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Abstract

Supported by an identification experiment using random-phase multisines, uncertain parameters in a grey-box model
for a multiple-input multiple-output laboratory-scale heat exchanger are fitted to experimental data. By defining de-
sired trajectories for the controlled system concerning setpoint changes, simulations and a cost function taking control
signal activity into account, we determine both a linear and a nonlinear PI-controller. The resulting control systems
are evaluated through practical experiments and analysis with encouraging results. The approach to modelling and
controller design raises questions about what is needed from an educational point of view, e.g., what skills are needed
for simulation-based control design and analysis?

1 Introduction

The development of increasingly accurate models and
simulations raises questions about whether new ap-
proaches to the design of control systems should be
considered. As an example, models often popularly
referred to as Digital Twins (DTs) (Espinosa-Leal et
al., 2020) that combine sensor information, data-based
black-box models with physical models to develop
a faithful virtual replica of a given system are used
onboard in the electronic control unit for improving
the final tuning phase of the controller for the physi-
cal vehicle in an automobile application (Dettù et al.,
2023). Inspired by similar approaches and the ap-
proach of (nominal) model predictive control (mpc) in
general (Hewing et al., 2020), we explore possibilities
to use simulations directly for controller design. Our
case study considers a laboratory-scale heater and a
heat exchanger. Heat exchangers are vital components
in, among other applications, thermal power stations
and heat pumps. Improved control of heat exchang-
ers based on the creative use of increasingly accurate
models could thus contribute to the much needed in-
creased energy efficiency (IPCC, 2023).
Although it would be appealing to illustrate the ap-
proach on a deterministic, linear model that could be
fully explored analytically, the primary motivation for
using simulations directly is, naturally, for processes
with features not easily captured by linearized mod-
els. Therefore, the approach is illustrated in a non-
linear, multivariable process. In this initial approach,
we, for manageability, focus on the control of one vital
quality variable. Combining first-principles with ex-

periments, a system of coupled nonlinear differential
equations forms the basic model of the heating process
considered. Some uncertain parameters of the model
are fitted based on an identification experiment. A se-
quence of setpoint changes and a control performance
criterion are then defined. Different control strategies
are explored and optimized based on simulations. The
strategies are then implemented in practice, results are
evaluated, and a preliminary analysis of the control
systems is presented.
Reflecting on the approach, what does it imply regard-
ing modelling and model analysis required for teach-
ing control engineering on a general level? If control
design is based on simulations only, does this mean
that the skills needed for analyzing (and linearizing)
differential or difference equations are less critical?
How can traditional requirements on stability analysis,
robustness, control performance and control signal ac-
tivity be explored based on simulations? Connected to
these questions is the opaque nature of general nonlin-
ear black-box models and physical component models
with block diagrams that oftenmake them less suitable
for traditional, linear approaches. The gaining popu-
larity of these modelling alternatives also motivates
the approach presented in this paper.

2 Laboratory-scale heat exchanger

A schematic view of the process is illustrated in the left
panel of Fig. 1. The process has three control signals,
uc controlling the pump on the cold side, uh control-
ling the pump on the hot side, and up controlling the
power to the heater. Given the external disturbances
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Tci and Tsurr, i.e., the temperature of the flow on the
cold side into the heat exchanger and the surrounding
temperature, a model should be able to determine the
power to the heater P, the flows on the cold and on the
hot side, V̇c and V̇h, the temperatures entering and ex-
iting on the hot side, Thi and Tho, and the temperature
exiting on the cold side, Tco.

Figure 1. Schematic view of the heating process. Blue de-
notes the cold side of the heat exchanger, and red
denotes the hot side and the heater.

The main objective is to control V̇c as well as Tco. The
temperatures on the hot side are less interesting, but
naturally sufficient heat is necessary to enable control
of Tco.

2.1 A grey-box model

In the approach to the simulation-based design of
controllers, we consider a simplified first-principles
model for the heating process. A net energy balance
can be written

dEtot

dt
= P−V̇cρcp(Tco −Tci)− Q̇loss (1)

where dEtot/dt is the change of net stored energy in
the system and Q̇loss are the heat losses to the environ-
ment. The termEtot cannot easily be used to determine
the temperatures Thi, Tho and Tco. For this reason, the
net balance is split into three equations. A balance
over the heater yields

dEp

dt
= P−V̇hρcp(Thi −Tho)− Q̇loss (2)

where all heat losses from the system are assigned to
the heater. The stored energy is assumed to be char-
acterized by the temperature Thi and given by Ep =
Cp(Thi − Tref) where Cp is the heat capacity for the

heater and Tref is a reference temperature. If Cp is as-
sumed constant, dEp/dt = CpdThi/dt. A similar bal-
ance over the hot side of the heat exchanger yields

dEh

dt
= V̇hρcp(Thi −Tho)− Q̇he (3)

where Q̇he is the power transferred in the heat ex-
changer and dEh/dt is characterized by Tho. If Ch is
the heat capacity for the hot side of the heat exchanger
and assumed constant, dEh/dt =ChdTho/dt. The cor-
responding balance over the cold side of the heat ex-
changer is given by

dEc

dt
= Q̇he −V̇cρcp(Tco −Tci) (4)

where dEc/dt is characterized by the temperature Tco.
IfCc is the heat capacity for the cold side of the heat ex-
changer and assumed constant, dEc/dt =CcdTco/dt.
In addition to these energy balances, equations for
Q̇loss, Q̇he and equations for dependencies between uc
and V̇c, uh and V̇h and up and P are needed.
For a heat exchanger, it is common to use Q̇he =
αA∆Tlm, where α is the heat transfer coefficient, A
is the exchange area and ∆Tlm is the logarithmic mean
temperature difference. In this case, the temperature
differences are Thi −Tco and Tho −Tci. Although ∆Tlm
is motivated by steady-state, we nonetheless use it for
our dynamic model. The heat losses are assumed to be
proportional to Thi −Tsurr, i.e., Q̇loss = k(Thi −Tsurr).
For the pumps and the heater, first-order models were
fitted to step experiments to give the equations,

dV̇c

dt
=

1
Tc
(Kc max(uc −19,0)−V̇c)

dV̇h

dt
=

1
Th

(Kh max(uh −19,0)−V̇h)

dP
dt

=
1
Tp

(Kpup −P)

(5)

withTc = 1.5 s,Kc = 5 (ml/(min)/%), Th = 1 s,Kh = 10
(ml/min)/%), Tp = 1 s and Kp = 0.016 kW/%.
The models include several uncertain parameters in
addition to the pump and power characteristics given
above, mainly α , k, Cc, Ch, and Cp. Constant esti-
mates for these will, for simplicity, be considered. In
addition, delays are determined by visual inspection
of step changes and possible flow-dependent trans-
port delays as well as distribution of temperatures and
flows, ageing and other time-variant characteristics
are neglected. The identification experiment and how
the parameters α , k, Cc, Ch and Cp are fitted is de-
scribed next.

2.2 Identification experiment

Although α and k could be fitted to steady-state data,
estimating heat capacities requires experiments with
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nonzero temperature derivatives. In future work, we
also aim to explore various data-based models for
simulation-based controller design. For this reason, a
6000 seconds identification experiment using random-
phase multisines (Pintelon & Schoukens, 2012) for all
three control signals, uc, uh and up, was conducted.
The main experiment contains two independent sets
of three 1000 seconds long periods each. A short seg-
ment of the experiment illustrating Tco, corresponding
simulations Tco,s and the three control signals are il-
lustrated in Fig. 2.

Figure 2. Upper panel: Simulations of Tco,s (blue) and
measurements Tco (red) for a short segment of
the identification experiment. Lower panel: The
three control signals for the corresponding seg-
ment of the experiment.

As Fig. 2 shows, significant variations in, especially,
uc and uh have been implemented. Consequently,
the experiment should provide valuable data over a
large range. To fit the uncertain parameters to the
data, simulations are compared to measurements and
a quadratic criterion defined by Eq. 6 is introduced.

Vf =
1
m

W T diag(XT X)W (6)

In Eq. 6, m is the number of observations, W is a
weight vector that emphasizes the chosen variables,
and X is a matrix with the simulation errors of interest
as columns. The k-th row in X has the four columns
Tco,s(k) − Tco(k), Thi,s(k) − Thi(k), Tho,s(k) − Tho(k)
and V̇c,s(k)− V̇c(k) and 1 ≤ k ≤ m. Controlling Tco
is the main objective in our application and motivates
our choice of W T =

(√
10 1 1 1

)
.

In addition to the main experiment, experimental step
changes in the control signals were performed to esti-
mate delays. Based on visual inspection, delays from
the control signals were estimated as 2, 2, and 6 sec-
onds respectively. In other words, uc(t −2), uh(t −2)
and up(t − 6) replaces uc, uh and up in the equations
for the grey-box model. It can be noted that these es-
timates are somewhat arbitrary, e.g., is the delay from
uh to Tco, to Thi or to Tho? Maintaining the physical in-
terpretation of the grey-box model, we choose delays
to V̇c, V̇h and P, respectively. Even so, variations be-

tween different step changes can be discerned. More-
over, for data-based models, other delays can be mo-
tivated.
Using constrained optimization, the estimates α =
0.30 kW/(◦Cm2), k = 0.0033 kW/◦C,Cc = 0.17 kJ/◦C,
Ch = 0.13 kJ/◦C and Cp = 5.9 kJ/◦C are obtained.
Simulations of Tco denoted Tco,s for the fitted model
are illustrated along with measurements in Fig. 2.

3 Designing controllers

Traditionally, controller design is based on linearmod-
els of the dynamical systems. Rules-of-thumb ap-
proaches are based on simple models. With more de-
tailed (linear) models, the design typically addresses
one of, e.g., a desired stability margin, control per-
formance as quantified by quadratic costs in control
error and control signal activity, disturbance rejec-
tion, robustness by guaranteeing stable control un-
der uncertainties, etc. Typically, these approaches re-
quire tools for differential and difference equations,
linearizing equations, state-space descriptions and lin-
ear algebra, block diagrams, frequency analysis and
Bode-diagrams, optimal control, etc. Accordingly, ac-
quiring such skills forms a major focus of control en-
gineering courses.
With increasingly accurate models, it appears that ap-
proaches based on linearized models do not take full
advantage of available insights. Furthermore, maybe
nonlinear approaches to control based on local linear-
ity, such as gain scheduling, primarily are the result
of adapting the design of controllers to traditional ap-
proaches?
As an alternative, mpc is not based on designing a
static control law. Instead, control signal sequences
are determined by optimizing simulations of a model
to follow a desired trajectory over a predictive hori-
zon. With new measurements, optimal control sig-
nal sequences are updated based on the available state.
This approach has many attractive features, e.g., non-
linear models and constraints can easily be included.
A disadvantage is that it may be difficult to determine
the required computational complexity a priori, e.g.,
hard nonlinearities, bifurcations, etc., can render op-
timization unfeasible. Thus, simplifications (lineariz-
ing) can be needed to guarantee necessary computa-
tional efficiency.
In this paper, we instead combine the approach of de-
signing a static control law with that of using simula-
tions. With a static control law, the need for computa-
tional power in the real-time implementation is negli-
gible and this is a key motivation behind our approach
and a clear advantage compared to nominal mpc. The
parameters in the controller are determined by opti-
mization, i.e., similarly to mpc we formulate and min-
imize a criterion that quantifies differences in simula-
tions of process values from desired setpoint trajecto-
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ries taking control signal activity into consideration.
The general criterion is similar to Eq. (6) and is given
by

Vc =
1
m
(QT diag(XT

c Xc)Q+RT diag(∆uT ∆u)R (7)

where Xc is given by differences between setpoint (r)
and simulated process value (y) and its k-th row is
given by

Xc(k) =
(
r1(k)− y1(k) r2(k)− y2(k) · · ·

)
(8)

In our quadratic criterion, control signal activity is
quantified by the change in control signal, ∆u = u(k+
1)−u(k), but u can naturally be used directly if more
suitable for the application at hand.
The idea of simulation-based controller design is not
new, e.g., neural network controllers can often be seen
as a version of this approach. But the idea and criterion
has to the best of our knowledge not been as explicitly
discussed as we try in this paper. Furthermore, we also
discuss how to incorporate feedback systems analysis
within our framework.
For our specific case study, the focus of the present
study is to explore possibilities for controlling Tco us-
ing uh. In Eq. (7), Xc = Tco,sp−Tco,s and ∆u = ∆uh ac-
cordingly, and with the heuristic choices of Q = 20

√
2

andR= 1 based on evaluations of simulations. For the
other control variables, the flow on the cold side, V̇c,
with the pump on the cold side, uc, and the tempera-
ture entering the heat exchanger on the hot side, Thi,
with up, we use fixed PI-controllers.
For the PI-controllers, we use the velocity equation

ui(k) = ui(k−1)+Ki

((
1+

Ts

TI,i

)
ei(k)− ei(k−1)

)
(9)

with control signals constrained between 0 and 100%,
ui(k) = min(max(ui(k),0),100). In Eq. (9), K is the
(proportional) gain, TI the integration time, Ts the sam-
pling period (Ts = 1 s in all simulations and experi-
ments) and ei(k) = ri(k)− yi(k) is the control error,
i.e., the difference between setpoint and process value.
The subscript i is either c for the pump on the cold side,
h for the pump on the hot side or p for the command
to the power in the heater. The PI-controller for uc
has Kc = 0.01 %/(ml/min) and TI,c = 0.5 s and up has
Kp = 20 %/◦C and TI,p = 100 s1.
To explore realistic challenges, the setpoint for V̇c
changes from 150 ml/min to 220 ml/min at t = 1000 s
as a ramp stretching over 5 seconds and then to
100 ml/min at t = 2000 s as a ramp stretching over 10
seconds. These setpoint changes can be seen in Fig. 3.
The setpoint for Tco changes from 35 ◦C to 40 ◦C at
t = 500 s, back to 35 ◦C at t = 1500 s and to 40 ◦C at
1These choices are at least not intentionally biased for our study as
they are arbitrarily chosen from submitted student assignments.

t = 2500 s. All changes are ramp-shaped and stretch
over 10 seconds. These setpoint changes can be seen
in Figs. 4 and 6. The setpoint for Thi is kept constant
at 55 ◦C.

3.1 PI control

Minimizing Eq. (7) for the simulated response to the
setpoint changes regardingKh and TI,h gives the results
Kh = 4.7%/◦C and TI,h = 23 s. Corresponding simula-
tions are illustrated in the left panels of Figs. 3–5. For
reference and comparison, the value for our criterion
of Eq. (7) isVc,e = 510. In Figs. 3–5, experimental re-
sults using the same setpoint changes are illustrated in
the right panels. In addition to the presence of mea-
surement noise, some differences can be noted. In the
simulations, Tco does not reach the setpoint after the
change in V̇c at t = 1500 and uh saturates at 100%. In
the experiment, this disturbance in Tco is significantly
smaller and compensated for by the controller with uh
just under 70%. This discrepancy between model and
experiment could be explained by a higher efficiency
of the heat exchanger at higher flows, i.e., α could
better be described as a function of flows and, pos-
sibly, temperatures. For the control, however, it ap-
pears as if the well-known strength of integral action
in the controller is robust against such low-frequency
modelling errors. Perhaps more interesting, the distur-
bance in Tco at t = 2000 due to the change in V̇c causes
slowly converging oscillations, suggesting a bifurca-
tion in the simulated closed-loop system that could
warrant further study. As an advantage in practice,
we note that control of Tco is similar but better in ex-
periments than in simulations.
For the control of Thi much larger high-frequency vari-
ation in both Thi and up can be noted in the experiment
compared to simulations. Although the control on a
general level is similar in simulation and experiment
and works well since high-frequency variations in up
are not a matter of concern, this discrepancy will be
briefly discussed in Section 4.
For the experiment, the value Vc,e = 140 is obtained.
This significantly lower value despite measurement
noise compared to the simulation can partly be ex-
plained by the simulated Tco not reaching the setpoint
for 1500 ≤ t ≤ 2000 as noted before.

3.2 Nonlinear PI control

In addition to enabling the use of detailed and, pos-
sibly, opaque models, one of the points behind us-
ing simulations for controller design is the possibil-
ity for exploring alternative, nonlinear controllers. As
the left panels in Figs. 4–5 clearly reveal, the model
exhibits challenging nonlinear characteristics. An in-
tuitive solution could therefore be to consider a non-
linear PI-controller. Instead of gain-scheduling with
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Figure 3. Upper panels: Setpoint changes in of V̇c (blue) and simulated control (red) in the left panel, and the corresponding
experiment to the right. Lower panels: Simulated control signal uc (left)

Figure 4. Upper panels: Setpoint changes in of Tco (blue) and simulated control (red) in the left panel, and the corresponding
experiment to the right. Lower panels: Simulated control signal uh (left) and corresponding experiment (right).

different linear PI-controllers depending on a parame-
ter (typically u, y or r), we explore linear dependen-
cies in the gain and integration time. Specifically,
in place of Kh and, TI,h we use Kh + auh(k − 1) and
TI,h +buh(k−1).

Minimizing Eq. (7) for the simulated response to the
setpoint changes regarding Kh, a, TI,h and b gives the
results Kh = 0.1 %/◦C, a = 46 1/◦C, TI,h = 0.18 s and
b = −0.46 s/%. Compared to the linear PI-controller
of Eq. (9) this corresponds to a range of values for Kh
between 3.5 %/◦C and 18 %/◦C and for TI,h between
0.14 s and 38 s. Simulations yield the valueVc,e = 240,
i.e., a significant improvement over the linear case.

The experiment with the nonlinear PI-controller yields
the valueVc,e = 52. Compared to the experiment with
the linear controller, the performance is numerically
clearly better. Visual inspection of Figs. 6–7 reveal
that setpoint tracking is faster and disturbance rejec-
tion better than in the linear case, at the cost of higher
activity in the control signal uh. In summary, the re-
sults are very encouraging and a significant improve-
ment in control quality can be noted.
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Figure 5. Upper panels: Setpoint for Thi (blue) and simulated control (red) in the left panel, and the corresponding experiment
to the right. Lower panels: Simulated control signal up (left) and corresponding experiment (right).

Figure 6. Same as in Fig. 4 but for the nonlinear PI-controller.

4 Control system analysis

It is commonly known that control design methods
“focus on one or two aspects of the [control] problem,
and the control-system designer then has to check that
the other requirements are also satisfied” (Åström &
Wittenmark, 1997). Using a block diagram and trans-
fer function notation with s as the Laplace variable, a
feedback system following the structure we use is de-
picted in Fig. 8.

Correspondingly,

Y (s) =
GrGp

1+GrGp
R(s)+

Gp

1+GrGp
W1(s)+

1
1+GrGp

W2(s) (10)

and

U(s) =
Gr

1+GrGp
R(s)−

GrGp

1+GrGp
W1(s)−

Gr

1+GrGp
W2(s) (11)
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Figure 7. Same as in Fig. 5 but for the nonlinear PI-controller.

-
+jR(s)

- Gr(s)
U(s)

- j
+

?

W1(s)

+
- Gp(s) - j

+

?

W2(s)

+
-

Y (s)

6−

Figure 8. Block diagram for a process Gp(s) controlled by (negative) feedback. The diagram includes setpoint R(s), control
signal U(s), process disturbance W1(s), measurement noise W2(s), process value Y (s) and controller Gr(s).

As these equations indicate, the control problem can,
in turn, often be analyzed (in the frequency domain)
by addressing the “Gang Of Four” (Åström&Murray,
2021), i.e, the four transfer functions

GrGp

1+GrGp
(12)

known as the complementary sensitivity function,
Gp

1+GrGp
(13)

the load sensitivity function,
1

1+GrGp
(14)

the sensitivity function and
Gr

1+GrGp
(15)

the noise sensitivity function. For linear systems, it
is illustrative to analyze the closed-loop system with

plots of (the gains of) these transfer functions as a
function of frequency. In principle, simulations using
sinusoidal functions of different frequencies for, e.g.,
w2(t) and recording the corresponding amplitudes of
y(t) and u(t) could provide numerical estimates of
these gains. However, nonlinear systems can exhibit,
e.g., frequency spreading, i.e., a single frequency in
w2(t) can result in several frequencies in y(t) and u(t).
This phenomenon can further be amplitude-dependent
and, for multivariable systems, the principle of super-
position is not necessarily applicable. In addition, the
behavior can depend on the region of operation.
In summary, these characteristics render a full explo-
ration of our case study cumbersome at the very least.
We are still grasping at how the abundance of combi-
nations of different variables could be illustrated. As
an initial exploration, and motivated by the challenges
the experiments indicate, we separately explore how
sinusoidal measurement noise in Tco and Thi for dif-
ferent frequencies affect Tco, uh, Thi and up, respec-
tively. Constant setpoints are used, 37.5◦C for Tco and
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160 ml/min for V̇c. The amplitude of the measurement
noise was 1◦C and possible frequency spreading was
neglected, i.e., only amplitudes of corresponding os-
cillations were recorded. The corresponding results
are illustrated in Figs. 9–10.

Figure 9. Amplitude of variations as a function of fre-
quency resulting from a sinusoidal measurement
disturbance on Tco (upper panels) with ampli-
tude 1◦. Left to right, amplitudes of Tco, uc, Thi
and uh. Lower panels: Same as upper panels but
for Thi with amplitude 1◦.

Figure 10. Same as in Fig. 9 but for the nonlinear PI-
controller.

As the figures reveal, similar “sensitivity func-
tions” are obtained for the linear and nonlinear PI-
controllers, indicating a (limited) insensitivity to pro-
cess variations. Based on this limited analysis, the
main source of possible concern is in the “noise sen-
sitivity functions”: variations in Thi can be amplified
to the control signal up by a factor of 25 and to uh by
a factor of 3 using the linear PI-controller and a factor
of 4 using the nonlinear PI. Variations in Tco, in turn,
can be amplified to the control signal uh by a factor of
9 (linear PI) and by 16 (nonlinear PI).
This analysis can explain the control signal activity
observed in uh (lower right panels of both Fig. 5 and
Fig. 7) as well as the difference between control signal
activity observed in up (lower right panels of Fig. 4
and Fig. 6). Most likely, the high gain of 25 is due
to the heuristically designed PI-controller for control-
ling Thi using up and it can be noted that the gain

Kp = 20 %/◦C was used. Still, a comparative study of
different approaches for controller design, possibly in-
cluding simulation-based loop-shaping, could help to
shed light on possible weaknesses in the simulation-
based approach. Moreover, an interesting possibility
could be to include, e.g., the maximum gains of noise
sensitivity functions in the criterion minimized for de-
signing controllers, Eq. (7).

5 Conclusions and future work

In this paper, we explored simulation-based controller
design. Compared to approaches based on linearized
models, this enabled us to explore and tune alterna-
tive nonlinear controllers. Moreover, the approach
does not rely on models that are translucent and easily
linearized. For our challenging case study on a mul-
tivariable, nonlinear heating system, the simulations
were promising and experimental results above ex-
pectations. Further experiments, study, analysis, and
comparisons to other promising frameworks such as
reinforcement learning ormpcwill be pursued in order
to explore the general applicability of the presented
approach.

References

Åström, K. J., &Murray, R. M. (2021). Feedback sys-
tems: An introduction for scientists and engineers
(2nd ed.). Princeton University Press.

Åström, K. J., & Wittenmark, B. (1997). Computer
controlled systems: Theory and design (3rd ed.).
New Jersey: Prentice-Hall.

Dettù, F., Formentin, S., & Savaresi, S. M. (2023).
The twin-in-the-loop approach for vehicle dynam-
ics control. arXiv preprint arXiv:2209.02263.

Espinosa-Leal, L., Chapman, A., & Westerlund, M.
(2020). Autonomous industrial management via re-
inforcement learning. Journal of intelligent&Fuzzy
systems, 39(6), 8427–8439.

Hewing, L., Wabersich, K. P., Menner, M., &
Zeilinger, M. N. (2020). Learning-basedmodel pre-
dictive control: Toward safe learning in control. An-
nual Review of Control, Robotics, and Autonomous
Systems, 3, 269–296.

IPCC. (2023). Summary for policymakers [Book
Section]. In H. Lee & J. Romero (Eds.), Climate
change 2023: Mitigation of climate change. contri-
bution of working groups i, ii, iii to the sixth assess-
ment report of the intergovernmental panel on cli-
mate change. Geneva Switzerland: IPCC, in press.

Pintelon, R., & Schoukens, J. (2012). System
identification—a frequency domain approach (2nd
ed.). New Jersey: John Wiley & Sons.


	Introduction
	Laboratory-scale heat exchanger
	A grey-box model
	Identification experiment

	Designing controllers
	PI control
	Nonlinear PI control

	Control system analysis
	Conclusions and future work

