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ABSTRACT
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This thesis is dedicated to exploring novel approaches in utilizing the Festo 
iCIM 3000 robot within the LinuxCNC framework and incorporating Artificial 
Intelligence. The aim was to establish a basic framework for a Robotic Con-
trol System using open source software, with the objective of developing a 
comprehensive solution that  addresses concurrent hardware and software 
challenges. The work encompasses detailed exploration and implementation 
of  EtherCAT technology,  open  source  tools,  and  the  integration  of  voice 
recognition to move the robot that can be easily extrapolated to others as 
well.

The research focused on developing an advanced robotic control system us-
ing open source software.  It  involved single board computers for  hosting, 
System on Chip as an EdgeAI solution, Linux kernel patches for real-time 
capabilities, and ROS for fluid communication with the robot. Evaluation of 
different EtherCAT masters was conducted to determine the most suitable for 
the project.

Custom implementations included integrating ROS into LinuxCNC, enabling 
TwinSAFE,  modifying  Whisper.cpp  for  system  commands,  and  creating 
EtherCAT terminal  drivers.  Post-Training Quantization reduced the size of 
the  Whisper  model,  enabling  faster  iterations.  The  study  successfully 
achieved integration and optimization, showcasing enhanced flexibility in the 
LinuxCNC and iCIM robot system.

The proof of concept demonstrated full  control of the EtherCAT terminals, 
enabling automated relocation of items, hand gesture recognition, gamepad 
control, and interfacing with external controllers. The successful integration 
and optimization represent a significant milestone in advancing robotic con-
trol systems, highlighting the flexibility and adaptability of the integrated Lin-
uxCNC and iCIM robot system.

Overall, this work contributes to the fields of industrial automation, robotics, 
and AI by providing a comprehensive integration framework that can be used 
in production, vocational schools and universities.

Keywords:  Automatic  Speech  Recognition,  Whisper,  Quantization,  Trans-
formers, EtherCAT, Robot Operating System, GNU/Linux, LinuxCNC, indus-
trial automation, Edge AI, Pre-trained models, FsoE, TwinSAFE, Neural Net-
works, Robotics, Post-Training Quantization
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1 INTRODUCTION

1.1 Background and Motivation

This research seeks to combine different technologies such us, Robots, em-

bedded devices,  Automatic Speech Recognition (ASM),  and EdgeAI.  This 

integration has resulted in an exciting new period of intelligent computing in a 

world that is becoming more linked. EdgeAI uses localized processing to em-

power a range of devices, including smartphones, robots, and IoT devices, 

enabling real-time decision-making, improved privacy, and effective resource 

management. (Yeung, T., 2022) In parallel, embedded technology has devel-

oped into potent computing systems that are crucial to many industries.

This thesis explores the mutually beneficial relationship between EdgeAI and 

embedded  systems,  highlighting  the  cutting-edge  uses  and  implications 

made possible by the incorporation of ASR in EtherCAT based PLCs. By ex-

ploring  the  dynamic  interaction  between different  technologies,  this  study 

contributes significantly to realizing their full  potential and transforming the 

demand for AI-driven solutions without relying on third-party technologies or 

Internet access, eliminating the need to upload data to the cloud.

EdgeAI, a focal point of recent research, addresses the needs of distributed 

AI applications with stringent latency demands. Notably, compact edge de-

vices like Raspberry Pi and Nvidia’s Jetson have emerged, serving as edge 

computing  nodes  despite  limited  resources.  While  these  devices  harness 

accelerators for improved performance, the exploration of Deep Neural Net-

works' (DNN) performance on such resource-constrained platforms remains 

intriguing.



1.2 Research question

This thesis seeks to investigate the following research questions:

1. What is the optimal approach to integrate a Festo 3000 iCIM robot 

with open source software?

2. How possible is to utilize the framework with other robots using Ether-

CAT?

3. How can EtherCAT's TwinSAFE be effectively implemented for func-

tionality?

4. To what extent is it possible to incorporate AI into a discontinued ro-

bot?

5. What model quantization method offers the best balance between per-

formance and accuracy for the utilized board?

6. How reliable is the Automatic Speech Recognition (ASR) in recogniz-

ing voice commands for controlling robot movement?

1.3 Objective of the Thesis

The objective of this thesis is to device a solution for a functional robot with 

obsolete software by implementing GNU/Linux based system on it. This sys-

tem  has  been  designed  for  the  purpose  of  facilitating  robot  movements 

through  voice  commands  and  can  be  adapted  to  accommodate  a  wider 

range of robotic platforms. EdgeAI device will serve as the base for the inte-

gration of Automatic Speech Recognition (ASR) and the adaptation of Robot 

Operating System (ROS).

Custom implementations form a crucial aspect of the thesis, encompassing 

the integration of ROS into LinuxCNC, enabling TwinSAFE, modifying Whis-

per.cpp for system commands, and creating EtherCAT terminal drivers.



2 LITERATURE REVIEW

2.1 Automatic Speech Recognition

ASR is a technology that allows the machine to turn the speech signal into 

the corresponding text or command when it recognises and understands (Shi 

Zhongzhi, 2021, p. 1-2). ASR is getting a lot of attention because it can be 

used in many different ways, like transcribing speech, helping voice assis-

tants and automating call centers. ASR systems are important parts of how 

people and machines communicate and interact with each other in today's 

world. Human recognition of communication between a person and a robot is 

essential for successful human-robot interaction (HRI) and human-robot sym-

biosis (Kondo et al., 2013, p. 1)

Along the way of ASR systems used Hidden Markov Models (HMMs), Gauss-

ian  Mixture  Models  (GMMs)  as  well  mel-frequency  cepstral  coefficients 

(MFCCs). (Dong & Li, 2015, p. 9)

But lately, there have been improvements in using Deep Learning methods 

like Deep Neural Network, recurrent neural networks (RNNs) and convolu-

tional neural networks (CNNs) to make ASR work better. (Dong & Li, 2015, p. 

5)

Moreover, there has been increasing interest in using end-to-end ASR mod-

els intead of DNNs based models (Jinyu, 2021, p. 1). These models are able 

to directly convert digital raw spoken words into text by using Neural Net-

works (NN) (Steffen et al., 2019, p. 1). They are popular because of their 

straightforwardness and efficiency.

In the recent  years,  ASR and robotics approaches have been created to 

meet certain needs such as, social robots that can work as a human partner 

in the field of human daily life communication (Miura et al., 2015, p. 1), or col-

laborative robots being possible to share the same workspace at the same 

time without any inconvenient (Christian et al., 2021, p. 1). In which speech 

technology



plays an important role. These applications can be classified as applications 

that help improve human–human communication (HHC) and human-machine 

communication (HMC).

2.1.1 Human-Human communication

Speech  technology  can  remove  barriers  between  human–human  interac-

tions. In the past, people who speak different languages need a human inter-

preter to be able to talk to each other. (Yu D. & Deng L., 2015, p. 2)

Language differences used to require human interpreters for communication. 

But after the creation of speech to speech (S2S) systems, it can now fill this 

gap. These systems also allow people speaking different languages to com-

municate while traveling or using video-calls tools. (Ann et al., 2021, p. 1)

2.1.2 Human-Machine communication

With the use of Speech technologies we can be enhance HMC in various 

fileds such as voice search, personal digital assistants, gaming, living room 

interaction,  smartphones or in-vehicle infotainment.  Spoken language sys-

tems consist of key components: speech recognition for converting speech to 

text, spoken language understanding to extract meaning, text-to-speech for 

audio output, and a dialog manager for communication between these com-

ponents and applications. (Dong & Li, 2015, pp. 2-3)

The success of a human and robot collaborative symbiosis is dependent on 

the  existence  of  Humanlike  communication  between  humans  and  robots. 

Moreover, speech is the easiest and natural way for people to communicate. 

(José et al., 2021, p. 2)

2.1.3 Traditional arquitecture of ASR system

Traditional ASR systems (Fig. 1) are made up of four main components:



Signal  processing and feature extraction,  Acoustic Model (AM),  Language 

Model (LM), and hypothesis search.

1. Signal processing and feature extraction component preprocesses the 

input audio signal, improves speech quality, converts the

signal  from time-domain to  frequency-domain and extracts  relevant 

feature vectors for further processing.

2. Acoustic model integrates knowledge of acoustics and phonetics, gen-

erating  AM scores for  variable-length feature sequence.

3. Language  model  estimates  word  sequence  probabilities  based  on 

training data and domain knowledge.

4. Hypothesis search component combines the AM and LM scores to 

determine the most  probable  word sequence as  a  recognition  out-

come.

The ASR problems we work on today are much more difficult than what we 

have worked on in the past due to the demand from the real world applica-

Figure 1: Basic arquitecture of ASR (Dong & Li, 2015, Fig. 1.3)



tions (Dong & Li, 2015, p. 5). Those are, Huge vocabulary, Free-Style Task, 

Noisy Far Field Speech, Spontaneous Speech and Mixed Languages.

2.2 End-to-end ASR

The development of end to end training systems that directly map the input 

acoustic speech signal to graphemes or word sequences is becoming more 

and more popular. The acoustic, pronunciation and language modeling com-

ponents  are  taught  on  the  same system in  Sequence  to  Sequence  (Se-

q2Seq) models. The process of reading speech has been significantly simpli-

fied, because Seq2Seq models implicitly predict graphemes and words. (Ro-

hit et al., 2017, pp. 1-2)

Recurrent neural networks As they are able to model temporal dependencies 

effectively in audio sequences, recurrent neural networks were the definitive 

choice for ASR. Over the past few years, thanks to the ability to extract inter-

actions for a longer distance and high training efficiency, Transformers (Fig. 

2) has enjoyed widespread adoption as a model architecture. (Anmol et al., 

2020, p. 1)

Figure 2: Whisper - Seq2Seq Transformer arquitecture for ASR (Alec et 
al., 2022, Fig. 1)



2.3 Large Language Models

LLMs are  deep learning algorithms that  can understand complicated pat-

terns, meaning, and connections in text data, based on knowledge obtained 

from huge datasets. They are often built using the Transformer architecture, 

which uses deep learning techniques to understand and generate human-like 

text.  LLMs  are  actually  trained  on  billions  of  parameters  from  different 

sources and it uses mathematical techniques called, attention and self-atten-

tion in order to be able to get a consistent output (Jacob et al., 2018, pp. 2-5).

Some well-known examples are OpenAI’s GPT, Meta’s LLaMA and Google’s 

BERT, All of them have different licenses, and the open source ones are be-

coming more common year by year (Fig. 3).

"LMs complete the sequece from a given start sequence, with the outcome. 

So is a LM in that sense" (Andrej, 2023).

Figure 3:  The evolutions in the number of LLM models introduced over the 
years. (Jingfeng et al., 2023, Fig. 1)



2.4 Pre-trained models (PTMs)

Pre-trained LMs has proven to be remarkably successful with the processing 

of natural languages, thereby creating paradigm shifts from supervised learn-

ing to pre-training followed by a fine tuning. (Haifeng et al., 2022, p. 1)

It  learns contextualized linguistic representations by predicting words from 

their context using large quantities of text data, and can be fine-tuned to a 

range of downstream tasks (Li et al,. 2019, p. 1).

Pre-training centers on the concept of language modeling. The fundamental 

objective of language modeling is to anticipate the next token in a sequence, 

drawing upon a history of unlabeled texts.(Haifeng et al., 2022, pp. 2-7)

PTMs primarily consist of saving the weights and biases associated with the 

network's  connections and layers  (Fig.  4),  which are the parameters  that 

Neural Networks learn during the training process.

2.5 Transformers

Transformer is a prominent deep learning model which was initially proposed 

as a sequence-to-sequence model for machine translation, it rely on self-at-

Figure 4: Basic structure of neural network model (Zhi et al,. 2021, Fig. 2)



tention mechanism in two different main componets: encoder and decoder. 

(Ilya et al,. 2014, pp. 1-3; Vaswani et al,. 2017, pp.1-3).

The  movotivation  behind  Transformers  was  the  paper  -  Neural  machine 

translation by jointly learning to align and translate – by (Dzmitry et al,. 2015), 

which introduces an attention mechanism for  RNN to improve long-range 

sequence modeling capabilities (Dzmitry et al,. 2015).

Later  works show that  Transformer-based pre-trained models (PTMs) can 

accomplish  state-of-the-art  performances  on  different  tasks.  As  a  result, 

Transformer has become the go-to architecture in NLP, particularly for PTMs 

(Tomas et  al.,  2019).  In  addition to  language related applications,  Trans-

former has also been adopted in CV, audio processing and even other disci-

plines, such as chemistry and life sciences. (Tianyang et al,. 2021, p. 1)

2.5.1 Transformer arquitecture

"Attention Is All You Need" is the scientific paper that introducced transform-

ers to the public by Vasvani et al. (2017)

Transformers have two main components, encoding component and decod-

ing component as shown in Figure 5 and Figure 6.

Figure 5: Basic transformer arquitecture (Hugging Face, 2021)



The Encoder component mainly transform the input sequence of text a.k.a 

tokens, into embeded vector. While the Decoder component transforms the 

low-numerical into the original input format.

By watching closer to the two main components, we can see the sub-layers.

The Encoder (Fig. 7) have two sub-layers, called: Multi-head Self-Attention 

and Position-wise Feed-Foward layers. (Vaswani, et.al, 2017, pp. 2-3)

         
Figure 6: Basic transformer arquitecture (Vaswani, et.al, 2017,Fig. 1)



In the Decoder (Fig. 8), we have three sub-layers: the two that the Encoder 

has -  Multi-head Attention and Position-wise Feed-Forward Layer -  and a 

new one which takes values from the encoder stack: Masked Multi-head At-

tention. Around each sub-layer it has a normalization layer through residual 

connectors. (Vaswani, et.al, 2017, p. 3)

       
Fdigure 8: Decoder sub-layers with the addition of Cross attention which is 
referenced but not shown in the original paper

      

Figure 7: Encoder sub-layers



A modification is made to the Masked self-attention sub-layer of the decoder 

to prevent it from taking into account data from future places. Using a mask-

ing approach, this makes sure that predictions for a certain position are only 

dependent on data from positions before shifting the output information by 

one position. (Vaswani, et.al, 2017, p. 3)

"For building a better model, residual connection is used around each mod-

ule, followed by Layer Normalization. Also, decoder block have a cross-atten-

tion module between the multi-head self-attention modules and position-wise 

FNNs". (Tianyang et al,. 2021, p. 2.)  (See Fig. 6).

2.5.2 Uses of Transformer components

"Generally, the Transformer architecture can be used in three different ways:" 

(Tianyang et al,. 2021, p. 4.)

● Encoder only: Only the encoder is used and the outputs are used as a rep-

resentation for the input sequence. This is usually used for classification or 

sequence labeling problems.

● Decoder only: Only the decoder is used, and the encoder-decoder cross-

attention module is removed. It can be used for sequence generation, such 

as language modeling.

● Encoder-Decoder: The full Original Transformer architecture is used. This 

is typically used in sequence-to-sequence modeling tasks like machine trans-

lation.

2.5.3 PTQ

PTQ is a transformative conversion technique that results in a model reduc-

tion size, coupled with an increase in CPU and GPU latency, all while ensur-

ing that model accuracy is not compromised but on the other hand, we get 

less precision. To replace the original neural network weights (Fig. 9) FP16 

or FP32 (high precision) with quantized equivalents (low bits), INT3, INT4 or 



INT8 as an example. This technique achieves significant computational cost 

savings, memory efficiency and reduced power consumption. (Baisong et al,. 

2023, pp. 1-2; Elias et al,. 2023, pp. 1-3; Tim & Luke, 2022, pp. 1-2 , Re-

trieved November  6,  2023,  from  tensorflow.org/lite/performance/post_train-

ing_quantization")

PTQ, in the context of large language models, has gained considerable at-

tention as an effective tool for dealing with memory consumption and compu-

tational costs. In particular, Quantization using post-training is distinct as it 

comprises only  a reconfiguring of  the pretrained model  parameters which 

does not add further training costs. (Guangxuan et al,. 2022. p. 7; Zhewei et 

al,. 2022, pp. 1, 3, 5)

2.5.4 Knowledge Distillation (KD)

KD rerefs to the technique of  transfer  the knowledge from a large model 

(Teacher model) to a smaller model (Student model). The student model is 

not always smaller than the teacher model, it can be bigger in parameters. 

However, this approach is intended to be create smaller models suitable for a 

Figure 9: Weight connection from the fourth neuron in the second layer to the 
second neuron in the third layer of a network, with the value float(0.8) (Michael, 
2019, p. 40)

https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization


development due the capacity of reproduce the teacher's behavior and full 

performance. In some cases giving better results than the teacher model it-

self. (Table 1). (Geoffrey et al., 2015, pp. 1-2; Inar & Jean-Loup, 2023, pp. 1-

2)

Table 1: Distil-Whisper retains the Word Error Rate (WER) performance of 
the Whisper model but with faster inference speed (Sanchit et al., 2023, Ta-
ble 1)

Model Params / M
Short Form Long Form

Rel. Latency Avg. WER Rel. Latency Avg. WER

tiny.en 39 6.1 18.9 5.4 18.9

base.en 74 4.9 14.3 4.3 15.7

small.en 244 2.6 10.8 2.2 14.7

medium.en 769 1.4 9.5 1.3 12.3

large-v2 1550 1.0 9.1 1.0 11.7

distil-medium.en 394 6.8 11.1 8.5 12.4

distil-large-v2 756 5.8 10.1 5.8 11.6

2.5.5 WER

The quality of speech recognition, machine translation and NLP processing 

systems are usually measured by the standart approach WER. It measures 

how many word errors are present in out ASR transcription compared to hu-

man transcription, or ground truth. (Ahmed & Steve, 2018, p. 1)

WER uses the following formula:

WER= I+D+S
Total number of words in the original sentence

×100

The meaning of I, D and S are:

Insertions refer to words added in the hypothesized sentence that do not esx-

ist in the original sentence. Deletions represent words which appear in the 



original sentence, but are not present in a hypothesised sentence. Substitu-

tions involve words in the hypothesized sentence that differ from those in the 

original sentence.

2.6 Machine Learning (ML)

ML is an area of AI and Computer Sciences, focusing on the use of data and 

algorithms in order to replicate human learning to progressively improve its 

accuracy. There are diffent types of ML algorithms such us supervised, un-

dervised, semi-supervised and reinformcement learning. (IBM, 2023; Iqbal, 

2021, p. 1)

2.7 Deep Learning (DL)

DL This is a subset of ML which is consider the core technology of today’s 

Fourth Industrial Revolution (4IR or Industry 4.0), that's essentially an artifi-

cially NN with three or more layers. DL was originated based on Artificial neu-

ral network (ANN), and has became a hot topic in the field, applied now a day 

in areas like healthcare, visual recognition, text analytics, cibersecurity, au-

tonomous robots and many others. These NNs try to replicate the behavior of 

a human brain, so that it learns from large amounts of data. While a NN with 

a single layer can still make approximate predictions, additional hidden layers 

can help to optimize and refine for accuracy. (IBM, 2023; Iqbal, 2021, p. 1)

2.8 Natural Language Processing (NLP)

NLP is a subfield of AI mixed with Linguistics which seeks to give computers 

a better understanding of written human language words. Recent attention 

has been given to NLP, the process of representing and analyzing human 

languages in a computational manner. Its applications have been distributed 

in different areas, for example machine translation, email spam detection, in-

formation extraction, summarization, medicine and enquiry etc. (Diksha et al., 

2021, pp. 1-2)



2.9 Whisper

Whisper is a versatile general-purpose speech recognition transformer based 

model (Fig. 10), serving as an ASR system trained on a dataset of 680.000 

hours of multilingual and multitask supervised data from internet. It supports 

various functions, including multilingual speech recognition, speech transla-

tion, and language identification. OpenAI garnered attention by open-sourc-

ing this model under MIT license. (Alec et al., 2022, pp. 1-3)

Wisper have released 11 models at this time. As you can see in table 2, it 

has 4 different configurations varying the model size. The smallest four are 

trained on either English-only or multilingual data. The largest checkpoints 

are multilingual only.

Table 2: Whisper checkpoints (Hugginface, 2023)

Size Parameters English-only Multilingual

tiny 39 M  ✓ ✓

base 74 M ✓ ✓

small 244 M ✓ ✓

medium 769 M ✓ ✓

tiny.en 39 M ✓ -

base.en 74 M ✓ -

small.en 244 M ✓ -

medium.en 769 M ✓ -

large 1550 M - ✓

large-v2 1550 M - ✓

large-v3 1550 M - ✓



As the Whisper’s paper refers in the heading title "Robust Speech Recogni-

tion via Large-Scale Weak Supervision" (Alec et al., 2022). It is a Powerful 

Speech Recognition model created from a large amount of unlabeled data 

using Weak supervision, concretely semi-supervision.

2.9.1 Weak Supervision

Weak  supervision  is  a  broader  concept  that  encompasses  various  ap-

proaches where the training data is labeled with less precision or reliability 

than fully labeled data. Semi-supervision, which is under Weak Supervision 

umbrella,  refers to the process of  training machine learning models using 

labeling functions to obtains annotations from partially labeled or imprecisely 

labeled data. Unlike traditional supervised learning, where each training ex-

ample is precisely labeled by human annotators. (Andrei el al., 2023, p. 1; 

Salva et al., 2021, p. 1)

Figure 10: Overview of the approach (Alec et al., 2022, Fig. 1)



2.10 Edge AI

In the last few years, Edge AI (Edge computing based Artificial Intelligence). 

Has received significant research attention mainly because of its ability to 

meet the needs of highly dispersed AI applications while complying with strict 

latency  requirements.  Many  companies  have  released  edge  devices  with 

smaller form factors like the popular Raspberry Pi and Nvidia’s Jetson Nano.

These devices are intended to act as a computational node in the context of 

an edge computing, with their smaller form factors, lower energy consump-

tion and reduced resources. (Stephan, 2021, p. 1)

2.11 LinuxCNC

LinuxCNC (in its beginnings called Enhanced Machine Controller or EMC2) is 

a free, open source, GNU/Linux-based software system with real-time exten-

sions licensed under the GNU General Public License and Lesser GNU Gen-

eral Public License (GPL and LGPL). LinuxCNC’s software system is used 

for controlling a variety of computer numerically controlled (CNC) machines, 

including milling machines and lathes, laser cutters, or 3D printers, as well as 

robotic  arms,  hexapods,  Delta  robots,  and other  computer-controlled  sys-

tems, up to 9 axes. (Numan, 2021, p.225; Elmar et al,. 2015, p. 1; LinuxCNC, 

2023, pp. 2-6)

LinuxCNC operates from hardware layer to User Space layer (Appendix 1). 

Hardware Abstraction Layer (HAL), it is the core component of LinuxCNC re-

sponsible for interfacing with hardware and other software modules. HAL was 

created in low level programming languages, C and C++ (Retrieved Novem-

ber 6, 2023, from http://linuxcnc.org/docs/html/hal/intro.html).

Working with non-precompiled low level programming languages allows us to 

work close to the hardware sharing libraries with the Linux kernel and allow-

ing us to have real-time capabilities in the system from the Kernel space to 

the User Space (Nabil et al. 2011; LinuxCNC, 2023, p. 134).

http://linuxcnc.org/docs/html/hal/intro.html


2.12 EtherCAT (Ethernet for Control Automation Technology)

EtherCAT, developed by Beckhoff Automation, is a real-time Industrial Ether-

net technology. This technology is suited for a wide range of applications, i.e. 

automation equipment and testing and measurement tools, in order to satisfy 

the needs of hard and soft time requirements. (Ethercat, 2023)

The EtherCAT protocol operates on the master/slave principle, enabling the 

control system (master node) to send Ethernet frames to slave nodes, en-

compassing sensors and actuators. These frames, containing process data 

from all network devices, follow the summation frame principle, distinguishing 

itself from the individual frame approach where each frame carries data for a 

single device. (EtherCAT, 2023; Sridevi, 2018, pp. 1-3; ZVEI, 2019, pp. 5-13)

When the EtherCAT master sends a telegram, it traverses each node, and 

EtherCAT slave devices extract and insert data on the fly as the frame pro-

gresses downstream. This minimal delay is primarily due to hardware propa-

gation delay times. In segments or drop lines, the last node identifies an open 

port and employs Ethernet technology's full duplex feature to relay the mes-

sage back to the master. (Kevin et al,. 2018, pp. 2, 8-10; EtherCAT, 2023)

2.12.1 Couplers and terminals types

Couplers are the principal element of the EtherCAT network which creates a 

link between the EtherCAT protocol at fieldbus level and the EtherCAT Ter-

minals (Fig. 11). It is the first component added to the station, followed by ter-

minals, junction or extension. (EtherCAT, 2023; Kevin et al., 2018, p. 67)

Terminals are device blocks used in a control console or terminal box. The 

fastest EtherCAT standard is placed right in the individual EtherCAT termi-

nals, when compared to a fieldbus neutral bus terminal. Futhermore, Ether-

CAT Terminal offers a wide range of solutions to carry out all tasks and chal-

lenges related to automation technology: an appropriate product is available 

for almost every type of signal or application area. The EtherCAT network 

also  allows  the  integration  of  other  fieldbus  protocols.  (EhetCAT,  2023; 

Sridevi, 2018, pp. 1-3)



In Table 3 we can see in more detail the name of each terminal individually 

and the type used by Beckhoff EtherCAT.

Table 3: List of EtherCAT terminal types

Name Type

EK1xxx, BK1xx0 EtherCAT Coupler

EKxxxx Bus Coupler

EL1xxx Digital input

EL2xxx Digital output

EL3xxx Analog input

EL4xxx Analog ouput

EL5xxx Position measurement

EL6xxx Communication

EL7xxx Motion

ELxxxx Multifuncional

EL9xxx System

ELMxxxx Measurement technology

ELCxxxx Explosion protection (EX I)

ELXxxx-0090 TwinSAFE SC

ELx9xx TwinSAFE



2.12.2 Communication principle

EtherCAT communication is always initiated by the master by sending frames 

via its Ethernet interface using frame transmission mechanism called "on the 

fly". It means that the Master sends only one EtherCAT frame to the network 

in each cycle and all the etherCAT Slaves share this frame with new informa-

tion added to the same frame, broadcasting it again to the next EtherCAT 

Slave (See Fig. 12). Once it rearch the last slave, the frame goes back to the 

Master with the information of each slave. (Hongzhe et al,. 2021; EtherCAT, 

2023)

Figure  12: EtherCAT system and "on the fly" mechanism (Hongzhe et al,. 
2021, Fig. 2)

Figure 11: Beckhoff EthetCAT coupler and terminals (Jaime, 2023)



2.12.3 Safety over EtherCAT (FSoE) - TwinSAFE

Beckhoff EtherCAT safety products incorporate the TwinSAFE solution wich 

is the logical continuation of the open, PC-based Beckhoff control philosophy. 

It fits seamlessly within the EtherCAT Terminal system. TwinSAFE operates 

autonomously  from the communication  channel,  boasting  its  distinct  error 

detection safeguards. (EtherCAT, 2023)

The FSoE protocol operates as a Master-Slave system, with a unique device 

serving as the FSoE master and multiple FSoE slaves. During regular opera-

tion, the master cyclically interrogates the slaves. Data exchange occurs via 

FSoE connections, which are virtual communication channels established be-

tween the FSoE master and each FSoE slave during the initialization phase. 

(Alberto et al,. 2019, pp. 1-2; EtherCAT, 2023)

For industrial automation, FSoE provides a complete safety solution. In order 

to ensure the installation of secure, reliable safety compliant automation sys-

tems that comply with strict industry standards, this innovative framework is 

intended to harmonize and complement EtherCAT's robust communication 

capabilities in terms of vital security features. (EtherCAT, 2023)

"In the EtherCAT system an EL6900 logic terminal deals with the safety func-

tions and transfers data to the input and output terminals (EL1904, EL2904) 

via the TwinSAFE protocol." (EtherCAT, 2023)

2.13 EtherCAT State Machine

The state of  EtherCAT slaves are controlled by EtherCAT State Machine 

(ESM), it will determine which functions are available and how to use them 

depending on the current state (Fig. 13). In order to control its functioning, 

especially in the course of boot up, an EtherCAT master will issue specific in-

structions to a slave.



The ESM consists of five states: Init, Pre-Operational, Safe-Operational, Op-

erational, and Boot.

1. Init: The slave starts in the Init state after power-on. During this state, 

there is no mailbox or process data communication. The EtherCAT 

master initializes sync manager channels 0 and 1 for mailbox commu-

nication.

2. Pre-Operational (Pre-Op): During the transition from Init to Pre-Op, the 

slave checks if the mailbox initialization was successful. In the Pre-Op 

state, mailbox communication is possible, but not process data com-

munication.

3. Safe-Operational (Safe-Op): The transition from Pre-Op to Safe-Op in-

volves checks on sync manager channels and distributed clock set-

tings. In the Safe-Op state, both mailbox and process data communi-

cation are possible, with the slave keeping its outputs in a safe state 

while updating input data cyclically.

4. Operational (Op): Before transitioning from Safe-Op to Op, valid out-

put data must be transferred from the master to the slave. In the Op 

Figure 13: States of the EtherCAT State Ma-
chine (Ethercat, 2023)



state, the slave copies the master's output data to its own outputs, al-

lowing both process data and mailbox communication.

5. Boot: The Boot state is where the slave firmware can be updated and 

can only be reached via the Init state. In this state, mailbox communi-

cation via the File Access over EtherCAT (FoE) protocol is possible, 

but other mailbox and process data communication is not enabled.

2.14 Industry 4.0

Industry 4.0, the most recent innovation in industrial technology, brings to-

gether automation, cloud computing, IoT and AI technologies to transform 

manufacturing processes. During the transition from Industry 3.0 to 4.0, man-

ufacturers are integrating technologies like Single Board Computers (SBC) or 

Sistem on Module (SoM) to wotk in the edge of the network, closer to the 

area  where  is  needed.  (Pedro  et  al.,  2023,  pp.  1-3;  Vivek  &  Kanagachi-

dambaresan, 2022, pp. 67,68; Dineshbabu et al., 2022, p. 1)

2.14.1 SBC

SBCs are small computer whose main components are integrated on a single 

System on Chip  (SoC)  allowing  reduction  of  manufacturing  costs  making 

them accesible for education, industry and individual professionals arround 

the world. (Jonathan & Heyson, 2021, p. 1)

One of the most popular and widely used SBC boards is the Raspberry Pi, 

which enjoys substantial support among LinuxCNC enthusiasts. For this rea-

son, I chose the Raspberry Pi 4 (Fig. 14) to install LinuxCNC.



2.14.2 SoM

SoMs are a compact electronic circuit Board that consolidates all important 

system functions into one single module as for example: Jetson Nano pow-

ered by Nvidia or Kria KV260 powered by AMD as AI computing core (See 

Fig. 15). Them offers a flexible computing solution by incorporating an inte-

grated CPU, GPU, memory, set of I/O interfaces and power management  in 

a  single  board  computer.   (Retrieved  November  7,  2023,  from 

https://developer.nvidia.com/embedded/jetson-nano-developer-kit;  Retrieved 

November  7,  2023,  from  https://www.xilinx.com/products/som/kria/kv260-

vision-starter-kit.html )

An embedded system, according to the name given, consists of a processor 

or microcontrolle based system that has been designed for certain functions 

and which is integrated into larger mechanical or electrical systems. (Swarup, 

2019, p. 40) As embedded systems are designed for one specific task rather 

than as a general purpose system to be used on several tasks, they typically 

have limited size, low energy consumption and low costs. Embedded sys-

tems are widely used in various purposes, such as commercial, industrial, 

and  military  applications.  (Retrieved  November  7,  2023,  from 

https://www.heavy.ai/technical-glossary/embedded-systems)

Figure 14: Raspberry Pi 4



2.15 ROS

ROS or Robot Operating System is a freely available middleware that facili-

tates the development of robotic software. It provides the framework for man-

aging hardware abstraction, device drivers, communication between compo-

nents and a variety of tools to build and control robots. With its modular and 

collaborative development capability, ROS is widely used as a platform for 

the design and control of robot systems. (Retrieved November 7, 2023,  from 

https://www.ros.org)

Figure 15: Jetson Nano (Nvidia, 2023) and Kria KV260 (Xilinx, 2023)

https://www.ros.org/


3 METHODOLOGY

3.1 Experimental design

The first step was getting familiar with the robot I'm going to work with. I 

started by learning its hardware and protocols so that I could understand how 

this project would move forward, as well as seamlessly integrate all  other 

software I might encounter along the way.

Next step was to gather information about the hardware needed for the host 

to interact with Beckhoff EtherCAT terminals. I found that Raspberry Pi was 

used for this purpose, specifically the models 2, 3 and 4. The models 2 and 3 

require a open source hardware called PiCAT which contains a W5500 Eth-

ernet chip on it to get real-time capabilities (Fig. 16). However, the model 4 

doesn’t need this additional hardware because it comes with a built-in Broad-

com native driver Gigabit Ethernet controller that allows real-time communi-

cations.

The Linux kernel has to be patched to be capable of real-time; Xenomai and 

Preempt RT are the two options we have to choose from.

Figure 16: PiCAT with a W5500 (Simplerobot, 2018)



Xenomai and Preempt-RT share the goal of adapting Linux kernel for real-

time applications like industrial automation, robotics, and embedded systems. 

They achieve this by resolving concerns associated with interrupt handling, 

scheduling, and latency. The selection between Xenomai and Preempt-RT 

typically hinges on the particular needs of a project and the preferred degree 

of determinism and real-time efficiency.

After I went through all research commented before, I learned about the need 

of EtherCAT masters. Etherlab and SOEM are the two most well known open 

source EtherCAT masters. I installed the masters and tried them out. They 

worked, but the ROS part still needed.

rtt_soem from Orocos was the only ROS-integrated master I tried. It started, 

and I could add and receive values only from two terminals (EL1008 and 

EL2008) because drivers were not created for the remaining terminals I have. 

I began to read the code, trying to understand it to create my own drivers.

After a few days, I managed to create drivers for the remaining iCIM robot 

terminals (Appendix 2-6) and enable slaves to reach Operational status (Ap-

pendix 7). However, not all of the terminal drivers were correct, and some 

things were not  functioning properly.  For  example,  the TwinSAFE system 

from the EL6900 didn't work.

The project has not been under maintenance since 2020, so I explored other 

options while continuing to work on rtt_soem to ensure its full functionality.

After couple of days, I came across the LinuxCNC project, which is capable 

to communicate with EtherCAT terminals using EtherLab master.

Intrigued by the existing drivers that facilitate communication between Linux-

CNC HAL and the EtherCAT Master,  along with built-in support  for Twin-

SAFE, I decided to give it a try.

Upon testing,  I  found that almost every terminal  was working seamlessly. 

There was only one missing terminal driver, which I created and submmited 



to the main project repository. It was subsequently accepted. However, the 

process of communicating with TwinSAFE from the TwinCAT configuration 

was not clear. To address this, I documented how to get the pins configura-

tion from TwinCAT and align them with LinuxCNC’s I/O pins.

The sentence is almost correct, but it would benefit from a slight rephrasing 

for better clarity and flow. Here's a revised version:

After testing everything and ensuring the motors were spinning, I modified 

the LinuxCNC’s halcmd code to integrate a C implementation of ROS, en-

abling communication between ROS and LinuxCNC’s HAL.

The next step involved implementing Whisper in the iCIM robot. I modified 

the code to enable the sending of system commands based on voice input 

and to dispatch pre-defined ROS commands to execute specific actions on 

the robot.

As the final step, I applied PTQ to the model to minimize its size, to have 

faster  iterations,  while maintaining a reasonable accuracy,  utilizing a 4-bit 

quantization type.

3.2 Festo iCIM 3000 robot

The robot used for the demo is part of the Festo iCIM 3000 assembly system 

(See Fig. 17). It is a cartesian robot which takes and places items in the as-

sembly system onto a conveyor belt. Later in the text I’m going to refer it as 

iCIM robot.



3.3 Setting up LinuxCNC

The first main part of the installation is to have the hardware and the network 

topology we are going to use. In this demo I used a Raspberry Pi 4 as a host 

for  LinuxCNC and  ROS master,  wich  connects  to  the  EtherCAT coupler 

through  Network  Interface  Controller  (NIC),  to  internet  via  WiFi  and  with 

USB-Ethernet conector to the Jetson Nano  which will  host  the ASR and 

ROS acting as client. Figure 18 shows the actual hardware configuration.

    
Figure 17: Festo iCIM 3000 cartesian robot where the demo will was applied



3.3.1 System installation

The installation procedure initiates with the preparation of the MicroSD im-

age. First, we must download the pre-compiled image from the official Linux-

CNC project  website,  which serves as  the foundation for  the  setup.  This 

downloaded file, identified as 'linuxcnc-2.8.1-pi4.zip,' should be retained for 

subsequent steps.

Following this, the MicroSD card should be connected to the computer, and 

the device name should be determined using the 'lsblk -l'  command. This 

step is crucial in ensuring the accurate selection of the storage device for the 

installation.  The connected  device  is  typically  labeled  as  '/dev/sd[X]'  or  '/

dev/mmcblk[X]' depending on the host system.

Subsequently, the downloaded zip file must be decompressed, and the im-

age should be written onto the MicroSD card. This operation is executed by 

applying  the  'sudo  dd  if=2021-01-20-linuxcnc-pi4.img  of=/dev/[our  device]' 

Figure 18: Hardware configuration



command, where '[our device]' corresponds to the previously obtained device 

name. This action effectively transfers the LinuxCNC image to the MicroSD 

card, thereby preparing it for use with the Raspberry Pi 4.

In addition to these steps, a headless installation, inclusive of Wi-Fi and SSH 

support,  is configured. The process begins with the activation of the SSH 

server by creating an empty 'ssh' file. Subsequently, Wi-Fi access is config-

ured by generating a 'wpa_supplicant.conf' file that includes your network's 

SSID and password. All these steps should be performed in the boot parti-

tion.

The installation of HAL-Core follows. The process starts with the update of 

repositories and software packages, ensuring that the system is equipped 

with the latest software components. This is succeeded by the installation of 

a real-time kernel header and the essential development tools necessary for 

the compilation of Etherlab master, a critical component for EtherCAT sup-

port in this project. Then we go through the cloning of the Etherlab master 

repository, configuring, building it from source, and link the essential files and 

libraries for the seamless operation of the system.

With EtherCAT master now fully operational and seamlessly integrated into 

the system, we proceed to install the packages indispensable for Hardware 

Abstraction Layer. These packages comprise vital libraries, tools, and depen-

dencies required for the proper functioning of HAL.

The next phase involves the download of HAL-core, which is the core compo-

nent of LinuxCNC, and build it from source.

Upon the completion of these steps, you will have a fully functional system 

equipped with EtherCAT integration and the HAL-Core. This enables you to 

take control of various hardware components through the LinuxCNC HAL. 

(LinuxCNC, 2021)

HAL is simply a means of integrating and interconnecting several building 

blocks in order to build up a comprehensive system at the highest level. The 



hardware part is because HAL was originally designed to make it easier to 

configure LinuxCNC for a wide range of hardware devices. There are drivers 

for hardware devices in many of the building blocks. However, HAL is capa-

ble of more than configuring hardware drivers.

3.3.2 Halcmd

Halcmd is a command-line tool used to interact with HAL. It is mainly de-

signed to execute commands, typically read from the command line, with an 

option to read from a file for more complex HAL configurations. halcmd pro-

vides  interactive  command line  editing  and  completion  features,  boosting 

user interaction by allowing command recall and item name autocompletion. 

See Appendix 8 to see the default options.

3.3.3 Pin/Parameters names

Five fields, which are organised into three levels and separated by periods, 

form the naming convetion of pins and parameters in hardware drivers. The 

structure is composed of the device name, the device number, the I/O type 

(Table 4), the channel number, and a specific name. The device name speci-

fies the name of  the hardware intended to work with,  the device number 

specifies a specific hardware device identificator starting from 0, and the type 

of I/O associated with the pin or parameter is defined. The individual chan-

nels are further identified by channel numbers starting from 0, because virtu-

ally every I/O has muplitle channels. Finally specific name provide unique 

identification of the pin. This systematic approach ensures consistency in the 

various devices which are identical to each I/O type. (Appendix 9)



Table 4: Pin types

Name Values Information

Bit
True or 1
False or 0

Bit values (True, TRUE, true are all valid)
(False, FALSE, false are all valid)

Float e.g., 0.1, 2.5, 0.003
A 64 bit floating point value, with approxi-
mately 53 bits of resolution and over 1000 
bits of dynamic range.

s32
-2147483648 to 
2147483647

Integer numbers that can have a negative or 
positive values.

u32 0 to 4294967295 Only positive integer numbers.

3.3.4 Terminals configuration

To double check that our hardware is correctly intalled and our system is able 

to reach the master and slaves, we should run a ethercat command to get 

the status information from master and slaves. Running the command ether-

cat master (Appendix 10), we can see that the device phase is Operation, 

which means that is fully Operational and active. See Figure 10 for more in-

formation. We can see there that we have the quantity of slaves in: 'Slaves: 

14' and 'Referece clock: Slave 0' refers that Slave 0 have the reference clock 

wich is used to achieve deterministic and synchronized communication in the 

EtherCAT network.

Once we have got the correct functioning of the master, beeing able to reach 

all slaves we have. We now need to enumerate them using ethercat slave 

command (Appendix 11) and see if that match our current hardware configu-

ration (Fig. 19), to ensure that all the terminals are communicating correctly 

with each other. The Table 5 refers to my current configuration.



Table 5: Actual iCIM robot EtherCAT Coupler and terminals configuration

Name Type

EK1100 EtherCAT Coupler

EL1008 8-channel digital input terminal 24 V DC, 3 ms

EL1008 8-channel digital input terminal 24 V DC, 3 ms

EL1008 8-channel digital input terminal 24 V DC, 3 ms

EL1008 8-channel digital input terminal 24 V DC, 3 ms

EL2008 8-channel digital output terminal 24 V DC, 0.5 A

EL2008 8-channel digital output terminal 24 V DC, 0.5 A

EL2008 8-channel digital output terminal 24 V DC, 0.5 A

EL7342 2-channel DC motor terminal, 48 V DC, 3.5 A

EL7342 2-channel DC motor terminal, 48 V DC, 3.5 A

EL9576 Brake chopper terminal

EL6900 TwinSAFE Logic

EL1904 4-channel digital input terminal, TwinSAFE, 24 V DC

EL2904 4-channel digital output terminal, TwinSAFE, 24 V DC

EL9505 Power supply terminal 5 V DC

Now having all values from the EtherCAT slaves, we then can continue with 

the next steps to manually configure the slaves to set and get ping values 

from the GNU/Linux terminal using halcmd command. But before continuing 

with that, I created a HAL driver support for EL9576 which was not created.



3.3.5 Creating HAL driver support for EL9576

After having obtained all the terminals names, I checked the list of LinuxCNC 

EtherCAT HAL drivers, and I notice that I had one terminal that was missing 

from the list. After having a look at the code and started to get how it worked, 

I created the support for the EL9576 (Appendix 12) in a pretty easy way, 

which was actually added to the main project after a Pull Request in GitHub.

First, I declared the name of the slave in lcec_conf.c and in lcec_conf.h. The 

product code was also needed. I downloaded the EL9576 official documenta-

tion and I searched for the  product code (Appendix 13).

Once having it, in my case 0x25683052, I added to the lcec_el95xx.h file and 

continued the last slave name adding into lcec_main.c file.

Now the device is ready to fully communicate from LinuxCNC to EtherCAT 

master.

3.3.6 Configure the components/pins for LinuxCNC

The ethercat-conf.xml file (Fig. 20) which is located under hal-cmd/rtlib/, is 

the file that contains the masters and slaves information. Idx stands for index 

Figure 19: Raspberry Pi 4 with a Beckhoff EtherCAT Coupler and Terminals



in EtherCAT topology. appTimePeriod, is the preiod of the EtherCAT cycle, in 

ns.  RefClockSyncCycles,  is  part  of  the DC Clock mechanism in ethercat. 

Name is used to re-name the slave’s name for a custom one. Under EL6900 

which is the TwinSAFE logic we have to add modParam with the value of the 

FsoE slaves. The modParam and fsoeSlaveIdx values are taken from the 

template of LinuxCNC-EtherCAT HAL driver (Appendix 14). Value ferers to 

the index of each slave dependent on the the EL6900.

3.4 Get TwinSAFE configuration from TwinCAT

Beckhoff has developed TwinCAT 3, a comprehensive software platform that 

enables real time control and automation in industrial and manufacturing ap-

plications. It support different programming languages, motion control func-

tionality  or  human-machine interface functionalities  making it  an  excellent 

choice, also enabling manufacturing and automation processes to be subject 

to more efficient, costefficient control solutions as well as flexibility. (Beckhoff, 

2023)

Figure 20: HAL EtherCAT configuration



Actually from LinuxCNC we are not able to modify the actual TwinSAFE con-

figuration, we can only read values and write in standard inputs, but all the 

configuration have to be done using TwinCAT. All Safty settings and the logic 

are stored in the safty devices and them they are recalled when power up our 

master, so knowing that we have to get into TwinCAT software to see the val-

ues stored in the TwinSAFE terminal EL6900 and get the individual values 

from StandarInputs and StandardOutputs (See Fig. 21).

Figure 21: Checking StandtardInputs and StandartdOutputs under Devices/
Terminal/EL6900/



Have have to click individually on each StantardOutput and StandardInput in 

the configuration saved on the device, to see the variables. In this case vari-

ables are a little miselanding as students where learning to use it. But that is 

not an issue at all. We get insinde the first one 'Standard Out Var 5' (Appen-

dix 15) and then we can see from the Name 'Standard Out’, Address from 

where we pick the pin number '0'  and then the type,  just  on the right  of  

"Linked to…", wich is in this case 'b_ComErr’.

Those parameters corresponds in our case to lcec.0.10.std-out-0.

We should continue doing the same in all the StandardInputs to then go to 

the StandardOutputs, and as for example this time, I will start with the 'Stan-

dard In Var 1' (Appendix 16) configuration. In this case the parameters that 

belongs to 'Standard In Var 1' are: lcec.0.10.std-in-0  and the type bErrAck.

3.5 Starting HAL

HAL can be configured and initiated using specific commands. As the com-

mands and configuration needed for startup are identical, a script has been 

developed to automate this process (Fig. 22).

To commence, we set up the environment using the "rip-environment" script. 

Subsequently, we navigate to the location of the "halcmd" binary to execute 

the required commands.

The  initial  "halcmd"  line  ensures  that  any  currently  running  instance  is 

stopped by employing the "halcmd stop" command.

The second line loads Real-Time threads through the "halcmd loadrt" com-

mand. This involves specifying the creation of a thread named "base-thread" 

with a floating-point variable "fp1" set to 0, a period of 1000000 nanosec-

onds, and associating it with the LinuxCNC base.



Following  this,  a  command ("/opt/hal-core/rtlib/./lcec_conf")  is  executed  to 

configure the "lcec" (LinuxCNC EtherCAT) module using the provided Ether-

CAT configuration  file  ("/opt/hal-core/rtlib/ethercat-conf.xml")  (see  Fig.  16). 

The command is run in the background using the ("&") symbol.

The third "halcmd" line loads the real-time HAL component using the "halcmd 

loadrt" command.

The fourth and fifth lines incorporate the "lcec.read-all"  and "lcec.write-all" 

functions into the "base-thread," signifying that these functions will execute 

within the context of the specified real-time thread.

The sixth line initiates the HAL configuration, triggering the real-time execu-

tion of the configured components through the "halcmd start" command, and 

the last “halcmd” command show the status of each with "halcmd show."

Figure 22: runtest file internals



3.6 Enabling TwinSAFE from LinuxCNC’s HAL

Currently,  the  Etherlab  master  exhibits  slower  startup  compared to  Twin-

SAFE. This delay leads to the activation of the FSoE Watchdog, resulting in a 

red  light  blinking  on  the  EL6900  terminal  to  indicate  an  error.

But now having all the values written down as in Appendix 17, we will know 

how to restart the TwinSAFE.

To restart it correctly we just need to do ON and them OFF to the 'b_ErrAck' 

and 'b_EstopReset' ports.

To do so, we need to type the following commands on the terminal:

halcmd setp lcec.0.10.std-in-0 1
halcmd setp lcec.0.10.std-in-0 0
halcmd setp lcec.0.10.std-in-1 1
halcmd setp lcec.0.10.std-in-1 0

Note the port values. We can always double check them from the HAL Ether-

CAT file  configuration  (Fig.  20),  which reference the slave idx  10 as  the 

EL6900, being the pin number 0 bErrAck and pin number 1 b_EstopReset. In 

order to make this easier I created a draw note (Appendix 17) from halcmd 

show output, marking the TwinSAFE port type I got from TwinCAT.

3.7 Enabling and move the motors

Once I had TwinSAFE working and heard "click" from the automatic switch 

was time to move the motors. As I have in my configuration two motors con-

trollers named "motor1" and "motor2" (Fig. 20),  we should use that names to 

enable each channel individually:

halcmd setp lcec.0.motor1.srv-1-enable 1
halcmd setp lcec.0.motor1.srv-0-enable 1
halcmd setp lcec.0.motor2.srv-1-enable 1
halcmd setp lcec.0.motor2.srv-0-enable 1



Now that the motors are enabled, we will proceed to move them by sending 

commands using the float type for the power of the movement. The positives 

values and negatives difers to the motor movent (Table 6).

I have to do the movements carefully, because we are going to work with the 

motors in a low level. It will not stop even if it reach the end of the track, so  

we have to stop the motor manually or press the safety button to stop it all.

Start with values as 0.2 or -0.2, allow us to stop it when needed, because 

using numbers near to 1 or -1 it will go almost a full velocity causing an im-

pact to the end of the track if we don’t stop it on time.

Table 6: Examples of float type values for movement

Value Comment

0.2 Positive – clockwise

0 Stop motor

-0.2 Negative – counter clockwise

The values seen in the last table should be used along halcmd command. 

First goes the halcmd command followed by the pin paramenters and the 

value in cuestion. As an example, I write how to move to the left:

halcmd lcec.0.motor1.srv-0-cmd 0.2

As starting point after stopping the motor movement with value 0 instead 0.2 

in the command described above, we can now start move it to the left adding 

a float value as in my case 0.3. After that command I stopped the movement 

again and added -0.3 to test how it goes to the right (Fig. 23).

Figure 23: Different movements of the iCIM robot depending the input re-
ceived



Based on my motors configuration and axes (Table 7). Up, left, front move-

ments are from positive values and down, right, back are from negative.

Table 7: Commands for motor movement and direction

Command Axis Direction of movement

lcec.0.motor2.srv-0-cmd Y ( UP-DOWN )

lcec.0.motor1.srv-0-cmd X ( LEFT-RIGHT )

lcec.0.motor1.srv-1-cmd Z (FRONT-BACK)

3.8 Custom HAL-core implementation

Hal-core is the core of LinuxCNC, it is mainly made in C, but C++ is also 

used  for  bindings  and  wrappers  to  extend  funcionalities.  Knowing  that,  I 

wanted a C implementation of ROS framework, and I found the CROS (ros-

industrial, 2023) project from ros-industrial under license BSD-3-Clause. That 

was an interesting project to fork in order to complement LinuxCNC and ex-

tend funcionalities using ROS on it.

I forked it and modified the file from where the code is going to be compiled, 

to create a shared library instead a static (Fig. 24) to integrate with HAL when 

compiling (Appendix 18,19).



3.8.1 Applying ROS to HAL

I wanted to modify the "halcmd_main.c" code to introduce a new flag for initi-

ating the ROS listener: "-r" for task automation. To achieve this, I incorpo-

rated the recognition of "r" during the parsing of command line options with 

the "halcmd" command. Additionally, following the condition that verifies the 

option  within  the  switch-case  structure,  'r'  was  appended  to  invoke  the 

"cros_main()" function. In conclusion of this configuration section, I supple-

Figure 24: Switching library from static to shared before com-
pilation



mented comments while displaying the help information using "halcmd". All 

modifications made are highlighted in green (Fig. 25).

Continuing the adaptation of CROS into halcmd, I included the libraries we 

are going to use and defined macros with different configurations such as the 

directory separator, ROS master port, and IP address (Fig. 26).

Figure 25: Creating new option flag in halcmd source code



Function  definitions  were added before  defining the "cros_main"  function. 

Here, we encounter "CallbackResponse" taken from the original CROS code, 

to which I added my custom code to retrieve the value received by ROS in 

the "data_field." I split it into tokens and called "halcmd_parse_cmd" to parse 

the tokens for execution. Subsequently, I return '0' to indicate success. (Fig. 

27)

Figure 26: Libraries and defined macros added to halcmd_main.c



The "cros_main" function was directly extracted from the CROS repository 

and incorporated into "halcmd_main.c". In this integration, I introduced a path 

for the message types at line 155. Additionally, I employed the message type 

std_msgs/String at line 181 since I plan to tokenize it later when invoking the 

"callback_sub" function. (Fig. 28)

Figure 27: CROS code added into halcmd_main.c



3.9 Whisper.cpp

Whisper.cpp  is  a  high-performance  inference  of  OpenAI's  Whisper  ASR 

model that can be integrated in different platforms and applications written in 

plain C and C++ without dependencies. (ggerganov, 2023)

Tensor operations are made and implemented under Georgi Gerganov Ma-

chine Learning (GGML) library written in C. It  support  16-bit  float,  integer 

model quantization from 4-bit. In this case, I modified the code to suit my 

needs. Initially, it could receive voice commands, but it wouldn't perform any 

Figure 28: CROS main function with aditional changes



actions.  With my changes,  it  will  now be able to  execute system actions 

based on the input voice.

3.9.1 Modifications to run system commands

Whisper.cpp originally detects the best token from a file that contains a list of 

words using "process_command_list" function. I modified part of the function 

(Fig. 29) to read a comma-separated token followed by a system command 

that executes that command. Doing so allows us to modify just one file to add 

new possibilities without the need to recompile everything from scratch every 

time we make changes.

After that change, we are now able to publish messages to a topic using our 

voice commands. As you can see in Figure 30, we have words and system 

commands separated by  commas in  our  modifications.  The system com-

mand is a "rostopic pub" to the "/chatter" topic, followed by the type, and the 

LinuxCNC’s halcmd command.

Figure 29: Whisper.cpp modification to run system command from comma-
separated token



3.9.2 Applying PTQ to Whisper model

The process to quantize a Whisper GGML-based model is quite straightfor-

ward. First, I need to determine the model I want to quantize (Table 8) and 

choose the quantization method. In our case, we should select a method be-

tween 4-bit, 5-bit and 8-bit to achieve a notable reduction in file size.

Table 8: Whisper models memory usage (ggerganov, 2023)

Model Disk Memory

tiny 75 MB ~273 MB

base 142 MB ~388 MB

small 466 MB ~852 MB

medium 1.5 GB ~2.1 GB

large 2.9 GB ~3.9 GB

The command for quantization is "./quantize" followed by the actual model, 

the output file, and the quantization type: 

./quantize models/ggml-tiny.bin models/ggml-tiny-q4_0.bin 
q4_0

We can see in Table 9 the differences in model size between the normal one 

and the quantized version.

Figure 30: whisper.cpp default commands.txt file and my modification



Table 9: comparison of default and quantized models

Model Normal Size Quantization type Quantized model size

tiny

75 MB

q4_0 25 MB

tiny q5_0 29 MB

tiny q8_0 42 MB

base

142 MB

q4_0 45 MB

base q5_0 53 MB

base q8_0 78 MB

In my case, I chose the tiny model because the vocabulary I am going to use 

is quite simple, and there is no need for KD, as the tiny model size is already 

suitable for my hardware.

After quantization, the size of the tiny model decreased from 75MB to 25MB 

(Table 9) using 4-bit quantization, enabling faster inference as well (Table 

10).

Table 10: Comparison of iterations between the normal and 4-bit quantized 
models.

Model Voice command
Inference time

Default model 4-bit quantized model

tiny

up 890 ms 627 ms

down 887 ms 621 ms

left 863 ms 617 ms

right 891 ms 604 ms

stop 888 ms 638 ms

3.10 Proof of concept (POC) of robot control

Now that we have full control of the Beckhoff EtherCAT terminals at a low 

level, we have numerous new possibilities to integrate emerging technologies 

into what I have developed, as illustrated in the examples below.



3.10.1 Automated relocation of items

Accomplished the task of lifting an object from its original spot and placing it 

in another position flawlessly (Fig. 31).

3.10.2 Hand gesture recognition

The testing of  hand gesture recognition with  the robot  was conducted to 

demonstrate the feasibility of developing AI solutions based on the work I 

performed (Fig. 32).

Figure 32: iCIM robot controlled by hand gestures

Figure 31: Picking an item from place 13 and placing it in 19.



3.10.3 Gamepad

In this instance, I utilized a gamepad to control the iCIM robot freely and in-

spect its various stop switches (Fig. 33), since it was more practical than hav-

ing to always carry the laptop with me.

Additionally, the gamepad enabled me to measure the various locations of 

the  robot  by  observing  the  motor  encoder  values  in  real-time  (Fig.  34).

Figure 33: iCIM robot controlled using a gamepad

Figure 34: Checking the motor encoder value for measurements



3.10.4 Festo controller

The iCIM robot comes with a controller (Fig. 35), from which I can obtain the 

button press status and perform actions accordingly. As part of the POC, I 

receive values from them and publish them via ROS topics.

Figure 35: Interacting with Festo controller



4 CONCLUSION

The successful integration and optimization of the iCIM robot within the Lin-

uxCNC environment and AI represent a significant milestone in advancing 

the capabilities of robotic control systems that are obsolete by software. 

Adopting a systematic approach, I have effectively addressed both hardware 

and software challenges.

The meticulous exploration and implementation of EtherCAT technology, 

along with the careful selection and adaptation of appropriate open source 

tools like EtherLab and LinuxCNC, have laid a solid foundation for industrial 

automation, applications in robotics, and educational purposes. Additionally, 

the dedicated work on TwinSAFE configurations contributes to enhancing the 

safety and reliability aspects of the integrated system.

The integration of voice recognition capabilities through Whisper.cpp has in-

troduced a new dimension of human-machine interaction, enabling effortless 

execution of robot movements. The successful quantization of the Whisper 

ASR model to a 4-bit format showcases the optimization potential for re-

source-efficient deployment, allowing for faster iterations without compromis-

ing accuracy.

The proof-of-concept scenarios presented in my work highlight the practical 

implications of the developed system. These scenarios include automated 

item relocation, hand gesture recognition, gamepad control, and interfacing 

with external controllers. Not only do these scenarios validate the technical 

robustness of the integrated system, but they also open up possibilities for di-

verse applications in industrial automation, human-robot collaboration, and 

interactive control interfaces.

As technology continues to evolve, the flexibility and adaptability demon-

strated in this work position the integrated LinuxCNC and iCIM robot system 

at the forefront of cutting-edge robotic control. The comprehensive documen-



tation of the integration process, challenges faced, and innovative solutions 

provided aims to contribute to the wider field of robotics, fostering continued 

exploration and advancements.

4.1 Future work

The study could be extended to include more complex movements in a robot, 

and introduce a large language model that remembers the location of objects 

by  name  or  identification.  Moreover,  the  capabilities  could  be  enhanced 

through the creation of an API designed for facilitating integration between 

HAL and ROS.
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