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Improved Difference Images for Change Detection
Classifiers in SAR Imagery Using Deep Learning

Janne Alatalo , Tuomo Sipola , and Mika Rantonen

Abstract— Satellite-based synthetic aperture radar (SAR)
images can be used as a source of remote sensed imagery
regardless of cloud cover and day–night cycle. However, the
speckle noise and varying image acquisition conditions pose a
challenge for change detection classifiers. This article proposes
a new method of improving SAR image processing to produce
higher quality difference images (DIs) for the classification algo-
rithms. The method is built on a neural network-based mapping
transformation function that produces artificial SAR images from
a location in the requested acquisition conditions. The inputs for
the model are: previous SAR images from the location, imaging
angle information from the SAR images, digital elevation model,
and weather conditions. The method was tested with data from a
location in North-East Finland by using Sentinel-1 SAR images
from the European Space Agency (ESA), weather data from
Finnish Meteorological Institute (FMI), and a digital elevation
model from National Land Survey of Finland (NLS). In order to
verify the method, changes to the SAR images were simulated,
and the performance of the proposed method was measured
using experimentation where it gave substantial improvements
to performance when compared to a more conventional method
of creating DIs.

Index Terms— Change detection, mapping transformation
function, remote sensing, Sentinel-1, synthetic aperture radar
(SAR), U-Net.

I. INTRODUCTION

REMOTE sensing change detection can be used for many
purposes, such as damage assessment after a natural dis-

aster [1], [2], [3], detection of forest damages after a storm [4],
[5], and monitoring deforestation and glacier melting [6], [7],
to name only a few. Change detection works by comparing
two images that have been captured at different dates in the
same geographical location and finding the areas that have
changed during the time between the acquisitions [8]. Different
platforms can be used to image the terrain, such as airplanes
and satellites, however, only satellites provide the advantage of
continuously monitoring the whole planet [9]. The revisit time
of some satellite systems can be as short as only a few days,
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and the images are available from anywhere on the planet. This
makes the satellite images a useful source of remote sensing
data for change detection applications. Some space agencies,
such as the European Space Agency (ESA), provide some of
the satellite images for anybody to download and use [10]. The
ease of acquiring the data further facilitates the development of
change detection systems that are based on the satellite remote
sensing techniques. The images from the satellites are captured
using either optical or radar sensors, with radar having the
advantage of piercing the cloud layer, thus enabling it to work
in various weather conditions [9]. However, the radar satellites
have their disadvantages as well. The resolution of the images
is not as good as what the optical instruments can produce. The
resolution of the radar images is defined by the antenna length
and the frequency band of the radar signal. To enable higher
resolution images, the satellites use the synthetic aperture
radar (SAR) technique, where the satellite movement over the
ground is utilized to synthesize virtual aperture that is longer
than the physical antenna on the satellite [11]. However, even
with the SAR technique the radar images are lower resolution
when compared to the optical images. ESA has the Sentinel-1
mission with two SAR satellites that operate on the C-band and
have a spatial resolution of around 5 × 20 m [12]. Likewise,
speckle noise reduces the quality of the SAR imagery. SAR
images always have a grainy look from the speckle, which is
random noise that is always present in the images. Despite the
shortcomings of the SAR imagery, they are commonly used
in remote sensing change detection [13], [14], [15], [16].

One approach to implement a change detection system,
that is generally used in unsupervised change detection, is to
proceed in steps [17]. Fig. 1 illustrates this method. The
images are first preprocessed to make them comparable to
each other. Then, two images from the same location, that are
captured at different times, are used to produce a difference
image (DI) using an algebraic operation like subtraction, ratio,
or log ratio. Finally, the DI is analyzed by a classifier algorithm
to produce a change map that indicates the changed regions.
The preprocessing step is crucial for this method to work well.
The issue with the speckle noise is a commonly recognized
problem with change detection on SAR imagery [13], [15],
[16], and to mitigate the issue, noise suppression algorithms
are used in the image preprocessing step. However, it is
impossible to remove the noise completely, thus the DI also
includes noise that causes misclassifications in the classifi-
cation step. Likewise, other image properties that influence
image comparability have an effect on the quality of the DI.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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Fig. 1. Change detection is often implemented in three distinct steps. The first step is to make the images more comparable to each other using a preprocessing
pipeline. The preprocessed images are then used to create DIs (IDI) using a function g that is often an algebraic operation, such as subtraction, ratio, or log
ratio. IDI is then used as an input to a change detection classifier that produces the change map that displays the changed areas. The figure illustrates the
conventional method of producing the DIs by using two SAR images that are captured from the location on two different dates.

This includes properties such as the satellite orbit direction,
incidence angle, and ground moisture content. The satellite
does not capture the image from the same angle during every
revisit. In the case of the ESA Sentinel-1 satellites, the satellite
can be flying from North to South, or from South to North,
during the image acquisition, and the satellite orbit can be
higher or lower with respect to the horizon from the ground
perspective between the overflies. The satellite imaging angle
influences how the radar signal backscatters from the ground
features [18], which results in images taken from different
imaging angles likely producing lower quality DI than images
taken from the same imaging angle. Likewise, ground weather
conditions can influence the DI quality. Soil moisture content
changes the dielectric constant of the soil, thus changing the
backscatter intensity of the radar signal [19]. Images that are
taken in similar weather conditions are likely to produce better
quality DI when compared to images that are taken in different
weather conditions. One solution to improve the DI quality
is to favor images with similar acquisition conditions when
selecting the images that are used to produce the DI. However,
this is not always possible. Predicting vegetation properties
from atmospheric conditions has been identified as one of the
potential tasks to benefit from neural networks with spatio-
temporal context. However, prescriptive assumptions could
limit this use. The combination of process-based modeling
and data-driven machine learning approaches could help when
the physical models need support from data [20]. Adding
domain knowledge to the physical layers is a step toward

hybrid modeling. Indeed, deep neural networks have been used
to extract spatial and frequency features from SAR images.
Using these features, the classification of objects or areas in
SAR images is also suitable as a deep learning task [21].

The contribution of this article is a new method to pro-
duce better quality DIs. This is achieved by using a neural
network-based mapping transformation function preprocessing
step that factors in the image acquisition conditions of the
SAR images, which improves the comparability of the SAR
images. Existing research about SAR image preprocessing has
focused on removing speckle noise from the images [22], [23],
or correcting the incidence angle variation [24], [25]. However,
to the best of the knowledge of the authors, this is the first
time when the comparability of the SAR images is improved
by taking into account the overall image acquisition conditions
using a neural network-based preprocessing step. Project code
is available on GitHub.1

II. MATERIALS AND METHODS

A. Proposed Method

Fig. 2 illustrates the overall architecture of the proposed
method. It replaces the conventional method that is illustrated
in Fig. 1 image differencing step. The idea of the proposed
method is to improve the SAR image comparability by con-
sidering the acquisition conditions of the SAR images. The
proposed method utilizes a mapping transformation function

1https://github.com/janne-alatalo/sar-change-detection
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that creates artificial SAR images in the requested acquisition
conditions. The mapping transformation function F is a neural
network model that is trained to predict the SAR image It

at the time t . The neural network output Î t is the artificial
SAR image that is created in the acquisition conditions of It ,
therefore it should be more comparable to It than previous
SAR images from the location that might have been captured
in different acquisition conditions.

The model input consists of three distinct features, which
are: the previous SAR images from the location; the acqui-
sition conditions of the SAR images (including at time t);
and the digital elevation map (DEM) from the location. The
objective of the neural network model is to learn to replicate
the SAR image at the time t . The only information from the
time t in the model input are the image acquisition conditions
of It . This means that for the model to be able to replicate
It , it needs to learn to map the information contained in the
previous SAR images and the DEM to the image acquisition
conditions of It . With an ideal model that could perfectly
replicate It , Î t and It would be identical if nothing has changed
between the image acquisition of It−1 and It , however, Î t

would be missing the change if something had changed after
the previous image acquisition since the information of the
change is not included in the model input data. In practice
the SAR images include random noise that is impossible to
replicate accurately, and the acquisition conditions are not
accurate enough for perfect replication of It , therefore Î t only
approximates It .

The objective function of the model training to produce
artificial SAR images is defined as follows:

L =

N∑
i=0

(h(It )i − h( Î t )i )
2

where h(I ) flattens the image I by concatenating the pixel
rows of the image to 1-D array. N is the length of the
array. The objective function is the mean squared error (mse)
between the most recent image and the predicted image.

The intuitive description of Î t is that the neural
network-based mapping transformation function produces a
prediction of how It should look like based on previous infor-
mation about the location and the actual imaging conditions
of It . The produced image Î t can be used with the actual image
It to create the DI Î DI by using a simple algebraic operation
like subtraction, ratio, or log ratio. Generating the DI is the
standard method of conducting change detection, especially
when using unsupervised methods [17].

Conventional methods of producing the DI often use only
one of the previously captured images with the most recent
image to generate the image, e.g., IDI = g(It , It−y) [26]. This
method has the previously discussed drawbacks of noise and
imaging conditions affecting the final DI quality. By using
the proposed mapping transformation function, the predicted
image Î t is used in the place of the previously captured image
to generate the DI, e.g., Î DI = g(It , Î t ). Recall that Î t is a
representation of It based on geospatial information from the
time t−1 and earlier, therefore it is missing all the changes that
have happened after that time. The predicted image Î t does

not contain noise and the mapping transformation function
can correct the acquisition condition mismatch between the
images, therefore the proposed method should produce better
quality DIs when comparing it to the conventional method.

SAR imaging is sensitive to the soil moisture content of the
imaged area [19]. A change in the soil moisture level changes
the dielectric constant of the soil, and that way changes the
SAR backscatter intensity. Often the soil moisture content
changes should be ignored by the change detection system.
Otherwise, the system would notify changes after every rainy
day. This is one of the advantages of the proposed method.
By adding weather to the model input acquisition condition
parameters, the mapping transformation function can learn to
construct Î t in the actual weather conditions of It and should
correctly model the changes in the soil moisture changing the
backscatter intensity. Therefore, the false positive changes, that
are potentially caused by weather condition changes, should
be reduced.

In addition to weather, the acquisition condition parameters
also include the imaging angle and identify the satellite that
captured the image. A location is imaged by one of the
sentinel satellites with an interval ranging from a few days
to about a week. The satellite does not capture the image
from the same angle every time. The satellite can be in
ascending or descending orbit during the image acquisition
and the incidence angle can vary between the overpasses. The
ascending or descending orbit changes the look direction of
the satellite, and that way has a considerable effect to the
resulting image. The Sentinel-1 satellites are right-looking.
When the satellite is descending from North to South it is
imaging to the direction of West, and for ascending passes it
is imaging to the direction of East [27]. Various 3-D features,
like forest edges, lake banks, and hills are sensitive to the
look direction, therefore the imaging angle is an important
parameter when computing the DI. When using an image
differencing method where only one previous image is used for
DI computation, the imaging angle of the most recent image
can restrict what previous images can be used to produce the
DI. Seasonal changes, like foliage growth or change in snow
cover, means that the most optimal image for the differencing
would be the most recent previous image, however different
imaging angles can limit the usage of the most recent images.
This problem is not present with the proposed method. The
model input includes n previous images and their imaging
angle information. The model output image Î t is produced
using the actual acquisition conditions of It . The model can
use all the information from all n input images, despite the
input including images from different look directions, and the
produced image Î t represents an image that is acquired from
the same angle as It .

B. Neural Network Architecture

Fig. 3 illustrates the architecture of the neural network-based
mapping transformation function. The architecture is based on
the well-known U-Net neural network architecture [28]. The
previous n SAR images, and the DEM are stacked to construct
the input. The previous images and the DEM are all from the
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Fig. 2. Architectural overview of the proposed method. The neural network-based mapping transformation function fuses the information from previous
image acquisitions and predicts what the scene should look like at the imaging conditions of It . The model output image Î t and the actual image It is used
to produce the DI Î DI.

same location. The images are projected to the same resolution
and the pixels across the different images are aligned to match
the same geographical position. The U-Net architecture is
constructed from encoder and decoder units. The encoder takes
the input and compresses the input image stack to the latent
space by using a set of downsampler blocks that half the input
resolution using convolution layers with stride 2 × 2. The
encoder stacks enough downsampler blocks so that the input
image stack is compressed to 1 × 1 resolution in image height
and width dimensions. The image acquisition condition vector
that contains the information of the acquisitions conditions
for the n input images and the target image, is concatenated
to the latent vector as described at the end of Section II-C.
The resulting vector is then fed to the decoder that decodes
the vector back to the dimensions of a normal SAR image
outputting Î t . The decoder is constructed from upsample
blocks that double the width and height dimensions using
transposed convolution layers with stride 2 × 2. The decoder
has same amount of upsampler blocks as the encoder has
downsampler blocks. The number of filters, that are used in
the upsampler and downsampler blocks, can be configured
for every block individually, except for the final upsample
block that has the same number of filters as the SAR image
has bands. The encoder and decoder layers are connected
with skip connections that help the model in producing the
output by not forcing the model to pack all the information
into the latent vector. Instead, the information can flow from
the input to the output by skipping most of the layers in
the architecture. This is a standard method in U-Net style
architectures.

C. Dataset

A dataset is needed for the training of the neural
network-based mapping transformation function. As discussed
previously, the mapping transformation function input is com-
posed of the previously taken SAR images; the acquisition
conditions of the previous and the most recent SAR image;
and the DEM from the location. The objective of the model
is to learn to predict the most recent SAR image based on the
input, therefore the most recent SAR image is the target in the
training dataset. This means that the training dataset does not
require any labeled data making the learning process of the
proposed method unsupervised and economical to implement.
The dataset can be generated directly from available data
sources without the need of human labeling for the data. The
dataset is available at the Fairdata.fi service [29].

The SAR images for the dataset were acquired from the
ESA Copernicus Open Access Hub [30]. High-resolution
interferometric wide swath (IW) ground range detected (GRD)
products were used in this study [31]. The images were
captured between March 2020 and August 2021 from the
area illustrated in Fig. 4. All images from the time frame
that included the area were downloaded from the Copernicus
Open Access Hub. The images were preprocessed using the
Sentinel-1 Toolbox from the Sentinel Application Platform
(SNAP) [32], by applying the data preprocessing workflow
described by Filipponi [33]. The optional noise filtering
step was applied to the dataset using the Refined Lee filter
from the SNAP toolkit. The more accurate AUX_POEORB
precise orbit files were used in the Apply Orbit File step.
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Fig. 3. Neural network architecture for the mapping transformation function. The architecture is based on the well-known U-Net neural network architecture.
The image acquisition conditions are injected into the latent vector between the encoder and decoder.

The AUX_POEORB files are available 20 days after the
image acquisition [34], and since the processing was done in
spring 2022, the more accurate orbit files were available for
all images. The proposed workflow in [33] uses the SRTM
Digital Elevation Database in the Range Doppler Terrain
correction step, however, the database does not cover the area
from where the dataset was created, therefore the Coperni-
cus 30-m Global DEM was used that does cover the area.
The SNAP toolkit can automatically download the required
DEM files during preprocessing and the Terrain Correction
step supports multiple different DEM sources, including the
Copernicus 20-m Global DEM, thus the change was trivial to
implement. The preprocessed images were saved as GeoTIFF
files and uploaded to PostgreSQL2 database that was using
the PostGIS3 extension. Using a relational database as the
storage backend simplified the dataset generation process
since all the data was available in one place and queryable
with SQL.

2https://www.postgresql.org/
3https://postgis.net/

Although the Copernicus 30-m Global DEM was used
in the SAR image terrain correction preprocessing step, the
product was not used for the mapping transformation function
input. Instead, we used more accurate DEM from NLS. NLS
provides the DEM in multiple different resolutions of which
the most accurate 2-m grid DEM was used [37]. The data is
open access and distributed under Attribution 4.0 International
(CC BY 4.0) license.4 The DEM was downloaded in GeoTIFF
format and uploaded to the same PostgreSQL database with
the SAR images.

As discussed before, the image acquisition condition data
included information about the weather when the images were
captured. This data was acquired from the Finnish Meteorolog-
ical Institute (FMI) that provides daily weather observations
that are interpolated to 1 × 1 km grid [38]. The interpolation
method is described by Aalto et al. [39]. The data is distributed
in NetCDF format and uploaded once a month. Daily mean
temperature, daily precipitation sum, and snow depth data were
downloaded from the time range. The daily observations were

4https://creativecommons.org/licenses/by/4.0/
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Fig. 4. Dataset was generated from images acquired from the marked area. The figure contains data from the National Land Survey of Finland (NLS)
Topographic Database [35] and data from @EuroGeographics distributed by Eurostat [36].

extracted from the NetCDF files, converted to daily GeoTIFF
rasters, and uploaded to the same PostgreSQL database with
the SAR images and DEM.

The final data samples were created by sampling random
locations from the area and random dates from the time range.
For the training dataset, the time range was limited to the time
before 20th of June in 2021, and for the test dataset the time
was limited after the date. An assumption was made that the
samples do not have any changes between the acquisitions
It−1 and It . This assumption is not likely true for all of the
samples, however, the total dataset size is created to be large
enough so that the samples that have changed between the
two last acquisition should be marginally small fraction of the
total dataset and neural networks can adapt to noisy data [40].
The image size was set to 512 × 512 pixels, and number
of previous images was set to 4. The spatial resolution of
a high-resolution IW GRD product is 20 × 22 m, and the
images are distributed with 10 × 10 m pixel spacing [41]. The
geographical dimensions of the images were set to 3 × 3 km
making the pixel size 3000/512 ≈ 5.9 m. This is higher
resolution than the original 10-m pixel size, therefore the
information loss is minimized during processing. For each
random location and date, the target SAR image It was the
next SAR image from the location that was available after
the date. The input SAR images It−4, It−3, It−2, It−1 were the
SAR images from the four previous acquisitions from the
location that were captured before It . The SAR images and
the DEM were queried from the PostgreSQL database and the
rasters were projected to the same projection window with the
same 512 × 512 resolution and 3 × 3 km spatial dimensions
using GDAL library [42]. The gdal.Translate function

was used for the projection with nearest neighbor resampling
algorithm. After the projection, all pixels were geographically
aligned across all images and the images could be stacked
to construct the input image stack. The Sentinel-1 satellites
use IW mode with dual polarization over the land areas thus
one SAR image has two bands [12]. Both bands are used in
all input images and the target image. That makes the input
image stack have 1+4·2 = 9 channels (DEM has one channel
and every SAR image has two bands/channels), and the model
output image has two bands.

The acquisition conditions were composed of the following
features:

1) mean temperature of the acquisition date;
2) snow depth in the acquisition date;
3) satellite orbit direction during the acquisition (ascend-

ing/descending);
4) incidence angle;
5) satellite id (Sentinel-1A or Sentinel-1B);
6) precipitation amount in the acquisition date and three

previous dates.
In addition to imaging conditions, such as weather and

imaging angle, the satellite that captured the image is also
added to the acquisition condition vector. The satellite id is
encoded to 1 if the image is captured by the S1A satellite and
0 if the image is captured by the S1B satellite. The imaging
instrumentation is not necessarily identical in both satellites
and the model might learn to use this information to create
more accurate images. All other features were scalar values
from the acquisition date except for precipitation that is a
vector with values for four different days. Since the moisture
content of the soil has a known effect on the signal, and
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moisture can linger long times in the soil, it was decided
to include the precipitation amounts from multiple days to
the acquisition conditions. Taking the precipitation amounts
from the previous four days was a somewhat arbitrary decision
with the reasoning that the neural network can learn to ignore
the precipitation amounts from previous days if they have no
use. The features were flattened to the final vector with a
dimensionality of |D| = 9.

The final generated dataset had had around 230 000 training
samples, and around 9000 test samples.

D. Experiment Setup

The performance of the proposed method was measured
using experimentation. The main contribution of this article
is to offer a new strategy for computing the DI. Existing
methods generally use a strategy where the DI is computed
using IDI = g(It−y, It ), where g is the differencing function,
It−y is one of the previous images from the location captured
at some previous date, and It is the most recent image from the
location. The proposed method uses the neural network output
Î t in place of It−y to compute the DI Î DI = g( Î t , It ). The
mapping transformation function factors in the imaging condi-
tions of It when generating Î t , therefore Î DI should be higher
quality when compared to IDI. The DI is generally further
used in the change detection system to detect the changes by
applying a classifier to the DI. The classifier outputs a change
map indicating the pixels that contain the detected changes. By
using identical classifier to classify the DIs generated by the
two different methods and comparing the classifying accuracy
of the resulting change maps, the quality of the two DIs can
be measured.

1) Change Simulation: The experiment needs a dataset with
known changes so that the accuracy of the change detection
classifier can be determined. This is a challenge since only a
small number of datasets exists for remote sensing change
detection even for optical satellite images [43]. For SAR
images there are only a few datasets such as the ones used
in the following publications [44], [45], however, they consist
of only a few SAR image pairs with a hand labeled change
map. Currently, there are no large enough SAR datasets for
deep learning applications available online [46].

To avoid the problem of the lack of change detection
datasets for SAR images, the decision was made to use
simulation to add changes to real SAR images. This technique
was used by Inglada and Mercier [47] where they measured
the performance of their statistical similarity measure change
detection algorithm using simulated changes. The authors used
three different methods for change simulation. The techniques
were: offset change, where the original value was shifted
by a value; Gaussian change, where the original value was
changed by adding zero mean Gaussian noise to the value; and
deterministic change, where a value was copied from some
other location in the image. Likewise, Cui et al. [48] used
change simulation for SAR images when they introduced an
evaluation benchmark for SAR change detection algorithms.
The change simulation methods in this article try to replicate
changes that are commonly seen in the real world using

techniques that correctly resemble the statistical properties of
the real-world changes. Based on these papers two change
simulation methods were devised for this study.

1) Offset Change: A value is added to the original pixel
value. The simulation does not try to replicate any real-
world change, however, it is trivial to implement, and
the offset value can be changed to test different offsets.

2) First-Order Statistical Change: The statistical distribu-
tion of the change area is converted to the statistical
distribution of some other nearby geographical feature.
This replicates the real-world changes more accurately.

Fig. 5 illustrates the simulated change methods when
applied to an example SAR image. The changes were added
to the SAR images by creating a random shape mask and
positioning the mask to a random location in the SAR image.
The pixel values inside the mask were changed using the
selected method. The location of the mask was restricted
to forested geographical areas in the SAR image. If the
mask location was at the forest edge, the mask part that
landed outside of the forested area was not changed. The
information about different geographical features was acquired
from the NLS Topographic Database [49]. The database was
also utilized in first-order statistical change implementation
where the forest area pixel values were changed to follow the
statistical distribution of some other geographical feature. The
nearest areas of the desired geographical feature type were
queried from the database, and the statistical distribution of the
pixel values was estimated using a univariate kernel density
estimator (KDE) from the statsmodels Python library [50].
A second univariate KDE model was fit to the pixel values of
all forested area pixels in the SAR image. The mapping of the
pixel values was implemented using the method of modifying
first-order statistical distribution described in [48]. The change
area pixel values were first mapped to uniform distribution
in the interval [0, 1] by using the cumulative distribution
function (cdf) of the forest area KDE. After that, the inverse
cdf of the second KDE model is applied to the uniformly
distributed values, thus mapping them to the distribution of
the desired geographical feature.

The simulated change dataset is only needed for validating
that the DIs that are generated using the proposed method are
of higher quality when compared to the DIs that are generated
using the conventional method. The simulated changes are not
used for training the neural network. Therefore, the simulated
changes are added only to the neural network test dataset
samples. A random number of changes, ranging from 0 to 3,
were added to each of the samples.

2) Difference Image Generation and Change Classifiers:
The quality of the DIs was measured using two different
classifiers. The first method is a simple threshold method.
A thresholding value is chosen, and the pixels are classified
to changed or unchanged based on if the value is smaller or
greater than the threshold. This requires that the pixels have
scalar values. The scalar valued DIs were produced using the
following equations:

Î DI(x, y) =

√∑
b

(It (x, y, b) − Î t (x, y, b))2 (1)
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Fig. 5. Example of the two simulated change methods. (a) Original image where the SAR images are visualized as an RGB image by using red and green
channels for the two bands and where the blue channel is set to zero. (b) Change mask where the simulated change is applied. (c) Offset change image where
−2.5 dB shift is applied to the change location. (d) First-order statistical change where the resulting change mean is close to the change in the offset change
image.

IDI(x, y) =

√∑
b

(It (x, y, b) − It−y(x, y, b))2. (2)

In the equations, Î DI is the DI that is computed using
the proposed method, IDI is the DI that is computed using
the conventional method, b is the band, and the x and y
define the pixel location. The different bands are considered as
vector dimensions. Pythagorean theorem is used to compute
the vector length that is used as the value for the DI pixel. The
threshold method was used as an example of an unsupervised
classifier algorithm [46]. The performance of the threshold
classifiers was measured using the well known area under
curve (AUC) metric that is computed from the receiver oper-
ating characteristic (ROC) curve. The metrics were computed
to the test partition of the neural network mapping function
dataset. The Î DI and IDI DIs were computed for every sample
in the test dataset, and the pixels from all samples were used
to generate the two datasets that were used to compute the
ROC curves and AUC metrics.

The second classifier was the linear support vector classifier
(SVC). The SVC was used as an example of supervised
machine learning algorithm. The support vector models work
with multidimensional data, therefore the DIs were produced
using simple subtraction

Î DI(x, y, b) = It (x, y, b) − Î t (x, y, b) (3)
IDI(x, y, b) = It (x, y, b) − It−y(x, y, b). (4)

The test dataset from the mapping transformation function
training was used to train the classifiers. For each sample, the
two DIs were computed, and the pixels from all DI samples
were used to create the two datasets. The first dataset was
generated using the pixels from the Î DI samples, and the
second dataset was generated using the pixels from the IDI
samples. The two datasets were further divided to train and
test datasets with a rule that all pixels originating from one
image sample end up on the same side of the split. The train
test split was also identical for both datasets. The datasets were
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TABLE I
PARAMETERS FOR THE NEURAL NETWORK ARCHITECTURE

used to train two instances of the classifier and measure their
accuracy.

III. RESULTS

A. Training the Neural Network-Based Mapping
Transformation Function

Different neural network parameters were experimented
with, and the best results were achieved with the parameters
shown in Table I. The mse was used as the loss function, and
AdamW [51] was used as the optimizer. The neural network
architecture was implemented using TensorFlow deep learning
framework [52]. The training was conducted on one NVIDIA
V100 GPU with a batch size of 200, and a training time of
around 30 h.

Fig. 6(c) demonstrates the model performance for one of
the test samples. Fig. 6(a) shows the real SAR image that
the model tries to predict. Fig. 6(b) illustrates the difference
between the real SAR image and the model output with a heat
map where lighter color indicates a greater error. The predicted
image is very close to the real SAR image except for lack of
noise that is purely random and impossible for the model to
predict. Likewise, the bottom-right corner of the image has
an area that has greater error in the prediction. The error is
located in a lake, therefore the error can be a result of waves
that are likewise impossible to predict.

The proposed method depends on that the mapping trans-
formation function adapts the predicted image Î t based on the
imaging conditions of It . To verify that the model genuinely
uses the image acquisition conditions to produce Î t , the model
was experimented to produce outputs with manually modified
imaging condition vector Dt . Fig. 6(d) and (f) image pair
illustrates model outputs where Dt is modified to have opposite
orbit directions. Fig. 6(e) illustrates the difference between
the images. The lake banks and the top-left corner of the
image, where there is a small hill, have large differences
between the two generated images. All locations, where there
are greater differences between the images, are 3-D features.
The Sentinel-1 satellites have different look directions on
ascending and descending orbit directions. Therefore, the
scattering of the radar signal is different and the difference
is most noticeable on 3-D features. Since the differences are
so clearly located on the 3-D features in the image the model
is clearly factored in the orbit direction when generating the
output. This verifies that the imaging conditions are used by
the model to produce Î t in the imaging conditions of It .

TABLE II
CONVENTIONAL DI STRATEGY RESULTS

The same experiment was conducted by modifying the
precipitation amounts in Fig. 6(g) and (i). The difference
between the generated images is shown in Fig. 6(h). This
time the difference between the generated images is focused
on swamp, meadow, and agricultural land areas in the image.
The forest areas have only small differences between the
images. In forest areas, the radar signal is scattered back by the
forest foliage where the moisture does not affect the scattering
properties as much as the open areas. In open areas, the radar
signal hits the ground where the soil moisture content is altered
more by the rain, thus changing the backscatter intensity.
This experiment suggests that the model uses the precipitation
information correctly when generating the output image.

B. Identifying the Best Conventional DI Strategy

The conventional method of computing the DI is to use
one of the previous SAR images that is captured at some
preceding date with the most recent image to produce the
DI IDI = g(It−y, It ). There are multiple different strategies
when selecting the previous image. The simplest strategy is to
select the previous image that is preceding the image that was
captured most recently. This strategy has the advantage that the
least amount of time has elapsed between the images, therefore
the number of natural changes, like foliage growth or soil
moisture changes, are minimized. However, the problem is that
the previous image has very likely different incidence angle
and it might have been captured from a different orbit direc-
tion (ascending/descending). To make sure that we compare
the proposed method to the best conventional method, three
different previous image selection strategies were compared
to identify the best strategy. The threshold classifier was used
to compare the quality of the DIs that were produced using
the different strategies. The strategies have different trade offs
between the elapsed time and imaging angle.

Method 1: Closest incidence angle and the same orbit
direction.

Method 2: Most recent previous image with the same orbit
direction.

Method 3: Most recent previous image preceding the target
image (It−1).

Fig. 7 illustrates the comparison of the three different
methods using ROC curve plots. Table II shows the results
in a list format by displaying the AUC metrics. The strategy
where the previous image is captured from the same orbit
direction and has the closest incidence angle with It is the best
It−y selection strategy. From this on forward, the Method 1
is always used when referring to the conventional method of
computing DI.

C. Proposed Method Versus Conventional Method

1) Threshold Classifier: Fig. 8 illustrates the ROC curve
plots for the two threshold classifiers when measuring the
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Fig. 6. Mapping transformation function outputs with different imaging conditions. (a) Original SAR image that is captured from coordinates 64.919 lat,
28.124 lon on July 7, 2021 (target image It ). (b) Difference between the true image It and the predicted image Î t . (c) Model output Î t when it is trying to
predict It . (d), (f), (g), and (i) Images are generated by manually modifying the imaging condition vector Dt . (d) and (f) Ascending and descending orbit
direction, respectively. (e) Difference between the different orbit direction images. (g) and (i) Identical experiment was conducted by varying the precipitation
amount, i.e., zero rain and Substantial amount of rain, respectively. (h) Difference between the images with the different precipitation amounts.

quality of the DIs generated with the two methods. In this
experiment, the changes are simulated to the dataset using the
offset change method. The AUC metrics from the experiment
is also shown in a list format in the first row of Table III. The
simulated shift is −2.5 dB in the change area, which represents
a considerable change. In the real world, this could be a change
where the forest is clear cut, making it smoother, and that way

reducing the backscatter intensity. The threshold classifier that
uses the DIs that are produced using the proposed method
is clearly better. This indicates that the proposed method
generates better quality DIs.

Fig. 9 illustrates the results of the same experiment when it
is repeated to the simulated change dataset using the statistical
change method. The change areas are simulated to emit the
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Fig. 7. Comparison of different previous image selection strategies when
using the traditional method of computing the DI.

Fig. 8. ROC curve for the two threshold classifiers when applied to the
dataset with simulated changes using the offset change method.

TABLE III
EXPERIMENT RESULTS FOR THE THRESHOLD MODELS

backscatter intensity of nearby forest areas that are not as
densely wooded making this a more realistic representation
of real changes in the forest. The mean backscatter intensity
change varied from around −0.5 to −2.5 dB in the change
areas depending on the sample. The AUC metrics from the
experiment is also shown in a list format in the second
row of Table III. Both classifiers have considerably worse
performance, however, the proposed method is still better per-
forming. The overall poor performance is to be expected with
the threshold classifiers. It is the simplest possible classifier
working in a single pixel level without having any kind of
visibility to the neighboring pixels. Furthermore, the changes
can be small in the simulated change dataset that is created
using the statistical change method.

Fig. 9. ROC curve for the two threshold classifiers when applied to the
dataset with simulated statistical changes.

TABLE IV
EXPERIMENT RESULTS FOR THE SVC MODELS

2) Support Vector Classifier: The experiments were
repeated with the SVC model to the same two datasets. The
linear kernel SVC implementation LinearSVC from Scikit-
learn library [53] was used to conduct the experiment. Linear
kernel SVC was chosen due to the large dataset size. Other
kernel types were tested, however, they did not scale to a large
number of samples. The samples were normalized using the
Scikit-learn StandardScaler to ease the model conver-
gence. Table IV displays the results from the experiments.
The proposed method is clearly superior to the conventional
method in both experiments. The performance in the statis-
tical change dataset is considerably worse when compared
to the shift change dataset. However, this is to be expected
with a similar loss of accuracy in the threshold classifier
experiments. This experiment uses supervised learning with
a labeled dataset which should improve the results when
compared to the threshold classifier. However the SVC is still
a very simple classifier that performs the classification at pixel
level without any visibility to the neighboring pixels, thus the
accuracy scores are mediocre at best. Still, achieving a high
accuracy score was not the goal of the experiment. Instead, the
experiment compares the accuracies of the two classifiers and
the results from this experiment support the findings from the
threshold classifier experiments. The proposed method clearly
produces higher quality DIs.

3) Model Without the Weather Data: The dataset creation
for this project was a major undertaking that complicates the
adaption of the proposed methodology since the model needs
to be trained to every location where it is used. FMI provides
the interpolated weather data for the features we used in this
study that are available in locations inside the borders of
Finland. However, equivalent data sources are not necessary
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Fig. 10. Threshold classifier ROC when used with mapping transformation
function that is trained without the weather data. The solid line is the same
line from Fig. 8 that is added to the plot to help visual comparison of the
results.

TABLE V
ABLATION STUDY IMPACT TO SVC MODEL ACCURACIES

available in other countries. Therefore, we experimented with
how the neural network-based mapping transformation func-
tion works without the weather data. The model training
pipeline was modified to drop the weather data during training
and inference, thus the acquisition conditions consisted only
from incidence angle, satellite orbit direction, and satellite
id. Fig. 10 illustrates the results from the experiment. The
experiment used simulated changes with −2.5-dB shift and
the exact same model hyperparameters with the results that
are illustrated in Fig. 8, thus the result is directly comparable.
The resulting AUC metric is higher at 0.83 when compared to
the conventional method at 0.79, however, the result is worse
when compared to the model that has visibility to the weather
data with AUC metric of 0.87. We can conclude that the
proposed methodology can be used also without weather data,
and it achieves measurable improvement over the conventional
method. However, to achieve the best performance, the model
requires the weather data in addition to the other imaging
condition features.

4) Feature Ablation Study: An ablation study measured the
impact of each feature to the accuracy of the SVC using
both the shift change dataset and the statistical change dataset.
Table V shows the accuracies of the classifier when the neural
network F is trained with a dataset where one of the features is
removed. Satellite orbit direction and precipitation are two of
the most important features, because dropping them decreased
accuracy. Satellite id and snow depth were the least important.

IV. DISCUSSION

The experiment results show that the proposed method
produces higher quality DIs than the conventional method.
Since the output from the proposed method is a DI, many
of the existing change classification techniques may benefit
from the method without any modifications. The techniques
generally use the conventional method for producing the DI,
however, it is a completely separate step from classification
and thus could be replaced with the proposed method without
changes to the classification step. Some methods do not use
the DI computation step, instead, they accept the two images
directly to the model to carry out the classification. Even
with these techniques, the usage of the proposed method
could be beneficial. In these cases, the earlier image (It−y)
is replaced with Î t , thus giving the classification model better
understanding of what the scene should look like in the correct
image acquisition conditions.

This study did not experiment with the more advanced
change detection classifiers since the simple classifiers were
enough to prove that the proposed method is better than
the conventional method. However, the clear improvement in
classification accuracy with the simple methods could indicate
that similar improvement can be achieved with the more
advanced methods.

The use of simulated changes to measure the performance
of the method was a necessary compromise caused by the lack
of existing change detection datasets suitable for training the
neural network. The simulated changes are not realistic enough
to draw conclusions about how much the proposed method
would improve the change detection performance in real
world. However, the experiments with the simulated changes
indicate a substantial performance improvement potential.

The downside of the proposed method is that the mapping
transformation function is a neural network model that requires
a training dataset and a considerable amount of processing
power for training. The dataset creation is a complex operation
that combines data from multiple data sources. Some of the
sources that were used in this study are available only for
geographical locations inside Finland, such as the interpolated
weather data from FMI. The model requires training data from
the locations it is used at inference time which complicates the
adaption of the method outside of Finland. However, many
of the data sources very likely have equivalents available in
other geographical locations, therefore the adoption is not
impossible. Even a global training dataset could potentially
be constructed, which could make the training of a univer-
sal model possible. The recent advances in neural network
architectures with natural language processing and image gen-
eration have shown that the models can learn from impressive
amounts of data. The model training is unsupervised, meaning
it does not require labeled data, thus the creation of such
a dataset could be possible. Our experiment with a model
that did not see the weather data in the input shows that
the method achieves measurable improvement over the con-
ventional method even when the model has information only
about the imaging angle and the satellite. That data is available
in the SAR images when they are downloaded from the
ESA open access portal, thus simplifying the dataset creation
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considerably. However, without the weather data the mapping
transformation function cannot generate accurate enough SAR
images to achieve the same accuracy metrics as the model
with the weather information. The ablation study suggests that
model training could be simplified since some of the features
are found to be less important, and therefore can be dropped
from the training data.

DATA AVAILABILITY

The Sentinel-1 SAR imagery is available to download
free of charge from Copernicus Open Access Hub [30]. The
weather data is available free of charge from FMI [38].
The DEM and topographic database are available free of
charge from the NLS open data service [37], [49]. Links to
the download sites are listed in the references. The derived
dataset can be downloaded from the Fairdata.fi service [29].
The computer code to produce the results is available at
https://github.com/janne-alatalo/sar-change-detection.
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