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Abstract: The effects of thermoactivated recycled concrete cement (TARC) on mortar as a partial
replacement for cement was examined. TARC is derived from concrete waste through a series of
processes. Different mortar mixtures were tested, ranging from 0% to 50% TARC in 10% increments.
A comprehensive range of tests was conducted to assess the properties of the mortar, including
fresh, mechanical, microstructure, and durability evaluations. The fresh test indicated that the
incorporation of TARC impacted the flow of mortar, leading to reduced workability as the percentage
of replacement increased. Regarding mechanical performance, using 20% TARC resulted in improved
compressive strength, bulk density, and ultrasonic pulse velocity (UPV). Microstructural analysis
using thermogravimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy
(FTIR) revealed that the TARC mix exhibited advantageous thermal properties, enhanced FTIR spectra,
and a denser microstructure, thereby enhancing the durability of the mortar. Overall, substituting
OPC with TARC significantly reduces the carbon footprint associated with cement production,
promoting sustainability and contributing to a circular economy in the construction industry.

Keywords: TARC; recycled cement; concrete; microstructure; fresh properties; hardened properties

1. Introduction

The demand for concrete is growing globally because of continued vigorous growth in
the construction industry, which consumes half of all extracted natural raw materials, pro-
duces up to 40% of anthropogenic waste, and releases 30% of all polluting gases (CO2) [1].
A study on world economic growth forecasted that the planet’s built area will double in the
next 40 years and that concrete production will have to rise by 25% by 2030 [2]. The total
concrete output in 2017 has been estimated to be approximately 27 gigatons (Gt) [3]. This
will lead to a rapid increase in aggregate consumption due to the high volume of aggregate
content in concrete mixtures, which is estimated to be around 19 Gt of aggregate [1], around
4 Gt of Portland cement [4], and 2 Gt to 3 Gt of fresh water [5]. Therefore, if the trend for the
source of material is the same during the coming years, the environmental impact, energy
consumption, and increase in CO2 intensity of the concrete to be used for construction
will become more evident, leading the construction industry to be more aggressive in
addressing these issues.

The higher energy consumption and the emission of CO2 in concrete are mainly as-
sociated with cement production [6]. Cement products are the second most consumed
substances on earth after water, with their production growing by 2.5% annually. Their
production increased from 2.3 Gt in 2005 to 3.5 Gt in 2020, and it is expected to be around
3.7–4.4 Gt by 2050 [7]. Portland cement (PC) manufacturing for concrete work is an
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energy-intensive process that requires high temperatures (1450–1550 ◦C), consumes natural
resources (mainly limestone and clay), and generates vast greenhouse gas emissions in
the atmosphere (approximately 1 ton of CO2 per ton of produced cement). It is one of the
primary causes of global warming and accounts for 8% of worldwide CO2 emissions [8].
Cement is the most energy-intensive material produced in the world, next only to steel and
aluminum [9]. The production of one ton of cement consumes 80 units of electric power
and around 1.5 tons of raw materials [7]. As a result, cement stands out as a construc-
tion material with substantial embodied energy and CO2 emissions, even in developing
nations [10].

Tackling the concern of CO2 emissions arising from the cement industry stands as a
substantial challenge, but it is accompanied by several viable pathways for exploration.
Among these approaches, one involves integrating waste materials with cementitious
properties into the cement manufacturing process. This utilization of waste materials
holds promise for diminishing the need for conventional cement ingredients, consequently
lowering the environmental impact generated by cement production and simultaneously
promoting more ecologically sound waste-handling methods. Over the past two decades,
a multitude of research endeavors have delved into the incorporation of supplementary
cementitious materials (SCMs) sourced from diverse waste streams [11–15].

The annual generation of construction and demolition waste (CDW) accounts for the
most significant volume of solid waste materials, with waste concrete being the predomi-
nant component among them [16–18]. The main driver behind the substantial amount of
concrete waste is attributed to demolition activities. This is due to a combination of factors,
including the presence of numerous aged structures and buildings that have surpassed their
functional lifespan, the introduction of new construction standards, and the occurrence
of natural disasters such as storms and earthquakes [17]. The conventional practice of
disposing of these extensive waste quantities in landfills is no longer deemed appropriate.
Therefore, the exploration of alternative approaches becomes imperative. Notably, research
has been directed towards harnessing the potential of recycled concrete aggregate to en-
hance concrete sustainability [19–21]. Presently, CDW is subject to processing at specialized
facilities, resulting in the creation of what is termed recycled aggregate [22]. These materials,
categorized based on their composition, encompass recycled concrete aggregate (RCA),
recycled ceramic aggregate, and recycled mixed aggregate (RMA) [23].

Concrete waste has the potential to serve as a valuable input for cement production,
thereby decreasing the reliance on natural mineral resources in this process. Ongoing
efforts are being directed towards incorporating waste concrete directly into cement re-
placement [16]. Specific strength grades of concrete are being studied, as they do not align
with the current scenario of waste concrete disposal. Despite these advancements, unlike
the recycling of concrete aggregates, the recycling sector is encountering difficulties in
achieving the necessary technological advancements to effectively recycle and seamlessly
integrate waste concrete into cement production.

Recycled cement (RC) can be produced from cement paste waste and can have similar
properties to OPC [24]. Cement pastes from RC produced under 450 ◦C have the same
strength as OPC paste, albeit with compromised workability. The properties of mortars
containing thermoactivated recycled cement (TARC) has been investigated [25]. Binders
containing CEM I 42.5R and 20%, 50%, and 100% TARC can be framed in the European
normative strength classes 52.5, 42.5, and 32.5, respectively. The main obstacles that hinder
the application of TARC are its low setting time and high water demand. Compared to the
production process for OPC, the production of RC-450 ◦C can reduce CO2 emissions by
94% [26]. Evaluation has revealed that RC-450 ◦C paste exhibits strength similar to OPC
paste, indicating the potential for substituting OPC with RC-450 ◦C. Consequently, TARC
exhibits significant promise as an SCM for cement substitution.

Characterization of TARC in mortar compositions is currently in its early stages due to
numerous uncertainties surrounding manufacturing, hydration behavior, and the resulting
development of fresh, mechanical, microstructural, and durability properties. Moreover,
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there is a limited amount of knowledge available regarding the microstructural characteri-
zation of TARC, despite a few recent qualitative findings. Additionally, many studies have
focused solely on TARC efficiency within a limited range of mortar compositions while
neglecting various mix design characterization and TARC production conditions. As a
consequence, the acquisition of additional scientific and technical information regarding
the possibility of replacing OPC with TARC, as well as the effects that TARC has on the
properties of mortar, is necessary. The effect of using TARC as a partial replacement in
cement on the fresh, mechanical, microstructure, and durability properties of mortar to
address the aforementioned issues, which primarily concern the impact on the environment
caused by cement production’s carbon emissions, energy consumption, and the disposal of
CDW in landfills through recycling and reusing, has been evaluated.

Brunauer–Emmett–Teller (BET), thermogravimetry (TG), and scanning electron mi-
croscopy (SEM) were used in conjunction with Fourier transform infrared spectroscopy
(FTIR) to conduct a thorough investigation of this effect. Experiments were carried out to
observe and analyze changes in thermal behavior, FTIR spectra, and the microstructural
evolution of mortar following 28 days of curing. Furthermore, the mechanical and dura-
bility strengths for 3, 7, 28, 56, and 91 curing ages were evaluated. The combination of
these methodologies enabled an extensive investigation and consistent characterization of
the microstructure, mechanical, and durability development of TARC-produced cement
mortar, providing greater understanding in this area.

2. Materials and Methods

This section comprises a comprehensive exploration of the experimental approach,
utilized materials, mixture formulation, TARC production process, and characterization of
related components. All experiments adhere to ASTM standards.

2.1. Materials
2.1.1. Binders

The binding materials selected for this study encompassed type I Portland cement (OPC)
sourced from Dangote Cement PLC, conforming to the pertinent ASTM C150/C150M [27]
standards, along with TARC. Before delving into the evaluation of how TARC affected mortar
properties, a number of characterization tests were undertaken. The results of the BET test,
disclosing surface area, pore size, and volume data for both OPC and TARC, along with
chemical compositions as determined by X-ray fluorescence (XRF) analysis, are outlined in
Table 1. TARC exhibits a more extensive surface area, measuring 500 m2/g, as opposed to
OPC’s value of 340 m2/g. It is noteworthy that hydrated cement possesses a notably larger
surface area when compared to its unhydrated counterpart [28]. This phenomenon can be
attributed to micro-cracking and structural alterations, causing an incremental increase in
the surface area of the dehydrated phases within TARC during thermal depolymerization.
The specific gravity of TARC is indeed lower than that of OPC, as evidenced by Table 1.
Depending on the annealing temperature during thermal treatment, the density of recycled
cement can fluctuate between 2.65 g/cm3 and 2.95 g/cm3, a range that falls below the
specific gravity of OPC particles, which is 3.15 g/cm3 [25].

The chemical analysis indicates that the major oxides of TARC are CaO (40.84%),
SiO2 (25.36%), Al2O3 (5.4%), and Fe2O3 (8.5%). This material has both a hydraulic and
pozzolanic nature since it has a significant amount of both CaO and SiO2. The pozzolanic
reactivity of materials is primarily determined by their silica content [29]. Other oxides,
such as MgO, K2O, and Na2O contents, were found to be within a limit specified in ASTM
C618 [30]. MgO is less than 5%. Alkalis (K2O, Na2O), which contribute to the alkali–silica
reaction [31] and reduce the strength of mortar [32], are also present in a low amount
in TARC.
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Table 1. Physical and chemical properties OPC and TARC.

Items OPC TARC

Physical properties

Surface area (m2/g) 340 501
Pore volume (cc/g) 0.0789 0.079

Pore size (Å) 8.13 9.24
Specific gravity (g/cm3) 3.15 2.66

Chemical compositions CaO 65.42 40.83
SiO2 23.82 25.36

Al2O3 4.79 5.4
Fe2O3 3.05 8.5
K2O 0.9 0.5
MgO 1.51 4.96
Na2O 0.54 1.5
LOI - 10.98

Utilizing scanning electron microscopy (SEM), the morphology of TARC was subjected
to examination. The SEM scan, as illustrated in Figure 1, enabled the observation of
TARC’s overall form and surface characteristics. The particles exhibit irregular edges and a
coarse surface texture [33], along with a degree of porosity. This distinctive arrangement,
when used as an additive, can elevate water requirements and impact the workability of
concrete [34]. Furthermore, crystalline inclusions were identified on the surface of TARC
particles. These inclusions might signify remnants of hydrates formed during the initial
hardening process, encompassing portions of non-hydrated cement, unreacted calcium,
and calcium silicates [35]. Similar findings have been reported in other studies, indicating
the rough and angular surface morphology with a porous structure of recycled cement in
contrast to the compact and crystalline structure characteristic of OPC [25,36].
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Figure 1. Morphology of TARC.

2.1.2. Fine Aggregates

Natural sand with a particle size below 4.75 mm, sourced from Lalibela, was used
as the fine aggregate in this study. The appropriateness of this sand for the research was
ascertained through a series of supplementary evaluations. A comprehensive summary of
all examinations conducted is presented in Table 2. The results reveal that all characteristics
fall within the acceptable range.
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Table 2. Physical properties of fine aggregate.

Items Test Method Result Limit Within
Limits

Unit weight (kg/m3) ASTM C29/C29M [37] 1408.3 1200–1760
√

Silt content (%) ASTM C117 [38] 2.07 <5
√

Fineness modules ASTM C136 [39] 2.80 2.3–3.2
√

Relative density ASTM C128 [40] 2.32 2.3–2.9
√

Absorption (%) ASTM C128 [40] 1.39 0.2–2
√

Moisture content (%) ASTM C566 [41] 3.15 0–10
√

2.2. Methods
2.2.1. TARC Production Procedures

The production of TARC involved the establishment of a sequence of interconnected
stages. The initial phase encompassed the collection of CDW from various construction
sites. This waste originated from diverse construction activities like plastering, chiseling,
block demolition, and other concrete-related tasks. Once the material was acquired, the
subsequent stage involved the separation of non-concrete components and the utilization
of mechanical techniques to reduce the screened CDW to a smaller size of 16 mm. For this
mechanical crushing process, a jaw crusher machine with a production rate of 150 kg/h
was employed. In the third stage, the product from the previous step underwent grinding
or milling, facilitated by a grinding mill machine. To eliminate excess moisture content, the
material was initially subjected to drying in an oven at 105 ◦C. Determining an optimal
burning temperature and subsequently producing TARC constituted the final stages of the
material production process. A spectrum of burning temperatures (ranging from 450 ◦C
to 700 ◦C) was chosen, informed by prior studies [16,25,26,33–35,42], and further refined
by conducting trial compressive strength tests for the selected temperatures. From this
evaluation, a burning temperature of 700 ◦C was selected. The manufacturing of TARC
culminated with a heating rate of 10 ◦C/min over a span of 1.5 h, followed by natural
cooling, all executed within a muffle furnace, ensuring its readiness for ultimate use.

2.2.2. Mix Proportions

This study employed a cement-to-sand ratio of 1:2.75 for mortar production, which
aligns with the standard ratio specified by ASTM C109/C109M for 2 inch or 50 mm cube
mortar [43]. A consistent water-to-binder ratio of 0.486 was maintained. The specific
material proportions for TARC-containing mortar are presented in Table 3. Mixing of the
mortar adhered to the guidelines stipulated in ASTM C305 [44].

Table 3. Material proportion of TARC-containing mortar.

Mix Code

Ingredient Proportion

w/b OPC TARC Sand
(g) Water (mL)

% g % g

T0 0.486 100 888.00 0 0.00 2442.00 516.82
T10 0.486 90 799.20 10 88.80 2442.00 516.82
T20 0.486 80 710.40 20 177.60 2442.00 516.82
T30 0.486 70 621.60 30 266.40 2442.00 516.82
T40 0.486 60 532.80 40 355.20 2442.00 516.82
T50 0.486 50 444.00 50 444.00 2442.00 516.82

The number of samples produced was determined by the mechanical and durability
tests chosen. Therefore, the number of percentage replacements, along with the compressive
strength, water absorption, sulphate resistance, and UPV of mortar, strongly influenced the
basic size of the study. As per ASTM C109/C109M, a minimum of 3 samples must be used
for each mortar test at various ages (e.g., 3, 7, 28, 56, and 91 days) [43]. Overall, a total of
291 cubes were cast to execute all the experiments constituting this study.
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2.2.3. Test Program

As per the corresponding ASTM C187 [45], ASTM C191 [46], and ASTM C1437 [47]
standard procedures, consistency, setting time, and workability were all determined. The
assessment of consistency and setting time was carried out by employing the Vicat appara-
tus. The consistency test evaluates the uniformity of the mortar by quantifying the quantity
of water required to achieve a standard level of penetration resistance when a plunger is
applied to the surface of the mortar specimen. Meanwhile, the setting time evaluation
involves measuring the duration necessary for specified penetration resistance to manifest
within the mortar samples during the setting process. The onset of initial setting time is
marked when the mortar has adequately solidified to hinder a 1.13 mm (0.44 inch) diameter
needle from penetrating the surface, whereas the ultimate setting time is ascertained when
the needle fails to penetrate a 3.18 mm (0.125 inch) diameter orifice in the mortar. The
assessment of mortar workability was carried out by gauging its consistency using the flow
table method.

To ascertain the compressive strength of TARC mortars, procedures in ASTM C109/C109M
were followed [43]. The mortar’s sulphate resistance was calculated based on its remaining
compressive strength. For the acid attack test, water diluted with 5% sodium sulphate
(Na2SO4) was utilized. The bulk density of the mortar was calculated by weighing the cubes
(2 inch) in their saturated surface dry (SSD) state and measuring their actual dimensions.
Water absorption was measured by drying a sample to a constant mass, then adding
water and determining the mass gain as a percentage of the dry mass. The Archimedes
method was also used to measure porosity by adding to the mortar’s mass and weighing it
underneath the water (buoyance).

The ultrasonic pulse velocity (UPV) test serves to examine both the quality of mortar
and the presence of defects within it, achieved by transmitting electronic waves through
the concrete. Throughout the entire curing period, the mortar’s UPV was measured using
the same cubes. For each mixture, an average of three measurements was employed [48].
Scanning electron microscopy (SEM) was utilized to monitor the microstructure progression
of ground cement and hardened mortar. These assessments were conducted under a
high vacuum at 10 kV, employing different levels of magnification. Fourier transform
infrared spectroscopy (FTIR) analysis was applied to distinguish organic, inorganic, and
polymeric materials through the utilization of infrared light for sample scanning. Within
the wavelength range of 4000–400 cm−1, the technique located functional groups and other
substances. The ASTM E1131 [49] standard, originally designed for thermogravimetric
and compositional analysis of solids and liquids, underwent adjustments to accommodate
thermal analysis (DTA and TGA) assessments. Employing crucibles crafted from alumina,
a DTA-TG analysis apparatus was utilized to evaluate the thermal stability of mortar across
temperatures spanning from 20 to 900 ◦C, with an increment of 20 ◦C per minute.

3. Results and Discussion
3.1. Fresh Properties
3.1.1. Water Demand

Figure 2 shows the normal consistency of several selected mix compositions. The
water requirements surged as the percentage cement replacement by TARC increased.
Despite the fact that all of the mixes required more water than the control, they were all
within the allowed limit of 27–33% to achieve a normal consistency [45].

The increased uniformity might be attributable to the finer nature of the cement. Given
that the recycled cement possesses a greater surface area in comparison to OPC, this factor
can lead to a heightened requirement for mixing water [50]. In fact, given that TARC
contains CaO in its composition, a portion of the mixing water promptly engages in a
reaction with this compound, whereas another segment dissipates due to the exothermic
character of this reaction [25]. Furthermore, a comparable investigation verified that
TARC powders exhibit a greater need for water in comparison to OPC. This is primarily
attributable to the high surface area and porous structure of the dehydrated components,
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coupled with the substantial accumulation of free CaO formed during the process of
thermal treatment [33].

Buildings 2023, 13, x FOR PEER REVIEW 7 of 21 
 

 
Figure 2. Consistency of cement with partial substitution by TARC. 

The increased uniformity might be attributable to the finer nature of the cement. 
Given that the recycled cement possesses a greater surface area in comparison to OPC, 
this factor can lead to a heightened requirement for mixing water [50]. In fact, given that 
TARC contains CaO in its composition, a portion of the mixing water promptly engages 
in a reaction with this compound, whereas another segment dissipates due to the exother-
mic character of this reaction [25]. Furthermore, a comparable investigation verified that 
TARC powders exhibit a greater need for water in comparison to OPC. This is primarily 
attributable to the high surface area and porous structure of the dehydrated components, 
coupled with the substantial accumulation of free CaO formed during the process of ther-
mal treatment [33]. 

3.1.2. Setting Time 
The setting time of selected mixes is shown in Figure 3. It can be observed that the 

TARC mix had a slightly shorter setting time compared to the control mix (T0). The initial 
setting time of the T10 mix remained unaffected by the incorporation of TARC. However, 
with increasing levels of replacement, both the initial and final setting times demonstrated 
a minor reduction. This outcome primarily stems from the impact of temperature treat-
ment and chemical composition. Similarly, a related investigation manifested a gradual 
decrease in setting time as treatment temperature escalated, reaching up to 800 °C. This 
trend is attributed to the heightened degree of dehydration achieved during the process 
[28]. 

 
Figure 3. Setting time of control and selected TARC mixes. 

Figure 2. Consistency of cement with partial substitution by TARC.

3.1.2. Setting Time

The setting time of selected mixes is shown in Figure 3. It can be observed that the
TARC mix had a slightly shorter setting time compared to the control mix (T0). The initial
setting time of the T10 mix remained unaffected by the incorporation of TARC. However,
with increasing levels of replacement, both the initial and final setting times demonstrated
a minor reduction. This outcome primarily stems from the impact of temperature treatment
and chemical composition. Similarly, a related investigation manifested a gradual decrease
in setting time as treatment temperature escalated, reaching up to 800 ◦C. This trend is
attributed to the heightened degree of dehydration achieved during the process [28].
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3.1.3. Slump Flow

The influence of TARC replacement on mortar workability is evident in Figure 4,
despite all mixes maintaining an identical water-to-cement ratio. The T0 mix showcased a
comparatively improved average mortar flow of 178 mm. Conversely, with the increase in
the proportion of TARC replacement, there was a gradual decrease in workability, following
a linear pattern. As depicted in the figure, the reduction in flow corresponds significantly
(R2 = 0.961) to the increase in TARC replacement percentage. The rationale behind this
reduction in workability compared to the control mix lies in the characteristics of TARC,
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including its greater surface area, rough texture, and irregular morphology, all of which
are illustrated in its morphology. A comparable investigation affirmed that the TARC
mixture exhibited inferior workability compared to the OPC mixture. For instance, research
conducted by [51] highlighted slight adjustments up to a 10% replacement level, though
requiring the application of superplasticizer for TARC content ranging from 20% to 30%.
Another study unveiled that as TARC necessitates more water than OPC, incorporating
higher proportions of TARC led to mortars with a heightened water-to-binder ratio (w/b)
to achieve equivalent workability. In the case of 100% TARC substitution, a staggering 34%
more water was required compared to the scenario with 0% TARC [25].
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3.2. Mechanical Properties
3.2.1. Bulk Density

Figure 5 displays the bulk density of mortar determined by SSD weight across diverse
mixture compositions and varying periods of mortar curing. The bulk density of TARC
exhibited a noticeable surge as its replacement percentage escalated, reaching a peak at
20% replacement before declining, particularly with increasing mortar age. Remarkably,
the T20 mix was denser than both the T0 mix and all other blends. This phenomenon is
mainly attributed to the dual pozzolanic and hydraulic properties of TARC. Moreover, the
heightened surface area of TARC plays a significant role in augmenting bulk density over
extended periods. Materials with greater specific surface area values have the tendency to
densify and compact concrete due to their ability to fill pores [51].
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3.2.2. Compressive Strength

Figure 6 depicts the impact of TARC on the compressive strength of mortar. A sub-
stantial rise in compressive strength was evident up to the 20% replacement level (T20),
followed by a steep drop from T20 to T50. As demonstrated in the figure, replacements
ranging from 10% to 40% exceeded the strength activity index (SAI) line. These mixtures
attained over 75% of the 28 day compressive strength observed in the T0 mixture.
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Several investigations [51–53] have delved into the incorporation of varying quantities
of TARC within the OPC matrix, yielding somewhat contradictory outcomes. These
researchers examined the material with different replacement percentages and diverse
source materials. For instance, in one study [52], an attempt was made to substitute
OPC with TARC at 750 ◦C in high proportions (40–60%). The results indicated that at a
40% replacement level, the 28 day compressive strength (50 MPa) slightly lagged behind
that of OPC paste (57 MPa). Another study [53] involved the inclusion of 5% to 15%
TARC at 650 ◦C. In comparison to OPC paste, a 30% increase in compressive strength
was observed when 5% of OPC was replaced with TARC. A separate study [51] produced
mortars incorporating thermoactivated recycled concrete fines (RCFs) at 500 ◦C and 800 ◦C
to substitute 10% to 30% of the cement. As more TARCs were introduced, the compressive
strength of these mortars decreased. Notably, across all replacement ratios, TARCs treated
at 800 ◦C exhibited the most favorable overall mechanical performance. Even replacing
10% of OPC with such treated TARCs remained sufficient to meet the specifications for a
42.5 strength class cement.

Although pozzolans account for the vast majority of SCMs, it is critical to distinguish
between pozzolans and direct cement substitutes. A cement substitute known as a direct
cement replacement can substitute for Portland cement without requiring pozzolanic
activity or reaction, and ground granulated blast furnace slag (GGBFS) is an excellent
example of this [54]. These materials can directly replace up to 90% of cement. When
compared to GGBFS, TARC has very similar chemical compositions. As a result, it can be
asserted that this material exhibits both a hydraulic and pozzolanic nature. This explains
the early-age strength in 10% replacement between 3 and 7 days and the latter-age strength
between 56 and 91 days. According to [55], pozzolanic reactions occur over long time scales
(months to years). The main mechanism involves the transportation of calcium hydroxide
(C–H) via water to combine with the aluminate and/or silicate clay minerals.

3.2.3. Ultrasonic Pulse Velocity

To assess the impact across different curing periods, three cubes were employed to
analyze the UPV of mortar for each mixture and at all curing durations. The spectrum of
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UPV values for all curing intervals ranged from 2387.3 m/s to 4178.3 m/s, as depicted in
Figure 7. Notably, TARC replacement within the 10–20% range demonstrated an enhance-
ment in UPV value. However, subsequent to this modest enhancement up to 20%, there
followed a rapid linear decrease in UPV. To classify concrete quality based on UPV values,
the BS 1881: Part 203 standard [56] was employed. As per this standard, UPV values falling
within the range of 3500 m/s to 4500 m/s are categorized as representing good quality. It
is noteworthy that the UPV measurement for mortar incorporating 20% TARC, observed
after 28 days of curing or more, fell within the classification of good-quality concrete.
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3.3. Microstructure Properties
3.3.1. SEM

Figure 8 depicts SEM images illustrating the surface morphologies of diverse specimen
hydration products, captured through secondary electron imaging. The specimens under
scrutiny include the control (T0), T10, and T30 mortars. Across all samples, the presence of
calcium silicate hydrate (C–S–H), Portlandite (C–H), and pores was evident. The primary
hydration products, C–H and C–S–H, were recognized and characterized based on their
distinct morphologies [42]. C–S–H was recognized by its foil-like appearance, and the
pores appeared to be dark in the SEM images of hardened concrete, where C–H exhibited a
typical hexagonal habit and appeared as blocky crystals [57].

The control mix exhibited a sizable amount of C–H compared to the T10 mortar, despite
the fact that SEM did not serve as a quantification method for assessing the abundance of
hydration products within the mix. This observation finds additional support through the
TGA and DTA curves showcased in Section 3.3.3. The TGA and DTA graphs indicate that
the control sample demonstrated an early generation of C–H as a result of CaO rehydration
or the decomposition of C–H caused by water loss, transpiring within the temperature
range of 450–510 ◦C. The magnitude of this phenomenon in the control mix surpassed that
observed in the other mixtures.

The SEM analysis revealed a relatively compact microstructure or the formation of
hydration products within the T10 mixtures, as illustrated in Figure 8b, underscoring the
reactivity of TARC. The substantial specific surface area and the hydraulic characteristics
of TARC significantly contributed to the observed dense microstructure in these mortar
compositions. An essential objective of pozzolanic materials, or materials exhibiting such
traits, is to occupy voids within concrete or refine pores [58]. The chemical compositions
substantiate this aspect, having showcased a noteworthy presence of CaO and SiO2 in
TARC. Consequently, this attribute enhanced the generation of more C–S–H, owing to the
reactive SiO2 within TARC. Furthermore, given the heightened fineness of this material, it
effectively served as a filler, accentuating its pore-filling capacity.
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3.3.2. FTIR

Figure 9 shows the FTIR spectra of mortar containing TARC with varying percentage
replacements. As illustrated in the figure, the peaks situated between 900 and 1100 cm−1

correspond to the vibrations of Si–O bonds within the C–S–H phase. A comparison with
the control samples revealed that the (Si–O–Si) band’s relative intensity was greater in paste
samples containing only T10 and T20 or their combination with TARC. The displacement
of the Si–O band toward higher wavenumbers arose from the polymerization of silica.

The wave number in the spectra of T10 and T20 mixes indicated the formation of a
large quantity of high-density C–S–H gels. According to [59], this heightened formation of
C–S–H gels could potentially account for the elevated compressive strength and favorable
FTIR spectra in these particular mixtures [59]. However, with the progression of the
TARC replacement percentage, there was a discernible presence of partially unreacted
particles, observed particularly in the T30 and T50 compositions, indicated by a peak
around 455 cm−1 [60], in contrast to the other blends.

Table 4 provides a consolidated overview of the analysis concerning absorption peaks,
bonds, phases, and the assignment of FTIR spectra for the previously mentioned mix
formulations that underwent 28 day water curing. The identification of the specific peaks
was facilitated by using the data reader within the Origin Pro software. It is worth noting
that although the generated graphs employed arbitrary units for transmittance intensity,
the data were still accurately extracted and interpreted.



Buildings 2023, 13, 2209 12 of 20Buildings 2023, 13, x FOR PEER REVIEW 12 of 21 
 

 
Figure 9. FTIR spectra of TARC-containing mortar. 

The wave number in the spectra of T10 and T20 mixes indicated the formation of a 
large quantity of high-density C–S–H gels. According to [59], this heightened formation 
of C–S–H gels could potentially account for the elevated compressive strength and favor-
able FTIR spectra in these particular mixtures [59]. However, with the progression of the 
TARC replacement percentage, there was a discernible presence of partially unreacted 
particles, observed particularly in the T30 and T50 compositions, indicated by a peak 
around 455 cm−1 [60], in contrast to the other blends. 

Table 4 provides a consolidated overview of the analysis concerning absorption 
peaks, bonds, phases, and the assignment of FTIR spectra for the previously mentioned 
mix formulations that underwent 28 day water curing. The identification of the specific 
peaks was facilitated by using the data reader within the Origin Pro software. It is worth 
noting that although the generated graphs employed arbitrary units for transmittance in-
tensity, the data were still accurately extracted and interpreted. 

Table 4. Summary of interpretation for absorption peaks. 

Assignment Bond Phase 
Absorption Peak (cm−1) 

T0 T10 T20 T30 T50 
O–H stretching of Ca(OH)2 O–H Portlandite 3749 3741 3744 3740 3734 

Symmetric and asymmetric stretching of 
water molecules 

O–H H2O capil 3585–2977 3658–2971 3654–2948 3667–2944 3665–2962 

Asymmetric stretching of the C–H bond  C–H CH2 or CH3 2923 2920 2928 2872 2915 
Stretching of absorbed water O–H H2O capil 1707–1547 1702–1552 1701–1560 1709–1748 1723–1549 

Stretching of CO3 C–O 
Vaterite/ 
Calcite 

1547–1192 1552–1206 1560–1218 1548–1190 1549–1190 

Formation of C–S–H band Si–O Afwillite 1192–728 1206–734 1218–729 1190–723 1190–730 
Ettringite or monosulfate S–O Ettringite 1106 1098 1090 1087 1090 

Stretching of Si–O bond of calcium silicate 
hydrate (C–S–H) 

Si–O Afwillite 965 969 970 964 956 

C3S Si–O Alite 870 870 874 869 869 
C2S Si–O Blite 540 533 522 525 529 

  

Figure 9. FTIR spectra of TARC-containing mortar.

Table 4. Summary of interpretation for absorption peaks.

Assignment Bond Phase
Absorption Peak (cm−1)

T0 T10 T20 T30 T50

O–H stretching of Ca(OH)2 O–H Portlandite 3749 3741 3744 3740 3734
Symmetric and asymmetric stretching of water molecules O–H H2O capil 3585–2977 3658–2971 3654–2948 3667–2944 3665–2962

Asymmetric stretching of the C–H bond C–H CH2 or CH3 2923 2920 2928 2872 2915
Stretching of absorbed water O–H H2O capil 1707–1547 1702–1552 1701–1560 1709–1748 1723–1549

Stretching of CO3 C–O Vaterite/
Calcite 1547–1192 1552–1206 1560–1218 1548–1190 1549–1190

Formation of C–S–H band Si–O Afwillite 1192–728 1206–734 1218–729 1190–723 1190–730
Ettringite or monosulfate S–O Ettringite 1106 1098 1090 1087 1090

Stretching of Si–O bond of calcium silicate hydrate
(C–S–H) Si–O Afwillite 965 969 970 964 956

C3S Si–O Alite 870 870 874 869 869
C2S Si–O Blite 540 533 522 525 529

3.3.3. TGA and DTA

Figure 10 depicts the DTA and TGA curves for the T0 and T20 mixes. Each curve
exhibited seven distinctive peaks, indicative of the major hydration products [60]. A notable
reduction in mass between 450 and 510 ◦C was identified, correlating with the premature
formation of C–H arising from CaO rehydration. Additionally, a minor Ettringite peak
at 160 ◦C [61], observed in both the SEM images of T0 and T20, was discernible. At this
point, free water emanating from C–S–H was also observable [62]. Another significant
peak around 750 ◦C can be attributed to the decomposition or decarbonization of CaCO3
(Calcite) [63]. Notably, the DTA and TGA profiles indicated a relatively higher C–S–H
decomposition in T20 compared to T0 (the reference mortar) at 100 ◦C, present in both mixes.
Furthermore, the detection of Portlandite at 495 ◦C in T20 blends was less pronounced than
in T0 due to the hydration reaction between silica and this material. This observation aligns
with the other mechanical and microstructure characteristics of the mortar discussed in the
preceding section.
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Table 5 provides a comprehensive overview detailing distinct thermal events observed
through TGA and DTA for the selected samples, along with their corresponding temper-
ature intervals. As outlined in the table, four prominent events encompassing thermal
decompositions were identified, enabling the calculation of their associated mass losses.
Notably, the decomposition of Portlandite within the T20 mix registered significantly lower
than that observed in the T0 blend. A similar trend was observed in the decarbonization of
calcite or calcium carbonate, which was notably subdued in the T20 mixture. In contrast,
the T0 mix exhibited notably heightened decomposition in calcite, transpiring within the
temperature range of 650 to 800 ◦C [64].
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Table 5. Summary of thermal events for TGA and DTA selected material, referring to Figure 10.

Thermal Event Temperature Range ◦C

Weight Loss in mg and %

Control T20

mg % mg %

Water loss from dehydration C–S–H, C–A–H, ettringite,
and hydrotalcite decomposition <390 0.69 6.92 0.70 7.04

Hydrated silica and alumina compounds (C2S and C3A) 390–520 0.06 0.57 0.06 0.56
Water loss from Portlandite decomposition 520–550 0.11 1.05 0.06 0.58

Decarbonization or CO2 loss from the calcite
decomposition (probably dolomite) 650–800 0.32 3.23 0.24 2.43

3.4. Durability Properties
3.4.1. Sulphate Attack

Sulphate attacks on concrete can cause expansion, spalling, cracking, and strength
loss [65,66]. Sulphate attacks can be internal or external, depending on where the sul-
phate comes from [67]. Figure 11 shows the compressive strength of mortars subjected to
water and sulfate solutions during various curing periods (from the 3rd to the 91st day).
It is discernible that the compressive strength of mortars cured in sulfate solutions was
marginally lower than that of mortars cured in water, irrespective of the mortar compo-
sitions, whether the control mix or TARC-containing mortars. Notably, the reduction in
compressive strength experienced a slight elevation with the augmentation of the TARC
replacement. In general, the average reduction in compressive strength due to sulfate attack
ranged from 0.07 MPa to 1.79 MPa across all curing stages (from the 3rd to the 91st day).
This observation suggests that sulfate attack has minimal impact on the mortar, particularly
in its early stages of development. The manifestation of sulfate attacks might take several
decades to become evident. Consequently, only a limited number of studies have examined
concrete subjected to extended exposure periods [67].
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3.4.2. Water Absorption

Figure 12 shows the water absorption rate of all mix formulations across curing
durations from the 3rd to the 91st day. A notable reduction in water absorption levels
was observed as the curing duration progressed across all ages. Comparable studies have



Buildings 2023, 13, 2209 15 of 20

likewise demonstrated a systematic reduction in the rate of water absorption with an
increase in the curing period [1,68]. As seen in Figure 12, evidently, there was a marginal
enhancement in the water absorption rate up to a 20% replacement, particularly during
the later curing periods. However, in its initial stage, this blend demonstrated slightly
inferior performance compared to the T0 mortar. Notably, the highest water absorption rate
was recorded in T50 on the 3rd day of curing, reaching 13.55%. On the 3rd and 7th days
of curing, the reference mortar (T0) exhibited superior water absorption characteristics.
Similar to the trends observed in compressive strength, UPV, and mortar density in the
preceding sections, a 20% replacement of TARC also led to improved water absorption
performance. Upon reaching the 91st day of curing, the T20 mortar displayed a water
absorption rate of 5.3%, surpassing all other mixtures. This outcome signifies the matrix’s
heightened compactness, strength, and durability.
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3.4.3. Apparent Porosity

As depicted in Figure 13, the porosity of T20 was notably lower compared to all other
mixtures. This outcome can be attributed to its elevated bulk density, a factor discussed in
the preceding section. The enhanced, denser microstructure revealed in the SEM analysis
serves as evidence for T20’s reduced porosity. However, it was observed that raising
the percentage of this material replacement would lead to a subsequent decline in the
mortar’s porosity.

It is evident that TARC contributes to the improvement of mortar qualities, evident
through its microstructure, compressive strength, and various other parameters. This
enhancement can be primarily attributed to the hydraulic and pozzolanic characteristics
of the materials [34], as well as their larger specific surface area [25] and capacity for
refining pores.
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3.5. Correlations between Properties of Mortar

Figure 14 shows the relationship between compressive strength with water absorption,
porosity, and UPV for the impact of TARC across all stages of mortar development. These
interrelationships are illustrated through linear graphs boasting robust coefficients of deter-
mination (R2), each exceeding 0.9 for all properties. Notably, a direct and robust correlation
emerged between compressive strength and UPV, with an R2-value of 0.944. Conversely,
water absorption (R2 = 0.948) and porosity (R2 = 0.966) shared an inverse connection with
compressive strength, evidenced by their negative slope values. Various studies have con-
sistently highlighted that heightened water absorption and increased porosity correspond
with decreased compressive strength [69–71]. This observation confirms that the denser
microstructure in concrete, as indicated by UPV, directly contributes to an elevation in
compressive strength while concurrently mitigating water absorption and porosity within
TARC-containing mortar [72].

Buildings 2023, 13, x FOR PEER REVIEW 17 of 21 
 

of determination (R2), each exceeding 0.9 for all properties. Notably, a direct and robust 
correlation emerged between compressive strength and UPV, with an R2-value of 0.944. 
Conversely, water absorption (R2 = 0.948) and porosity (R2 = 0.966) shared an inverse con-
nection with compressive strength, evidenced by their negative slope values. Various 
studies have consistently highlighted that heightened water absorption and increased po-
rosity correspond with decreased compressive strength [69–71]. This observation confirms 
that the denser microstructure in concrete, as indicated by UPV, directly contributes to an 
elevation in compressive strength while concurrently mitigating water absorption and po-
rosity within TARC-containing mortar [72]. 

 
Figure 14. Relationship between compressive strength and the variables of UPV, water absorption, 
and porosity. 

4. Conclusions 
The following conclusions were deduced from the examination of how thermoacti-

vated recycled concrete cement influences various qualities of mortar: 
• The inclusion of TARC significantly affected the flow of mortar. The workability of 

the TARC mix experienced a linear decline with increasing replacement percentages, 
in contrast to the control mix, which displayed notably superior average mortar flow. 

• In terms of mechanical performance, the early-aged mortar exhibited comparable, if 
not better, attributes when compared to the control mix. Commencing from the 28th 
day of curing, T20 mixes demonstrated improved compressive strength, bulk den-
sity, and UPV. Consequently, the optimal percentage replacement for TARC was up 
to 20%. However, the SAI indicated that even a 40% replacement would perform 
well. 

• Microstructural analysis revealed that the TARC mix possessed favorable thermal 
properties, enhanced FTIR spectra, and a structurally compact or densely packed mi-
crostructure. 

• The incorporation of TARC contributed to bolstering the durability of the mortar. 
Although the sulphate resistance test did not initially showcase a substantial reduc-
tion in compressive strength, it became evident over an extended curing period that 
sulphate solutions exerted a slightly more pronounced detrimental influence. 
Overall, TARC showcases promising and commendable performance, exerting a pos-

itive impact on microstructure development and thus enhancing the mechanical and du-
rability characteristics of mortar. The utilization of TARC as a substitute for OPC not only 

Figure 14. Relationship between compressive strength and the variables of UPV, water absorption,
and porosity.



Buildings 2023, 13, 2209 17 of 20

4. Conclusions

The following conclusions were deduced from the examination of how thermoacti-
vated recycled concrete cement influences various qualities of mortar:

• The inclusion of TARC significantly affected the flow of mortar. The workability of the
TARC mix experienced a linear decline with increasing replacement percentages, in
contrast to the control mix, which displayed notably superior average mortar flow.

• In terms of mechanical performance, the early-aged mortar exhibited comparable, if
not better, attributes when compared to the control mix. Commencing from the 28th
day of curing, T20 mixes demonstrated improved compressive strength, bulk density,
and UPV. Consequently, the optimal percentage replacement for TARC was up to 20%.
However, the SAI indicated that even a 40% replacement would perform well.

• Microstructural analysis revealed that the TARC mix possessed favorable thermal proper-
ties, enhanced FTIR spectra, and a structurally compact or densely packed microstructure.

• The incorporation of TARC contributed to bolstering the durability of the mortar.
Although the sulphate resistance test did not initially showcase a substantial reduction
in compressive strength, it became evident over an extended curing period that
sulphate solutions exerted a slightly more pronounced detrimental influence.

Overall, TARC showcases promising and commendable performance, exerting a
positive impact on microstructure development and thus enhancing the mechanical and
durability characteristics of mortar. The utilization of TARC as a substitute for OPC
not only reduces the carbon footprint associated with cement production but also pro-
motes sustainability, contributing to the advancement of a circular economy within the
construction industry.
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