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ABSTRACT 
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The integration of brain-computer interface (BCI) in human-computer interac-
tion has started in a new time full of innovation and possibilities. BCI has over-
come the limitations of traditional input devices and has provided direct com-
munication between the human brain and external systems. Especially elec-
troencephalogram (EEG)-based biometrics (BCI) have become a promising 
method for seamless data exchange between the human brain and applica-
tions. This paper explores how to use convolutional neural networks (CNN) 
and long short-term memory (LSTM) as a basic mechanism for EEG signal 
description, preprocessing of EEG data using ICA and MNE, and analysis to 
explore subtle differences in EEG signals of left and right arm movements and 
hypothesize the application of this technology to the steering system of the 
future self-propelled wheelchair. 
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1 INTRODUCTION 

With the growth of industrial society and increased human activities, more and 

more people are facing various mobility-related challenges. These challenges 

can be caused by several factors including accidents, rare diseases, aging, 

inherited diseases and heart diseases, these limitations lead to loss of mobility. 

Examples of this include stroke(Feigin et al., 2022) and spinal cord injury 

(SCI)(Albayar et al., 2019), both of which can result in paralysis and loss of 

lower limb mobility. The integration of EEG and BCI technology into wheel-

chairs provides a new solution. The EEG-BCI system allows patients to regain 

mobility and independence by controlling their wheelchairs using brain signals. 

EEG-BCI holds great promise for improving patients' quality of life with severe 

movement disorders. Advanced wheelchairs have been developed with this 

technology to meet the special needs of disabled and old people, allowing 

them to act independently. 

 

This study aims to identify and classify the changes in the left and right arms 

on EEG using the CNN-LSTM neural network framework as an analytical tool, 

supplemented by MNE and ICA as a library of data preprocessing tools, based 

on the EEG signals. In Chapter 2, the details related to experimental data col-

lection are described. In Chapter 3, the pre-processing phase of the experi-

mental data is described. In Chapter 4, the core of the article is analysed in 

depth regarding the framework and processing of the neural network. Chapter 

5 then presents and analyses the results of the experiment. In the end, Chapter 

7 contains a plan and vision for the future improvement of the experiment. 
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2 COLLECTION AND PLANNING OF EXPERIMENTAL DATA 

 

2.1 Description of the equipment used for experimental data collection 

 

The Neoprene Headcap is a comfortable, reliable and flexible solution to place 

electrodes for EEG monitoring and stimulation. Its positioning grid with 39 pre-

defined and clearly annotated positions is based on a subset of the interna-

tional 10-20 EEG system. 

 

 

Figure [1] Neoprene Headcap from https://www.neuroelectrics.com/solu-

tion/spareparts-consumables/cap 

 

The pair of OpenBCI ear clip electrode cables with electrode material of silver 

chloride (Ag-AgCl). This electrode provides a stable ground signal while re-

cording EEG data. 

https://www.neuroelectrics.com/solution/spareparts-consumables/cap
https://www.neuroelectrics.com/solution/spareparts-consumables/cap
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Figure [2] OpenBCI ear clip electrode cables from 

https://shop.openbci.com/products/earclip-electrode 

 

Boards and Dongles: The OpenBCI Cyton board is an 8-channel neural inter-

face with a 32-bit processor. It has a large amount of local memory and fast 

processing speeds. Each of the eight channels samples data at 250Hz and 

acquires data and connects electrodes via the OpenBCI EMG/ECG Snap elec-

trode cable. The Cyton dongle is used to connect the Cyton board to a com-

puter via Bluetooth, allowing the data collected by the Cyton board to be trans-

mitted and displayed on the OpenBCI program. 

 

Figure [3] OpenBCI Cyton board(left) from 

https://shop.openbci.com/products/cyton-biosensing-board-8-channel 

https://shop.openbci.com/products/earclip-electrode
https://shop.openbci.com/products/cyton-biosensing-board-8-channel
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Figure [4] OpenBCI Cyton dongle(right) from 

https://shop.openbci.com/products/dongle 

 

OpenBCI EMG/ECG Snap-In Electrode Cables are ribbon cables that can be 

attached to electrodes for use with any OpenBCI board. 

 

Figure [5] OpenBCI EMG/ECG Snap-In Electrode Cables from 

https://shop.openbci.com/products/emg-ecg-snap-electrode-cables 

 

EEG Comb Electrodes and OpenBCI EMG/ECG Snap-In Electrode Cables 

need to work together. 

 

 

Figure [6] EEG Comb Electrodes 

https://shop.openbci.com/products/dongle
https://shop.openbci.com/products/emg-ecg-snap-electrode-cables
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2.2 Experimental Data Collection Profile and Conditions 

 

In this research, EEG data from different individuals were collected to ensure 

a decent level of generalization of the trained model and to strictly protect the 

privacy of the participants. The data will be used exclusively for research pur-

poses and not be used for commercial applications. The foundation of our 

EEG-based biometric identification (BCI) system lies in the collection of high-

quality EEG data. 8-single EEG electrodes was used to record the brain activ-

ity of the participants. The EEG signals are sampled at a rate of 250 Hz to 

capture real-time brain activity. Access to high-quality EEG data, participants 

were placed in a quiet, and strong light-free environment to make sure they 

stayed focused and undisturbed mental states. 

 

 

Figure [7] Electrode locations of International 10-20 system for EEG 

 

The 10-20 system is a standardized method for placing EEG electrodes on the 

scalp. Electrodes are positioned at specific locations based on distances of 

10% or 20% of the scalp's total front-to-back or right-to-left distance. The 
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system is widely used in both clinical and research settings, ensuring con-

sistency in electrode placement and allowing for comparisons across studies. 

 

8-single EEG electrodes was used for the analysis (P3, P4, C3, C4, F3, F4, 

Cz, Pz), C3, C4 and Cz electrodes are typically used to extract MRCP signals 

(refers to specific electrical potentials in the brain that are associated with 

movement preparation and execution. These potentials can be recorded using 

EEG) for hand movement tasks(Yahya et al., 2019).  

 

In addition, five other electrodes (F3, F4, P3, P4 and Pz) were explored in this 

experiment. In exploring other examples of EEG and Movement aspects, stud-

ies were found that used similar EEG electrode locations((FC3, FC4, CP3, 

CP4, and CPz) with the aim of investigating the effects of rehabilitation training 

on the EEG cortex in patients with movement disorders after stroke(Butt et al., 

2020), which shows that the choice of electrode locations for the present ex-

periment was reliable. 

2.3 Procedure for experimental data collection 

 

The collection plan consisted of the following steps: participants closed their 

eyes, sat comfortably in a quiet room without bright light, and the staff issued 

a clear but subtle voice command to start the task and start the timer. Upon 

hearing the instruction from the staff, the participant began to wave his right 

arm. They were instructed to maintain the wave motion until they heard a stop 

command, also delivered in voice, and the practice task lasted for 2 minutes. 

After completing the task of waving the right arm, participants rested for one 

minute and waited for the staff to issue the command to wave the left arm 

again. Similar to the previous task, participants continued to perform the action 

until the staff gave the command again, also for 2 minutes. A round starts with 

the right arm and ends with the left arm, and the total collection plan contains 

two rounds. The arm waving motion was specifically designed as the partici-

pant lifting their arm 90° to the side at a constant speed from its natural sagging 



11 
 

position and dropping it. During this carefully designed process, we continu-

ously recorded EEG data to capture the changing brain activity of participants 

as they engaged in movement tasks.  

 

 

Figure [8] Collection process (this figure is only an example of collection, the 

real collection environment without bright light) 

 

This approach allowed us to induce EEG activity related to left and right arm 

movements while keeping experimental controllability and consistency. Alter-

nating between waving and resting allowed us to collect EEG data that was 

precisely locked to the time of the movement event, which laid a good founda-

tion for our subsequent processing. 

3 DATA PRE-PROCESSING 

3.1 Use of independent component analysis 

In this study, independent component analysis (ICA) (Rejer & Górski, 2015) 

played a key role in the pre-processing and analysis of EEG data. ICA is a 

powerful computing technique that decomposes mixed signals into statistically 
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independent signal sources. ICA can identify and separates invalid data, such 

as blinking and muscle activity, from raw nerve signals. ICA is also able to 

remove unnecessary noise while preserving basic brain activity, all functions 

that improve the quality of neural data. ICA can also handle the visualization 

of neural data, clearly presenting potential neural sources and their temporal 

dynamics. These visualizations help to observe neural data and identification. 

 

 

 

Figure [9&10] ICA's data visualization display 

3.2 Filtering and noise reduction 

In neuroscience research, it is common practice to select a filter with a fre-

quency range of 1-30 Hz for EEG data analysis. To ensure the consistency of 

various studies, a frequency of 1-30 Hz will be used in this experiment. The 
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spectrum of EEG signals ranges from 0.1 Hz to 100 Hz and is divided into five 

frequency bands: Delta (0.1-3 Hz), Theta (4-7 Hz), Alpha (8-13 Hz), Beta (14-

30 Hz), and Gamma (31-100 Hz)(C.r et al., 2011). It was found that the α, β, 

and γ frequency bands (frequencies 8 Hz to 40 Hz) play an important role in 

recognizing motion signals recorded in areas of the sensory-motor cortex, with 

an average classification accuracy of 92%, and the highest classification ac-

curacy using the α, β, and γ bands being 98.7%. The frequencies chosen for 

this experiment were approximately the same. EEG recordings can be con-

taminated by a variety of noise sources such as muscle activity, blinks, and 

environmental disturbances (e.g., alternating current (AC) noise at 50/60 Hz). 

By limiting the analysed frequency range to 1-30 Hz, noise components out-

side this range can be effectively attenuated, resulting in a purer signal.   

 

 

Figure [11&12] Comparison before and after filtration 

 

3.3 Data labelling 

To facilitate the precise labelling of EEG data, we employed the Annotations 

function from the MNE-Python library(Gramfort et al., 2014). EEG measures 

weak electromagnetic signals originating from neural currents in the brain. 
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MNE provides comprehensive analysis tools and workflows for EEG, including 

preprocessing capabilities. MNE is an academic software package designed 

to provide a data analysis pipeline covering all stages of EEG data processing. 

The comprehensive feature set provided by the MNE-Python package has 

been implemented by dedicated contributors working closely together from 

multiple institutions in multiple countries and facilitated through the use of a 

fully open-source software development process available for contribution by 

anyone. The comprehensive feature set provided by the MNE-Python package 

is enabled by the close collaboration of multiple organizations from several 

countries and through a software development process that is fully open 

source and guaranteed to be modifiable by anyone. 

3.3.1 Event Generation 

Using the "Annotations" function in MNE, events can be generated utilizing the 

data collected with the assurance that the arm movements have precise timing. 

Declare "event_id" as "left" for left arm movement and "right" for right arm 

movement. Finally, use the "events_from_annotations" function to generate 

the events. 

 

Figure [13] Dividing left and right arm movements according to time 
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Figure [14] Generating events 

 

The resulting events were marked at the onset of each arm movement task, 

allowing us to accurately divide the EEG data into classes that represent the 

movements of the left and right arms to facilitate the training of the model. 

3.3.2 Epochs Generation 

For the model to learn the subtle differences in the electroencephalogram 

(EEG) signals in the direction of the left and right arm movements, a key pre-

processing step is used to convert the generated events into epochs. Subse-

quently, these epochs will be used as input data for the machine learning 

model. When transforming from events to epochs, the "Epochs" function in the 

MNE library is called to generate them. These event tokens act as timestamps 

that split continuous EEG recordings into discrete epochs. Each epoch con-

tains EEG activity that precisely corresponds to the participant's arm. 

 

 

Figure [15] Generating epochs 

3.3.3 Summarization and subsequent pre-processing 

Notably, this annotation process maintains the temporal accuracy of the EEG 

data, enabling the model to learn the changing of brain activity associated with 

left-arm and right-arm motion. By combining the annotation capabilities of the 

MNE library with our well-defined experimental protocols, we achieve accurate 

automatic annotation of EEG data segments. This rigorous annotation process 
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lays the foundation for training our CNN model to accurately interpret the EEG 

signals associated with left-arm and right-arm motion. 

 

The pre-processed and labelled EEG data is divided into a training set (70%) 

and a test set (30%). The training CNN divides the EEG time into two catego-

ries: left-arm and right-arm. Standard loss functions (CrossEntropyLoss) and 

optimization algorithms (Adam) were used to train the network. The perfor-

mance of the model was continuously monitored on the validation set to pre-

vent overfitting and ensure generalization. In the following sections, we delve 

into the architectural, training, and evaluation details of our CNN model. 

4 NETWORK ARCHITECTURE 

4.1 Previous Related Research 

Convolutional Neural Networks (CNN) have previous precedents of application 

regarding EEG data analysis Motor Imagery. For example, the study(Li et al., 

2022) utilized a convolutional neural network (CNN) to classify EEG data and 

explore the relationship between motor imagery and age-related fatigue. The 

study compared younger and older participants and analysed energy changes 

during motor imagery using time-frequency plots and event-related desynchro-

nization (ERD) values. Fatigue from motor imagery was assessed using two 

metrics: (θ+α)/β and θ/β, and fatigue-sensitive channels were identified in pa-

rietal regions of the brain. The study also introduced rhythmic entropy to ana-

lyse the complexity of cognitive activity and calculated phase-locked values 

associated with the parietal and frontal lobes. The motor imagery EEG data 

was then classified using CNNs and the accuracy of the classification is dis-

cussed. The results of the study showed that ERDs were observed in both 

young and old people, but the fatigue-sensitive channels in the parietal region 

were slightly different in the two groups. The accuracy was higher in young 

people than in older people, with a peak of 82.81%, while older people were 
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generally around 70%. The study concludes that older adults are less affected 

by cognitive fatigue during motor imagery than younger adults, but the classi-

fication accuracy of motor imagery data may be slightly lower in older adults. 

 

There is also a precedent for the use of CNN_LSTM neural networks in emo-

tion recognition models(Ramzan & Dawn, 2023). The fusion of deep learning 

models (CNN and LSTM-RNN) has shown effective performance in classifying 

emotions based on electroencephalography (EEG). The average accuracy of 

the model on these five dimensions of the data High-Arousal-Low-Arousal 

(HALA), High-Valence-Low-Valence (HVLV), familiarity, Dominance and Lik-

ing emotions was as high as 97.39%, 97.41%, 98.21%, 97.68%, 97.89%, and 

93.74% for positive and negative emotions. 

 

4.2 Principles of CNN-LSTM  

The CNN-LSTM architecture combines two powerful deep learning tech-

niques: Convolutional neural networks (CNN)(Saxena, 2022) and Long Short-

Term Memory (LSTM)(Yu et al., 2019) networks. CNNS are good at capturing 

spatial patterns in the data, so they are well suited for processing EEG signals 

with spatial and temporal features. LSTM is good at modelling temporal de-

pendencies in continuous data. The CNNLSTM model combines the two and 

adopts a hierarchical feature extraction method to capture spatial and temporal 

patterns in EEG data. 

 

EEG signals represent the bioelectrical activity of different brain regions over 

time. The CNN layer in the model processes EEG data from a temporal per-

spective and identifies features in the signal. These features are then passed 

to the LSTM layer, which handles the time aspect and captures these features 

over time. This combination allows the model to understand complex EEG sig-

nals. In addition, the LSTM portion of the model includes a culling layer to pre-

vent overfitting. During training, the cull layer randomly removes some 
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neuronal activation, which helps prevent the model from remembering the 

training data and encourages it to learn more generic features.  

4.3 Explanation of neural network structure 

The CNNLSTM model consists of several key components that are carefully 

organized to extract meaningful information from EEG data. The following is 

an in-depth discussion of its architectural elements. 

 

The initial convolutional layer (conv1) is strategically configured to process 

complex EEG data and effectively reduces the number of input channels from 

2626 to 1313 by means of a one-dimensional convolutional operation with a 

kernel size of one. Subsequent convolutional layers (conv2, conv3, conv4, 

conv5) build on this reduction, further refining the feature reproduction with the 

help of nested ReLU activation functions (relu1, relu2, relu3, relu4, relu5) in 

each layer to introduce fundamental nonlinearities into the model. These layers 

aim to capture the spatial information in the EEG signal. (Specific details of the 

model architecture are in Appendix 1) 

 

After the final convolutional layer, the originality of our architecture is reflected 

in the inclusion of a batch normalization layer (batch_norm). This key compo-

nent optimizes the stability of the network and speeds up training, finally re-

sulting to the convergence of a more powerful and efficient model. 

 

The key to the model is the integration of LSTM layers (lstm1, lstm2). These 

layers introduce temporal awareness into the model, making it possible to de-

cipher complex patterns in EEG data over time. The first LSTM layer (lstm1) 

consists of 64 hidden units with 40% dropout rate set to enhance the general-

ization of the model and reduce overfitting. The second LSTM layer (lstm2) 

has 32 hidden units and builds on the background built by lstm1 to improve the 

extracted features. It also has a 40% dropout rate. 
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The Fully Connected Layer is placed at the end of the whole network, and it 

allows the integration of the knowledge extracted in the previous layers into 

actionable predictions. This layer provides five output units, which may include 

classification or continuous value predictions. 

5 RESULTS FROM THE MODEL 

5.1 Model Results Presentation 

The training process of the model is shown in Fig. With these figures, we can 

see that the model converges and learns the image features during the training 

process. The model training step is 40 epochs and the final training accuracy 

is close to 1. The test accuracy is 0,87, the training loss is about 0.028 and the 

final validation loss is about 0.401. 
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Figure [16&17] Displaying model accuracy and model loss 

 

In addition to monitoring the model's performance through training metrics 

such as accuracy and loss rate, the experiment validated the model's learning 

degree using a new EEG signal dataset collected under the same conditions 

as the original dataset. This method measures the generalization ability of the 

model and confirms its reliability on unseen data. The new EEG data went 

through the same pre-processing steps as the training data, ensuring con-

sistency in data preparation. After loading the pre-trained model, predictions 

are made on these new data. These predictions are then compared to the 

basic real labels obtained during the data collection process, so that the validity 

of the model in the real world is determined. By calculating the prediction ac-

curacy of the model on the new data set, this is an important criterion to meas-

ure the generalization and learning performance of the model. 

 

After several iterations, the structure of the model is improved according to the 

feedback, and it can be seen from the figure that the maximum accuracy can 

reach more than 50%. 
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Figure [18] Statistics on the accuracy of the model on new data 

 

5.2 Announcement 

The frequency range of 1-30 Hz selected in this study is consistent with the 

convention of neuroscience research. While it may not be the most specific 

frequency range for capturing body motion-related artifacts, it represents a 

pragmatic option given the resources and instruments available. In addition, 

this frequency range is a reliable starting point for analysis. To explore nar-

rower or more specialized frequency segments, it is best to seek the guidance 

and cooperation of experienced professionals and clinicians to ensure further 

refinement in a rigorous approach. 
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6 FUTURE PLANS 

6.1 Online real-time forecasting 

Extend the current offline prediction model to an online real-time prediction 

system. This requires adapting the model to continuously process incoming 

EEG data and provide instantaneous predictions. Real-time applications can 

be explored in areas such as BCI to control external devices in real-time. 

6.2 Migration learning and adaptation 

Migration learning techniques are investigated to improve model adaptation 

across different EEG datasets and subjects. This may include pre-training on 

large datasets and fine-tuning on subject-specific data. The goal is to improve 

the generalization ability of the model. 

6.3 Multimodal integration 

Explore the integration of other modalities, such as eye tracking or motion cap-

ture, to complement EEG data. Multimodal approaches can improve the accu-

racy of motion prediction and provide a richer understanding of user intent and 

actions. 

6.4 Clinical application and validation 

Collaborate with healthcare professionals to validate model performance in a 

clinical setting. Apply the model to patients with movement disorders to vali-

date and evaluate the feasibility and accuracy of the developed system in as-

sistive technology and rehabilitation. 
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7 CONCLUSION 

In this thesis, we set out to explore the complex world of EEG signal processing 

and machine learning for the purpose of movement prediction. The conver-

gence of neuroscience and computer science opens a field full of possibilities, 

offering promising solutions for people with movement disorders, neuroreha-

bilitation, and brain-computer interfaces. We started with the acquisition and 

preprocessing of EEG data to lay the foundation for subsequent analysis. Sub-

sequently, the introduction of Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) layers provides a powerful model for motor pre-

diction. In the "Future Plans" section, multiple directions that can be improved 

and implemented are presented, all of which represent opportunities to further 

strengthen the field and increase the utility of our findings. Finally, our explo-

ration of EEG-based motion prediction shows the unlimited possibilities of neu-

roscience and machine learning. 
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