls have pulse-width modulators that can be used with an external RC filter to get an

analogue signal. (Dawoud & Shenouda 2022,141.)

2.2.10 Reset and brownout detector

The controller's reset circuit makes sure that all its parts and control circuits start up in a

predetermined state and that all the necessary registers are set up correctly. Resets can be

started by using the watchdog timer, the brownout detector, or the microcontroller's power-on

procedure. The controller can stop working if the data in the registers and memories gets

corrupt. The brownout detector is a circuit that monitors the voltage coming from the power

source and resets the processor if there is a brief drop in voltage. If a failure causes the clock

to slow down below a predetermined frequency, a clock monitor detector may also cause a

reset. (Dawoud & Shenouda 2022,141-142.)

2.3 Communication protocols

There are two main types of communication protocols, called SERIAL and PARALLEL. Each

has its own specifications. Serial communication is the process of sending data over a

communication route one bit at a time. This is different from parallel communication, which is

when multiple bits are sent at the same time over a link with several parallel lines. When

compared to parallel interfacing, serial communication is easy and doesn't require a lot of extra

12

hardware. Serial communication is used a lot due to its less hardware and less complexity. It

is a way for two or more devices to talk to each other. Usually, one device is a computer or a

microcontroller, and the other can be a modem, a printer, another computer, another

microcontroller. One of the most important ways that microcontrollers are used is for serial

communication. Many microcontrollers can communicate to each other in a series using one

or more methods I2C, SPI, single-bus interface and UART (Dawoud & Shenouda 2020,1-2.)

2.3.1 I2C communication interface

Inter-integrated circuits, also called two wire interfaces (TWI), are used for interconnections

between two ICs or two PCBs. It is being used widely due to its low cost, simple, internal clock,

and the fact that most microcontrollers have an I2C interface. Its data rate is 100kb/s, 400kb/s

and 1.34Mb/s on different data speed modes. Its working range depends on the number of

nodes connected to it and the data rate. In a PCB, its normal range is less than a foot, and at

the lowest data rate, its range is 10m. More than one master can be handled, but only one

master can use the bus at one time. 10m. More than one master can be handled, but only one

master can use bus at one time. Multiple nodes can be connected, and the number of nodes

depends on the medium capacitance. This interface uses external pull-up resistors. (Louis E.

&Frenzel 2015,65-66.)

2.3.2 Serial peripheral interface (SPI)

FIGURE 6. SPI Interface (Dawoud, Shenouda 2020,193.)

FIGURE 6 defines a communication interface for synchronous serial communication over short

distances. It is made up of three communication wires. One wire is for master-slave

communication, while the other is for clock oscillations. SS (slave select) is a fourth wire that

is typically used for sending and receiving data between many integrated circuits. The number

13

of slaves that can be linked to a bus is theoretically unlimited, but the number of slaves that

may be attached is limited by the bus's load capacitance. The SPI protocol (serial peripheral

interface) sends and receives data in a continuous stream. This protocol is recommended for

fast data transport. The maximum speed it can deliver is 10 Mbps. It has four wires: MISO

(Master in Slave Out), MOSI (Master Out Slave In), SS (Slave Select), and Clock. (Dawoud &

Shenouda 2020,38.)

FIGURE 7. Initial State (Dawoud, Shenouda 2020, 195.)

In FIGURE 7 Master and Slave devices each contain an 8-bit shift register. The Serial-In/Serial-

Out (SISO) mode is used by these shift registers. The Slave's shift register's output, MISO, is

connected to the input of the master's shift register, and the master's shift register's output,

MOSI, is connected to the Slave's shift register's input. As this is a synchronous serial data

transfer protocol, a clock is required to synchronize the data flow between the master and

slave. The master device is responsible for opening and managing the connection; therefore,

the clock source, SCK, of the master device must be used to synchronize the data flow. Let

the master's shift register hold data from A7 to A0 (MSB to LSB) and let the slave's shift register

hold data from B7 to B0 (MSB to LSB). By lowering the voltage on the SS/CS pin, the master

turns on the slave, which then makes 8 clock pulses. A single bit of information is sent from the

master to the slave after every cycle of the clock, and the same thing happens in reverse.

(Dawoud & Shenouda 2020,194.)

FIGURE 8. First Clock Cycle (Dawoud, Shenouda 2020,195.)

14

In FIGURE 8 the first clock signal is applied. By applying the first clock the master shift registers

transfer one bit to the slave. The bit A0 transfers from master’s shift register to slave shift

register and slave shift register’s one-bit B7 enters to the master shift register. One clock signal

uses to process one bit. FIGURE 9 stage when eighth clock signal generates and process the

data bits. It shows that all data bits have been transferred from Master register to slave register

(Left to right) at the end of eighth clock cycle. Master register has received complete data of

slave and slave has received complete data of master. (Dawoud, Shenouda 2020,196.)

Figure 9. Eighth Clock Cycle (Dawoud, Shenouda 2020,196.)

2.3.3 Single-bus communication interface

The 1-wire communication protocol facilitates data transfer between a controller device and a

peripheral device using a single cable. A single controller device establishes communication

with one or more 1-Wire peripheral devices through a single data line, which can also serve as

a power source for the peripheral devices. The 1-Wire temperature sensors have gained

significant popularity due to their affordability and user-friendly nature, as they offer calibrated

digital temperature readings directly. Long wire lengths connecting the sensor and Arduino can

be tolerated without any measurement errors. (1-Wire Protocol, 2023.)

2.3.4 UART communication interface

Universal Asynchronous Receiver Transmitter is a serial interface widely used in embedded

electronics. that does not use clock signal to synchronize the sender and receiver. Pre-defined

clock signal can synchronize serial communication. Microcontroller has two PINs for UART

15

interface, but a single microcontroller can be attached with multiple UARTs by defining the

microcontroller PINs. UART has two independent wires. Rx is connected to the Tx of opposite

side and Tx is connected to the Rx of opposite side. For smooth communication it is necessary

to known about the frame rate of data. (Lacamera D. 2018, 16-17.)

16

3 MATERIALS AND METHODS

This chapter discusses the hardware and software resources as well as the techniques used

to accomplish the desired results. The details of hardware and software are discussed here

with their requirements. The hardware section discusses the details of used components such

as microcontroller, memory, power management, sensors, NFC controller, antenna design,

and communication interfaces. Whereas the software section talks about the used code

libraries, firmware bootloader, NFC controller configuration, and program code. Figure 10

depicts the block diagram of IoT sensor node and the programming interface including

debugging and charging interface.

FIGURE 10. Block diagram of IoT sensor node.

3.1 Sensor node hardware

Off the shelf components are used to develop the hardware structure of the IoT sensor node.

It includes power management, microcontroller, NFC controller, memory, environmental

sensors, communication interfaces and antenna matching network. The microcontroller

receives environmental data from the sensors, processes this data and sends it to the NFC

controller for wireless transmission. The data is also stored in an on-board memory. Altium

Designer (AD) is used to create schematics and develop a two-layer printed circuit board (PCB)

for the IoT sensor node. The components are deployed on both sides of the PCB to reduce the

hardware size of IoT node. The design is sent to a commercial manufacturer for fabrication of

17

designed PCB. The PCB is assembled and soldered in-house using soldering station (CD-

2BQF, JBC) at Aalto University labs. FIGURE 11 (a) shows the front side and (b) depicts the

backside of assembled PCB of IoT sensor node. The schematic of the IoT sensor node is given

in Appendix 1. Each block of the IoT sensor node is explained in the following subsections.

FIGURE 11. (a) Front-side and (b) back-side of IoT sensor node.

3.1.1 Power management

The power management ensures the constant and stable power supply to all the components

of IoT sensor node. Power management is designed to obtain power either from wired

connection or from a single cell lithium polymer (LiPo) battery. The wired input power source

is utilized during the development and debugging phase of the project. While the LiPo battery

is employed to power the IoT sensor node during operations. FIGURE 12 shows the schematic

of the regulator circuitry.

FIGURE 12. Voltage regulator circuit with two inputs.

18

The power management comprised of an off-the-shelf low dropout (LDO) voltage regulator

AP2112 (Diodes Incorporated) to provide constant 3.3 volts to all the blocks of hardware. The

LDO regulator can regulate from input supply from 3.4 to 6.5 V to cover both wired voltages

from the programing laptop and single cell LiPo voltages. It has a low dropout voltage, which

means that it can keep its maximum output voltage even if the voltage goes a bit lower.

Quiescent current, which is also called "standby current," is low, which is important for uses

that need to save energy. It has the highest output current of about 600 mA, which makes it

good for many low-power to medium-power uses. The output voltage is well controlled, with

only a small amount of variation. The device has a safety feature that turns it off if it gets too

hot to avoid harm. The SOT-23 package is small and easy to solder as well, making it feasible

to have area optimized designs. A Schottky diode (BAT60A by Infineon) with low forward

voltage drop of 120 mV is used to isolate the input power from LiPo battery. The enable pin of

regulator is pulled up to supply voltages to configure it for normal operation.

3.1.2 Microcontroller

A high performance and low power 8-bit microcontroller (ATmega328P, Microchip) is selected

for the IoT sensor node. It is very popular in Arduino based hardware because of its convenient

configuration and variety of peripherals. The operating voltage of ATmega328P is 1.8V to 5V.

Atmega328P can operate at maximum clock of 16 MHz with an external clock generator when

supplied with 5 volts. However, it is configured at 8 MHz clock frequency for this to operate on

lower supply of 3.3 V for the IoT sensor node. It is equipped with 32 kB flash memory to store

programs, 2 kB SRAM memory for the storage of data, and 1 kB of EEPROM memory for the

storage of non-volatile data. The microcontroller has a flexible set of 23 general-purpose input

and output lines to provide an easy interface for external devices.

ATmega328P microcontrollers are available in a wide range of packages. The thin quad flat

pack (TQFP) package of microcontroller is used here to optimize the area and bring

convenience in assembly. FIGURE 13 shows the schematic diagram of a microcontroller

circuitry used for IoT sensor node. An off-chip crystal oscillator is connected to the

microcontroller for stable operation. Single wire communication bus interface is employed for

the environmental sensor and SPI communication interface is established with NFC controller

and on-board micro secure digital (microSD) memory card.

19

FIGURE 13. Schematic circuitry of microcontroller for IoT sensor node.

3.1.3 NFC controller

NFC controller is a key component to establish the wireless communication for IoT sensor

node. PN532 is a flexible NFC controller integrated circuit that supports a variety of NFC Forum

protocols including MIFARE reader/writer (ISO/IEC 14443A), FeliCa reader/writer,

reader/writer (ISO/IEC 14443B), MIFARE classic card emulation mode (ISO/IEC 14443A),

FeliCa card emulation and ECMA 340 (ISO/IEC 18092) peer-to-peer mode. These protocols

are required to communicate with various types of NFC tags. The NFC controller PN532 is

selected for IoT sensor node because of its compatibility with peer-to-peer communication

mode, supply voltage range, ease to configure and the availability of SPI interface. ECMA 340

(ISO/IEC 18092) peer-to-peer configuration mode enables two NFC devices to communicate

securely with each other.

The ECMA 340 protocol is employed to establish peer-to-peer communication mode for NFC

Interface which used inductively coupled antennas designed at the center frequency of 13,56

MHz. The card emulation mode and read-write mode are employed to debug and improve the

functionality of NFC communication during the firmware development process of the IoT sensor

node. FIGURE 14 depicts the required minimum circuitry to function with matching network,

antenna, and interfaces with host processor. An external crystal of 27.12 MHz is used to clock

20

the NFC controller. Decoupling capacitors of 4.7 uF and 100 nF are used to counter big dips

or spikes in supply voltage. The controller has the capability to operate between 2.7 to 5.5

volts. We, as explained in the power management section, have used 3.3 volts for this project

to ensure reliable communication with the host processor.

FIGURE 14. NFC Controller PN532 with its interfaces, matching network, and antenna (NFC

Integrated solutions 2023.)

3.1.4 NFC antenna design

The construction of an antenna for NFC communication is based upon positioning a loop on

the application PCB. Its impedance is matched with the internal tuning capacitance value (CT)

to resonate the circuit at 13.56 MHz. The fundamental equation governing the tuning frequency

21

is shown in Equation 1 where inductance of antenna is denoted with LA and the tuning

frequency is denoted with FT (NFC antenna, 2019).

𝐹𝑇 =
1

√𝐿𝑇 × 𝐶𝑇

 (1)

An antenna operating at 13.56 MHz can be designed in various shapes. The equivalent

inductance (LA) of antenna is the key factor to have it resonating at the frequency of 13.56

MHz. An NFC module like the PN532 and its antenna need to be connected to a circuit that

matches the antenna to facilitate an effective transfer of power and an excellent level of

communication performance. The purpose of this circuit is to ensure that the impedance of the

antenna is compatible with the impedance of the transmission and reception circuits on NFC

controller.

FIGURE 15. Equivalent circuit for the NFC controller and antenna (NFC antenna, 2019).

An antenna impedance matching circuit works for impedance matching to transfer the antenna

signal from PN532 to the antenna with maximum signal strengthen. Matching network is a

circuit including inductors, capacitors, and resistors. This matching circuit is designed

according to antenna’s specifications. A stable communication system for peer-to-peer

communication are the results of matched impedance to maximize the power transfer and

enhance the signal strength. FIGURE 15 shows and equivalent circuit of the matching network

for the NFC antenna design. Although Cant, Rant, and Lant are constants, the resulting

impedance (their parallel combination) varies with frequency. The imaginary portion of the

antenna impedance Zant is null at self-resonance frequency, and Zant is simply resistive. The

imaginary part of the antenna impedance is positive below the self-resonance frequency, and

the antenna behavior is inductive. (NFC antenna, 2019.)

22

TABLE 1. Antenna Specification

Name

Specifications

Turns
(N)

Length x Width
(mm)

Conductor
Width (mm)

Conductor
Spacing (mm)

Inductance
(μH)

Antenna (a) 8 20 x 20 0.2 0.49 1.47

Antenna (b) 4 42 x 32 0.2 0.60 1.48

Antenna (c) 3 80 x 40 0.6 0.60 1.47

Antenna (d) 6 30 x 30 0.5 0.60 1.51

Antenna (e) 7 40 x 40 1.12 1.00 1.55

Antenna (f) 2 100 x 100 0.6 1.00 1.47

Antenna (g) 4 80 x 40 1.6 1.00 1.50

Antenna (h) 4 104 x 52 3 1.50 1.55

Antenna (i) 4 120 x 80 6 2.00 1.50

FIGURE 16. The NFC antennas designed and fabricated in Aalto University.

23

A matching network is designed for the NFC controller with loop antenna having inductance of

1.47 μH to resonate at frequency of 13.56 MHz. Nine different antennas are designed with a

focus on working with the same matching network. The designed inductance is kept similar for

all antennas. The number of turns (N), antenna dimensions, conductor width, and spacing

between conductors are varied for all the proposed designs to vary the impedance of antennas.

The loop antennas are designed using NFC inductance design tool of ST Electronics for the

NFC controller to assess the effect of variation on the communication distance achieved in

peer-to-peer mode. The antennas are designed in Altium PCB design tool and fabricated using

PCB milling machine (S63, LPKF ProtoMat) at Aalto University labs. FIGURE 16 shows the

designed antennas. Whereas TABLE 1. presents the sizes, number of turns, track widths,

designed inductance and inter-track distance.

3.1.5 Environmental sensor

A project that requires the continuous monitoring and management of environmental variables

in real time, the sensor is an essential component because of its long-term reliability and high

level of precision. DHT22 (DFRobot) provides temperature measurement precision of 0.5°C

and humidity measurement accuracy of about 2-5%. Temperature and humidity are typically

operatable within a range between -40°C and 80°C and 0–100%, respectively. If a sensor

needs to be positioned in a location remote from the microcontroller, DHT22 can function with

extended wire lengths without the measurement’s errors. DHT22 is employed for the IoT

sensor node as environmental sensor Because of its low power requirements and its

convenient single-bus digital interface. FIGURE 17 shows DHT22 sensor by Robots.

FIGURE 17. Temperature and humidity sensor (Gravity, 2022.)

24

3.1.6 Data recording

An on-board memory is established by interfacing a microSD card on the IoT sensor node to

store the recorded data when the NFC reader is not available. Real-time data points of

environmental sensors are stored in the microSD. Memory capacity can be changed as per

data size and data sample rate requirements. An SPI interface is employe to establish

communication between memory and the microcontroller.

3.1.7 On-board communication interfaces

The SPI interface is employed for on-board communication for IoT sensor node due to its key

feature of high data transfer with low latency. The SPI is deployed interface NFC controller and

microSD card with microcontroller. The SPI interface is also utilized to burn Arduino bootloader

in the microcontroller of IoT sensor node from the in-circuit Serial Programmer (ISP). A

standard clock speed of 100 kHz is used to establish the SPI communication. Single-bus digital

communication interface is established between microcontroller and environmental sensor to

collect the environmental parameters from the sensor. The UART interface is employed to

establish the communication between microcontroller and Arduino integrated development

environment (IDE).

3.1.8 Charge controller and programming interface board

A portable programming interface circuitry is designed and developed separately to burn codes

and debug the firmware during the software development process. The separate development

of this board serves several purposes including area reduction of IoT sensor node,

programming and debugging interface for the firmware development and charging the on-

board LiPo battery. FIGURE 18 (a) and (b) respectively depict the front and back side of the

charge controller and programming interface board. The board is designed in a way to connect

and disconnect to IoT sensor node with the help of pin header conveniently.

25

FIGURE 18. (a) Front-side and (b) back-side of charge controller and programming interface

board.

3.1.9 LiPo charging circuit

A single cell fully integrated LiPo charge management controller MCP73831 (Microchip) is

employed on the programming interface board to charge the LiPo battery. The input power is

supplied with the USB interface. FIGURE 19 shows the schematic diagram of single cell Lipo

charger controller. Decoupling capacitors are used to stabilize the input and output voltages.

The voltage regulator ensures are regulated 3.3 V output for the IoT sensor node. Single cell

LiPo batteries are widely used in low power Arduino projects due to their portability and

durability.

FIGURE 19. LiPo charging circuit (MCP73831 2023.)

26

3.1.10 USB to serial communication

A universal serial bus (USB) to serial UART interface chip FTDI232 (FTDI Chip) is used to

establish the communication between IoT sensor node and Arduino IDE firmware development

and debugging environment. The FTDI232 is also equipped with an on-chip level shifting

circuitry which is used here which shifts the levels between 5 and 3.3 V to ensure reliable

communication. FIGURE 20 shows the schematic diagram of USB to serial UART

communication circuitry for communication between computer and microcontroller. Light

emitting diode (LED) indicators are used for visual debugging. The decoupling capacitors are

used to stabilize the voltages of input power supply.

FIGURE 20. USB to serial communication circuit (FT232R, 2023.)

3.2 Firmware design

Firmware design, a crucial aspect of embedded systems development, involves a systematic

process to create software that resides on hardware devices. The process involves several

essential steps, each playing a vital role in ensuring the efficiency, reliability, and functionality

of the final product. The requirements of the IoT sensor node operation are first defined which

includes reading data from environmental sensor, adding appropriate timestamps with the

acquired data, storing it to the on-board microSD card in organized files, configuring the peer-

to-peer communication protocol and looking for the NFC reader to transfer the organized data.

27

Once the requirements are defined, the algorithm is designed to outline the logical flow of

operations and the flow chart is created to better visualize the logic of algorithm.

The actual firmware code is written based on the algorithm and flowchart. A set of rigorous

tests is executed to identify bugs and ensure the firmware behaves as expected. Serial

communication port of Arduino IDE is used to debug the code. Simple form of codes is first

written to establish the basic functionality of file creation in memory, opening and adding data

to the files in microSD memory. Similarly, the NFC tag detection, basic read and write

operations are established. On the sensor end the data of temperature sensor and humidity

sensor is read, processed, and visualized on serial monitor before moving towards the

development of actual firmware. A series of code optimizations is conducted after the working

firmware is conceived. The detailed algorithm, flow chart and final version of the firmware code

is further discussed in the sub sections of this chapter.

3.2.1 Algorithm development

The algorithm development includes four important parts to ensure the proper operation of the

IoT sensor node. Firstly, all the relevant Arduino based libraries are identified and included to

establish the crucial functionality of the firmware. Then the constants and global variables are

identified and declared for the functionality of IoT sensor node. In the setup function, the

initialization and configuration of all components is executed. Finally, the functions of loop

section are identified and established to perform the functions of IoT sensor node in continues

loop. The algorithm to outline the functionality of IoT sensor node is shown in Appendix 2.

3.2.2 Flowchart

The flowchart is the structural presentation to the algorithm of the system firmware which

provides ease in understanding about the data flow and conditions while writing the code.

FIGURE 21 represents the flowchart of the firmware according to the algorithm provided in

previous subsection. In the start of program basic parts like SPI for serial communication, NFC

controller PN532 and environmental sensor DHT22 are initialized. After initialization, in the

setup function, the firmware version of NFC controller (PN532) is checked, and the NFC

28

communication mode is configured. If the firmware version of NFC controller is missing, then

an error message is generated. The data storage function in microSD card is also initialized

and the error message is generated if the initialization fails.

In the loop function, the microcontroller reads the temperature and humidity data from the

environmental sensor. Timestamp for the sensed data is attached and data is organized.

Microcontroller performs a check whether the datafile is already created inside microSD

memory. It creates the data file, names it in a structural way and opens the file if it was not

found in microSD card. If datafile is found in microSD card, then it opens it and writes organized

date to the file and closes it. The NFC controller is configured in peer-to-peer communication

mode and the availability of NFC reader is checked. If the NFC reader is available, then the

data size of the first data file is assessed in the organized file structure. The data on a file is

transferred to the NFC reader if the file size specifications are met and the transferred file is

deleted. The file size is configured according to the transfer packet size of peer-to-peer

communication mode. The function loop is repeated if the NFC reader is not found, or the file

is successfully transferred to NFC reader.

29

FIGURE 21. Flowchart diagram of firmware for IoT sensor node.

3.2.3 Programming code

A simplified variant of C/C++ programming language is employed to write the firmware of IoT

sensor node. Arduino IDE is used to write, complied, and burn the code to the microcontroller.

The Arduino bootloader is burned in microcontroller vis SPI interface before the development

30

and testing the code. The serial monitor of Arduino IDE is used to visualize and debug the

functionality of firmware. The code libraries play a crucial role in firmware coding because of

their reusability, efficiency, standardization, and community support. We have employed

various libraries for the firmware development of IoT sensor node. The peer-to-peer mode

configuration library by Ladyada is used for NFC controller PN532 (Adafruit-PN532, 2013).

microSD card configuration library, the DHT22 sensor 1-wire communication library for

environmental sensor, real time clock (RTC) library for timestamps and SPI for serial

communication with Arduino IDE is used under GNU Lesser General Public License v2.1.

Code 1 shows the used libraries and the global variable declarations in the header section of

firmware. The digital PIN 10 of Arduino microcontroller is configured as chip select (CS) for the

NFC controller PN532 to establish the SPI communication protocol. The digital PIN 2 is

configured as input data pin for environmental sensor to establish the single-bus

communication protocol.

#include <PN532.h>

#include <SPI.h>

#include <DHT.h>

#include <SD.h>

#include <RTClib.h>

#define PN532_CS 10

#define DHT_PIN 2

char DataOut[16];

char DataIn[16];

Code 1. Libraries initialization and global variable declaration.

31

void setup(void)

{

 nfc.begin();

 dht.begin();

 rtc.begin()

 uint32_t versiondata = nfc.getFirmwareVersion();

 if(!versiondata) {

#ifdef NFC_DEMO_DEBUG

 Serial.print("Didn't find PN53x board");

#endif

while (1); // Halt

 }

nfc.SAMConfig();

if (!SD.begin(8)) {

 Serial.println("initialization failed!");

 while (1);

 }

}

Code 2. Setup section of firmware to initialize various communication protocols.

The Arduino based firmware code has a special setup function to initialize the various functions

and protocols. Code 2 shows the setup part of the firmware code used for the IoT sensor node.

The SPI is initialized here to establish the serial communication protocol. The single-bus wire

communication protocol is initialized to collect temperature and humidity date form the

environmental sensor. The SPI communication protocol is initialized to communicate with on-

board NFC controller PN532. The firmware version of NFC controller is fetched, and the

process is terminated with an error message in case of failure. The While() loop is used

together with if condition statement to achieve this functionality. The microSD card is initialized

and tested using if statement. The program is terminated with error message in case of failure.

The RTC library function is initialized to incorporate the timestamp with data points.

32

void loop(void){

float temperature_S = dht.readTemperature();

float humidity_S = dht.readHumidity();

snprintf(dataout, sizeof(dataout), temperature_S, humidity_S);

if (SD.exists(("datafile.txt",)){

dataFile = SD.open("datafile.txt", FILE_WRITE); // Open data file

} else {

File dataFile = SD.open(fileName, FILE_WRITE); // create data file

}

dataFile.println(TimeStamp);

dataFile.println(temperature_S);

dataFile.println(humidity_S);

dataFile.close();

if (nfc.configurePeerAsInitiator(PN532_BAUDRATE_424K)) {

if (fileSize > 1024) {

if (nfc.initiatorTxRx(DataOut, DataIn)){

if (SD.remove("datafile.txt")) {

 Serial.println("File deleted successfully.");

 }

 delay(300000);

}}}

Code 3. The IoT sensor firmware code for the main loop function.

The loop() is the main function which repeats the programmed task according to the code

inside loop() function. Code 3 shows the important content of the repeating codes. First, the

temperature and humidity sensor data are concatenated in an array in an organized structure.

The data file in the microSD card id is checked and created if it does not already exist in the

memory. The data file opened, and the data is written together with time stamps and the file is

closed afterwards. In the following step, the availability of NFC reader is checked, and the size

of the data file is assessed. The data is then transferred to the NFC controller to send it further

to the NFC reader if all conditions met. The file is removed from the microSD memory after a

successful transfer and the loop is repeated indefinitely.

33

4 MEASUREMENTS AND RESULTS

This chapter describes the measurements setup and the measurement scenarios employed to

validate the functionality of IoT sensor node. The IoT sensor node is first powered up with

minimum operations case scenario to perform the power on test. The Arduino bootloader is

burned via SPI interface using Arduino IDE environment. A set of simple Arduino-based

programs are loaded to test the functionality of an on-board microcontroller and its

communication interfaces in a controlled lab environment. The measurement setup as depicted

in FIGURE 22 is established for the NFC communication of the IoT sensor node. An NXP

PN532 controller based commercial NFC reader (VMA211, Velleman Group) is employed to

receive the sensor data from IoT sensor node. Both the IoT sensor node and the NFC receiver

are configured in peer-to-peer communication mode.

FIGURE 22. Measurement set-up to validate the functionality of IoT sensor node.

In this study, following measurement scenarios are employed:

1. NFC antennas are tested using vector network analyzer.

2. The reading distance for the designed using centimeter scale.

3. Temperature and humidity measurements using environmental sensor.

In the first measurement scenario, the characteristics of all the designed NFC antennas are

measured at 13.56 MHz frequency on smith chart on vector network analyzer (VNA ZNB8,

Rohde & Schwarz) at radio frequency (RF) lab of Aalto University. The inductance and the

impedance of all the designed antennas are measured in a controlled lab environment. The

34

results of the measured inductances and impedances are tabulated in TABLE 2 for all the

antennas.

TABLE 2. Measurements of the designed NFC antennas.

Name

Specifications Measurements

Turns
(N)

Length x Width
(mm)

Inductance
(μH)

Inductance
(μH)

Impedance
(Ω)

Antenna (a) 8 20 x 20 1.47 1.46 2.92

Antenna (b) 4 42 x 32 1.48 1.54 4.03

Antenna (c) 3 80 x 40 1.47 1.51 1.69

Antenna (d) 6 30 x 30 1.51 1.53 155

Antenna (e) 7 40 x 40 1.55 1.65 1.19

Antenna (f) 2 100 x 100 1.47 1.55 2.93

Antenna (g) 4 80 x 40 1.50 1.59 1.03

Antenna (h) 4 104 x 52 1.55 1.65 0.73

Antenna (i) 4 120 x 80 1.50 1.62 0.64

The designed inductance is kept around 1.5 μH for all antennas. The number of turns (N),

antenna dimensions, conductor width, and spacing between conductors are varied for all the

proposed designs to vary the impedance of antennas. The impedance of every antenna mainly

depends on the track width and space between the conductive tracks. An antenna smaller in

size with a minimum track width has more impedance as compared to other antennas with a

wider conductive track. The antenna (a), (f) and (b) measured greater impedance of around 3

and 4 ohms respectively because of the reduced track width. However, the antennas (i), (h)

and (g) measured least impedance of 0.64, 0.73 and 1.03 ohms respectively at 13.56 MHz (the

center frequency of NFC communication).

In the second measurement scenario, the measurement setup is established as shown in

FIGURE 22. The maximum reading distance measurements are performed for each antenna

with combination of all other designed antennas. A centimeter scale is used on the laboratory

test bench to measure and record the maximum reading ranges. The IoT node and the NFC

receiver were configured in peer-to-peer communication mode. The measurement results of

35

maximum reading range for all antennas are tabulated in TABLE 3, the reading range of

commercial NFC modules is about 4 to 6 cm normally.

TABLE 3. Communication distance of each antenna with all other designed antennas.

Antennas
Measured
Distance

(cm)
Antennas

Measured
Distance

(cm)
Antennas

Measured
Distance

(cm)

Antenna (a) vs (a) 4.0 Antenna (b) vs (h) 7.5 Antenna (e) vs (e) 5.5

Antenna (a) vs (b) 4.0 Antenna (b) vs (i) 7.5 Antenna (e) vs (f) 9.0

Antenna (a) vs (c) 3.5 Antenna (c) vs (c) 8.0 Antenna (e) vs (g) 8.5

Antenna (a) vs (d) 3.5 Antenna (c) vs (d) 5.5 Antenna (e) vs (h) 10.0

Antenna (a) vs (e) 3.0 Antenna (c) vs (e) 8.5 Antenna (e) vs (i) 10.5

Antenna (a) vs (f) 2.0 Antenna (c) vs (f) 8.0 Antenna (f) vs (f) 11.0

Antenna (a) vs (g) 4.0 Antenna (c) vs (g) 8.0 Antenna (f) vs (g) 8.0

Antenna (a) vs (h) 4.0 Antenna (c) vs (h) 9.5 Antenna (f) vs (h) 9.0

Antenna (a) vs (i) 6.0 Antenna (c) vs (i) 10.0 Antenna (f) vs (i) 17.0

Antenna (b) vs (b) 5.5 Antenna (d) vs (d) 4.5 Antenna (g) vs (g) 7.6

Antenna (b) vs (c) 6.0 Antenna (d) vs (e) 4.5 Antenna (g) vs (h) 8.0

Antenna (b) vs (d) 4.5 Antenna (d) vs (f) 4.5 Antenna (g) vs (i) 13.5

Antenna (b) vs (e) 4.5 Antenna (d) vs (g) 5.5 Antenna (h) vs (h) 14.5

Antenna (b) vs (f) 6.5 Antenna (d) vs (h) 6.0 Antenna (h) vs (i) 17.0

Antenna (b) vs (g) 7.0 Antenna (d) vs (i) 6.0 Antenna (i) vs (i) 19.5

The reading range for the designed antennas varied from 2.0 cm to 19.5 cm. The reading range

of each antenna varies according to its impedance which is dependent on the antenna size,

conductive track width, and inter-track spacing. For example, antenna (f) has size of 100 x 100

mm with only two turns of 0.6 mm track size leading to a distributed electromagnetic field

making it very difficult to be read by small antenna as (a) having size of only 20x20 mm. The

maximum reading range for these two antennas has been limited to only 2 cm. Whereas the

antenna with larger size and smaller impedance like antenna (g), (h) and (i) has produced

enhance reading ranges in combination of each other. The antenna (i) has the largest size of

120x80 cm, with the largest track width of 6 mm and the least impedance of 0.64 Ω among

other antennas. It has produced longest reading distances with itself and with other similar

36

antenna like (h), (g), (f) and (c). It is observed that by varying the antenna size can enhance

the reading range of NFC devices with the same matching networks.

In the third measurement scenario, the environmental sensor is placed inside climate test

chamber (LabEvent, Weiss Technik) at Aalto University labs to validate its functionality for

variations in temperature and humidity levels. The temperature of the climate test chamber is

varied from -20 C to 100 C in timespan of 30 minutes. FIGURE 23 depicts the set temperature

of the climate test chamber and the measured temperature by IoT sensor node. It is observed

that the IoT sensor node has almost same sensitive level as climate test chamber, and it follows

the set temperature of the measurement range. The small lack in temperature measurements

can be compensated for with calibration using the on-board microcontroller.

FIGURE 23. The set temperature of the climate test chamber and measured temperature by

IoT sensor node.

Similarly, the humidity level is also set in the second set of measurements inside the climate

test chamber. The humidity level from 5 % to 90 % is varied inside the climate test chamber

over a time span of 30 minutes. The environmental sensor of the IoT sensor node is deployed

inside the chamber to execute the planned measurement of humidity levels. FIGURE 24 shows

the set humidity level of the climate test chamber and the measured humidity level by the IoT

sensor node. It is observed that the measured humidity levels on the graph have the same

trend of measurement. However, a lower slope for the measured humidity level is observed as

compared to the set humidity level over the measurement span of 5 % to 90 %.

37

FIGURE 24. The set humidity level of climate test chamber and measured humidity level by

IoT sensor node.

It is evident that the designed IoT sensor node is capable of working independently on single

cell LiPo battery to obtain, process, store and transfer the environmental parameters using

NFC communication technology. The measurements on the custom designed NFC antennas

show that the reading range for NFC communication protocol can be enhanced 4 times than

the range of the commercial antenna by changing the antenna design parameters and by

keeping the same antenna matching network.

38

5 CONCLUSION

In this study, the design, development, and implementation of an Arduino-based IoT sensor

node with NFC communication protocols was explored. The measurement results show that

with the same inductance and the same antenna matching network, several antennas can be

designed, and the communication range can be varied as per requirement. Commercial NFC

devices have a read range of 4 to 6 cm. However, in this study, a set of custom NFC antennas

were designed and fabricated by keeping the same inductance and antenna matching network

and using various design parameters to achieve the remarkable reading range up to 19.5 cm.

An environmental sensor was integrated with the designed IoT sensor node to showcase an

application using peer-to-peer NFC communication protocol. This thesis has demonstrated the

compatibility and applications of NFC based IoT sensor node which can be extended to be

used in various fields of life, especially in wearable medical devices.

The project makes a significant contribution to the expanding domain of IoT sensor nodes with

NFC communication protocol and acts as a great asset for various applications. Due to its

open-source nature and high level of accessibility, it is anticipated that the design of IoT sensor

node will serve as a building block for the internet of everything. Use of IoT sensor nodes in

wearable medical devices is becoming increasingly important because of its flexibility. The

integration of NFC communication protocol leads towards the possibility of wireless power

transmission for low power IoT sensor node. Hence, paving way towards the development of

self-powered battery less low power data collecting IoT sensor nodes. The on-chip

implementation of the proposed design might be considered as future work to have power

optimized system with the power-harvesting capability from the NFC reader antenna to have

battery-less operation.

39

REFERENCES

1-Wire Protocol | Arduino Documentation. Available at: https://docs.arduino.cc/learn/commu-

nication/one-wire (Accessed: 14 August 2023).

Adafruit-PN532. Available at: https://github.com/adafruit/Adafruit-PN532 (Accessed 5 October

2023).

Dawoud, D.S. and Dawoud, P. (2020) Serial communication protocols and standards. Gistrup:

River Publishers.

Dawoud, S. and Peplow, R. (2022) Digital system design: Use of Microcontroller. Gistrup: River

Publishers.

Frenzel, L.E. (2015) Handbook of Serial Communications interfaces.

FT232R. Available at: https://www.ftdichip.com/old2020/Products/ICs/FT232R.html

(Accessed: 14 July 2023).

Gravity - DHT22 digital temperature and humidity (2022) BOTLAND. Available at: https://bot-

land.store/gravity-temperature-sensors/15760-gravity-dht22-digital-temperature-and-humid-

ity-sensor-dfrobot-sen0137-5904422378004.html (Accessed: 07 September 2023).

How to design an antenna for dynamic NFC tags - application note. Available at:

https://www.st.com/resource/en/application_note/an2972-how-to-design-an-antenna-for-dy-

namic-nfc-tags-stmicroelectronics.pdf (Accessed: 10 July 2023).

Igoe, T., Coleman, D. and Jepson, B. (2014). Beginning NFC. ‘O’Reilly Media, Inc.’

Kang, S.-G. et al. (2021) Near-field communication in biomedical applications, MDPI. Available

at: https://doi.org/10.3390/s21030703 (Accessed: 28 June 2023).

https://docs.arduino.cc/learn/communication/one-wire
https://docs.arduino.cc/learn/communication/one-wire
https://github.com/adafruit/Adafruit-PN532
https://www.ftdichip.com/old2020/Products/ICs/FT232R.html
https://botland.store/gravity-temperature-sensors/15760-gravity-dht22-digital-temperature-and-humidity-sensor-dfrobot-sen0137-5904422378004.html
https://botland.store/gravity-temperature-sensors/15760-gravity-dht22-digital-temperature-and-humidity-sensor-dfrobot-sen0137-5904422378004.html
https://botland.store/gravity-temperature-sensors/15760-gravity-dht22-digital-temperature-and-humidity-sensor-dfrobot-sen0137-5904422378004.html
https://www.st.com/resource/en/application_note/an2972-how-to-design-an-antenna-for-dynamic-nfc-tags-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an2972-how-to-design-an-antenna-for-dynamic-nfc-tags-stmicroelectronics.pdf
https://doi.org/10.3390/s21030703

40

Lacamera, D. (2018) Embedded Systems Architecture: Explore Architectural Concepts,

pragmatic design patterns, and best practices to produce robust systems. Birmingham: Packt

Publishing.

Lehpamer, H. (2012) RFID design principles. Boston (Mass.): Artech House.

MCP73831 - Microchip Technology. Available at: https://www.microchip.com/en-us/prod-

uct/MCP73831 (Accessed: 2 October 2023).

NFC inductance: RF design: Edesignsuite: STMicroelectronics (no date) NFC Inductance | RF

Design | eDesignSuite | STMicroelectronics. Available at: https://eds.st.com/antenna/#/

(Accessed: 7 August 2023).

NFC Integrated Solution (no date) NXP Semiconductors. Available at:

https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-integrated-solu-

tion:PN5321A3HN (Accessed: 20 September 2023).

Ozdenizci, B. et al. (2012) Near Field Communication (NFC) - from theory to practice. John

Wiley & Sons Incorporated.

Perret, E. (2014) Radio Frequency Identification and sensors. John Wiley & Sons.

https://www.microchip.com/en-us/product/MCP73831
https://www.microchip.com/en-us/product/MCP73831
https://eds.st.com/antenna/#/
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-integrated-solution:PN5321A3HN
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-integrated-solution:PN5321A3HN

APPENDICES

Appendix 1

1. Schematics of microcontroller, regulator, and microSD memory.

2. Schematic for the NFC controller.

3. Schematics for Programming interface and battery charging circuity.

Appendix 2

Include necessary libraries:
- PN532.h: Library for the PN532 NFC module.
- SPI.h: Library for the Serial Peripheral Interface (SPI) communication.
- DHT.h: Library for the DHT22 temperature and humidity sensor.
- SD.h: Library for reading and writing data to an SD card.

Definition of constants and global variables:
- Pin assignment to select NFC controller on SPI port.
- Instances for the NFC controller.
- Pin assignment for the DHT22 sensor.
- Type declaration for DHT22 sensor.
- Instances for the DHT22 sensor operation.
- Pin assignment to select the microSD card.
- Create a file object to write data to an SD card.
- Various character arrays to store data.

Setup function:
- Initialize the serial communication for debugging purposes.
- Initialize the NFC module and check for its firmware version.
- Configure the NFC module to detect / read / write NFC tags.
- Initialize the DHT22 sensor.
- Initialize the microSD card and check for successful initialization.

Loop function:
- Read temperature and humidity data from the DHT22 sensor.
- Process temperature and humidity data.
- Add time stamps to the acquired data.
- Organize temperature and humidity data.
- Open or create text file with organized name structure if not created already on
the microSD card to write organized data.
- If the file is opened successfully, write the temperature and humidity data to the
file.
- Close the data file on microSD card.
- Configure the NFC module for peer-to-peer configuration.
- Check the availability of NFC reader.
- Transfer the text file over NFC if reader is available.
- Delete the data file after successful transmission.
- Repeat loop.

Appendix 3

Firmware code of IoT sensor node.

#include <PN532.h>

#include <SPI.h>

#include <DHT.h>

#include <SD.h>

#define PN532_CS 10

PN532 nfc(PN532_CS);

#define NFC_DEMO_DEBUG 1

#define DHT_PIN 2

#define DHT_TYPE DHT22

DHT dht(DHT_PIN, DHT_TYPE);

File dataFile;

char charArray[16];

char DataOut[16]; // 16 bytes

char DataIn[16]; // Should be 16 bytes

void setup(void) {

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for native USB port

only

 }

#ifdef NFC_DEMO_DEBUG

 Serial.begin(9600);

 Serial.println("Hello!");

#endif

 nfc.begin();

 dht.begin();

 uint32_t versiondata = nfc.getFirmwareVersion();

 if (!versiondata) {

#ifdef NFC_DEMO_DEBUG

 Serial.print("Didn't find PN53x board");

#endif

 while (1); // Halt

 }

#ifdef NFC_DEMO_DEBUG

 // Got ok data, print it out!

 Serial.print("Found chip PN5");

 Serial.println((versiondata >> 24) & 0xFF, HEX);

 Serial.print("Firmware ver. ");

 Serial.print((versiondata >> 16) & 0xFF, DEC);

 Serial.print('.');

 Serial.println((versiondata >> 8) & 0xFF, DEC);

 Serial.print("Supports ");

 Serial.println(versiondata & 0xFF, HEX);

#endif

 // Configure board to read RFID tags and cards

 nfc.SAMConfig();

 Serial.print("Initializing SD card...");

 if (!SD.begin(8)) {

 Serial.println("initialization failed!");

 while (1);

 }

 Serial.println("initialization done.");

}

void loop(void) {

 float temperature_S = dht.readTemperature();

 float humidity_S = dht.readHumidity();

 Serial.print("Temperature: ");

 Serial.print(temperature_S);

 Serial.print(" Humidity: ");

 Serial.println(humidity_S);

 // Convert temperature float to char array

 String temperatureString = String(temperature_S);

 temperatureString.toCharArray(charArray, sizeof(charArray));

 strncpy(DataOut, charArray, sizeof(DataOut));

 // Append humidity float to the existing char array

 String humidityString = String(humidity_S);

 strncat(DataOut, " ", sizeof(DataOut) - strlen(DataOut) - 1);

 strncat(DataOut, humidityString.c_str(), sizeof(DataOut) -

strlen(DataOut) - 1);

 // Configure PN532 as Peer to Peer Initiator in active mode

 if (nfc.configurePeerAsInitiator(PN532_BAUDRATE_424K)) { // If

connection is error-free

 // Trans-receive data

 if (nfc.initiatorTxRx(DataOut, DataIn))

 delay(3000);

 }

 dataFile = SD.open("text.txt", FILE_WRITE);

 // if the file opened okay, write to it:

 if (dataFile) {

 Serial.print("Writing sensor data to text.txt...");

 dataFile.println(temperature_S);

 dataFile.println(humidity_S);

 // close the file:

 dataFile.close();

 } else {

 // if the file didn't open, print an error:

 Serial.println("error opening text.txt");

 }

}

