

Mobile Machine Anomaly Detection

in Container Handling Operations

Mikko Heikkilä

MASTER’S THESIS

December 2023

Master’s Degree Programme in Data Expertise and Artificial Intelligence

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Master’s Degree Programme in Data Expertise and Artificial Intelligence

HEIKKILÄ, MIKKO
Mobile Machine Anomaly Detection in Container Handling Operations

Master's thesis 50 pages, appendices 2 pages
December 2023

The objective of this Master’s thesis is to research Deep Learning (DL) based
anomaly detection methods for unlabeled time series data in container handling
operations. Detected anomalies can be the sign of a defect in the container han-
dling equipment. Predictive maintenance aims to detect and prevent failures in
industrial equipment by analyzing Key Performance Indicator (KPI) data and
identifying anomalies that indicate potential issues or malfunctions.

This Master’s thesis examines forecasting based deep learning methods with
convolutional and long short-term memory layers for detecting anomalies from
onboard control system data. The final goal of the work is to obtain a method to
identify signs of abnormal steering behavior.

The thesis presents the background of the problem in the introduction with the
research questions. The thesis also covers the test setup of the experiments
along with the training and testing of the selected deep learning method.

The results show that it is possible to detect anomalies by using the selected
method.

Key words: deep learning, predictive maintenance, anomaly detection

CONTENTS

1 INTRODUCTION .. 5

1.1 Motivation ... 5

1.2 State of Art ... 5

1.3 Objectives and Research Questions .. 6

2 INTRODUCTION TO MAINTENANCE STRATEGIES 7

3 ANOMALY DEFINITION AND DETECTION METHODS 8

3.1 Time Series .. 9

3.2 Type of Anomaly .. 10

4 ANOMALY DETECTION AND DEEP LEARNING 11

4.1 Literature Review ... 12

4.2 Methodological Basis ... 14

4.3 Overview of Artificial Neural Network Models 14

4.4 Activation Functions ... 17

4.5 Cost Functions and Optimization Algorithms 21

4.6 Convolutional Neural Networks .. 24

4.7 Recurrent Neural Networks .. 30

4.8 Long Short-Term Memory Networks .. 31

5 EXPERIMENTS AND TEST SETUP... 34

5.1 Background .. 34

5.2 Data Collection and Analysis ... 35

5.3 Forecasting Approach .. 36

5.3.1 Model Architecture .. 37

5.3.2 Data Pre-processing ... 37

5.3.3 Model Training .. 38

5.4 Anomaly Detection ... 41

5.5 Model Performance Summary ... 42

5.6 Tools .. 43

6 CONCLUSIONS AND FUTURE WORK ... 44

REFERENCES .. 46

APPENDICES .. 49

SPECIAL VOCABULARY

ANN Artificial Neural Network

CBM Condition Based Maintenance

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

DOF Degrees of Freedom

KPI Key Performance Indicator

LSTM Long Short-Term Memory

MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

MTSAD Multivariate Time Series Anomaly Detection

RNN Recurrent Neural Network

PDM Predictive Maintenance

PVM Preventive Maintenance

SAE Sparse Auto Encoder

TCN Temporal Convolutional Network

TFT Temporal Fusion Transformers

1 INTRODUCTION

1.1 Motivation

Container terminals are critical hubs of the global logistics system and they play

a crucial role in facilitating international trade and commerce. Containers are

transferred from ships to storage areas, trucks and trains with heavy machinery

in daily operations. In recent years, there has been an increasing trend to auto-

mate the container handling fully or partially. Automated container handling

equipment can accurately move and stack containers in marine terminals in a

safe manner.

Automated equipment, however, requires regular maintenance in order to func-

tion properly and effectively. Equipment failure while serving a vessel can be

costly and might even partially halt the operations. Therefore, regular or preven-

tive maintenance of automated container handling equipment is essential for en-

suring the reliable and efficient operation of container terminals and minimizing

disruption.

Predictive maintenance techniques such as Machine Learning (ML) can help to

identify potential issues in the onboard sub-systems that may not be detected

through routine inspections. This technique allows targeted maintenance activi-

ties between normal scheduled ones. The anomalies are a sign of abnormal be-

havior, indicating a need for a system inspection before becoming an issue for

the operations.

1.2 State of Art

The field of anomaly detection for time-series data has been a significant area of

research for long time. Early studies on anomaly detection methods primarily fo-

cused on statistical approaches. However, in recent years, there has been a

surge in the development of machine learning algorithms specifically designed

for detecting anomalies in time-series data.

Abnormal system behavior detection using ML based methods for time series

data have gained significant attention due to their ability to capture complex pat-

terns and temporal dependencies. These methods have also shown great prom-

ise in the field of predictive maintenance of different industrial equipment.

Anomalies in the data can indicate either a past or potential future fault. There

are different approaches to identifying anomalies, but in this thesis, focus is on

the DL forecasting approach. This method involves using control system and sen-

sor data to predict subsequent values of lateral control point error and comparing

the deviation against a threshold. Recurrent Neural Networks (RNNs) and Con-

volutional Neural Networks (CNNs) can be utilized for this purpose. In this thesis,

both models are tested in the experiments section.

1.3 Objectives and Research Questions

The main task in this thesis is to evaluate two different DL models for sequential

data from container handling equipment and their ability to distinguish abnormal

data points. After training the models, a suitable threshold limit was chosen for

the anomaly detection. There are two research questions for the thesis based on

the objectives:

First, main question: “Can a Deep Neural Network detect anomalies from unla-

beled control system and sensor data of a container handling equipment?”

Second, subquestion: “Could Machine Learning be utilized for predictive mainte-

nance in a container handling equipment?”

2 INTRODUCTION TO MAINTENANCE STRATEGIES

Maintenance strategies can be classified into four distinct categories, each differ-

ing in terms of complexity and effectiveness (Susto, G et al. 2012).

Run-to-failure (R2F) maintenance approach involves conducting repairs or re-

storative actions only after a failure has occurred. It is the simplest form of mainte-

nance management but often leads to increased costs due to the large number

of defective products resulting from the failure.

Preventive maintenance (PVM) or scheduled maintenance strategy, mainte-

nance activities are performed periodically on a planned schedule, aiming to an-

ticipate process or equipment failures. This approach aims to prevent failures, but

it may also result in unnecessary maintenance actions being carried out at times.

In Condition-based maintenance (CBM) the maintenance actions are initiated af-

ter observing specific conditions indicating a degradation of the process or equip-

ment. This approach relies on continuous monitoring of the machine or process

health, enabling maintenance actions to be performed only when they are genu-

inely required. The drawback of CBM is that maintenance activities cannot be

planned in advance.

Predictive maintenance (PDM) or statistical-based maintenance is similar to

CBM, where maintenance actions are carried out only when necessary. However,

PDM incorporates prediction tools to determine when such actions are likely to

be required, allowing for the implementation of planning and scheduling

schemes. PDM systems often employ custom-defined health factors or statistical

inference methods to facilitate decision-making.

Among statistical inference-based methods, ML and DL approaches have been

shown to provide increasingly effective solutions for predictive maintenance

(Zhang, W et al. 2019)

3 ANOMALY DEFINITION AND DETECTION METHODS

In the field of data-analysis , anomaly detection, known also as outlier detection,

is usually understood as identification of rare items, events or observations which

are deviating significantly from the majority of the data and do not conform to a

well-defined notion of normal. Hence, anomaly detection is a task of identifying

the rare items, events, or observations that raise suspicions by differing signifi-

cantly from the majority of the data. There are three broad categories of anomaly

detection techniques that exist (Chandola, V et al.2009).

Unsupervised anomaly detection techniques identify anomalies in an unlabeled

test dataset by assuming that the majority of instances in the dataset are normal.

These methods seek out instances that appear to deviate the most from the rest

of the data.

Supervised anomaly detection methods requires a dataset that has been labeled

as “normal” and “abnormal” and involves training a classifier.

Semi-supervised anomaly detection methods constructs a model representing

normal behavior from a given normal training dataset, and then tests the likeli-

hood of a test instance to be generated by the learned model.

The reporting of anomalies is also an important aspect of any anomaly detection

technique, and it typically falls into two main categories (Chandola, V et al.2009)

Scoring techniques assign an anomaly score to each instance in the test data,

indicating the extent to which that instance is considered anomalous. Conse-

quently, the output of such techniques is a ranked list of anomalies. Domain ex-

pert can choose to focus on analyzing the top few anomalies or apply a prede-

fined cutoff threshold to select the anomalies deemed most significant.

In labeling technique a specific label is assigned, either "normal" or "anomalous,"

to each test instance. While scoring-based anomaly detection techniques allow

analysts to use a domain-specific threshold to select relevant anomalies, tech-

niques that provide binary labels do not offer direct control over this selection

process. However, the expert can indirectly influence this choice through param-

eter settings within each technique.

3.1 Time Series

A time series represents a sequence of observations ordered chronologically,

with data points typically collected at uniform time intervals (Yufeng, Yu et al.

2014). This type of data can be categorized as either univariate or multivariate

time series. In the context of univariate time series, only one variable changes

over time. For instance, a straightforward illustration of this is a sensor recording

temperature every second. Conversely, a multivariate time series involves the

inclusion of multiple time-dependent variables. These variables, beyond their

temporal dependence, can exhibit varying levels of correlation with each other

and in many cases encompass nonlinearity. Alternatively viewed, a multivariate

time series is a composite of distinct univariate time series, interrelated to varying

extents. An instance of such a multivariate time series might arise from a tri-axial

accelerometer generating three-dimensional observations for each axis (x, y, z)

every second. Another example of multivariate time series data is the data rec-

orded from mobile machine onboard control system, which forms the basis for

the experiments in this thesis.

A time series is deemed stationary when its statistical characteristics remain con-

sistent over time. This means that key attributes like the mean, variance, and

autocorrelation structure of the series don't change as time progresses. Station-

arity holds significance because various traditional statistical techniques de-

signed for time series analysis rely on this property. However, in real-world sce-

narios, time series data is usually non-stationary, non-linear and dynamically

evolving. Hence, deep learning models should be able to detect anomalies in real

time (Chalapathy, R et al. 2019).

After general description of time series a more formal presentation of is provided.

A time series 𝑋 = {(𝑡) | 1 ⩽ 𝑡 ⩽ 𝑚}, unfolds as a series of 𝑑-dimensional observa-

tion vectors (𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), . . . 𝑥𝑑(𝑡)) arranged in chronological order. These

observations are often gathered at uniform, discrete time intervals. When 𝑑 = 1,

it's referred to as a univariate time series, and when 𝑑 > 1, it becomes a multivar-

iate time series (Yufeng, Y et al. 2014).

3.2 Type of Anomaly

In literature, types of anomalies in univariate and multivariate time series are gen-

erally categorized into 3 different groups, which are (1) Point anomalies, (2) Con-

textual Anomalies and (3) Collective Anomalies (Chalapathy, R et al. 2019)

A point anomaly arises when a single sensor reading significantly diverges from

the rest of the data points. This can happen for example due to a measurement

beyond the expected range. These anomalies are often caused by unreliable or

faulty sensors, data recording errors, or localized operational irregularities.

Contextual anomalies occur when a sensor reading stands out as anomalous

only within a specific context. In isolation, the measured value might seem nor-

mal, but it becomes anomalous when compared to preceding or subsequent

readings.

Collective anomalies involve a subset of sensor measurements behaving distinc-

tively compared to other subsets. This category is characterized by patterns

where a portion of the data follows different behavior than the larger set (Belay,

M et al.2023) A visual representation of these anomaly categories are depicted

in Figure 1.

FIGURE 1. Anomalies in time series data (Belay, M et al.2023)

4 ANOMALY DETECTION AND DEEP LEARNING

Unsupervised Multivariate Time Series Anomaly Detection (MTSAD) methods

can be classified based on the foundational approach they adopt to identify anom-

alies within the data. A majority of these methods can be categorized within one

of the three fundamental approaches as depicted in Figure 2. These approaches

include the reconstruction approach, prediction approach, and compression ap-

proach.

FIGURE 2. Categories of unsupervised MTSAD (Belay, M et al.2023)

Within reconstruction-based methodologies, the procedure involves compressing

a training set of multidimensional time series data into a lower-dimensional latent

space, followed by its subsequent reconstruction back to its original dimensions.

These approaches rest on the assumption that anomalies exhibit suboptimal re-

construction. Hence, the degree of reconstruction error or the probability of re-

construction is utilized as an indicator of anomalousness. Autoencoders are often

utilized for anomaly detection by learning to reconstruct a given input and the

model is trained exclusively on normal data (Zhang, Y et al. 2023)

Compression methods, similar to reconstruction techniques, encode time series

segments into a low-dimensional latent space. However, unlike reconstruction,

anomaly scores are directly computed in the latent space. Dimensionality reduc-

tion methods decrease computation time and can also serve to reduce model

complexity and prevent overfitting. If the dimensions of the latent space are un-

correlated, compression methods allow for the utilization of univariate analysis

techniques without neglecting dependencies among variables in the original data

(Belay, M et al.2023).

Prediction-based approach revolves around leveraging both present and past

values (typically gathered from a finite sliding window) to predict forthcoming sin-

gle or multiple time steps. By comparing the predicted data points against the

actual observed values, an anomaly score is formulated based on the extent of

disparity and notable deviations between the projected and real data signify an

anomaly. RNN, LSTM and CNN models are typically used for sequence predic-

tion (Zhang, Y et al. 2023).

Next, this chapter explores how different deep learning networks have been uti-

lized for the task of anomaly detection in time series data. Finally, proposed

method for the experiments is introduced based on the literature review.

4.1 Literature Review

DeepAnT, introduced by Munir, M et all, is an anomaly detection model that uses

CNN for predicting future values in timeseries. It stands out for being good at

spotting irregularities in both simple and more complex time series data, doing

better than older methods based on density and distance. According to the au-

thors, DeepAnT displays the ability to identify various anomalies in time series

data, including point anomalies, contextual anomalies, and discord in an unsu-

pervised setting. Unlike other methods that directly learn anomalies, DeepAnT

takes a different approach. It leverages unlabeled data to grasp and understand

the overall data distribution, which then informs its predictions about the regular

behavior of a time series.

Another interesting case presented by Bartosz, P et all utilized LSTM-based

method for early failure detection in production process where clutch shaft misa-

lignment is detected by using LSTM deep learning algorithm. The study involved

an analysis of vibration acceleration measurements taken on a bearing node

within a propulsion engine connected to a four-wheel clutch via a shaft. The shaft,

which has three bearing nodes, experienced a fault when the middle bearing was

intentionally shifted 5 mm away from the shaft axis, causing misalignment within

the system. The main objective in the concept study was to model the time of

failure based on fault data collected from the system.

In a research article by Davari, N et all. DL based sparse autoencoder was utilized

for predictive maintenance of air compressor in a metro train. In the paper a data

driven PDM framework was implemented to detect failures on air compression

unit in timely manner while the train is in operation. During the training phase of

the network, only a dataset consisting of normal data is used as input. The net-

work is trained to understand and learn the patterns and characteristics of this

normal data. Subsequently, in the testing phase, when the network encounters

new data, it employs trained knowledge to distinguish between normal and ab-

normal instances.

Kiavash, F et al. tested a PDM method based on autoencoder and convolutional

layers for a 3-degree-of-freedom (3 DoF) robot that is used for picking and placing

parts in a factory. The proposed architecture incorporates the strengths of both

semi-supervised training and feature extraction capabilities of AEs along with the

CNNs to capture spatial information within the provided signal sequences. By

combining these techniques, the architecture aims to enhance the overall perfor-

mance of the system.

Finally, Safavi, S et all. proposed a fault detection, isolation, identification and

prediction architecture for autonomous vehicles. In summary, the research intro-

duced a novel method for predicting the health status of electronic sensors in

autonomous vehicles. It utilized a CNN classifier for real-time monitoring and con-

struction of a health index. The evolution of this index was then used to forecast

sensor health using a Temporal Fusion Transformer network (TFT). Additionally,

a feature extraction and Deep Neural Network (DNN) classification technique was

proposed for identifying specific fault types. The method was evaluated using a

real-world dataset from car manufacturer Audi, providing a practical validation of

its effectiveness. The fault detection system achieved an impressive accuracy of

99.84% in detecting faults.

In summary, Auto-Encoders, CNNs, RNNs (including LSTMs), and their combi-

nations have been extensively used for analyzing time series data and performing

predictive maintenance or anomaly detection tasks. These neural network archi-

tectures have demonstrated their ability to capture spatial and temporal depend-

encies, making them valuable tools for a wide range of applications in these do-

mains.

In this chapter, five different cases were introduced. Based on literature review,

the proposed method for the thesis is based on DeepAnT, which seems like a

good choice for multivariate timeseries forecasting and anomaly detection task

by using unlabeled data. As a comparison, LSTM based model is also tested to

see differences in the performance and training time.

4.2 Methodological Basis

This chapter provides an overview of various Neural Network models and their

distinctive characteristics. The chapter begins with a presentation of the theoret-

ical foundations of Artificial Neural Networks, activation functions and optimiza-

tion algorithms, followed by CNN, RNN and then introducing LSTM, which is a

type of RNN.

4.3 Overview of Artificial Neural Network Models

Artificial Neural Network (ANN) structures were created based on existing models

of biological nervous systems and the human brain. The essential building blocks

of these networks are artificial neurons, which serve as simplified versions of bi-

ological neurons. The design of artificial neurons is inspired by studying how a

cell membrane in a biological neuron generates and transmits electrical impulses.

Artificial neurons are interconnected through numerous artificial synapses, which

are represented by vectors and matrices of synaptic weights. These connections

enable the flow of information and play an important role in the network's ability

to learn, process data, and make predictions based on the acquired knowledge

(Silva, I et al. 2017)

The simplest artificial neuron is called a perceptron. It outputs a binary value y

(either 0 or 1), based on the dot product of a real-valued input vector x and a

vector of weights w, summed with a bias b as visualized in Figure 3 (Nielsen, M.

2015)

In mathematical terms, the internal computations carried out by the perceptron

can be presented using the following expressions:

𝑂𝑢𝑡𝑝𝑢𝑡 𝑦 = {
0 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 0

(1)

FIGURE 3. Perceptron model (Nielsen, M. 2015)

Feedforward neural networks or Multi Layer Perceptrons (MLPs) represent a fun-

damental class of deep learning models. The primary objective of a feedforward

network is to approximate a specific function denoted as f*. The term "feedfor-

ward" is used because the information flows strictly in one direction, starting from

the input x, passing through intermediate computations that define the function f,

and culminating in the output y. In this type of network, there are no feedback

connections, meaning the model does not have outputs that loop back into itself

during the evaluation process (Goodfellow et al. 2016).

Figure 4 shows visual representation of an ANN. In this network, the nodes re-

ceive input signals from the previous layer, and when the accumulated input sur-

passes a certain threshold, the nodes are activated (Goodfellow et al. 2016)

FIGURE 4. Deep Neural Network with 4 layers (Goodfellow et al. 2016)

In general, an artificial neural network can be divided into three parts, referred to

as layers.

Input Layer:

The input layer plays a crucial role in receiving information such as data, signals,

features or measurements from the external environment. These inputs, often

represented as samples or patterns, are typically normalized within certain pre-

defined limits using activation functions. This normalization enhances the numer-

ical precision of the mathematical operations performed by the network.

Hidden Layers:

Hidden layers are the intermediate layers within the neural network, and they

consist of neurons responsible for identifying and extracting patterns associated

with the analyzed process or system. These layers perform the majority of the

internal processing within the network, facilitating complex computations and fea-

ture extraction.

Output Layer:

The output layer, similar to the hidden layers, is composed of neurons and serves

the critical function of producing and presenting the final network outputs.

These outputs result from the processing carried out by the neurons in the previ-

ous layers and represent the network's conclusions or predictions based on the

input data.

In addition to these three primary layers, artificial neural networks can have vari-

ous architectures, characterized by the arrangement and interconnections of neu-

rons and layers (Silva et al. 2017)

4.4 Activation Functions

In an MLP network, the final output is determined through the use of various ac-

tivation functions (AF), also referred to as transfer functions. Activation functions

are functions used to compute the weighted sum of input and biases. Each acti-

vation function serves a specific purpose in processing the neuron's input and

producing the desired output for different types of tasks in the network. Figure 5

illustrates several commonly used activation functions, among which are popular

choices like ReLU (Rectified Linear Unit), Hyperbolic Tangent (Tanh), and Sig-

moid/Logistic.

FIGURE 5. Common activation functions (Nwankpa et al. 2018)

Activation functions can be either linear or non-linear, depending on the function

they represent. Linear activation functions simply pass the input to the next layer,

while non-linear activation functions transform the input in a way that allows the

network to learn more complex relationships. (Nwankpa et al. 2018)

Next, some activation functions are presented in more detail, along with typical

use cases. It's worth noting that improved variants of the most common activation

functions exist, but only one of them will be discussed here, namely the Leaky

ReLU.

The Sigmoid activation function, also known as the logistic function, with output

values range of 0 to 1. This non-linear activation function is primarily applied in

feedforward neural networks. It is a differentiable real function with bounds, de-

fined for real input values, featuring positive derivatives everywhere and a certain

level of smoothness. The mathematical expression for the Sigmoid function is

given by the relationship:

𝑓 (𝑥) =
1

1 + 𝑒−𝑥
(2)

The sigmoid function is commonly employed in the output layers of deep learning

architectures. Its main application lies in predicting probability-based outputs,

making it particularly useful in binary classification problems and logistic regres-

sion tasks.

The hyperbolic tangent function (tanh), is another type of activation function

widely used in deep learning. This function is known for its smoother and zero-

centered nature, with output values ranging from -1 to 1. The mathematical ex-

pression for the tanh function is as follows:

𝑓 (𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3)

The tanh function has been shown to give better training performance for multi-

layer neural networks than the sigmoid function and are widely used inRNN’s,

particularly in tasks related to natural language processing and speech recogni-

tion. (Nwankpa et al. 2018)

The Rectified Linear Unit (ReLU) activation function was introduced by Nair and

Hinton in 2010, and since then, it has become the most widely used activation

function in deep learning applications, consistently delivering state-of-the-art re-

sults. ReLU is known for its faster learning capabilities and has proven to be

highly successful and popular in various domains. When compared to the Sig-

moid and tanh activation functions, ReLU outperforms them, providing better per-

formance and generalization in deep learning tasks.

One of the key advantages of ReLU is that it maintains nearly linear behavior,

which preserves the properties of linear models and simplifies the optimization

process with gradient-descent methods.

The ReLU activation function operates as a threshold operation on each input

element, setting values less than zero to zero. This mathematical expression for

ReLU is given by:

𝑓 (𝑥) = max(0, 𝑥) = {
𝑥𝑖 𝑖𝑓 𝑥𝑖 ≥ 0
0, 𝑖𝑓 𝑥𝑖 < 0

(4)

The rectified linear unit (ReLU) function effectively rectifies input values that are

less than zero, forcing them to zero and thereby addressing the vanishing gradi-

ent problem encountered in earlier activation functions. ReLU has found exten-

sive use within the hidden units of deep neural networks, often combined with

another activation function in the output layers for tasks like object classification

and speech recognition.

One of the main advantages of using ReLU in computations is its faster perfor-

mance, as it avoids expensive exponential and division calculations, resulting in

enhanced overall computation speed. ReLU also introduces sparsity in the hid-

den units by compressing the values between zero and the maximum value.

However, ReLU has its limitations. It is prone to overfitting compared to the sig-

moid function. Nonetheless, researchers have employed techniques like dropout

function to mitigate the overfitting effects and improve the performance of deep

neural networks.

Despite its advantages, ReLU has a significant drawback. During training, it can

become fragile, causing some gradients to vanish and resulting in the death of

certain neurons. These "dead" neurons lead to weight updates not activating in

future data points, hampering the learning process as these neurons effectively

give zero activation. To address this issue, the leaky ReLU was proposed.

Leaky ReLU (LReLU) was introduced in 2013 as an activation function designed

to address the dead neuron problem of the standard ReLU. The primary purpose

of LReLU is to keep the weight updates active throughout the entire propagation

process during training.

To achieve this, LReLU introduces a small negative slope, represented by the

parameter alpha (α), for input values less than zero. By incorporating this small

negative gradient, LReLU ensures that the gradients are not completely zero at

any point during training. The value of alpha is typically set to a very small con-

stant, often around 0.01, which allows for a slight, non-zero gradient for negative

inputs.

The mathematical expression for the LReLU activation function is given as fol-

lows:

𝑓(𝑥) = αx + x = {
𝑥 𝑖𝑓 𝑥 > 0
𝛼𝑥, 𝑖𝑓 𝑥 ≤ 0

(5)

This small but essential modification enables LReLU to overcome the dead neu-

ron issue and facilitate improved learning in deep neural networks.

Finally, the softmax function that is used in neural computing to compute a prob-

ability distribution from a vector of real numbers. The softmax function produces

an output vector of probabilities, where each element of the vector represents the

probability that the input vector belongs to a particular class. The sum of the prob-

abilities in the output vector is always equal to 1.

The softmax formula is computed using the following relationship:

𝑓(𝑥)𝑖 =
𝑒 (𝑥𝑖)

∑ 𝑒(𝑥𝑗)𝑗

(6)

The softmax function is used in multi-class classification models to return a prob-

ability distribution over the different classes. The class with the highest probability

is then the class that the model predicts the input belongs to. The main difference

between the sigmoid and softmax activation functions is that the sigmoid function

is used for binary classification, while the softmax function is used for multi-class

classification (Nwankpa et al. 2018).

4.5 Cost Functions and Optimization Algorithms

The cost function J(θ) is a function in machine learning that is used to assess the

overall accuracy of a model's estimations during the training process. It quantifies

the "cost" or "error" arising from the disparity between the model's predicted out-

puts and the actual known outputs, requiring access to the true output values of

the data.

During training, the model's estimated outputs and the corresponding known data

are input into the cost function, which then computes the cost for the model by

summing up the errors between each individual prediction and the true value.

Essentially, the cost function evaluates how well the model is performing on the

given dataset, and the ultimate goal is to minimize this cost to improve the model's

predictive capabilities.

It's important to differentiate between cost functions and loss functions. While the

term "cost function" is linked to the overall estimation error of the model with a

specific dataset, "loss functions" focus on the error of a single output prediction.

Both are related concepts but have distinct scopes and purposes

There are multiple ways to compute the errors between the model's estimates

and the known data, and the choice of the appropriate cost function largely de-

pends on the specific use case and the nature of the problem being solved. By

selecting the right cost function tailored to the task at hand, the model's accuracy

and performance can be significantly improved, leading to more reliable predic-

tions and better outcomes (Bishop C. 2006), (Allwright S. 2023).

Mean Squared Error (MSE) is a widely used evaluation metric for regression

models. It is calculated by taking the average of the squared differences between

the predicted values and the actual target values.

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�)2

𝑁

𝑖=1

(7)

The Mean Absolute Error (MAE) is another commonly used metric in regression

analysis. It quantifies the average absolute difference between the actual target

values and the corresponding predicted values for each data point in the dataset.

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�|

𝑁

𝑖=1

(8)

In the context of machine learning, the objective is to minimize the cost function,

which serves as a measure of the model's performance. To achieve this, the

weights and biases in the neural network need to be adjusted (Nielsen, M. 2015)

One approach to tackle this optimization problem is to compute the gradient of

the cost function. This gradient consists of partial derivatives with respect to the

weights and biases of the network, indicating how small changes in each unit of

the network would impact the output. The gradient provides both the direction

and magnitude of the steepest ascent in the cost function's landscape.

To move towards local minima of the cost function, an iterative process is

adopted, where the weights and biases are updated by taking steps in the nega-

tive direction of the gradient as illustrated in Figure 6. The size of these steps is

controlled by the learning rate, determining the magnitude of adjustments. Se-

lecting an appropriate learning rate is essential as a large learning rate may over-

shoot the minimum, while a very small learning rate may result in slow conver-

gence (Géron, A. 2019).

This weight and bias update algorithm, known as Gradient Descent GD, aids the

model in iteratively refining its parameters. By repeatedly adjusting the parame-

ters based on the gradient, the model progressively approaches a state where

the cost function is minimized i.e. until the network converges, meaning that the

error is no longer decreasing. The process of obtaining the model parameters in

the direction of maximum variation involves adjusting the parameter values as

follows:

𝜃 = 𝜃 − 𝜂. ∇𝜃𝐽(𝜃) (9)

Where 𝜃 = model parameters, 𝜂 = learning rate and ∇𝜃𝐽 gradient vector of the

cost function (Madani. A, 2022).

There are a number of different optimization approaches besides GD that can be

used with backpropagation, such as Stochastic Gradient Descent (SGD) and

Adaptive Moment Estimation (Adam) (Sarker, 2021).

FIGURE 6. Gradient Descent algorithm (Géron, A. 2019)

The gradient, which indicates the direction and magnitude of the cost function's

steepest decrease, is computed using a technique called Backpropagation. This

algorithm involves moving backward in the neural network to calculate the partial

derivatives of the cost function with respect to the network's parameters.

To apply Backpropagation, a training example is fed into the neural network, and

its output is computed through forward propagation. After obtaining the output,

the cost function is computed to measure the prediction error. Then, the Back-

propagation algorithm is employed to calculate the gradients, which involves

propagating backward through the neural network graph following the chain rule

(Nielsen, M. 2015)

In regular GD, the weights are updated after forward propagating each individual

sample and computing the cost, making the training process slow. To speed up

training, Stochastic Gradient Descent (SGD) is often used. Instead of summing

the costs of all training examples in the dataset, SGD randomly selects a batch

of examples from the training set. The gradient descent algorithm is then applied

using the average of the gradients calculated for that batch. This approach accel-

erates the weight updates and helps the neural network learn more efficiently

(Zhang, A et al. 2021)

Adaptive Moment Estimation (Adam) is an optimization algorithm that can be

used instead of the classical stochastic gradient descent procedure to update

network weights iteratively based on training data. Unlike Gradient Descent (GD)

and Stochastic Gradient Descent (SGD), which have a fixed learning rate

throughout the training process, Adam uses adaptive learning rates that can

change during training which helps to speed up the training process and en-

hances the model's ability to find an optimal solution effectively (Kingma & Ba,

2015)

4.6 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network that are spe-

cifically designed for processing data that has a grid-like topology. This includes

data such as time series data, which can be thought of as a 1-D grid of data

points, and image data, which can be thought of as a 2-D grid of pixels.

CNNs work by applying a mathematical operation called convolution to the input

data (Goodfellow et al. 2016).

A common structure involves the repetition of a sequence comprising multiple

convolutional layers and a pooling layer. This sequence is then followed by one

or more fully connected layers. The process by which input data undergoes trans-

formation into output by passing through these layers is referred to as forward

propagation, as depicted in Figure 7 (Yamashita et al. 2018)

FIGURE 7. An overview of CNN architecture and training process (Yamashita et

al. 2018)

Convolution is a specialized linear operation used for feature extraction. It in-

volves applying a small array of numbers (kernel) across an input array (tensor).

Each element of the kernel is multiplied with the corresponding element of the

input tensor, and these products are summed to produce an output value in a

feature map, Figure 8.

FIGURE 8. An example of convolution operation with a kernel size of 3 × 3, no

padding and a stride of 1 (Yamashita et al. 2018)

Convolution operation has a limitation where the central point of each kernel can-

not align with the outermost element of the input tensor. This constraint causes

the output feature map's dimensions to become smaller than those of the input

tensor. To overcome this, a technique called padding is employed, usually in the

form of zero padding.

Padding involves adding rows and columns of zeros along the edges of the input

tensor as depicted in Figure 9. This adjustment allows the center of the kernel to

align with the outermost element, maintaining the same in-plane dimension

throughout the convolution process. In essence, padding ensures that valuable

information from the edges of the input is also considered during the convolution

operation, helping to preserve the spatial size of the feature maps (Yamashita et

al. 2018).

FIGURE 9. Convolution with zero padding (Yamashita et al. 2018)

Stride refers to the step size at which a kernel moves across the input data or

image during the convolution process. Kernel slides over the data in discrete

steps determined by the stride value. A larger stride value means that the filter

skips more pixels or positions as it moves, resulting in a downsampled output.

This downsampling reduces the spatial dimensions of the resulting feature maps,

which can be beneficial for reducing computational complexity and memory us-

age in deeper layers of a neural network. Conversely, a smaller stride value, often

set to 1, ensures that the kernel moves pixel by pixel across the input data, pre-

serving more spatial information in the feature maps (Yamashita et al. 2018)

While the convolutional layer reduces the size of the input matrix, additional size

reduction is often necessary. This is where the pooling operation proves useful.

Pooling serves the purpose of eliminating noise and retaining the most vital and

meaningful features within the data. Much like the convolutional operation, a spe-

cific-sized window slides across the input matrix, applying a mathematical oper-

ation to the covered section. The resulting output value from the pooling operation

is then placed into a new matrix.

Figure 10 illustrates the concepts of max pooling and average pooling. In the

upper part of the figure, a 2x2 max pooling operation scans a 4x4 input matrix

and selects the maximum value from each quadrant of the matrix. Similarly, av-

erage pooling operates in the same manner, except it calculates the average

value of the covered window (Esposito, D. 2020).

FIGURE 10. Pooling operation (Esposito, D. 2020)

These described layers form the foundational components of many typical con-

volutional neural network architectures. The outcomes yielded by these layers

are then directed into a fully-connected layer which is accompanied by an activa-

tion function, typically ReLU. The fully-connected layer consists of multiple layers

that connect all inbound feature maps to build a classification model (Esposito,

D. 2020).

CNNs were originally designed for image analysis and have since been extended

to process multidimensional time series data, effectively extracting correlations

within them. CNNs utilize convolution operations, often in one layer, to capture

patterns from the inherent (spatio)temporal structure of time series. This ap-

proach, when compared to fully connected networks, tends to yield more efficient

training and improved performance for similar model complexity.

For multivariate time series, a window of data is transformed into a matrix, de-

noted as X. Multiple filters, with dimensions of width w and height h (equivalent

to the number of channels), are applied to generate diverse feature maps. In the

context of 1D convolution, the kth filter traverses a one-directional path over the

input matrix X, generating an output:

ℎ𝑘 = 𝑓𝑐(𝑊𝑘 ∗ 𝑋 + 𝑏𝑘) (10)

where ℎ𝑘 is the kth output vector, ∗ represents the convolution operation, 𝑓𝑐 is the

activation function and W and b are weight and bias, respectively.

Temporal Convolutional Networks (TCNs) are a variant of CNNs developed for

sequential data analysis. TCNs produce sequences by causal convolution, i.e.,

no information leakage from the future into the past. Modeling longer sequences

with large receptive fields requires a deep network or a wide kernel, significantly

increasing the computational cost. As a result, an effective TCN architecture em-

ploys dilated causal convolutions, Figure 11, rather than causal convolutions, re-

sulting in an exponentially increasing receptive field. (Belay, M et al.2023).

FIGURE 11. A dilated casual convolution with dilated factors d=1, 2, 4 and filter

size k=3 (He, Y et al. 2019)

A dilated convolution is a specialized type of convolution operation where a filter

is applied across a larger region than its own size by skipping input values based

on a specified step. This mechanism is similar to pooling or stride convolutions,

as it effectively expands the receptive field, but distinctively, it maintains the out-

put size equal to the input size (He, Y et al. 2019)

4.7 Recurrent Neural Networks

Recurrent neural networks (RNNs) is another popular neural network for pro-

cessing sequential data with temporal dependencies (Goodfellow et al. 2016).

Hence, they are naturally well suited for managing time series data characterized

by interconnected data points over time. RNN is much like a feedforward neural

network, except it also has connections pointing backward allowing information

from the past to persist, connecting it to the present. As depicted in Figure 12,

RNN takes dx-dimensional vectors x = (x1, x1, xt), and processes them sequen-

tially. While Recurrent Neural Networks (RNNs) come in diverse configurations,

they share a common principle of using recurrent connections between hidden

cells. In its most elementary form, an RNN's essence can be captured through

the subsequent equations:

ℎ𝑡 = 𝜎ℎ(𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏ℎ) 11

 𝑦𝑡 = 𝜎𝑦(𝑊𝑦ℎ𝑡 + 𝑏𝑦)

where ℎ𝑡 is the hidden state, 𝜎ℎ and 𝜎𝑦 are the activation functions, 𝑊𝑥,

𝑊ℎ, 𝑊𝑦 are the weight matrices, 𝑏ℎ and 𝑏𝑦 are the bias vectors, 𝑥𝑡 is the

current input vector, ℎ𝑡−1 is the previous state, and 𝑦𝑡 is the output vector (Belay,

M et al.2023)

FIGURE 12. Time-unfolded recurrent neural network (Goodfellow et al. 2016)

RNNs undergo training through a gradient descent technique known as back-

propagation through time (BPTT) algorithm. In simple terms, BPTT unfolds the

RNN and backpropagates the error step by step throughout the entire input se-

quence, subsequently updating the network's weights based on the accumulated

gradients. Nevertheless, the performance of RNNs tends to degrade significantly

when tasked with modeling long-range temporal dependencies due to the expo-

nential decay of gradients, a challenge commonly referred to as the "vanishing

gradient problem”. To counter the challenges faced by conventional RNNs, novel

recurrent architectures such as LSTM have emerged. These architectures miti-

gate the issues by employing diverse gate units to control the flow of new infor-

mation, thereby facilitating storage and overwriting processes across each time

step (Belay, M et al.2023).

4.8 Long Short-Term Memory Networks

The Long Short-Term Memory (LSTM) stands as a specialized type of Recurrent

Neural Network (RNN) designed to address the prevalent vanishing gradient is-

sue observed in traditional RNNs. This enhancement empowers LSTM to effec-

tively capture extensive long-term dependencies, extending over 1000 time

steps. Through the incorporation of an explicit memory mechanism (cell state)

and specialized gating components, LSTM overcomes the challenge of vanishing

gradients. These gating units precisely regulate the passage of information

through the cell memory, sustaining a consistent error flow within the cell

(Hochreiter, S 1997). A common LSTM unit, in Figure 13, is composed of a cell,

an input gate, an output gate and a forget gate (Wei, Y et all. 2023)

FIGURE 13. Basic LSTM architecture (Di, W et all. 2018)

Inside each cell, a series of three sequential operations are carried out on the

incoming information, the current input denoted as 𝑋𝑡 the previous output termed

as ℎ𝑡−1 which comes from the previous cell cycle, and the cell state from the last

iteration, referred to as 𝐶𝑡−1. In the Figure 13, both ℎ𝑡−1and 𝑋𝑡 are combined by

concatenation.

The role of the forget gate is to determine which portions of the historical memory

contained in the prior cell state 𝐶𝑡−1 should be retained and which should be dis-

regarded. This process is accomplished by passing the combined [ℎ𝑡−1, 𝑥𝑡]

through an activation function, often sigmoid, resulting in an indicator vector. This

vector is then employed to gate or modulate the previous cell state vector 𝐶𝑡−1.

The outcome, represented as 𝑓𝑡, embodies the memorized information that is

carried forward from previous states and is anticipated to be valuable for the pre-

sent context.

The input gate involves updating the cell state from 𝐶𝑡−1to 𝐶𝑡. The chosen

memory obtained in the first step is added in a way that is conducive to the current

input's filtered version. The filtration occurs via the input gate, which operates as

a sigmoid layer determining which values should be updated. The outcome of this

gating, multiplied by the tanh of the activation's result, is added to the previously

selected memory vector from the forget gate. This cumulative result is harnessed

to revise the cell state 𝐶𝑡.

Lastly, the output gate comes into play to decide the elements that should be

produced as output. In essence, it selectively dictates which segment of the cur-

rent cell state should be projected as the fresh hidden state, output, or prediction.

Reiterating the usage of the sigmoid node, the [ℎ𝑡−1, 𝑥𝑡]combination generates a

filtering vector, which guides the selection of relevant parts within the current cell

state. This updated cell state 𝐶𝑡 undergoes a tanh operation, squashing the value

to a range between -1 and 1. The outcome is then multiplied by the output of the

sigmoid gate. This final product constitutes the ultimate output, denoted as ℎ𝑡

(Di, W et all. 2018).

5 EXPERIMENTS AND TEST SETUP

5.1 Background

Automated mobile machine steering system is part of the preventive maintenance

program, including mechanical wheel alignment. In this process, wheels are first

steered to the 0° position, which means steering cylinder stroke is at the middle.

Next, both left and right angle transducer readings are saved to the steering com-

puter. These readings are interpret as the 0° angle by the steering computer.

Finally, the actual wheels are aligned straight by turning the steering rods while

holding the middle position of the steering cylinder. Over time due to wear and

tear, the alignment of the wheels may offset leading to unwanted steering behav-

ior especially in higher velocities on straight paths. In extreme cases, the equip-

ment might deviate from the pre-defined route causing unwanted stops in the

operations. Poor alignment is also one of the top contributors for increased fuel

/ energy consumption.

Mobile machine steering system has 4 wheels on both sides which are intercon-

nected via tie rods. The wheel deviations were measured while the steering con-

trols where at 0°, i.e straight position. Test unit corner wheels deviated 4-6 mm

compared to the reference unit while the center wheels were inline. The meas-

ured deviations are in the same range compared to units in real operations that

have been inspected within the preventive maintenance program.

Experiments were executed under supervised conditions with two mobile ma-

chines at a test site with ground based navigation system. The reference unit had

gone through the process of mechanical wheel alignment and angle transducer

0° angle verification. The second unit, or test unit was also fully commissioned

with the exclusion of the alignment and angle transducer check.

5.2 Data Collection and Analysis

The reference machine executed sequence of moves with no load, including

straight driving back and forwards and turning to left and right. Total time of the

sequence is approximately 10 minutes and the data produced during this time

was stored in to a logfile. Then, same sequence was repeated with the test unit

and logs were combined.

The KPI’s from reference and test machine were compared by plotting and it was

noticed that the different steering behavior is most evident while machine is trav-

elling straight. One of the KPI’s is a variable called “lateral control point tracking

error”, which indicates how much machine is laterally off from the path. The rea-

soning behind selecting this feature for the model is that if the steering is not

working optimally, then the lateral control error starts to increase eventually in

straight driving section as depicted in Figure 14. In this particular case the test

unit is deviating more to the left side of the travelled path since the higher values

are on the positive side.

FIGURE 14. Normal and abnormal tracking error – straight driving sections
highlighted.

5.3 Forecasting Approach

The goal is to construct a model that tries to establish connections between the

given inputs (independent variables X) and the output (dependent variable y),

aiming to minimize loss during the training process. Fundamentally, this task can

be framed as Multivariate Time Series Forecasting. In this context, the objective

is to predict future values of 'tracking_error_y' by leveraging the historical values

of multiple features (X).

Selected features are illustrated in the model overview, Figure 15, and the archi-

tectural representation of this forecasting approach is depicted in Figure 16. The

comprehensive model structure is described in Appendix 1.

Figure 15. Model and anomaly detection overview

FIGURE 16. CNN based forecasting model with max pooling (Munir, M et all

2019)

5.3.1 Model Architecture

Two models were chosen for the experiments as mentioned in section 4.1. In the

following chapters both CNN and LSTM architectures are described in more de-

tail.

The CNN forecasting model is constructed with a sequential structure. It includes

two Conv1D layers with a kernel size of 3 and 32 filters each, followed by LReLU

activation. MaxPooling1D layers with a pool size of 2 and strides of 2 are em-

ployed after each convolutional layer. The model is flattened before a Dense layer

with 32 units and LReLU activation, followed by a dropout layer for regularization.

The output layer is a Dense layer with a single neuron for regression tasks. The

Adam optimizer with a specified learning rate is used, and MAE is employed as

the loss function.

LSTM applies also sequential structure, featuring two LSTM layers with 32 units

each and LReLU activation. Dropouts are applied after each LSTM layer for reg-

ularization. The model is then flattened, followed by a Dense layer with 32 units

and LReLU activation, and another Dropout layer. The output layer is a Dense

layer with a single neuron for regression tasks. The Adam optimizer with a spec-

ified learning rate is used, and Mean Absolute Error (MAE) serves as the loss

function, same as in CNN model. Detailed LSTM model structure is outlined in

Appendix 2.

The key differences between the models: CNNs utilize convolutional and pooling

layers for feature extraction from spatial data, whereas LSTMs leverage recurrent

layers for capturing temporal dependencies in sequential data.

5.3.2 Data Pre-processing

In the data pre-processing phase, several steps were taken to prepare the da-

taset for model training:

 The data split into training and testing sets using a test size of 48% which

is the data from test unit. This division ensures that only the “normal” data

is used for training while preserving a separate set for model evaluation.

 The data is converted into sequences using a sliding window approach.

Sequences are created with a length of 100 in order to capture temporal

dependencies.

 MinMaxScaler is applied to normalize both input features and target vari-

ables. This scaling ensures that all values fall within the range [0, 1].

5.3.3 Model Training

Model training is an iterative process where different hyperparameter and se-

quence length values are experimented. Typically, the exploration begins with

certain initial parameter values and are adjusted through successive iterations to

refine the model's performance. Final parameters of the training process can be

found from Table 1.

TABLE 1. Model parameters

learning rate dropout regularization epochs batch size

0.001 0.2 0.001 30 50

Both models underwent training using the prepared sequences and scaled fea-

tures. The training process utilized 90% of the training dataset, with the remaining

10% reserved for validation. After each epoch, or complete pass through of the

training data, the model's performance is evaluated on the validation data to pre-

vent overfitting. Overfitting occurs when a model performs well on the training

data but fails to generalize to new, unseen data. The Adam optimizer updates

the model parameters to minimize MAE. Training and validation losses of CNN

model are visualized in Figure 17.

FIGURE 17. Line plots of training and validation loss values during the training

phase of CNN forecasting model.

In Figure 18, the training and validation losses of the LSTM model are presented

for comparison. Notably, in both instances, the validation loss is observed to be

lower than the training loss. This discrepancy is likely attributed to the regulariza-

tion techniques employed during training, which are not applied during the vali-

dation phase.

FIGURE 18. Line plots of training and validation loss values during the training

phase of LSTM forecasting model.

In Figure 19, CNN model predictions on train and test sets are illustrated. It’s

evident that model is struggling more to get optimal predictions in sudden

changes i.e. when machine is turning.

FIGURE 19.Line plot of predicted vs actual values – CNN.

Scatter plot, Figure 20, visually compares the actual values (X-axis) against the

predicted values (Y-axis) generated by the forecasting model. Each point's color

indicates the magnitude of the prediction error. A diagonal cluster suggests ac-

curate predictions, while deviations highlight areas of outliers. The colorbar pro-

vides a reference for interpreting prediction errors.

FIGURE 20. Scatter plot of prediction errors – CNN.

5.4 Anomaly Detection

Anomaly detection is based on predicting values on the test set and the prediction

errors are calculated as absolute errors between actual and predicted values.

MAE quantifies the average absolute difference between the actual target values

and the corresponding predicted values for each data point in the dataset.

The threshold for anomaly detection is set at the value that corresponds to the

99th percentile of the prediction errors. Any prediction error above this threshold

is considered an anomaly. Anomalies are visualized in Figures 21 and 22 to-

gether with the predictions and actual values from both models. The threshold

limit essentially defines the sensitivity of the anomaly detection and should be

assessed carefully in order to avoid false detections. In this particular case, val-

ues between -0.06 and 0.06 would be considered normal in the straight driving

sections and values above would be suspicious.

FIGURE 21. Plot of detected anomalies - CNN.

For comparison, anomaly detection scores from LSTM forecasting model is illus-

trated in Figure 22.

FIGURE 22. Plot of detected anomalies - LSTM.

5.5 Model Performance Summary

In table 2, CNN and LSTM model performance characteristics are summarized.

This table provides an overview of the training time, number of parameters, and

Mean Absolute Error (MAE) for both the CNN and LSTM models.

TABLE 2. Model overview

Model Training time (s) Parameters MAE

CNN 35 29 761 0.011

LSTM 540 115 777 0.015

5.6 Tools

Table 3 provides a list of used libraries in the experiments. These libraries are

fundamental for data analysis, machine learning, and visualization tasks in Py-

thon.

TABLE 3. Software libraries

Library Version

keras 2.10.0

matplotlib 3.8.0

numpy 1.26.0

pandas 2.1.1

scikit-learn 1.3.1

6 CONCLUSIONS AND FUTURE WORK

Two deep learning models were tested in the experiments and both showed com-

parable results in terms of MAE when modeling the target feature. The most sig-

nificant difference between the models was the training time. LSTM model took

approximately 15 times longer to train than the CNN model in this specific sce-

nario. The difference in training time may be attributed to the nature of LSTM

layers, which involve more complex computations and dependencies across time

steps compared to the convolutional layers used in CNNs. Additionally, the total

number of parameters in the LSTM model is higher, contributing to the longer

training time. The anomaly detection threshold is a subject of careful considera-

tion. All units are individuals; meaning that data is not identical and small devia-

tions do not mean necessarily degradation in the performance.

Regarding the research questions outlined in 1.3, the answer is affirmative to

both. DL proves capable in detecting anomalies from unlabeled data and holds

the potential for predictive maintenance based on the obtained results. However,

several aspects need to be outlined. The experiments conducted in this thesis

are simplified and from a specific driving sequence, preventing direct application

of the model results to real-world operations. To bridge this gap, extensive data

from diverse machines is essential for robust model training. The prediction re-

sults reveal challenges in model performance, highlighting the need for exploring

new features for the model input and possibly parameter tuning in order to en-

hance accuracy.

From a maintenance perspective, anomaly detection alone does not provide pre-

cise guidance to service personnel on what specifically to address. Therefore,

incorporating root cause analysis becomes crucial. In addition to anomaly detec-

tion, identification and isolation should be somehow included, for example as by

Safavi et all.

There are architectural considerations as well in building diagnostic systems, for

example regarding the optimal location for running computational loads. From the

perspective of network traffic, it is logical to process data close to the source and

transmit only the results or high-value data to the end user. Considering the fre-

quent updates of DL models, there should be the flexibility to test and develop

them in the cloud.

Interfacing to all subsystems must also be defined including data update rates

and communication protocols. Furthermore, consideration should be given to the

optimal method for gathering data from actuators and sensors. Is it more efficient

for all data to flow through control systems, or should (raw) data be collected

directly from communication buses using dedicated gateways?

In the future, it would be important to address the aforementioned aspects if the

development of onboard diagnostic systems based on deep learning is consid-

ered.

REFERENCES

Allwright, Stephen. https://stephenallwright.com/loss-function-vs-cost-function/ -
accessed 29.7.2023

Bartosz Przysucha, Tomasz Rymarczyk, Dariusz Wójcik,
Marcin Kowalski, Ryszard Białek; Management of Early Failure Detection of
Production Process: The Case of the Clutch Shaft Alignment using LSTM
Deep Learning Algorithm. pp189-197, 2021.

Belay, Mohammed Ayalew ; Blakseth, Sindre Stenen ; Rasheed, Adil ; Salvo
Rossi, Pierluigi: Unsupervised Anomaly Detection for IoT-Based Multivariate
Time Series: Existing Solutions, Performance Analysis and Future Directions,
Sensors (Basel, Switzerland), 2023, Vol.23 (5), p.2844.

Bishop, Cristopher M. Pattern recognition and machine learning. Springer 2006.
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pat-
tern-Recognition-and-Machine-Learning-2006.pdf - accessed 29.7.2023

Chalapathy, Raghavendra ; Chawla, Sanjay: Deep Learning for Anomaly Detec-
tion: A Survey. 2019. https://arxiv.org/abs/1901.03407 - Accessed 14.8.2023

Chandola, V.; Banerjee, A.; Kumar, V. (2009). "Anomaly detection: A survey"

Da Silva, Ivan Nunes, Ivan Nunes. author. Hernane Spatti, Danilo; Andrade
Flauzino, Rogerio. Liboni, Luisa Helena Bartocci. Reis Alves, Silas Franco

Davari, Narjes ; Veloso, Bruno ; Ribeiro, Rita P. ; Pereira, Pedro Mota ; Gama,
Joao; Predictive maintenance based on anomaly detection
using deep learning for air production unit in the
railway industry. 2021 IEEE 8th International Conference on Data Science and
Advanced Analytics (DSAA), 2021, p.1-10.

Di, Wei, Bhardwaj, Anurag; Wei, Jianing; Deep Learning Essentials, O’Reilly
2018.

Esposito, D, Introducing machine learning, 1st edition. Place of publication not
identified: Published with the authorization of Microsoft Corporation by Pearson
Education, 2020.

Géron, A, Hands-on Machine Learning with Scikit-Learn, Keras & Tensorflow,
O'Reilly Media, 2019.

Goodfellow, I., Bengio Y., & Courville A. (2016). Deep Learning. [e-book] MIT
Press, Available at: http://www.deeplearningbook.org [Accessed 19 July 2023]

He, Yangdong , ; Zhao, Jiabao: Temporal Convolutional Networks for Anomaly
Detection in Time Series. Journal of physics. Conference series, 2019, Vol.1213
(4), p.42050.

Kiavash, Fathi, ; van de Venn, Hans Wernher ; Honegger, Marcel ; Predictive
Maintenance: An Autoencoder Anomaly-Based
Approach for a 3 DoF Delta Robot. Sensors (Basel, Switzerland), 2021, Vol.21
(21), p.6979.

Kingma, Diederik P ; Ba, Jimmy: Adam: A Method for Stochastic Optimization,
2015. https://arxiv.org/abs/1412.6980 - Accessed 2.8.2023

Madani, Ali. Optimization process in artificial neural networks
https://blog.cyclicarx.com/optimization-in-artificial-neural-networks - accessed
1.8.2023

Munir, Mohsin ; Siddiqui, Shoaib Ahmed ; Dengel, Andreas ; Ahmed, Sheraz
DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in
Time Series. IEEE access, 2019, Vol.7, p.1991-2005, Article 8581424.

Nielsen, M. “Neural Networks and Deep Learning”, Determination Press, 2015.

Nwankpa, Chigozie ; Ijomah, Winifred ; Gachagan, Anthony ; Marshall, Stephen
“Activation Functions: Comparison of Trends in Practice and Research for Deep
Learning”, 2018. https://arxiv.org/pdf/1811.03378.pdf – accessed 20.7.2023

Safavi, Saeid ; Safavi, Mohammad Amin ; Hamid, Hossein ; Fallah, Saber;
Multi-Sensor Fault Detection, Identification, Isolation and
Health Forecasting for Autonomous Vehicles,Sensors (Basel, Switzerland),
2021, Vol.21 (7), p.2547

Sarker, Iqbal H. Deep Learning: A Comprehensive Overview on Techniques,
Taxonomy, Applications and Research Directions.
SN computer science, 2021, Vol.2 (6), p.420-420, Article 420

Susto, G. A., A. Beghi, and C. DeLuca, “A predictive maintenance system
for epitaxy processes based on filtering and prediction techniques,” IEEE
Trans. Semicond. Manuf., vol. 25, pp. 638–649, 2012.

Wei, Yuanyuan ; Jang-Jaccard, Julian ; Xu, Wen ; Sabrina, Fariza ; Camtepe,
Seyit ; Boulic, Mikael; LSTM-Autoencoder-Based Anomaly Detection for Indoor
Air Quality Time-Series Data, IEEE sensors journal, 2023, Vol.23 (4), p.3787-
3800 – accessed 21.8.2023

Yamashita, Rikiya & Mizuho Nishio & Richard Kinh Gian Do & Kaori Togashi:
Convolutional neural networks: an overviewand application in radiology, Springer
2018.

Yufeng, Yu ; Zhu, Yuelong ; Li, Shijin ; Wan, Dingsheng Jiang, Jun: Time Series
Outlier Detection Based on Sliding Window Prediction, 2014. https://down-
loads.hindawi.com/journals/mpe/2014/879736.pdf - Accessed 14.8.2023

Zhang, Aston ; Lipton, Zachary C ; Li, Mu ; Smola, Alexander J. Dive into Deep
Learning, 2023. https://arxiv.org/abs/2106.11342 - accessed 2.8.2023

Zhang, W., Dong Yang, and Hongchao Wang. 2019. “Data-
Driven Methods for Predictive Maintenance of Industrial
Equipment: A Survey.” IEEE Systems Journal 13 (3):2213–2227.

Zhang, Yuxin ; Chen, Yiqiang ; Wang, Jindong ; Pan, Zhiwen: Unsupervised Deep
Anomaly Detection for Multi-Sensor Time-Series Signals, IEEE transactions on
knowledge and data engineering, 2023, p.1-1

APPENDICES

Appendix 1. CNN model

Appendix 2. LSTM model

	1 INTRODUCTION
	1.1 Motivation
	1.2 State of Art
	1.3 Objectives and Research Questions

	2 INTRODUCTION TO MAINTENANCE STRATEGIES
	3 ANOMALY DEFINITION AND DETECTION METHODS
	3.1 Time Series
	3.2 Type of Anomaly

	4 ANOMALY DETECTION AND DEEP LEARNING
	4.1 Literature Review
	4.2 Methodological Basis
	4.3 Overview of Artificial Neural Network Models
	4.4 Activation Functions
	4.5 Cost Functions and Optimization Algorithms
	4.6 Convolutional Neural Networks
	4.7 Recurrent Neural Networks
	4.8 Long Short-Term Memory Networks

	5 EXPERIMENTS AND TEST SETUP
	5.1 Background
	5.2 Data Collection and Analysis
	5.3 Forecasting Approach
	5.3.1 Model Architecture
	5.3.2 Data Pre-processing
	5.3.3 Model Training

	5.4 Anomaly Detection
	5.5 Model Performance Summary
	5.6 Tools

	6 CONCLUSIONS AND FUTURE WORK
	REFERENCES
	APPENDICES

