

Creating Foliage for Video

Games

Aleksi Karppinen

BACHELOR’S THESIS
October 2023

Business Information Systems
Game Production

ABSTRACT

Tampereen Ammattikorkeakoulu
Tampere University of Applied Sciences
Degree Programme in Business Information Systems
Game Production

KARPPINEN, ALEKSI:
Creating Foliage for Video Games

Bachelor's thesis 30 pages
October 2023

The objective of this thesis was to focus on different ways of creating foliage for
video games using Blender as the modeling tool and Unreal Engine 5 as the
game engine. Additionally, the thesis covers the material creation process for
Blender and Unreal Engine, since it is a big part of foliage creation.

The methods used in this thesis range from basic alpha-plane foliage creation to
more advanced approaches, such as Nanite. Nanite is a feature in Unreal Engine
that enables the creation of highly detailed foliage with reduced resource con-
sumption compared to fully modeled foliage. Using well-optimized and resource-
efficient techniques is crucial in situations where games need to deliver smooth
performance even on lower-end devices.

This thesis shows examples for the creation process of grass, flowers, and tree
leaves, with suggestions on how to improve them efficiently without increasing
polygon counts significantly. Moreover, it includes visual references from Fortnite
by Epic Games, developed in Unreal Engine, with a detailed breakdown of pos-
sible foliage creation techniques used.

While there may not be a definitive best approach, this thesis provides a deeper
insight into the possibilities available. Comparing the polygon counts of these
techniques provides a clearer direction for deciding how to approach foliage cre-
ation.

Key words: game foliage, game art, Blender, Unreal Engine

3

CONTENTS

1 INTRODUCTION ... 6

2 CREATING MATERIALS ... 8

2.1 Fundamentals of materials ... 8

2.2 Creating textures ... 8

2.3 Alpha materials in Blender ... 9

2.4 Alpha materials in Unreal Engine ... 10

3 FOLIAGE CREATION TECHNIQUES ... 12

3.1 Detailed geometry .. 12

3.2 Nanite .. 13

3.3 Alpha masked materials ... 14

3.4 Megascans .. 17

4 CREATING VEGETATION .. 18

4.1 Generally ... 18

4.2 Flowers .. 18

4.3 Grass ... 20

4.4 Trees.. 21

4.4.1 Particle system .. 22

4.4.2 Basic shapes ... 23

4.4.3 Examples from Fortnite ... 24

5 CONCLUSIONS AND DISCUSSION ... 27

REFERENCES ... 29

4

ABBREVIATIONS AND TERMS

AI Artificial intelligence

Alpha texture Includes transparency, allowing an image or an object to

be partially invisible

Asset Digital resource like 3D model, texture, or sound file

used to build the game's world

Atlas Texture atlas, an image containing smaller textures

which reduces the amount of texture lookups

Blender Free 3D modeling software

Game engine Software that provides essential tools and functionalities

for game development

GPU Graphics processing unit, renders images for the user

LOD Level of detail

Megascans Collection of high-quality scanned materials and assets

Mesh Structural build of a 3D model formed by polygons

Nanite Unreal Engine’s technology which efficiently handles

complex meshes by adjusting the polycount based on

distance

Node Executes various operations on the material, altering its

appearance when applied to object

Photopea Free online photo editor

5

Plane Flat surface

Polycount Number of polygons needed for the 3D model

Polygon Flat, closed shape with a three or more straight sides

Real-time rendering Continuously generating and displaying graphics in in-

teractive applications, like in video games

Rendering Generating an image which requires calculating how

lighting, shadows and other visual effects affect the ob-

ject

Texture Digital images or maps applied to 3D models to give

them surface details, multiple textures are used to cre-

ate a material

Topology Defines how vertices, edges, and faces are arranged

and distributed within a 3D object

Triangle (tri) Three-sided polygon, game engines tend to split poly-

gons into triangles

Unreal Engine Game engine developed by Epic Games

Vertex Each angular point of a polygon

6

1 INTRODUCTION

The rapid growth of mobile games and the soaring popularity of multiplayer online

games are reasons why game developers must put more focus on the poly-

counts. Ensuring that the games run smoothly on lower-end devices is important

especially in multiplayer games so that there is no disadvantage for others. Foli-

age is an important part of many games nowadays and it can easily consume a

lot of resources from the game engine. Game engine is the software that provides

tools for game development and well optimized engines can handle complex ob-

jects better.

Almost every game uses some sort of vegetation to bring the game worlds alive.

“Vegetation most definitely plays a large role in helping establish mood and at-

mosphere for any given area.” (Karmaker 2016). Plants are a great way to bring

some color and life to the area or just simply fill up the space to make it look more

vivid.

Creating vegetation for 3D games can be challenging since artists does not want

to make its polycounts too high but still want to make it look good. If every leaf is

modeled individually, the polygon counts can rise to millions which is not very

optimal for video games. Polygons are flat, closed shapes that form the mesh,

which defines the overall structure and shape of an object.

Popular way of making foliage is to use alpha textures which appear partly invis-

ible and allow to create more interesting shapes without using a lot of polygons.

Alpha planes can be used in many ways to create foliage, but it always requires

a bit more time and planning to make them appealing for the player. Flat planes

can disappear wholly from certain angles which breaks the illusion of fully mod-

eled foliage.

The thesis will be going through different general ways of foliage creation using

free tools ensuring that the instructions are accessible even for beginners. The

intention behind the thesis is to show and get a deeper understanding into ways

which can be used to create foliage. Blender is a very capable 3D modeling tool

7

and Unreal Engine 5 is Epic Games’ newest version of their popular game engine.

The same methods can easily be adapted to other modeling tools and game en-

gines. Some of the features, like Nanite, are exclusive to Unreal Engine 5 but

similar technologies could be found in other engines as well.

8

2 CREATING MATERIALS

2.1 Fundamentals of materials

Materials are used to paint the objects and bring them to life through enhanced

visual appeal. They define how the objects look in terms of color, shininess, opac-

ity, and many other properties. In technical terms, materials are used to calculate

how the light interacts with the surface when it hits it (Materials n.d.).

Game engines have material editors, also known as shader editors, which allow

texture images to be used to create new materials. Materials consist of multiple

values or texture images, for example base color, roughness, and normal maps.

Textures are images or maps that give the surface details for the object and de-

fine how the material looks and reacts to the environment.

2.2 Creating textures

Photopea is a great and free online tool to create the textures that will be used

for masked materials. Two textures are required for the masked material to work,

one with base color and another one with alpha mask. Other textures can also be

used but commonly these values, like roughness, can be adjusted in the game

engine or modeling tool itself. Creating a texture map, for example for roughness,

comes in handy when there is variability in the values across the material. If the

whole material is using a single value, there is no need to create a map but ad-

justing the value in the editor works just fine.

Generating alpha masks is a quick and easy process within the photo editor,

which in this case is Photopea. Applying a color overlay from the layer styles and

then adjusting the curves in the opposite direction, turning the white background

into black, creates the required mask (Zavhorodnia 2022). Since there is no trans-

parency, these textures can be exported in multiple different formats, for example

in PNG, TGA, or JPG. The white parts of the mask will be rendered, and black

9

parts will stay transparent. Picture 1 shows the finished mask and base color

texture used for an ivy.

PICTURE 1. Alpha and base color textures. Ivy hanging image: Brett Croft 2022

(CC BY-NC 4.0).

2.3 Alpha materials in Blender

Using alpha textures in Blender can be helpful when modeling plants and envi-

ronments. It helps to have a clear idea of how everything is going to look in the

finished game without needing to go back and forth the game engine and the

modeling tool. Blender offers multiple different blend modes for alpha textures,

and they all have slightly different looks.

“Alpha clip is the cheapest to use in terms of performance, but it works from a clip

value. This means that we can't have partially transparent pixels.” (Selin n.d.).

Alpha clip mode is very efficient, and it is very close to how the textures are going

to look in Unreal Engine. In Blender the default blend mode is set to opaque, and

it must be changed from material properties for the transparency of the material

to work. The clip threshold must be adjusted to be over 0.5 for the background to

disappear. Material editors use nodes to execute various operations on the ma-

terial, altering its appearance when applied to the object (Blender n.d.). All the

necessary nodes for alpha clip blend mode can be seen in picture 2.

10

PICTURE 2. Blender nodes used for alpha clip blend mode.

2.4 Alpha materials in Unreal Engine

Textures can be imported to Unreal Engine by simply dragging them into the con-

tent browser. The simplest way of making partly invisible material in Unreal En-

gine is using images for base color and opacity mask. Blend mode must be set

to masked for the opacity mask to work. Black parts in the mask are not being

rendered, leading to them not showing reflections or casting shadows, which re-

sults in performance savings on the graphics processing unit (GPU) (Material

blend modes in Unreal Engine n.d.). GPU is responsible for rendering images for

the user and its performance is impacted by the complexity of the assets. Ena-

bling two-sided material can be useful if the plants are going to be visible from

both sides. Picture 3 shows all the necessary nodes and options needed for alpha

materials to work in Unreal Engine.

11

PICTURE 3. Material nodes in Unreal Engine 5.

Unreal Engine has an easy-to-use SimpleGrassWind function which gives a very

basic and non-directional movement for foliage (World position offset material

functions n.d.). It has inputs for intensity, weight, and speed of the wind with an

additional world position offset setting, which all can be adjusted separately to

create as harsh wind as needed. The SimpleGrassWind function needs parame-

ters to give it some values. Scalar parameters are used in picture 4 to give a small

movement for the foliage. Adding a bit of movement for the plants, especially

outside, helps immersing players with the world and makes it a bit more realistic.

PICTURE 4. SimpleGrassWind function and the required inputs.

12

3 FOLIAGE CREATION TECHNIQUES

3.1 Detailed geometry

Blender offers a free add-on called Sapling Tree Gen which allows users to gen-

erate custom trees with different parameters. This method offers a fast way to

create stunning and realistic trees but since these trees are formed with hundreds

of thousands of polygons, they are very inefficient for game purposes. Proper

amount of polygons for a PC game prop should be around 1 000 to 20 000 (Max-

well 2019).

The tree in picture 5 would be perfectly detailed for pre-rendered images and

videos but it would be too much for games which are rendered in real time. Real-

time rendering needs to be a lot faster than pre-renders or else it would cause

lagging and interfere with the gaming experience. Using too complex meshes can

cause lagging, and framerate drops since the game engine or the players’ hard-

ware cannot handle rendering so many polygons so quickly. Using just a ten of

those trees would use over two million triangles which is more than some game

levels even use. Game engines split every polygon into triangles, which are

formed from three vertices and one face. It is better to use more geometry for

bigger things, like buildings, than use the whole polygon limit for highly detailed

leaves that no one even looks that close to notice.

13

PICTURE 5. Tree created using the Sapling Tree Gen. Leaf triangles: 213 600.

3.2 Nanite

Unreal Engine 5 supports a new virtualized geometry system called Nanite.

Nanite works with automatic levels of detail (LODs), changing the topology and

details of the mesh based on how far away it is. Topology of the object defines

how vertices, edges, and faces are distributed within the object. Basically, Nanite

automates the process of doing multiple different variants of the assets with dif-

ferent LODs. Assets are resources used for game development, including 3D

models, textures, and sound elements.

Enabling Nanite allows using high poly meshes in games, but it is important to

remember that it only reduces the polycount when the object is far away. From

the close range the 200 000 polygon trees are still going to be very detailed and

take a lot of resources. Nanite can be turned on for static objects from the asset

settings (Maxwell 2021).

Preserve area was designed especially for foliage meshes that usually disappear

from further away. This scales each leaf up instead of simplifying the mesh into

14

triangles and quads. (Nanite virtualized geometry in Unreal Engine n.d.) Over-

simplification of the meshes tends to lead to them disappearing wholly, which

happened to the leaves of the tree in middle in picture 6.

PICTURE 6. Left is without Nanite, middle one is with Nanite and right one is with

Nanite and preserve area on. Tree is created using Sapling Tree Gen.

3.3 Alpha masked materials

A common and resource-efficient approach for adding foliage to video games is

to use planes, which are flat surfaces, and then applying foliage textures to them

using alpha masked materials. Creation process of masked materials was gone

through in section 2.2. This way the polycount does not rise too high and game

engines can render the object faster. Rendering objects requires the engine to

calculate how lighting, shadows, and other visual effects affect it and it is a lot

faster for less complex objects.

Using simple planes does not necessarily mean using just flat surfaces but there

are ways to make them more interesting and appear to have more geometry than

they really do. Using a knife tool in Blender to cut the planar mesh containing a

plant into smaller pieces enables slight modifications to its geometry. Splitting

mesh into smaller pieces does not increase polygon count significantly but makes

it easier to form more interesting shapes. Moving some vertices in the 3D space

15

and adding a little rotation for the mesh prevents it disappearing wholly when

looking at it from the sides.

Since the game engine is going to split polygons into triangles, working with tri-

angles instead of polygons in the modeling software can be helpful. Moving the

vertices have less impact on the structure allowing fine tuning it without making

very noticeable harsh edges. In Blender, there is a feature to triangulate mesh

when opening the face-menu in edit mode. In picture 7 the mesh is split in two

different ways showing how a few more triangles can give a much more to work

with. Picture 8 shows differently split planes and side views for an easy compar-

ison.

PICTURE 7. Meshes split differently; the left is formed by 3 triangles and the right

by 10 triangles.

16

PICTURE 8. Differently divided planes showing how few triangles enhance the

overall shape (Serr 2019).

Cutting a few leaves separately and adding them in different angles to the plant

gives it a more realistic look and illusion that it has more geometry. This is a good

way to add leaves especially for plants that are going to be looked at close range.

Combined with slightly curved planes it can create stunning foliage without cost-

ing too many polygons. Picture 9 compares flat mesh with a slightly curved ver-

sion, showing how little adjusting can have a very noticeable impact on the out-

come.

PICTURE 9. Comparing flat vegetation with curved vegetation.

17

3.4 Megascans

Quixel Megascans is a large library of high-quality real-world 3D and 2D assets -

including textures, materials, and models. These are free to use for game devel-

opment in Unreal Engine. Megascans have complete 3D meshes which include

many different LODs and options for material quality. Megascans assets are very

realistic which results in the most high-quality versions using a lot of polygons.

Instead of using the 3D objects from Megascans, there are atlases which are

large textures images containing multiple smaller textures. Atlases can be split

into smaller pieces the same way as masked materials in section 3.3. This way

the amount of polygons can be reduced to fit the possible limits of the game and

it allows greater freedom to create vegetation as one desires. Picture 10 shows

some examples of how the atlases look and a highly detailed 3D plant inside

Unreal Engine.

PICTURE 10. Megascans plant atlases in the library and a Megascans 3D object

in Unreal Engine.

18

4 CREATING VEGETATION

4.1 Generally

When creating foliage, it is important to follow the same art style as the other

elements in the game to make them match. Seasonal variations in foliage, like

falling leaves or snow, enhance game settings and storytelling for a more immer-

sive experience.

In Unreal Engine there is a setting called cull distance, which adjusts how far

away the foliage is going to be visible. This setting can be found in foliage mode

under instance settings and changing the maximum value changes how far away

the objects are going to be rendered. Depending on the size and verticality of the

environment, many objects cannot be seen from everywhere and there is no rea-

son to always render them. Utilizing this technique is effective especially for grass

and flowers, but it can also serve as a viable alternative to using LODs in larger

environments when working with trees.

To further enhance realism in all the foliage, including subtle differences in sizes,

colors, and rotation angles helps. Material settings in Unreal Engine enable add-

ing slight color variation to materials, which allows to create more distinctive foli-

age. When using foliage painting tools, it is possible to add variations for the sizes

by adjusting the scale values.

4.2 Flowers

Creation of flowers follows the same methods as gone through in section 3.3,

using alpha materials for more geometry. One texture can be used for multiple

different variations of flowers which reduces the materials needed. Less materials

require less draw calls which affects performance instantly. Small objects, like

flowers, do not really require very high-quality materials which is why it makes

sense to fit multiple flower variations within a single texture.

19

Simple flower shapes can be easily created by moving the middle part to be a bit

lower than the edges, as seen in picture 11. Using smooth or auto-smooth shad-

ing is recommended as it conceals sharp edges between the petals making it

harder to notice how little polygons are used for them. When using SimpleGrass-

Wind in Unreal Engine, be sure to connect the flower meshes to the stem meshes

to prevent the wind effect from treating them as separate objects which can po-

tentially cause the stems to poke through the flowers.

PICTURE 11. Flowers with wireframe showing. Each one is formed by 22 trian-

gles.

Instead of relying solely on a single plane per flower, another technique involves

using multiple planes per flower. By duplicating and rotating these planes at dif-

ferent angles, one can create a more three-dimensional appearance and add

depth to the flowers. Depending on the style of the flowers, this approach en-

hances their visual appeal from different angles. This technique was used to cre-

ate the flowers from Fortnite, as seen in Picture 12.

20

PICTURE 12. Flowers from Fortnite.

4.3 Grass

Focusing on polycount when creating grass or other foliage that is fairly small and

is going to be used in most of the scenery can be crucial. When using thousands

of grass blades, even one polygon ends up adding a polycount by thousands

(Norris 2017). Considering when more geometry is really needed and when sim-

pler assets get the job done can really affect the smoothness of the gameplay.

When creating a dense grass area, a single grass plane can simply be formed

with a single plane to reduce polycounts. Changing some of the grass to be at a

slight angle helps it look better and fuller when looking from above. Typical way

for artists to create grass for games is to use two separate grass planes posi-

tioned at 90-degree angles from each other to increase the density. This way the

grass planes are not using too many polygons but can fill the area well enough.

If the scene is using only a few grass blades, increasing the polycount and adding

subtle rotations and bends to them prevents them disappearing from certain an-

21

gles while maintaining a lush look (Norris 2017). Picture 13 shows densely scat-

tered grass planes without and with material, which helps to understand how

many planes are required for thick grass.

PICTURE 13. Grass planes without and with material.

4.4 Trees

The art style of the game affects a lot on how the trees should be made to fit the

style. Modeling the trunk of a tree does not require anything special but planning

on how to create the leaves can be challenging. It is common to use multiple

planes for leaves, creating an asymmetrical and lush appearance for a realistic

effect. For a more stylized look there are other ways, like creating simple shapes

and applying materials to them instead of using numerous planes.

Trees can be a very complex and prominent part of the environment which is why

one should consider using LODs to improve the performance and ensure a

smooth player experience. The following tree design instructions can easily be

adapted for the creation of shrubs and bushes.

22

4.4.1 Particle system

Rather than manually placing tens of planes for leaves, the particle system in

Blender is a fast way to scatter objects automatically around another shape. This

process requires two separate objects, one for the basic shape and another one

to act as the leaves. Allowing rotation for the leaf-object reduces the number of

objects needed and gives it a fuller look. The basic shape of a tree can be pretty

simple, as long as there is enough room for the leaf planes on the surface. Ap-

plying scale in Blender makes sure that all the leaves on the base and in the

planes are the same size.

Setting up in Blender, the particle system needs to be set to hair and advanced

settings need to be turned on. The most important settings of the system include

setting the number of hairs and adjusting the render settings to render as an ob-

ject while selecting the planes as instance objects. Picture 14 shows the leaf ob-

ject, basic shape, and the final outcome achieved by using 75 hairs. Scale of the

planes can be changed from render settings, and adding some randomness to

the scale adds a bit more realism to it. Turning on rotation settings and altering

orientation axis to normal allows adding randomness to the rotations as well.

Changing shading to auto smooth helps the planes to settle into a more rounded

shape and fill the shape better. If there are still empty spots, adjusting the seed

or the number of hairs can help to fill it. (Stylized Station 2021.)

PICTURE 14. Planes, basic shape, and the result without materials.

23

The triangle counts on the trees in picture 15 is 470 triangles each, which is very

optimal for games. With bigger planes for leaves the polycount could be even

lower without affecting the looks very much. Manually scaling or even deleting

some planes can be helpful especially if there are some misplaced objects. Pic-

ture 15 shows the finished trees with materials in Unreal Engine but some of the

leaves are sticking out of the base very noticeably. Such mishaps can be spotted

early on by applying materials during the modeling phase rather than solely within

the game engine, making the process smoother.

PICTURE 15. Trees with materials in Unreal Engine.

4.4.2 Basic shapes

Another way to quickly make trees is to create a simple shape and use leaf ma-

terial on it. This way the shape of the tree can be more interesting, and its silhou-

ette can help the artistic vision to come alive. If the leaf material is not too dense,

it could be helpful to create multiple layered shapes, so the foliage is not too see-

through.

Leaves on trees in picture 16 are made with three layers of the same model. This

method allows more freedom to create interesting shapes. The left one is more

24

complex and uses 2 040 triangles, and the right one only uses 1 068 triangles.

These polycounts are not too high but noticeably higher than in the trees created

by using the particle system in section 4.4.1. Using a denser material for the

leaves could reduce the number of layers needed, which directly affects the pol-

ycount positively.

PICTURE 16. Trees created with three layers of round shapes.

4.4.3 Examples from Fortnite

Epic Games’ Fortnite uses alpha textures for foliage. Bushes are created with big

and flat planes rotated in different angles to make them dense. The edges of the

planes are very noticeable from the right angles, but the polycounts are staying

low. Picture 17 showcases a tree and a bush from Fortnite.

Many of the trees are made with curved dome-like shapes that are stacked on

top of each other with some leaves sticking out to break the symmetry. Foliage is

created like a shell to cover the top parts of the tree leaving the interior of the tree

empty without unnecessary leaves which also allows a little light to come through.

25

PICTURE 17. Tree and bush from Fortnite.

Other types of trees, like conifers, can also be made with flat alpha textures. The

tree in picture 18 uses folded and curved planes to mimic pine needles. In this

scenario, the addition of minor geometric details to the planes enhances their

visual appeal. Additionally, the inclusion of folded tips on some branches reduces

the visibility of the edges of the planes.

PICTURE 18. Pines from Fortnite.

26

Nanite graphics are a toggleable feature in Fortnite, which should not come as a

big surprise since Epic Games is behind both Fortnite and Unreal Engine. How-

ever, using Nanite can really affect the frame rate negatively especially when

there are a lot of objects on the screen. Fortnite is accessible on various devices

but Nanite on the other hand runs smoothly only on high end consoles and com-

puters, which limits its potential user base.

Nanite allows to create insanely detailed and beautiful foliage, but it also requires

a lot of performance from the hardware. In Fortnite, each tree with Nanite has

around 300 000 polygons, which is quite a lot compared to other methods, like

alpha planes (Fortnite 2022). Picture 19 shows a stunning cherry blossom tree

using Nanite in Fortnite.

PICTURE 19. Tree using Nanite in Fortnite.

27

5 CONCLUSIONS AND DISCUSSION

In this constantly evolving game industry, artists are no longer constrained by the

limitations of the past. The objective of the thesis was to show different ap-

proaches to foliage creation and explore how differently they look and perform

compared to each other. The completion of the thesis remained mostly on sched-

ule and the scope grew a bit during the information acquisition. The initial objec-

tive was to explore manual methods for creating materials and assets using alpha

planes. Technologies like Nanite and Megascans were not initially part of the the-

sis but their undeniable significance in modern foliage creation led to their natural

inclusion in the thesis.

The reliability of the information is provided by referencing official documentation

from Unreal Engine and Blender. The examples demonstrated within this work

were created by the author, unless explicitly stated otherwise. The thorough test-

ing of these methods was completed in Unreal Engine 5.1.1 and Blender 3.4.1 to

ensure their effectiveness and accuracy.

The tools and techniques explored in this thesis have shown the path towards

more immersive and visually stunning game foliage. As games continue to push

the boundaries of what is achievable, the creative potential and the array of meth-

ods for foliage design expand. The groundbreaking innovations, such as Nanite

and Megascans, are transforming game development artistry rapidly making art-

ists’ jobs much more pleasant. The tools enable working more productively with

automating repetitive tasks and letting artists focus on their creative vision instead

of technical obstacles. This will ultimately lead to the development of richer and

more immersive game environments with a faster pace.

In terms of different approaches, there is not a one definitively best method for

creating foliage. Everything is situational and artists have to make right decisions

on how to approach the foliage creation based on the targeted market and any

limitations it might have. Alpha materials are still a viable option for most scenar-

ios but as time goes and tools improve, Nanite-like technologies might become

the new standard. Nanite has a potential to become the core technology in real-

time rendering, changing the way games are developed and experienced. It might

28

lead to more detailed virtualized geometry environments and as hardware capa-

bilities continue to progress, Nanite will become more accessible and widely

available.

Currently, artificial intelligence (AI) is making significant advancements and in the

future, it can be helpful for artists to create assets and materials faster. AI can

help reduce the time needed for optimizing materials and assets making the over-

all development process faster. As AI technology continually advances, there are

associated risks including the possibility of it replacing some of the roles in game

development. However, AI has the potential to inspire artists with unlimited crea-

tive ideas, ensuring the creation of unique and artistic games.

Games are becoming more and more realistic all the time and the environments

are starting to mirror reality. The advances in technology consistently expand the

possibilities of what can be accomplished in the foliage creation and only the fu-

ture tells what technologies will be invented and how the current technologies are

going to be shaking the industry in the next few years.

29

REFERENCES

Blender. n.d. Introduction to Nodes. Webpage. Read on 26.9.2023.
https://docs.blender.org/manual/en/2.79/render/blender_render/materi-
als/nodes/introduction.html

Fortnite. 2022. Drop into the next generation of Fortnite Battle Royale, powered
by Unreal Engine 5.1. Webpage. Read on 5.9.2023. https://www.fort-
nite.com/news/drop-into-the-next-generation-of-fortnite-battle-royale-powered-
by-unreal-engine-5-1

Ivy hanging. CC BY-NC 4.0. Free PNG img. Image. Viewed on 2.8.2023.
https://freepngimg.com/png/112296-ivy-hanging-download-free-image

Karmaker, J. 2016. Vegetation creation for video games. 80lv. Webpage. Read
on 18.8.2023. https://80.lv/articles/vegetation-creation-for-video-games/

Material blend modes in Unreal Engine. n.d. Unreal Engine. Webpage. Read on
20.8.2023. https://docs.unrealengine.com/5.1/en-US/material-blend-modes-in-
unreal-engine/

Materials. n.d. Unreal Engine. Webpage. Read on 31.8.2023. https://docs.unre-
alengine.com/4.27/en-US/RenderingAndGraphics/Materials/

Maxwell, W. 2019. How many polygons should a game model have. CG Obses-
sion. Webpage. Read on 2.8.2023. https://cgobsession.com/how-many-poly-
gons-should-a-game-model-have/

Maxwell, W. 2021. Does Unreal Engines 5 Nanite make poly count irrelevant.
CG Obsession. Webpage. Read on 30.8.2023. https://cgobsession.com/does-
unreal-engines-5-nanite-make-poly-count-irrelevant/

Nanite virtualized geometry in Unreal Engine. n.d. Unreal Engine. Webpage.
Read on 31.8.2023. https://docs.unrealengine.com/5.2/en-US/nanite-virtualized-
geometry-in-unreal-engine/

Norris, J. 2017. Learn plant modelling for video games. Purepolygons.
Webpage. Read on 20.8.2023. http://www.purepolygons.com/up-
loads/6/0/5/5/60558851/tdw216.tutorial.pdf

Selin, E. n.d. How to use alpha transparent textures in Blender. Artistic Render.
Webpage. Read on 2.8.2013. https://artisticrender.com/how-to-use-alpha-trans-
parent-textures-in-blender/

Serr, A. 2009. Xtreme plant optimization. Wolfire games. Webpage. Read on
18.10.2023. http://blog.wolfire.com/2009/11/xtreme-plant-optimization/

Stylized Station. 2021. The 3D artist’s guide to modular environments - Unreal
Engine environment breakdown. YouTube video. Released 27.10.2021.
Watched on 29.8.2023. https://www.youtube.com/watch?v=dJnAuVtwxPI

https://docs.blender.org/manual/en/2.79/render/blender_render/materials/nodes/introduction.html
https://docs.blender.org/manual/en/2.79/render/blender_render/materials/nodes/introduction.html
https://www.fortnite.com/news/drop-into-the-next-generation-of-fortnite-battle-royale-powered-by-unreal-engine-5-1
https://www.fortnite.com/news/drop-into-the-next-generation-of-fortnite-battle-royale-powered-by-unreal-engine-5-1
https://www.fortnite.com/news/drop-into-the-next-generation-of-fortnite-battle-royale-powered-by-unreal-engine-5-1
https://freepngimg.com/png/112296-ivy-hanging-download-free-image
https://80.lv/articles/vegetation-creation-for-video-games/
https://docs.unrealengine.com/5.1/en-US/material-blend-modes-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/material-blend-modes-in-unreal-engine/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Materials/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Materials/
https://cgobsession.com/how-many-polygons-should-a-game-model-have/
https://cgobsession.com/how-many-polygons-should-a-game-model-have/
https://cgobsession.com/does-unreal-engines-5-nanite-make-poly-count-irrelevant/
https://cgobsession.com/does-unreal-engines-5-nanite-make-poly-count-irrelevant/
https://docs.unrealengine.com/5.2/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/nanite-virtualized-geometry-in-unreal-engine/
http://www.purepolygons.com/uploads/6/0/5/5/60558851/tdw216.tutorial.pdf
http://www.purepolygons.com/uploads/6/0/5/5/60558851/tdw216.tutorial.pdf
https://artisticrender.com/how-to-use-alpha-transparent-textures-in-blender/
https://artisticrender.com/how-to-use-alpha-transparent-textures-in-blender/
http://blog.wolfire.com/2009/11/xtreme-plant-optimization/
https://www.youtube.com/watch?v=dJnAuVtwxPI

30

World position offset material functions. n.d. Unreal Engine. Webpage. Read on
18.8.2023. https://docs.unrealengine.com/5.1/en-US/world-position-offset-mate-
rial-functions-in-unreal-engine/

Zavhorodnia, V. 2022. Stylized Flowers Tutorial. YouTube-video. Released
2.11.2022. Watched on 3.8.2023. https://www.youtube.com/watch?v=5Pov-
TfBD29I

https://docs.unrealengine.com/5.1/en-US/world-position-offset-material-functions-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/world-position-offset-material-functions-in-unreal-engine/
https://www.youtube.com/watch?v=5PovTfBD29I
https://www.youtube.com/watch?v=5PovTfBD29I

