

DEVELOPMENT OF IOT TELEMETRY
FOR LOCAL CONTROL SYSTEM AND
MANAGEMENT SOFTWARE

AUTHOR: KOLINDO NIKA

THESIS – BACHELOR’S DEGREE PROGRAMME

TECHNOLOGY, COMMUNICATION AND TRANSPORT

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS
Abstract

Field of Study

Technology, Communication and Transport

 Degree Programme

Degree Programme in Information Technology, Internet of Things

Author(s)

Kolindo Nika

Title of Thesis

Development of IoT Telemetry for Local Control System and Management Software

Date 16 November 2023
Pages/Number of

appendices
46

Client Organisation /Partners

Savonia University of Applied Sciences

Abstract

This thesis was a project that included the design, development, and implementation of a telemetry system
within local control system and management software, leveraging state-of-the-art Internet of Things (IoT) and

data engineering technologies. The primary objective of this research was to navigate through the complexities

of telemetry data collection, modeling, storage, analysis, and their integration within the software environment.

Central to this thesis was the development of a comprehensive system architecture. This process involved the
identification and selection of key telemetry metrics from the software and the development of a multi-layered

SQL database architecture hosted on AWS Aurora. The implementation aspect included the construction of a

telemetry module using the JUCE framework and C++, which logs data locally in JSON format and periodically
transmits it to an API gateway. Additionally, a Python-based data processing application was developed and

integrated with AWS EKS, ensuring efficient and seamless data ingestion, transformation, and storage. An es-
sential component of the project was the development of an advanced Excel dashboard, enhanced by VBA ca-

pabilities, for comprehensive telemetry data analysis. This analysis dashboard not only provided valuable in-
sights into system performance but also identified areas for enhancement. A significant focus was placed on

maintaining the security and integrity of the telemetry data throughout the process.

As a result, a comprehensive telemetry system was developed and implemented within local control system and

management software. Throughout the development process, emphasis was placed on addressing various case
scenarios and efficiently collecting, processing, and storing telemetry data while maintaining data integrity. The

implementation of the dashboard demonstrated the system's capability to convert complex telemetry data into

actionable insights. In conclusion, this system was strategically designed and deployed with the aim to improve
service quality and enable proactive maintenance strategies.

Keywords

IoT, Telemetry, Data Collection, Data Processing, Data Modeling, Data Visualization, C++, Python, VBA, Excel,

JUCE, MySQL, AWS Aurora, AWS EKS, Docker, CI/CD, API Gateway, JSON.

3 (46)

CONTENTS

ACKNOWLEDGEMENTS ... 6

1 INTRODUCTION .. 7

1.1 Background and motivation .. 7

1.2 Research objectives ... 7

1.3 Scope and limitations ... 7

2 TECHNOLOGIES IN AUDIO SYSTEM TELEMETRY .. 9

2.1 Overview of IoT in Audio Engineering ... 9

2.2 Telemetry Systems .. 9

2.3 Data Collection and Processing ... 9

2.4 Cloud Computing and Storage .. 10

2.5 Data Visualization, Tools, and User Interfaces.. 11

2.6 Security and Data Protection .. 11

3 METHODOLOGY .. 13

3.1 Overview of the System Architecture ... 13

3.1.1 System Architecture Description .. 13

3.1.2 System Architecture Flowchart .. 13

3.2 Component Brakedown .. 15

3.2.1 Local Management Software and Telemetry Module ... 15

3.2.2 API Gateway .. 15

3.2.3 Data Processing .. 15

3.2.4 Data Storage .. 16

3.2.5 Data Visualization ... 16

4 COMPONENT ANALYSIS AND IMPLEMENTATION.. 17

4.1 Metrics collection and JSON file structure .. 17

4.2 Telemetry Module .. 18

4.2.1 User-Centric Data Management ... 18

4.2.2 Multi-user Devices .. 19

4.2.3 Single-user Multi-device Operations ... 19

4.2.4 Timestamp Management for Data Integrity .. 19

4.2.5 Dynamic Data Management .. 19

4.2.6 Data Aggregation and Transmission ... 20

4 (46)

4.2.7 Data Integrity Measures .. 20

4.2.8 Telemetry Module Flowchart ... 21

4.3 Data Processing Application .. 21

4.3.1 Modular Design .. 22

4.3.2 Secure and Flexible Database Operations ... 28

4.3.3 ETL Principles and Data Transformation ... 29

4.3.4 Seamless Deployment and Infrastructure Integration .. 30

4.3.5 Future-Proofing and Scalability .. 31

4.3.6 Conclusion ... 31

4.4 Database Architecture and Implementation ... 31

4.4.1 Selection Criteria for the Database System ... 31

4.4.2 Schema Blueprint ... 31

4.4.3 Indexing .. 32

4.5 Excel Dashboard .. 33

4.5.1 Overview ... 33

4.5.2 Data Representation and Analysis .. 33

4.5.3 Handling Dynamic Updates ... 35

4.5.4 VBA Implementation ... 36

4.5.5 VBA Flowchart .. 40

4.5.6 Conclusion ... 40

5 BENEFITS AND FUTURE IMPLEMENTATIONS OF TELEMETRY .. 41

5.1 Benefits of Telemetry ... 41

5.2 Benefits of Telemetry in audio control system and management software 41

5.3 Conclusion ... 42

6 DISCUSSION ... 43

7 CONCLUSION .. 44

7.1 Summary of Findings ... 44

7.2 Contributions and Impact ... 44

7.3 Final Remarks .. 44

REFERENCES .. 45

5 (46)

LIST OF FIGURES

Figure 1. Project Architecture Flowchart ... 14

Figure 2. Snippet of JSON file structure. ... 18

Figure 3. Snippet of telemetry module, checking the "datetime" interval and activation of the flag for data

transmission. .. 19

Figure 4. Snippet of telemetry module, “OverwriteDataItem” and “AggregateDataItem” functions. 20

Figure 5. Snippet of telemetry module, parsing and comparing the "initialTimestamp"............................... 20

Figure 6. Telemetry Module Flowchart .. 21

Figure 7. Data Processing Application Flowchart .. 22

Figure 8. Snippet of Main.py, Database configuration and POST request part. ... 23

Figure 9. Snippet of Main.py, GET request part. .. 24

Figure 10. Snippet from db_utils.py, “retrieve_data” helper function. ... 25

Figure 11. Snippet from db_utils.py, "retrieve_all_data_by_user_id" function. ... 25

Figure 12. Snippet from db_utils.py, "retrieve_all_data_by_user_id" function, appending the corresponding

“managementGroup” inside the “systemSetup” array. ... 26

Figure 13. Snippet of Insert / Update Operation. ... 27

Figure 14. Snippet from “user.py” module .. 28

Figure 15. Parameterized Queries Snippet .. 28

Figure 16. Example of the transformation process ... 30

Figure 17. CI/CD Pipeline Flowchart ... 31

Figure 18. Database Architecture ... 32

Figure 19. Excel dashboard calculations .. 33

Figure 20. Extracting and processing JSON arrays in Excel ... 34

Figure 21. Separation and analysis of Temperature data .. 34

Figure 22. Snapshot of "Historical Data" Sheet .. 35

Figure 23. Historical Data Analytics .. 36

Figure 24. Snippet of "RefreshDataAndSaveHistory" Subroutine in VBA .. 37

Figure 25. Snippet of processing and storing the calculations for historical analysis 37

Figure 26. Snippet from “RefreshTemperature” Subroutine .. 38

Figure 27. Snapshot of Historical Table specifically for the "Temperature" .. 38

Figure 28. Snapshot of Historical Table specifically for the “InputLevel” .. 39

Figure 29. Snapshot of Historical Table Specifically for the "OutputLevel" ... 39

Figure 30. VBA Flowchart... 40

file:///C:/Users/Kolindo/Downloads/Reporting%20Template%20(2022)%2018.1.2023.docx%23_Toc151720983

6 (46)

ACKNOWLEDGEMENTS

I begin with praises and thanks to God, who has been the guide throughout my journey, especially after moving to

Finland to pursue my studies in IoT Engineering.

My deep and sincere gratitude goes to my academic supervisor, D.Sc.(Tech.), Docent Rajeev Kanth for his invalua-

ble guidance, support, and dedication throughout my academic years and this thesis journey. His dedicated teach-

ing has been pivotal in navigating the complexities of IoT engineering.

I am profoundly thankful to my industry supervisor, Aki Mäkivirta, for his expert guidance, valuable insights, and

unwavering support throughout this project. His deep knowledge and experience have been instrumental in the

development and success of this thesis.

Additionally, I extend my heartfelt appreciation to my colleagues at Genelec. Their constant encouragement, con-

structive feedback, and readiness to provide deep technical expertise whenever needed have significantly contrib-

uted to both the success and enjoyment of this process.

Above all, my deepest thanks to my family for their immense support and understanding during my academic stud-

ies and throughout my life as I work towards accomplishing my goals and advancing my professional career. Their

unwavering faith in me has always been a source of motivation and inspiration.

Thank you, everyone, for being an integral part of my academic journey. As I look forward to achieving new mile-

stones, I am excited to apply the knowledge gained in this project and strive to make a meaningful impact in the

world.

7 (46)

1 INTRODUCTION

1.1 Background and motivation

In the dynamic landscape of modern technology, the merging of different technologies is creating

innovative solutions across industries. This trend is notable also in the field of audio engineering,

where advanced loudspeaker and monitoring systems are increasingly incorporating sophisticated

technologies to enhance their functionality.

A pivotal development in this area is the integration of the Internet of Things (IoT). IoT's capability

to gather data remotely introduces new possibilities in the area of audio systems, offering significant

improvements in system understanding, maintenance, and performance optimization.

This thesis delves into the challenge of integrating telemetry—the process of remotely collecting and

measuring data—into control systems and management software typically used in the audio indus-

try. It explores the potential of telemetry to enrich such systems, driving forward enhancements and

optimizations in audio technology. The focus lies on leveraging data-driven approaches to refine and

elevate the performance of advanced audio systems.

1.2 Research objectives

This thesis revolves around a central aim: to design, develop, and deploy a telemetry system that

integrates with a specialized control system and management software. To achieve this, several re-

search objectives have been outlined:

• Theoretical Exploration: Conduct a thorough review of telemetry methodologies and IoT

best practices, with a focus on their application in audio system management software.

• Existing System Analysis: Examine the inner workings of the control system and manage-

ment software, identifying areas where telemetry can offer valuable insights.

• Telemetry System Development: Design and implement a telemetry system capable of col-

lecting, processing, and storing relevant data.

• Data Analysis and Visualization: Develop an advanced data dashboard that enables easy

comprehension and utilization of the collected telemetry data.

• Security and Integration: Ensure that the telemetry system is secure and integrates smooth-

ly with the control system and management software, maintaining data integrity.

• Deployment and Infrastructure Strategy: Establish a deployment strategy that emphasizes

containerization, robust version control, and a scalable, high-availability infrastructure. Fo-

cusing on ensuring that the system is reliable and consistent across different environments.

In essence, this project endeavors to connect IoT methodologies with the sophisticated domain of

audio engineering. The aim is to develop a telemetry system that enhances both user understanding

and overall system performance.

1.3 Scope and limitations

The focus of this research is to create a telemetry system for control systems and management

software used in the audio industry. Like every project, challenges may arise along the way. These

8 (46)

could include issues related to the granularity of the data, variations in user setups and usage pat-

terns, or potential delays in data collection. These potential challenges will be systematically ad-

dressed throughout the research, ensuring clarity regarding the system's capabilities and limitations.

Keeping these factors in mind, this thesis represents a step towards a future where audio systems

are enhanced by robust data-driven insights.

9 (46)

2 TECHNOLOGIES IN AUDIO SYSTEM TELEMETRY

2.1 Overview of IoT in Audio Engineering

Historically, the field of audio engineering has been quick to adopt and integrate the latest techno-

logical advancements, ensuring that listeners receive the best possible experience. With the rise of

the Internet of Things (IoT), audio systems have also seen remarkable improvements and en-

hancements.

IoT in the realm of audio systems is transformative. At its core, IoT is about interconnected devices

communicating and exchanging data. When applied to audio engineering, this interconnection trans-

lates into smarter audio systems that can respond in real-time to environmental variables or user

preferences. Consider a smart speaker system that, through IoT, can adjust its output based on re-

al-time ambient noise measurements or even synchronize with other smart devices within a space

for an immersive audio-visual experience.

For professionals in the field, IoT offers unprecedented control. Advanced analytics obtained from

data can provide insights into user preferences and behavior, equipment wear and tear, or even

spatial acoustics, allowing for dynamic tuning and optimization of audio outputs.

2.2 Telemetry Systems

Telemetry is the practice of gathering and transmitting data from varied sources to central, often re-

mote, locations for monitoring, analysis, and action. This process involves the gathering of metrics

and logs from software applications, along with the automated collection of data from remote sys-

tems, leading to a robust analysis of system health and behavior.

The value of telemetry lies in its ability to provide insights into the inner workings of applications

and infrastructure without the need to be physically present. In practice, telemetry enables the

streaming of data in near real-time, offering immediate analysis and potential responses. This is par-

ticularly advantageous for IT and DevOps teams, as it allows for the continuous monitoring and ad-

justing of systems to optimize performance and anticipate issues before they affect users. Moreover,

telemetry data aids in the understanding of how systems and applications perform in various envi-

ronments, guiding the development of improvements and enhancements. (Sumo Logic.)

Furthermore, telemetry is integral to modern observability strategies. It helps in transforming data

into actionable insights, ensuring operational intelligence. The comprehensive perspective gained

from telemetry data is critical in making informed decisions, reducing downtime, and proactively re-

sponding to the needs of the business. With the increasing complexity of digital ecosystems, teleme-

try has become an essential element for enterprises aiming to maintain high availability and perfor-

mance standards. (Sumo Logic.)

2.3 Data Collection and Processing

IoT data collection is an intricate process that serves as the backbone for any company utilizing IoT

technology. It involves deploying sensors to gather real-time data from devices, whether situated

remotely or on-site. These sensors monitor various aspects such as equipment status, utility usage

10 (46)

through submetering, and environmental conditions like humidity and air quality. The data collected

is pivotal for functions like predictive maintenance, which enhances machine productivity and lon-

gevity, and for monitoring physical conditions to prevent disasters. This collection process is not

without challenges, including ensuring security, compatibility across diverse IoT architectures, man-

aging large datasets, and maintaining consistent communication within the IoT network. (Pelaez

2021.)

The deluge of data produced by IoT devices necessitates efficient processing to transform it into

meaningful information. Data processing in IoT is a cyclical operation involving input, where data is

rendered machine-readable; processing, which classifies, sorts, and calculates data; and output,

where the processed data is presented in a usable format for end-users. These stages are essential

in creating actionable insights from IoT data. Considerations in IoT data processing include deter-

mining the desired output, the appropriate storage and frequency of data updates, and the selection

of suitable data processing tools. This processing might occur in the cloud or via edge computing,

depending on the immediacy required by the IoT application. (Junnila, n.d.-a.)

To manage this vast amount of data effectively, different data integration methods such as ETL (Ex-

tract, Transform, Load), ELT (Extract, Load, Transform), batch processing, and real-time processing

are employed. ETL involves extracting data from various sources, transforming it into a structured

format, and then loading it into a database or data warehouse. ELT, on the other hand, prioritizes

loading data into a target system before transforming it. Batch processing refers to the collection

and processing of data in large batches at scheduled times, while real-time processing handles data

continuously as it is generated, allowing for immediate analysis and decision-making. The choice

among these methods depends on factors such as data volume, velocity, and the specific require-

ments of the IoT application. (Kutay.)

2.4 Cloud Computing and Storage

Cloud computing and storage are integral components of modern data management, significantly

impacting how data is stored, accessed, and utilized. Cloud storage, a model of cloud computing, al-

lows for storing data on the internet through a cloud computing provider, which manages the stor-

age infrastructure. This service provides the agility, scalability, and durability required by businesses

of all sizes, with the added benefit of elasticity, meaning that storage scales with demand, and costs

are only incurred for the utilized space. The practicality of cloud storage extends to various applica-

tions, such as data lakes for analytics, backup, and disaster recovery, and as the foundation for

cloud-native applications. It is designed to offer virtually unlimited storage capacity, thus removing

the constraints associated with on-premises storage solutions.

Security in cloud storage is paramount, and providers like AWS ensure data protection with encrypt-

ed storage, fine-grained access controls, and continuous security monitoring. AWS, as a pioneer in

cloud services, offers an extensive and reliable cloud platform, with services such as Amazon S3 for

object storage, Amazon FSx, and Amazon EFS for file storage, and Amazon EBS for block storage,

each serving different needs based on the nature of the data and the application requirements.

11 (46)

The types of cloud storage—object, file, and block storage—cater to various use cases. Object stor-

age is suitable for large amounts of unstructured data, file storage for hierarchical data organization,

and block storage for databases and applications requiring low-latency access. The choice among

these depends on the specific needs of the data, such as durability, availability, performance, and

compliance requirements. (AWS.)

2.5 Data Visualization, Tools, and User Interfaces

The essence of data visualization lies in its ability to turn complex data into comprehensible graph-

ical representations, crucial for the interaction between users and IoT systems. This visualization is

not only about aesthetics but also about functionality, enabling users to grasp complex data through

intuitive interfaces. User interfaces (UI) in IoT must be simple yet capable of handling and present-

ing vast amounts of data efficiently, often requiring the support of powerful data visualization tools.

(Junnila, n.d.-b.)

Several tools stand out for this purpose. Google Sheets, part of the broader cloud suite of products,

is noted for its ease of use, allowing for basic data visualizations and dashboards, suitable for begin-

ners or those with straightforward data visualization needs. Looker Studio, also within the Google

ecosystem, offers more sophisticated interactive dashboards and reporting capabilities without the

need for SQL coding, making it a robust option for intermediate users. Looker represents a more

advanced tier, providing extensive business intelligence capabilities for those dealing with "big data"

and requiring predictive analytics. (Funnel.)

For comprehensive applications, Tableau and Microsoft Power BI are utilized. Tableau is renowned

for its robustness and flexibility, handling vast amounts of complex data and offering a range of vis-

ualization options from simple charts to advanced predictive modeling. It is particularly suited for

larger organizations with diverse data visualization needs across departments. Microsoft Power BI,

part of the Azure marketplace, shines with its deep integration within the Microsoft ecosystem and is

known for its robust business intelligence capabilities. (Funnel.)

2.6 Security and Data Protection

Security and data protection on the Internet of Things (IoT) are critical concerns that affect a wide

range of industries and devices. IoT security is the safeguarding of IoT devices and networks

against a myriad of threats. This complex task involves a blend of strategies, tools, and technologies

to protect IoT systems and devices from cyber threats.

One of the fundamental approaches to IoT security is incorporating security measures from the de-

sign phase of device development. This involves using secure hardware, recent operating systems,

and considering security in every development stage to prevent vulnerabilities like those exploited

by cyber-attacks on car key fobs or healthcare devices.

To fortify IoT security, various tools and technologies are employed, such as Public Key Infrastruc-

ture (PKI) and digital certificates for secure communications, network security measures including

firewalls and intrusion prevention, API security to protect the integrity of data exchanged between

12 (46)

devices and backend systems, and machine learning technologies for automated threat detection

and management. (TechTarget 2023.)

Additional strategies include network access control to inventory connected devices, segmentation

to isolate IoT devices into separate networks, and implementing security gateways that act as in-

termediaries between devices and the network, adding extra layers of protection. Continuous soft-

ware updates, patch management, and enforcing multi-factor authentication are also key to ensur-

ing IoT security. Moreover, educating consumers about the risks and security measures they can

take, such as updating device credentials, is important for overall IoT safety. (TechTarget 2023.)

IoT security practices and requirements vary depending on the application and role within the IoT

ecosystem. Manufacturers, developers, and operators each have specific responsibilities to ensure

the security of IoT devices and systems. Endpoints have become prime targets for cybercriminals,

underscoring the importance of prioritizing security across the entire network of IoT devices. (Tech-

Target 2023.)

13 (46)

3 METHODOLOGY

3.1 Overview of the System Architecture

3.1.1 System Architecture Description

The system designed and implemented in this study revolves around a telemetry module integrated

into local control and management software. The architecture has been developed with precision to

ensure a seamless data flow from the initial capture within the software environment to the final

visualization in Excel. This section provides a comprehensive description of how each segment of the

system architecture plays its part.

At the starting point, the control and management software acts as the primary data capture tool.

Within this software, functions are designated to send data to the telemetry module. This telemetry

module, developed in C++, acts as a bridge, directing the data from the software into a structured

JSON file, ensuring data integrity and consistency for subsequent processing.

As data accumulates locally, batch processing methods are employed to manage this growing vol-

ume. Every 30 days, the data is transmitted to the cloud using the KrakenD API gateway. KrakenD

is chosen for its efficiency and reliability, ensuring a seamless transfer of data without compromising

its integrity.

Upon reaching the cloud, a Python application deployed within the AWS EKS environment manages

the processing part. This application plays an active role, going beyond merely receiving data. Utiliz-

ing the ETL (Extract, Transform, Load) methodology, it actively processes the incoming data. This

involves extracting data from its original format, transforming it for accuracy and consistency, and

then loading it into the predefined database schemas. This process ensures that the data is not only

refined but also aligns with the structural requirements of the database. After processing, the data is

transferred to the AWS Aurora database for storage and subsequent analysis. AWS Aurora, known

for its robustness and scalability, serves as the primary data storage system, ensuring the data re-

mains readily accessible and well-organized.

The final step of the process involves retrieving the data for analysis. An Advanced Excel Dashboard

is specifically designed for this task. It queries the AWS Aurora database and imports the data into

distinct Excel sheets. However, its function extends beyond simple data retrieval. A specific sheet

within this Excel environment is built for detailed calculations and analysis, providing meaningful in-

sights and visualizations based on the raw data.

At its core, the system is a seamless integration of software, applications, and platforms, all working

together with the objective of capturing, processing, storing, and analyzing data efficiently for clear

and insightful visualization.

3.1.2 System Architecture Flowchart

To provide a clear and consolidated view of the telemetry system's architecture, a high-level

flowchart has been constructed (see Figure 1). This visual aid captures the step-by-step data flow

starting from the local management software and concluding with data visualization in the Excel

14 (46)

dashboard. The flowchart shows how each component interacts with the other, illustrating the entire

process.

Figure 1. Project Architecture Flowchart

15 (46)

3.2 Component Brakedown

3.2.1 Local Management Software and Telemetry Module

The local management software operates as the primary data source within this architecture. It is

instrumental in capturing specific device data, parameters, and configurations which are then

transmitted to the telemetry module.

The telemetry module is developed in C++ to ensure seamless integration with the management

software, which itself is developed using C++ and JUCE. JUCE is a widely used framework for audio

application and plug-in development. It is an open-source C++ codebase that can be used to create

standalone software on Windows, macOS, Linux, iOS, and Android, as well as VST, VST3, AU, AUv3,

AAX and LV2 plug-ins (JUCE). Utilizing the same language promotes smoother interoperability and

minimizes potential compatibility issues. Furthermore, C++'s efficiency and performance capabilities

make it suitable for real-time data extraction and manipulation tasks within the management soft-

ware environment.

3.2.2 API Gateway

KrakenD acts as the API gateway within this architecture. Its primary function is to serve as the in-

terface for data transmission from the local environment to the AWS cloud, ensuring secure and ef-

ficient data transfers.

KrakenD provides high-performance open-source API gateway solutions. Its core functionality is to

create an API that acts as an aggregator of many microservices into single endpoints, doing the

heavy lifting automatically for you: aggregate, transform, filter, decode, throttle, auth, and more

(KrakenD). Its compatibility with AWS services and easy configurability made it an ideal choice for

this project.

3.2.3 Data Processing

Once data reaches the AWS environment via KrakenD, the data processing application, built with

python and running in AWS EKS (Elastic Kubernetes Service) manages the subsequent processing.

This application is responsible for processing the incoming data, transforming it as necessary, and

then directing it to AWS Aurora for storage. The application is designed to be modular, where each

module aligns with a specific table schema in AWS Aurora, ensuring organized and efficient data

storage.

Technical Details:

▪ Python: A versatile and widely used language, Python provides extensive libraries for data

processing and manipulation, making it appropriate for this purpose. (Yildirim 2022.)

▪ AWS EKS: Amazon's Kubernetes service was chosen for its scalable and reliable nature. It

allows for easy deployment and management of containerized applications, like this Py-

thon app, ensuring stability during high data inflows. (AWS EKS.)

16 (46)

3.2.4 Data Storage

AWS Aurora serves as the central repository for all telemetry data in this architecture. As data flows

into the cloud, it is precisely organized into distinct tables within a MySQL database, mirroring the

structure of the incoming JSON file.

Technical Details:

▪ AWS Aurora (MySQL variant): Aurora's selection was based on its notable performance,

scalability, and reliability. As a MySQL-compatible relational database, Aurora combines the

flexibility inherent in open-source databases with the robustness of commercial offerings.

Its seamless integration with other AWS services optimizes data management processes.

(AWS Aurora.)

▪ Data Table Structure: Tables were designed to parallel the structure of the JSON file ar-

rays, such as 'user', 'calibration', 'netDevice', 'performanceReport', 'systemSetup', and

'managementGroup' tables. The 'user' table stands as the main reference, with the others

interlinked through the foreign key 'userID'. This structure ensures efficient data retrieval

and maintains the integrity of relationships across the data sets.

3.2.5 Data Visualization

The Excel dashboard functions as the final component of the data pipeline, built specifically for data

visualization, analysis, and historical trend identification. By pulling data directly from AWS Aurora,

the dashboard offers a unified, in-depth perspective on the data, empowering internal stakeholders

with actionable insights derived from the telemetry.

Technical Details:

▪ Microsoft Excel: Excel is a powerful tool for data manipulation, analytics, and visualization,

making it widely used in many industries. With its built-in features such as pivot tables,

power query, statistical functions, and the developer option, Excel is a proficient tool at

transforming complex data into accessible formats (Analytics Vidhya 2023). Its universal

adoption in various industries was a deciding factor, ensuring that internal stakeholders

can readily access, understand, and work with the data without requiring additional soft-

ware or training.

▪ Macros, Power Query, and VBA: The dashboard leverages the power of Excel's Macros and

Power Query for automated data retrieval, transformation, and loading operations. Addi-

tionally, VBA (Visual Basic for Applications) was employed to further customize the dash-

board, enabling advanced analytics, data manipulations, and facilitating user interactions.

This combination ensures a dynamic and interactive dashboard that is tailored to the spe-

cific needs of the company, offering both depth and flexibility in data analysis.

17 (46)

4 COMPONENT ANALYSIS AND IMPLEMENTATION

4.1 Metrics collection and JSON file structure

The Telemetry Module captures the data and records it onto the user's device in the form of a JSON

file (see Figure 2). This file is organized into distinct arrays such as 'user', 'calibration', 'netDevice',

'performanceReport', 'systemSetup', with each array having its respective table schema in the data-

base.

The “user” section provides insights into the user's profile and their interactions with the manage-

ment software. This section carries unique identifiers for the user and the application, along with

specifics about the version of the software used and the operating system. It also logs metrics like

the total running time, the number of sessions initiated, setups configured, and various events, all

timestamped to indicate their relevancy.

Next, is the “netDevice” segment, an array that captures details about the devices that have been

connected or interacted with. Each entry of the device has its unique identifiers, model information,

and metrics such as the number of clips and prodections. Additionally, it logs the readings related to

temperature and audio levels within nested JSON arrays for each device, each marked with start

and end values, resolutions, and specific values.

The “calibration” section is a detailed record of calibration activities undertaken. Each calibration in-

stance has its unique session identifiers, coupled with the associated setup details and group affilia-

tions. Here is defined the calibration status and related specifics. Furthermore, it lists the devices

that were part of the calibration process and timestamps that signal the calibration event's occur-

rence.

The “performanceReport” segment provides a repository of the performance data. Each entry con-

tains the relevant group details and the setup name under which the grading was executed. These

entries also contain detailed information about the devices involved, all timestamped to mark the

grading event.

Lastly, the “systemSetup” section logs data of the setup preferences and configurations users have

employed in the management software. Within each setup, identifiers are paired with the name of

the setup file. This section serves as a repository of audio settings, capturing aspects like the micro-

phone reference level, power management preferences, and the mode of audio input. Additionally,

it logs the groups associated with the setup. Each grouping outlines the name of the group, its pre-

ferred audio format, and its calibration status. Embedded within each group is an array of devices,

revealing their participation, all marked with relevant timestamps.

18 (46)

Figure 2. Snippet of JSON file structure.

4.2 Telemetry Module

The Telemetry Module serves as an integral component of the system, dedicated to efficient data

collection, storage, and transmission. The module is designed using the JUCE framework, ensuring

portability and compatibility across various platforms.

4.2.1 User-Centric Data Management

A distinctive feature of the “TelemetryModule” is its user-centric approach to data management. The

module handles telemetry data based on the “userID”. For each user, is created locally a distinct

JSON file. This file serves as the primary storage for the telemetry data of that specific user.

19 (46)

4.2.2 Multi-user Devices

In environments where multiple users share a single device, the module ensures data integrity by

associating telemetry data with individual userIDs. Thus, irrespective of the number of users on a

device, each user's data is stored separately, guaranteeing no overlap or data loss.

4.2.3 Single-user Multi-device Operations

The module's design also supports the case where users access the system across multiple devices.

Each device retains its unique JSON file for a given user, which, when sent to the cloud, populates

distinct rows in the database. This structure ensures data granularity, allowing the system to log us-

er interactions on different devices independently.

4.2.4 Timestamp Management for Data Integrity

The system uses two important timestamps: "initialTimestamp" and "datetime". The "initial-

Timestamp" is set once when the JSON file is first created to mark the start of data logging. The

"datetime” is updated regularly with every data transfer to the cloud. This updating process helps to

track the timing of each data upload, which is scheduled to happen every 30 days. This approach

ensures the data is regularly updated and transmitted at set intervals, optimizing the use of system

resources (see Figure 3).

Figure 3. Snippet of telemetry module, checking the "datetime" interval and activation of the flag for
data transmission.

4.2.5 Dynamic Data Management

Telemetry data is dynamic, often changing or accumulating over time. To manage this, the Teleme-

try Module includes two key functions: “OverwriteDataItem” for state-based data, which refreshes

content with each new entry, and “AggregateDataItem” for event-based data that continually accu-

mulates (see Figure 4). This approach enables the module to maintain an accurate representation of

both instantaneous and evolving data aspects effectively.

20 (46)

Figure 4. Snippet of telemetry module, “OverwriteDataItem” and “AggregateDataItem” functions.

4.2.6 Data Aggregation and Transmission

A critical function of the module is to periodically transmit the collected telemetry data to the cloud.

The data is sent to the API Gateway using POST request, ensuring secure and efficient data trans-

fer.

4.2.7 Data Integrity Measures

The telemetry module initiates a data integrity check at startup by sending a GET request to fetch

user data from the database. It then compares the 'initialTimestamp' from the server with the local

file’s timestamp to verify integrity. If a mismatch is detected or the key is missing, suggesting either

file tampering or deletion, the module restores the file with the database copy before proceeding

with additional logging. This measure ensures that the data remains consistent and trustworthy (see

Figure 5).

Figure 5. Snippet of telemetry module, parsing and comparing the "initialTimestamp".

21 (46)

4.2.8 Telemetry Module Flowchart

4.3 Data Processing Application

The data processing application is pivotal in handling and maintaining data consistency, ensuring

that the incoming data matches the expected schema of the database, and providing a structured

method to process and save the data. Built using Python, the application is structured around vari-

ous modules, each catering to a unique aspect of the data processing workflow (see Figure 7).

Figure 6. Telemetry Module Flowchart

22 (46)

Figure 7. Data Processing Application Flowchart

4.3.1 Modular Design

The architecture of the application is based on a modular design approach. This division into distinct

modules optimizes clarity, scalability, and maintainability. Such a structure not only facilitates easier

debugging and enhancements but also promotes the principle of single responsibility, where each

module addresses a specific functionality.

4.3.1.1 Main.Py Module

The main python file serves as the central interaction point for the entire application, orchestrating

how incoming POST requests are processed by initiating the data processing pipeline and coordinat-

ing with the other modules for specialized tasks.

Key Components:

▪ Flask Integration:

23 (46)

The application employs Flask, a micro web framework for Python, providing a foundation

for web servers to process HTTP requests. (Python Basics.)

▪ Module Integrations:

The application draws functionalities from various imported modules, including “user”,

“net_device”, “calibration”, “performanceReport”, and “setup”. These modules handle the

specifics of processing the incoming data in accordance with their respective table schemas

or functionalities.

▪ Database Configuration:

The app retrieves its database configurations from the environment variables, ensuring dy-

namic and secure setup.

▪ Main Blueprint Definition:

Using Flask's modular design, a blueprint named 'main' is defined. This encapsulates the

core request-handling route.

▪ Requests Handling:

POST request (see Figure 8):

1. Extracts the JSON payload.

2. Delegates to the corresponding modules for data processing.

3. Returns a successful JSON response.

Figure 8. Snippet of Main.py, Database configuration and POST request part.

24 (46)

GET Request (see Figure 9):

1. The endpoint /data/<userID> activates upon a GET request, leveraging the func-

tion from the “db_utils” module.

2. It fetches the user's data and returns it in JSON format.

Figure 9. Snippet of Main.py, GET request part.

▪ Application Initialization:

The Flask server starts, set to run on all available network interfaces and listening on port

5000.

4.3.1.2 db_utils.py Module

The db_utils.py module is the center of the data processing application when it comes to direct in-

teractions with the database. It has the fundamental functions required for establishing a connec-

tion, fetching, and transforming data, and executing core tasks such as data insertion and updates.

Module Explanation:

▪ Database Configuration:

The module starts by loading the environment variables and setting up the configuration for

the database connection.

▪ get_database_connection Function:

This function encapsulates the logic to establish a connection with the MySQL database. By

doing so, it ensures that any module requiring database interaction can effortlessly retrieve

an active connection.

▪ retrieve_all_data_by_user_id Function:

This function stands central to the module's data retrieval capabilities. When called, it estab-

lishes a database connection and sequentially gathers data across multiple tables for a given

user, identified by userID. Each table's data is fetched using the “retrieve_data” helper func-

tion, which extracts all relevant records and their associated fields (see Figure 10).

25 (46)

The function begins by collecting data from the primary table, 'user'. Subsequently, it iter-

ates through the other related tables defined in a mapping structure (see Figure 11).

For tables that are interrelated, such as 'systemSetup' and 'managementGroup', the function

performs additional steps to associate groups with their respective setup records, ensuring

that the data structure mirrors the relational integrity present in the database (see Figure

12).

Once the data is retrieved from all the tables, the function closes the database connection

and returns a dictionary of the user’s complete dataset.

Figure 10. Snippet from db_utils.py, “retrieve_data” helper function.

Figure 11. Snippet from db_utils.py, "retrieve_all_data_by_user_id" function.

26 (46)

Figure 12. Snippet from db_utils.py, "retrieve_all_data_by_user_id" function, appending the corre-
sponding “managementGroup” inside the “systemSetup” array.

▪ insert_or_update_data Function:

This function is designed to handle the core ETL (Extract, Transform, Load) task. It takes

the data and either inserts it as a new record or updates an existing record in the database

(see Figure 13). The function starts by fetching the valid column names for a given table to

ensure data consistency. Data transformations take place next. Lists or dictionaries are con-

verted into JSON strings, Booleans are translated to 'true' or 'false' strings, and absent or

empty keys are set to None. Once the data is prepared, the function constructs an SQL que-

ry. The query's design uses the ON DUPLICATE KEY UPDATE clause, a MySQL-specific fea-

ture. This allows for the simultaneous handling of insertions (for new records) and updates

(for existing records). Lastly, the SQL query is executed, and the operation's success is de-

termined by whether it commits without errors.

27 (46)

Figure 13. Snippet of Insert / Update Operation.

4.3.1.3 user.py, calibration.py, netDevice.py, performanceReport.py, systemSetup.py Modules

These modules are designed to handle operations specific to their respective database tables. Alt-

hough their primary objective is similar, i.e., to interact with a certain table, they are equipped to

process data in a manner tailored to the individual requirements of their tables. For simplicity and

clarity, it will be explained the user.py module, which can serve as a representative example for the

other modules too.

Module Explanation:

▪ Blueprint and Initial Setup:

A Flask blueprint named user is instantiated, allowing the module to define its own routes

and handlers.

▪ add_user Function (see Figure 14):

This route, activated with a POST request, is responsible for adding or updating user data in

the user table. The function calls the function from the “db_utils” module and either inserts

28 (46)

the data as a new record or updates the existing one in the user table. At the end, a suc-

cessful response is returned upon completion of the operation.

Figure 14. Snippet from “user.py” module

4.3.2 Secure and Flexible Database Operations

4.3.2.1 Parameterized Queries

Parameterized queries provide a mechanism to execute SQL commands efficiently and securely. In-

stead of embedding user data directly into the SQL string, parameterized queries use placeholders.

Actual data values are then supplied separately, ensuring they are treated as data and not as exe-

cutable SQL code. This distinction is crucial in defending against SQL injection attacks. (SQLShack

2022.)

SQL Injection Attacks:

In a typical SQL injection scenario, a malicious actor can provide specially crafted input data that,

when embedded into an SQL command, can alter the command's semantics. This alteration can al-

low unauthorized reading, modification, or even deletion of data. For instance, an attacker might in-

put "user; DROP TABLE user; --" as part of a field. If this input is directly embedded into an SQL

command without proper sanitization, it can lead to the deletion of the “user” table, causing signifi-

cant data loss and system disruption.

How Parameterized Queries Help:

Parameterized queries ensure that user data is never directly interpolated into the SQL string. In-

stead, the SQL engine treats them strictly as data and not executable code. This behavior effectively

neutralizes the SQL injection vector since the input data does not alter the SQL command's struc-

ture. (PYnative 2021.)

From the “db_utils.py” module:

Figure 15. Parameterized Queries Snippet

In the above code:

29 (46)

▪ The “%s” in the query string serves as a placeholder indicating where the user data should

be inserted.

▪ “(userID,)” is a tuple that supplies the actual data value for the “userID”.

▪ Rather than constructing a SQL string directly with the “userID”, the execute method of the

cursor object takes care of substituting the placeholder (%s) with the data value (userID) in

a safe manner. This approach helps prevent SQL injection attacks by ensuring that the

userID is treated as a parameter, not a part of the SQL command itself.

Conclusion:

Using parameterized queries is a great practice in developing secure database-driven applications.

The approach prevents malicious data manipulation, ensuring the integrity and security of the data

and the system as a whole.

4.3.2.2 Flexible Operations

▪ Unique indices form the foundation of database inserts. These indices ensure data unique-

ness and integrity.

▪ The system sidesteps hardcoding column names. By dynamically matching JSON keys with

database columns, it paves the way for effortless scalability. Whether it is a new column in

the database or an updated key in the JSON, the application seamlessly accommodates

them.

4.3.3 ETL Principles and Data Transformation

The ETL (Extract, Transform, Load) process plays an integral role in the data integration strategy of

many organizations. By facilitating the migration of data from one environment to another, it en-

sures that data remains cohesive, reliable, and primed for analysis. In the context of this applica-

tion, the ETL principles are meticulously embedded to harmonize and standardize data flow from di-

verse JSON files into the database. (Talend.)

▪ Extract: Data is pulled from the voluminous incoming JSON files, parsed, and prepped for

processing.

▪ Transform: Before being fitted for database insertion, the data often requires reshaping.

Whether it is lists converting into JSON strings or Booleans being cast to string representa-

tions, the transformation phase ensures data compatibility with the database schema (see

Figure 16).

▪ Load: The final act, the processed data finds its rightful place in the database, ensuring that

insights and analytics can be derived from it in subsequent stages.

30 (46)

Figure 16. Example of the transformation process

4.3.4 Seamless Deployment and Infrastructure Integration

In the realm of modern software development, a holistic approach to application deployment and in-

frastructure integration is very important. This ensures reliability, scalability, and most importantly,

reproducibility across varied environments.

▪ Dockerization

One of the application's deployment strategies is Dockerization. By encapsulating the appli-

cation and its dependencies within Docker containers, the system ensures environmental

immutability. This encapsulation guarantees that regardless of where the application is de-

ployed it behaves with consistent predictability. (Docker.)

▪ GitLab

Version control is essential in today's collaborative software development landscape. GitLab

serves as the version control platform for this application, offering a cohesive environment

for code management, collaborative development, and most critically, automation via CI/CD

(Continuous Integration/Continuous Deployment) pipeline. (GitLab.)

The CI/CD pipeline has to main stages (see Figure 17):

1. Build: This stage focuses on constructing the Docker image for the application. It

leverages Kaniko, a tool designed to build container images from a Dockerfile, with-

out a full-fledged Docker daemon. The constructed image is then pushed to Harbor,

the designated container repository.

2. Deploy Stage: Post image construction, the deployment stage comes into play. Us-

ing “kubectl”, the command-line tool for Kubernetes, the application's image is up-

dated in a Kubernetes deployment. This ensures that the newest version of the ap-

plication is readily available for use.

▪ Harbor and AWS EKS

The deployment ecosystem operates synergistically with Harbor and AWS EKS at its core.

Harbor acts as the central container registry. More than just a repository, Harbor ensures

that Docker images are not only stored but are also subject to rigorous security checks and

compliance measures. (Harbor.)

Once an image has been pushed to Harbor, AWS EKS, Amazon's managed Kubernetes ser-

vice pulls the Docker image directly from Harbor. Through EKS, the application is deployed

31 (46)

into a Kubernetes environment that is optimized for high availability and seamless scalabil-

ity.

Figure 17. CI/CD Pipeline Flowchart

4.3.5 Future-Proofing and Scalability

The design decisions, from modular architecture to dynamic database interactions, highlight the ap-

plication's readiness for future expansions. As data evolves and grows, the system's inherent flexibil-

ity ensures that it can adapt without necessitating major overhauls.

4.3.6 Conclusion

The data processing application is not just a tool; it is a symphony of well-orchestrated modules, al-

gorithms, and design principles. Whether it is handling new data types, integrating with modern in-

frastructure tools, or scaling to handle more significant data loads, the application stands prepared

and robust.

4.4 Database Architecture and Implementation

In today's era of big data, the foundation of any effective data processing application is a robust,

scalable, and well-designed database. In this section, will be covered the architecture and imple-

mentation of the database.

4.4.1 Selection Criteria for the Database System

The database's underlayer is powered by AWS Aurora. AWS Aurora, a fully managed relational da-

tabase service, matches the prowess of high-end commercial databases with the affordability and

simplicity of open-source ones. It naturally befits MySQL, which was selected for its remarkable

speed, reliability, and user-friendliness. Aurora supercharges MySQL by adding:

▪ High Performance and Scalability: Aurora is known to deliver up to five times the perfor-

mance of a standard MySQL database. It scales automatically, with the ability to handle tens

of terabytes of data.

▪ High Availability and Durability: Aurora continually backs up data and transparently recovers

from physical storage failures; it is fault-tolerant by design.

4.4.2 Schema Blueprint

In an RDBMS (Relational Database Management System), the schema serves as a foundational

blueprint. It defines the tables, relationships between them, fields, and indexes. (Ramos 2022.)

32 (46)

Tables and their relationships (see Figure 18):

▪ “user”: This serves as the primary table, where “userID” is the primary key.

▪ “calibration”, “performanceReport”, “netDevice”, “systemSetup”, “managementGroup”:

These tables are connected to the “user” table through the foreign key “userID”. This

bond ensures that data from these tables can always be related back to a specific user.

▪ “managementGroup” and “systemSetup” Association: The “managementGroup” table has

an additional layer of relationship with the “systemSetup” table. This connection is estab-

lished through the foreign key “setupID” in “managementGroup”, which corresponds to

the “ID” column, the primary key in the “systemSetup” table. This connection enables a

group to be associated with a specific setup.

4.4.3 Indexing

One of the fundamental aspects of the database architecture is the use of indexing. This database

design, through the application of both unique and composite indices, ensures data integrity and

uniqueness, and at the same time, it accelerates data retrieval processes. (MySQL.)

Figure 18. Database Architecture

33 (46)

4.5 Excel Dashboard

4.5.1 Overview

The Excel Dashboard serves as the analytical interface for the telemetry data. Excel's in-built fea-

tures such as Power Query enable seamless integration with the database. To organize the teleme-

try data in an easily accessible format, each table schema from the database is represented in its

dedicated worksheet. Beyond data representation, a comprehensive sheet named “Dashboard” ex-

ists, facilitating various calculations corresponding to each schema, such as “USER”, “PERFORMANCE

REPORT”, “NET DEVICE”, “CALIBRATION”, “SYSTEM SETUP”, and “MANAGEMENT GROUP” (see

Figure 19).

4.5.2 Data Representation and Analysis

The core utility of the dashboard lies in its analytical features. For every section, essential calcula-

tions such as sums and averages are computed. As an instance, metrics like total number of users,

average running time per user, total sessions, total setups, and more are readily available.

Figure 19. Excel dashboard calculations

Specific sheets like “performanceReport”, “calibration”, “systemSetup”, “managementGroup” and

“netDevice” have a column titled “devices” that indicates the devices assigned to each entry. This

data is stored in a JSON array format.

Excel's native capabilities, such as pivot tables and built-in functions, assist in processing the JSON

array data. These functions enable the extraction and computation of the number of devices and

their allocation to respective users (see Figure 20).

34 (46)

Figure 20. Extracting and processing JSON arrays in Excel

Another process is handling “Temperature”, “InputLevel”, and “OutputLevel” data, which are stored

in the database in JSON strings. Through a combination of pivot tables and Power Query, these

JSON structures are separated each in their individual columns to simplify the processing and analy-

sis. For instance, a JSON structure like:

[{"end": 70, "start": 15, "temps": {"15": 5, "20": 3, "25": 22, "30": 30}, "resolution": 1}]

Is expanded into:

end start resolution Temperature Frequency

70 15 1 15 5

70 15 1 20 3

70 15 1 25 22

70 15 1 30 30

The processed data assists in populating pivot tables, which further helps in calculating the occur-

rence for every temperature (see Figure 21). Adding the “model” names as filters enables the analy-

sis of temperature data on a model-wise basis. The same methodology is applied for InputLevel and

OutputLevel.

Figure 21. Separation and analysis of Temperature data

35 (46)

4.5.3 Handling Dynamic Updates

An inherent challenge with telemetry data is its dynamic nature. Instead of adding new data rows

for every update, the database updates the existing user data. This structure presents challenges in

analyzing historical data. However, VBA scripts bridge this gap.

A VBA-implemented button on the “Dashboard” sheet serves multiple purposes:

▪ Data Refresh: On activation, it triggers a refresh for all queries, pulling in the latest data

from the database. This ensures that the dashboard always reflects the most recent data.

▪ Historical Data Maintenance: To maintain the historical context, an additional sheet named

“Historical Data” has been set up to record each data refresh. Every time new data is

fetched, the computations on the dashboard get archived in this sheet, time-stamped with

the date of retrieval. Given that data is sent to the cloud in intervals of 30 days, the Excel

dashboard is typically refreshed every month (see Figure 22).

Figure 22. Snapshot of "Historical Data" Sheet

▪ Historical Data Analysis: The dashboard includes a dedicated section for analyzing historical

data trends. Users can leverage a dropdown box to choose specific metrics, which then fil-

ters and charts the data across different time points, all sourced from the “Historical Data”

sheet. For more complex data types, such as temperature, input level, and output level,

separate historical charts enable date-based filtering and analysis (see Figure 23).

36 (46)

Figure 23. Historical Data Analytics

4.5.4 VBA Implementation

To achieve the mentioned functionalities, VBA (Visual Basic for Applications) scripts are employed.

Here is a breakdown of the VBA code:

▪ RefreshDataAndSaveHistory: This primary subroutine refreshes all data connections, up-

dates pivot tables (see Figure 24), and saves all calculations to the “Historical Data” sheet

(see Figure 25).

37 (46)

Figure 24. Snippet of "RefreshDataAndSaveHistory" Subroutine in VBA

Figure 25. Snippet of processing and storing the calculations for historical analysis

▪ RefreshTemperature: This subroutine handles the refresh and save operations specifically

for temperature data from the “netDevice” sheet (see Figure 26).

38 (46)

Figure 26. Snippet from “RefreshTemperature” Subroutine

Figure 27. Snapshot of Historical Table specifically for the "Temperature"

▪ RefreshInputLevel: Similar to the “Temperature” data handler, this subroutine refreshes and

saves data for InputLevels (see Figure 28).

39 (46)

Figure 28. Snapshot of Historical Table specifically for the “InputLevel”

▪ RefreshOutputLevel: Similar to the “Temperature” and “InputLevel” data handler, this sub-

routine refreshes and saves data for OutputLevels (see Figure 29).

Figure 29. Snapshot of Historical Table Specifically for the "OutputLevel"

40 (46)

4.5.5 VBA Flowchart

Figure 30. VBA Flowchart

4.5.6 Conclusion

The Excel Dashboard serves as a demonstration of the integrated capabilities of Excel, Power Query,

and VBA in building a dynamic, up-to-date, and historical data analysis tool. Its implementation en-

sures that users always have an intuitive interface for analyzing and interpreting telemetry data,

with both current and historical perspectives.

41 (46)

5 BENEFITS AND FUTURE IMPLEMENTATIONS OF TELEMETRY

5.1 Benefits of Telemetry

According to Richman (2023), telemetry, the automated process of collecting and transmitting data

from remote locations to receiving equipment for monitoring, offers several benefits across indus-

tries.

▪ Improved Operational Efficiency: Telemetry allows ongoing monitoring for a clear picture of

system states, reducing the need for manual checks and leading to a more streamlined

workflow.

▪ Cost Savings: Automates data collection, freeing up human resources, reducing time, and

preemptively solving problems to avoid costly repairs.

▪ Increased Data Accuracy: Automated and continuous data collection reduces human error

and provides reliable data for better decision-making.

▪ Scalability: Can handle data volumes of any size, allowing operations to easily scale as re-

quired.

5.2 Benefits of Telemetry in audio control system and management software

The incorporation of telemetry in audio control systems and management software can enhance the

company's approach to device data management and user experience optimization. By embedding

telemetry functionalities within the software, the company can harness detailed insights from the

devices, all channeled through the software platform. Below are the specific benefits of this imple-

mentation:

Improving the understanding of User-Device Interactions:

▪ In-depth Device Usage Profiles: By analyzing performance metrics routed through the soft-

ware, there is potential for the company to develop a more detailed understanding of how

devices are being utilized.

▪ Tailored Product Experiences: With these insights, there is a possibility for the company to

introduce software updates that further resonate with the performance and usage patterns

of the devices.

Potential for Optimization and Product Improvements:

▪ Feedback-Driven Enhancements: The continuous stream of device performance data offers

an opportunity for the company to identify and address product performance discrepancies

via the software.

▪ Product Development: The telemetry insights could potentially help the company in fore-

casting user demands and usage trends, thereby ensuring their offerings are aligned with

evolving requirements.

Strategic Product Development Insights:

▪ Evidence-Based Decision Making: Leveraging telemetry data provides a robust foundation

for product developmental strategies based on device performance patterns.

42 (46)

▪ Resource Allocation: By understanding the performance patterns through telemetry data,

the company can allocate its resources more effectively, prioritizing areas that offer signifi-

cant enhancements to the user experience.

User Empowerment through Performance Data:

▪ Guided Device Optimization: The local management software, informed by telemetry data,

may offer users insights into specific device performance metrics, enabling them to fine-

tune settings for enhanced performance.

▪ Proactive Maintenance Indicators: Telemetry data can act as a predictive tool, potentially

alerting users about deviations in recommended performance ranges, like temperature or

input/output levels. Such proactive notifications can enable timely actions, maintaining con-

sistent device performance.

5.3 Conclusion

The telemetry approach of a company in its control system and management software shows a

commitment to innovation, enhanced product quality, and customer satisfaction. By analyzing the

device performance metrics, the company ensures user privacy and identifies areas for product im-

provement. This approach highlights a company's commitment to continuous, data-driven advance-

ment.

43 (46)

6 DISCUSSION

Telemetry's integration within a local control system and management software is highlighted as an

important mechanism for enhancing product understanding and user experience. However, ensuring

the quality and reliability of the data captured is critical. The efficacy of the telemetry system relies

on the precision and consistency of the data points collected.

Variability in the data points or inconsistencies can alter the interpretations and potentially misguide

future developmental strategies. As such, emphasizing consistent data quality and refining the pa-

rameters for data capture become pivotal. This involves careful analysis of the incoming data, ad-

justing the data collection based on feedback, and periodically reviewing the importance of the data

collected.

Furthermore, seamless integration of telemetry data with other services of a company can potential-

ly offer more profound insights. Pursuing such integrative efforts not only enhances the depth of

understanding regarding device performance but also the value telemetry brings to both company

and its users.

For future enhancements, broadening the telemetry system to capture more detailed usage patterns

and collaborating with other software metrics are promising directions. Keeping the telemetry sys-

tem up to date with evolving technological standards, user needs, and industry benchmarks is cru-

cial to maintaining its significance.

44 (46)

7 CONCLUSION

7.1 Summary of Findings

Telemetry incorporation within a control system and management software emphasizes the move to

a more data-driven and user-centric approach. The primary data points revolve around device per-

formance metrics, ensuring user privacy while facilitating product improvement. The importance of

integrating a telemetry system while maintaining data integrity and privacy has been highlighted.

7.2 Contributions and Impact

The telemetry system can significantly enhance the ability of a company to understand user behav-

ior, device performance, and development requirements. Presenting this information in an easily in-

terpretable manner will empower both the company and its users. For the company, it will guide

product enhancements, while for users, it will facilitate optimal device usage.

7.3 Final Remarks

The exploration of telemetry within the context of control systems and management software high-

lights its potential in revolutionizing user experience and product development. Its impact goes be-

yond simple data collection. It offers the opportunity for fostering innovation, enhancing product

quality, and improving user understanding. As companies look ahead, telemetry provides a pathway

not just for understanding but for significant advancement. Navigating this pathway, while being

aware of the challenges, can guide companies to new heights of success and user satisfaction.

45 (46)

REFERENCES

ChatGPT 2023. OpenAI. GPT-4. Accessed for language check, November 2023.

https://chat.openai.com

Analytics Vidhya 2023. A Comprehensive Guide on Microsoft Excel for Data Analysis.

https://www.analyticsvidhya.com/blog/2021/11/a-comprehensive-guide-on-microsoft-excel-for-data-

analysis/. Accessed 8.11.2023.

AWS Aurora n.d. Amazon Aurora. https://aws.amazon.com/rds/aurora/. Accessed 8.11.2023.

AWS EKS n.d. Amazon Elastic Kubernetes Service. https://aws.amazon.com/eks/. Accessed

8.11.2023.

AWS n.d. What is Cloud Storage? - Cloud Storage Explained - AWS. https://aws.amazon.com/what-

is/cloud-storage/. Accessed 8.11.2023.

Docker n.d. Use containers to Build, Share and Run your applications.

https://www.docker.com/resources/what-container/. Accessed 9.11.2023.

Funnel n.d. The Best Data Visualization Tools — According to Funnel. https://funnel.io/blog/the-top-

visualization-tools-according-to-funnel. Accessed 8.11.2023.

GitLab n.d. Get started with GitLab CI/CD. https://docs.gitlab.com/ee/ci/. Accessed 9.11.2023.

GitLab n.d. What is version control? https://about.gitlab.com/topics/version-control/#how-does-

version-control-streamline-collaboration. Accessed 9.11.2023.

Harbor n.d. https://goharbor.io/. Accessed 8.11.2023.

JUCE n.d. https://juce.com/. Accessed 8.11.2023.

Junnila, A n.d.-a. How IoT Works – Part 3: Data Processing. Trackinno.

https://trackinno.com/iot/how-iot-works-part-3-data-processing/. Accessed 8.11.2023.

Junnila, A n.d.-b. How IoT Works – Part 4: User Interface. Trackinno.

https://trackinno.com/iot/how-iot-works-part-4-user-interface/. Accessed 8.11.2023.

KrakenD n.d. https://www.krakend.io/. Accessed 8.11.2023.

Kutay, J n.d. Types of Data Integration: ETL vs ELT and Batch vs Real-Time. Striim.

https://www.striim.com/blog/data-integration/. Accessed 14.11.2023.

MySQL n.d. How MySQL Uses Indexes. https://dev.mysql.com/doc/refman/8.0/en/mysql-

indexes.html. Accessed 9.11.2023.

Pelaez, A 2021. Here’s How IoT Data Collection Works [Complete Guide]. Ubidots.

https://ubidots.com/blog/iot-data-collection/. Accessed 8.11.2023.

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/eks/
https://aws.amazon.com/what-is/cloud-storage/
https://aws.amazon.com/what-is/cloud-storage/
https://www.docker.com/resources/what-container/
https://funnel.io/blog/the-top-visualization-tools-according-to-funnel
https://funnel.io/blog/the-top-visualization-tools-according-to-funnel
https://docs.gitlab.com/ee/ci/
https://about.gitlab.com/topics/version-control/#how-does-version-control-streamline-collaboration
https://about.gitlab.com/topics/version-control/#how-does-version-control-streamline-collaboration
https://goharbor.io/
https://juce.com/
https://trackinno.com/iot/how-iot-works-part-3-data-processing/
https://trackinno.com/iot/how-iot-works-part-4-user-interface/
https://www.krakend.io/
https://www.striim.com/blog/data-integration/
https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html
https://ubidots.com/blog/iot-data-collection/

46 (46)

PYnative 2021. Python MySQL Execute Parameterized Query using Prepared Statement.

https://pynative.com/python-mysql-execute-parameterized-query-using-prepared-statement/. Ac-

cessed 9.11.2023.

Python Basics n.d. Flask HTTP methods, handle GET & POST requests.

https://pythonbasics.org/flask-http-methods/. Accessed 9.11.2023.

Ramos, C 2022. Database schema design 101 for relational databases. PlanetScale.

https://planetscale.com/blog/schema-design-101-relational-databases. Accessed 9.11.2023.

Richman, J 2023. What Is Telemetry Data? Uses, Benefits, & Challenges. Estuary.

https://estuary.dev/Telemetry-data/. Accessed 9.11.2023.

SQL Shack 2022. Using parameterized queries to avoid SQL injection.

https://www.sqlshack.com/using-parameterized-queries-to-avoid-sql-injection/. Accessed 9.11.2023.

Sumo Logic n.d. What is telemetry? https://www.sumologic.com/glossary/telemetry/. Accessed

30.10.2023.

Talend n.d. What is ETL? https://www.talend.com/resources/what-is-etl/. Accessed 9.11.2023.

TechTarget 2023. What is IoT Security? https://www.techtarget.com/iotagenda/definition/IoT-

security-Internet-of-Things-security. Accessed 8.11.2023.

Yildirim, S 2022. Data Processing in Python. LearnPython. https://learnpython.com/blog/data-

processing-in-python/. Accessed 8.11.2023.

https://pynative.com/python-mysql-execute-parameterized-query-using-prepared-statement/
https://pythonbasics.org/flask-http-methods/
https://planetscale.com/blog/schema-design-101-relational-databases
https://estuary.dev/Telemetry-data/
https://www.sqlshack.com/using-parameterized-queries-to-avoid-sql-injection/
https://www.sumologic.com/glossary/telemetry/
https://www.talend.com/resources/what-is-etl/
https://www.techtarget.com/iotagenda/definition/IoT-security-Internet-of-Things-security
https://www.techtarget.com/iotagenda/definition/IoT-security-Internet-of-Things-security
https://learnpython.com/blog/data-processing-in-python/
https://learnpython.com/blog/data-processing-in-python/

