

Eemeli Saarinen

Data Collection Tool for Movesense
Sensors

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Bachelor’s Thesis

9 February 2024

Abstract

Author: Eemeli Saarinen

Title: Data Collection Tool for Movesense Sensors

Number of Pages: 36 pages + 2 appendices

Date: 9 February 2024

Degree: Bachelor of Engineering

Degree Programme: Information and Communications Technology

Professional Major: Smart IoT Systems

Supervisors: Sakari Lukkarinen, Project Manager

 Saana Vallius, Senior Lecturer

The aim of this project was to create a data collection tool for Movesense sensors
capable of connecting to a sensor and subscribing to a data stream from a laptop.
The tool was to be suitable for tracking body and limb movement and orientation. The
project was done for Metropolia University of Applied Sciences. The tool was
intended to be used on a project course where second-year Health Technology
students learn to process, analyze, and visualize data using Python. As such, the tool
was to be done using Python as it was going to be used with Jupyter Notebooks.
Another goal was to investigate ways to simultaneously connect multiple sensors to
the laptop and synchronize them.

A custom application was developed for the Movesense sensor to enable
communication between the sensor and the laptop using Bluetooth Low Energy
GATT services. An asynchronous Movesense Python library suited for collecting
sensor data was developed for the project. The library can be used to find a nearby
Movesense sensor, connect to it, and subscribe to sensor data streams. Connecting
to multiple sensors simultaneously is also possible.

Validation testing was conducted to test the functionality and usability of the tool. The
testing was conducted by eight test groups. Each group consisted of three second-
year students specializing in Health Technology. The test comprised of four test
cases. The validation test concluded that the tool was simple and intuitive to use. The
testing provided valuable information about the usability of the tool. Furthermore, it
brought up previously unnoticed errors that were then fixed.

The main goals of this thesis were accomplished successfully. The data collection
tool contains all the required functionalities. Connecting to multiple sensors was also
accomplished. However, the synchronization of the sensors requires further
development.

Keywords: Movesense, BLE, GATT, sensor, Python, Jupyter

The originality of this thesis has been checked using Turnitin Originality Check

service.

Tiivistelmä

Tekijä: Eemeli Saarinen

Otsikko: Tiedonkeruutyökalu Movesense-antureille

Sivumäärä: 36 sivua + 2 liitettä

Aika: 9.2.2024

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Älykkäät IoT-järjestelmät

Ohjaajat: Projektipäällikkö Sakari Lukkarinen

Lehtori Saana Vallius

Tämän insinöörityön tavoite oli luoda tiedonkeruutyökalu Movesense-antureille,
jotka keräävät mittaustietoja kannettavalle tietokoneelle. Työkalun tuli soveltua
kehon ja raajojen liikkeen ja suunnan mittaamiseen. Projekti tehtiin Metropolia
Ammattikorkeakoululle. Työkalu oli tarkoitettu käytettäväksi toisen vuoden
projektikurssilla, jossa opitaan käsittelemään, analysoimaan ja visualisoimaan
mittaustietoja käyttäen Python-ohjelmointikieltä. Tämän takia työkalu tuli tehdä
Pythonilla, jotta sitä voidaan käyttää Jupyter Notebookissa. Toinen tavoite
projektille oli tutkia useampaan Movesense-anturiin yhdistämistä
samanaikaisesti ja sitä, kuinka niistä kerätty data voidaan synkronoida.

Movesense-antureille luotiin mukautettu sovellus, jolla saatiin anturi
keskustelemaan kannettavan tietokoneen kanssa käyttäen Bluetooth Low
Energy GATT -palveluja. Projektissa kehitettiin myös Movesense-anturille
asynkroninen Python-kirjasto, joka soveltuu tiedonkeruuseen. Kyseinen kirjasto
pystyi löytämään lähellä olevan anturin osoitteen, yhdistämään siihen ja
keräämään mittaustietoja liikeantureista. Kirjasto kykeni myös keräämään
mittaustietoja useasta Movesense-anturista samanaikaisesti.

Työkalun toimivuutta ja käytettävyyttä testattiin validointitestillä. Testauksen
suoritti kahdeksan kolmen hengen testiryhmää. Ryhmät koostuivat toisen
vuoden Terveysteknologian erikoisalan opiskelijasta. Testi koostui neljästä
testitapauksesta. Validointitestissä todettiin, että työkalu oli yksinkertainen ja
intuitiivinen käyttää. Testaus tuotti hyödyllistä tietoa työkalun käytettävyydestä.
Lisäksi työkalusta löytyi aiemmin huomaamatta jääneitä virheitä, jotka saatiin
korjattua.

Insinöörityön päätavoitteet saavutettiin onnistuneesti. Tiedonkeruutyökalu
sisältää halutut toiminnot. Usean Movesense-anturin käyttö samanaikaisesti
onnistuttiin toteuttamaan, mutta niiden synkronointi vaatii vielä kehitystä.

Avainsanat: Movesense, BLE, GATT, anturi, Python, Jupyter

Contents

List of Abbreviations

1 Introduction 1

2 Project Specifications 3

3 Background 4

3.1 Movesense 4

3.1.1 Sensor Hardware 5

3.1.2 Whiteboard and API 8

3.1.3 Power Consumption 11

3.1.4 Communication Methods 12

3.1.5 Device Firmware Update 13

3.2 Bluetooth Low Energy 13

3.2.1 Attribute Protocol 16

3.2.2 Generic Attribute Profile 17

3.2.3 Services 17

3.2.4 Characteristics 18

4 Implementation 19

4.1 Custom Movesense GATT App 20

4.2 Iterations 23

4.3 Movesense GATT Python Library 23

4.3.1 Scanner Function 24

4.3.2 Record Data Class 24

4.3.3 Movesense Client 25

4.3.4 Movesense Multi-Client 26

4.4 Jupyter Notebooks 29

4.4.1 Scanner Notebook 30

4.4.2 Data Stream Notebook 30

4.4.3 Two Devices 31

5 Validation Testing 32

5.1 Test Cases 32

5.2 Test Results 33

6 Conclusions 35

References 37

Appendices

Appendix 1: Movesense App Build Instructions

Appendix 2: Validation Testing Form

List of Abbreviations

AFE: Analog Front-End

API: Application Programming Interface

ATT: Attribute Protocol

BLE: Bluetooth Low Energy or Bluetooth Smart

CPU: Central Processing Unit

CSV: Comma-Separated Values

DFU: Device Firmware Update

ECG: Electrocardiogram

FIFO: First-In First-Out

GAP: Generic Access Profile

GATT: Generic Attributes Profile

HCI: Host Controller Interface

HTTP: Hypertext Transfer Protocol

IMU: Inertial Measurement Unit

ISM: Industrial, Scientific, and Medical

LED: Light-Emitting Diode

MCU: Microcontroller Unit

OS: Operating System

OTA: Over-The-Air

RAM: Random Access Memory

REST: Representational State Transfer

SIG: Special Interest Group

UART: Universal Asynchronous Receiver/Transmitter

UUID: Universally Unique Identifier

YAML: YAML Ain't Markup Language

1

1 Introduction

The goal of this final year project was to create a tool that can connect to a

Movesense sensor and collect data from the Movesense sensor over Bluetooth

Low Energy (BLE). The project was carried out for the School of Information

and Communication Technology at Metropolia University of Applied Sciences.

The tool was intended to be used on a project course where second-year

Health Technology students learn to process, analyze, and visualize data using

the Python programming language. During the project, Movesense sensors

were used to track body movement.

The Movesense sensor is a small wearable BLE device. It can be used for

measuring motion, heart rate and temperature. Movesense provides open-

source software libraries for developing mobile and device applications.

Movesense has a Showcase App mobile application for Android and iOS

devices which can be used to collect data from the Movesense sensor. The

device library contains sample applications for the Movesense sensor. The

applications showcase different features of the sensor software. These sample

applications can be used as a starting point for developing custom applications.

Previously the measurement data was collected using a mobile application. The

data was then moved to the cloud to be used on the laptop. This method was

inconvenient as a mobile application added an unnecessary step between

measuring data and using it. There were also issues with the application. It

saved the data using wrong decimal formatting and used different headers in

CSV files for the same measurement data.

As a result, the aim of this project was to build a tested, documented, and

tailored Movesense data collection tool. The tool was to be suitable for tracking

the movement and orientation of the body and limbs.

Another goal was to remove the phone from the data collection process. Instead

of connecting to the phone, the Movesense sensor was connected directly to a

2

laptop using BLE. The data was collected directly on the laptop and saved to a

cloud service or to a local directory. There was need to transfer the data to the

laptop every time new measurements are needed.

The tool was created using Python as the students will be using it with a Jupyter

Notebook. This allowed the students to process, analyze and visualize the

sensor data right after collecting it from the sensor.

Connecting to multiple Movesense sensors simultaneously and whether they

can be synchronized was also investigated. The power consumption and how

often data is then sent from the sensor should be studied as well.

3

2 Project Specifications

To accomplish the objectives for the project, the data collection tool was to be

able to find the Movesense sensor. Once the sensor has been found, the tool

must establish a connection to the sensor. Finally, the tool had to subscribe to

the data stream of the Movesense sensor. The tool was to work inside a Jupyter

Notebook. The data transfer was to be done using the BLE protocol.

The project was developed using Python programming language. The project

used Python Bluetooth library called Bleak (Bluetooth Low Energy platform

Agnostic Klient) to establish connection between a Movesense sensor and a

laptop. Bleak acted as a Bluetooth Low Energy (BLE) Generic Attributes Profile

(GATT) client for connecting to GATT services on BLE devices [1].

By default, the standard Movesense application does not have a way to

communicate without a mobile application. Movesense has alternative

communication methods which was used to get around this issue. To meet the

requirements of this project, Movesense had to use an application capable of

communicating with the Bleak GATT client.

The intended users of the data collection tool were teachers and students who

are familiar with the Python language. On the course, the students use Jupyter

Notebooks to measure, analyse, and visualize data. The Python library for the

data collection was designed be intuitive and simple to use. Furthermore, the

project was to include sample Notebooks to showcase how the tool was used.

In addition to creating the Python library, the objective was to explore

connecting to multiple Movesense sensors simultaneously and to synchronize

the incoming data streams. Another objective was to investigate the power

consumption of the Movesense sensor and how often the data is sent from the

sensor.

4

3 Background

This section contains background information about the Movesense sensor and

the Bluetooth Low Energy protocol. Section 4.1 discusses the Movesense

sensor and its hardware, the Whiteboard framework, power consumption,

communication methods, and how the device firmware is updated. Section 4.2

goes over the BLE, and the protocols used in this project.

3.1 Movesense

The Movesense sensor is a small and versatile BLE device containing multiple

sensors. It is designed to be used for health, sports, and wellbeing applications.

The case of the device is constructed to be shock-proof and water-resistant up to

30 meters, making it suitable for all types of sports. Figure 1 shows the

Movesense sensor from both sides. The device has a low profile and can be

attached to gear or accessories using the two metal studs on the back side of the

device. The studs are also used for heart rate and ECG measurements. The

Movesense sensor weighs only 9.4 grams with the battery, making it very

lightweight. [2.]

Figure 1. Front and back side of Movesense sensor [3].

5

There are currently three Movesense sensor models: Active, Medical and Flash.

Movesense Active is designed to be used for sports and other activities. It

currently has two variants, HR2 and HR+ [4]. HR+ has all the features of HR2

with the addition of a temperature sensor and compatibility with the Movesense

Smart Connector. The Smart Connector can be used for context identification.

[5.] There are also some older variants that are no longer sold. Movesense

Medical focuses on healthcare applications. It is equipped with class IIa

medically certified ECG and a motion sensor [6]. Lastly, the Movesense Flash is

made for long-term data collection without the need to be connected to a client.

It has 128MB on-board memory compared to the 3Mbit EEPROM memory of

the other models. [7.]

The Movesense sensor has open-source developer resources and an

Application Programming Interface (API) for developers and manufacturers to

build custom in-device and mobile applications for their needs. There are two

main repositories: device library and mobile library. The device library contains

sample applications, tools, the core library, and other recourses for developers.

The mobile library contains the Showcase Apps and mobile libraries for Android

and iOS platforms.

3.1.1 Sensor Hardware

The Movesense device was designed using Suunto design and development

guidelines and they are designed and manufactured in Finland. The devices are

designed to be durable and robust to be able to handle all kinds of activities. [2.]

The Movesense sensor is powered by a CR2025 lithium coin cell battery. It can

provide up to months of operating time depending on the application. At the

core of the device there is an nRF52832 microcontroller unit (MCU) by Nordic

Semiconductors. The nRF52832 has a 32-bit ARM Cortex-M4 core. The core

handles both the Movesense platform and the Bluetooth connectivity for the

device. The MCU has 65kB of on-chip Random Access Memory (RAM) and

512kB of on-chip Flash memory that are shared with the application and the

6

Movesense operating system (OS). Both Bluetooth 4.0 and 5.0 are supported

by the nRF52832 chip. It also has 3Mbit of non-volatile external memory

(EEPROM). [2.]

As Movesense strives for low power consumption and long battery life, the

selected components for the device have ultra-low power consumption [2].

Movesense has a 9-axis Inertial Measurement Unit (IMU) comprised of a 3-axis

accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer [2]. There is a

hardware limitation that makes it impossible to use the gyroscope or the

magnetometer without powering on the accelerometer as it is responsible for

the IMU data transfers [8]. The IMU can be used for tracking the 3D orientation

and movement of a body.

The 3-axis accelerometer measures linear acceleration and forces in three

dimensions. The Movesense uses 𝑚/𝑠2 as the unit for accelerometer data. The

accelerometer supports sampling frequencies from 13Hz to 1666Hz, each rate

roughly doubling [9]. It is recommended to use the lowest possible frequency

needed for the use case since the central processing unit (CPU) load and

power consumption increase with higher frequencies [8]. The accelerometer

can be used as a wake-up method for the sensor. The sensor can be

configured to wake up from any movement, a single tap, a double tap, or a free

fall. The force needed for waking up can also be configured [10]. The

accelerometer has four configurable ranges. The ranges are listed in Table 1.

The 3-axis gyroscope measures angular velocity in three dimensions. It uses

degrees per second (dps) as the measurement unit. As the accelerometer and

gyroscope are part of the same component, they share the same sampling

frequencies [2]. Also, the measurement range for the gyroscope can be

configured as well and the range options can be found in the Table 1.

The 3-axis magnetometer measures the position of the sensor relative to the

magnetic field of Earth in three dimensions. It shares the sampling frequencies

with the accelerometer and the gyroscope [2].

7

The measurement ranges for the accelerometer, the gyroscope and the

magnetometer are listed in Table 1 [2].

Table 1. Supported measurement ranges for sensors [2].

Sensor Range

Accelerometer ±2/±4/±8/±16g full scale

Gyroscope ±125/±245/±500/±1000/±2000°/s full
scale

Magnetometer ±49 gauss full scale

Temperature accuracy <±0.5°C, 0°C to +65°C

Capturing ECG signals and calculating heart rate with the Movesense device is

possible using the analog front-end (AFE). The AFE is used through the studs

at the back of the sensor. The Movesense sensors use single-channel ECG.

The HR models measure non-medical ECG and the Medical model measures

medical ECG. The difference is due to the medical approvals applied for the

devices. The supported sampling frequencies for the ECG are 125Hz, 128Hz,

200Hz, 250Hz, 500Hz and 512Hz. When sampling the ECG data over BLE,

sampling rates above 256Hz should be avoided. The reason for this is the First-

In, First-out (FIFO) buffer of the analog front-end that holds up to 32 samples.

High frequencies over BLE can cause the FIFO to overflow leading to data loss.

High-pass and low-pass filters can be configured for the ECG. Heart rate can be

measured using the API or using the BLE standard heart rate service (HRS). It

is measured as beats per minute, and it includes the RR intervals for the

measurements. [9.]

Some Movesense models also include a temperature sensor for measuring

internal temperatures of the device. The accuracy of the temperature

measurement is +-0.5 °C and the device can measure temperatures between 0

°C and +65 °C. [9.]

8

3.1.2 Whiteboard and API

Movesense uses their own REST-like communication framework called

Whiteboard [11]. It is an internal framework created by Suunto for using a REST-

like interface with embedded devices [12]. Whiteboard is a fully asynchronous

library that handles both internal and external communication for the Movesense

sensor. GATT communication is an exception and is not handled by Whiteboard.

Like REST, Whiteboard has a client-service architecture. Clients use the provided

services by sending asynchronous requests. Services send asynchronous

responses and provide the requested resources to the clients. [13] Clients can

use the Whiteboard API which includes the commonly used GET, PUT, POST

and DELETE request types. Whiteboard includes an additional subscription

feature which allows clients to subscribe to continuous data from the sensor.

Data is normally delivered with continuous notifications. Subscriptions can be

terminated using an unsubscribe request. [11.]

The Movesense REST API is divided into eight sections listed in Table 2. Each

section is composed of multiple modules. Modules are defined in YAML files and

are defined using the Swagger 2.0 specification. It is used by most Internet REST

services. It is possible to define custom APIs for applications. [14.]

9

Table 2. The Movesense REST API sections [14].

Resource Description

/Meas Sensor information, configuration, and data

/Mem Data memory access for DataLogger and Logbook

/Comm Communication protocols: BLE and 1Wire

/Component Low-level component features: LED, EEPROM, chip
specific features

/System System features: Mode, Settings, Energy, Memory, States

/UI User interface

/Misc Everything that does not fit elsewhere

/Whiteboard Whiteboard services

The first line of the YAML file starts with defining the Swagger version. The

structure of the API is defined by the version used. The Movesense API uses

four sections from the Swagger 2.0 specification, info, paths, parameters, and

definitions. The information section contains basic information about the API.

Listing 1 shows the info section from the IMU API.

swagger: '2.0'

info:

 version: NA

 title: IMU (Inertial Motion Unit) - Movesense-API

 description: |

 This file defines interface for the IMU API's.

 x-api-type: public

 x-api-required: true

Listing 1. Information section from the IMU API file [15].

API endpoints are defined in the paths section. Each path specifies the

supported operations of the endpoint such as GET or POST. The paths can

contain parameters as is the case for subscriptions. The subscription path has a

SampleRate parameter which tells the sensor how often the data should be

sampled and sent to the client. Paths section from the IMU API can be seen in

Listing 2.

10

paths:

…

 /Meas/IMU9/{SampleRate}:

 parameters:

 - $ref: '#/parameters/SampleRate'

 /Meas/IMU9/{SampleRate}/Subscription:

 parameters:

 - $ref: '#/parameters/SampleRate'

 post:

 description: |

 Subscribe to periodic 9-axis IMU measurements.

 responses:

 200:

 description: Operation completed successfully

 501:

 description: Non-supported sample rate

 x-notification:

 description: New measurements

 schema:

 $ref: '#/definitions/IMU9Data'

 delete:

 description: |

 Unsubscribe from periodic 9-axis IMU values.

 responses:

 200:

 description: Operation completed successfully

Listing 2. Path from the IMU9 Subscription endpoint [15].

The Parameters section defines parameters used by paths. A parameter

defines type and format of the parameter. Parameters are mostly used in

sensor APIs. Listing 3 shows the SampleRate parameter from the IMU API.

parameters:

 SampleRate:

 name: SampleRate

 in: path

 required: true

 type: integer

 format: int32

Listing 3. Sample rate parameter used by the IMU subscription endpoints [15].

11

The Definitions section contains definitions for data and resources used by

endpoints. Definitions contain information such as data types, formats, and units

of the data. Listing 4 shows an example definition from the IMU API.

definitions:

…

 IMU9Data:

 required:

 - Timestamp

 - ArrayAcc

 - ArrayGyro

 - ArrayMagn

 properties:

 Timestamp:

 description: Local timestamp of first measurement.

 type: integer

 format: uint32

 x-unit: millisecond

 ArrayAcc:

 description: Measured acceleration values (3D) in array.

 type: array

 x-unit: m/s^2

 items:

 $ref:

'http://localhost:9000/builtinTypes.yaml#/definitions/FloatVector3D'

 ArrayGyro:

 description: Measured angular velocity values (3D) in array.

 type: array

 x-unit: dps (degree per second)

 items:

 $ref:

'http://localhost:9000/builtinTypes.yaml#/definitions/FloatVector3D'

 ArrayMagn:

 description: Measured magnetic field values (3D) in array.

 type: array

 items:

 $ref:

'http://localhost:9000/builtinTypes.yaml#/definitions/FloatVector3D'

Listing 4. IMU9 data structure definition from the IMU API.[15]

Application specific APIs are declared in the app_root.yaml file. The file is in the

root folder of the application. The APIs defined by the application can be found in

the wbresources folder. [14.]

3.1.3 Power Consumption

The main communication method for Movesense sensor is Bluetooth Low

Energy. It also has the largest power consumption out of all the peripherals of

the device. For this reason, BLE advertising should be turned off when possible.

[8.] Bluetooth should not be connected longer than needed. On demand

12

connections should be preferred instead [16]. The CPU frequency is

automatically reduced by the Movesense technology in response to calculation

demand. It is possible to get as low as 10uA current consumption by

disconnecting Bluetooth and unsubscribing all providers. [8.]

Movesense has a Full Power Off mode which should be used when the device

is not in use. There are two methods that can be configured to wake up the

device from the Full Power Off mode. The first method is movement wake up

that uses an accelerometer to wake up the device based on the configured

movement. The second method is heart rate wakeup which uses the studs at

the bottom of the device. When using the Full Power Off mode, system time will

reset [16].

After BLE, the sensors have the second largest power consumption of the

Movesense device. [8]. The consumption depends mostly on the sampling

frequency. Movesense recommends avoiding higher frequencies than

necessary. For accelerometers, the power consumption significantly increases

after 52 Hz. [16.] This applies to the gyroscope and the magnetometer since the

accelerometer is responsible for transferring data from all of three sensors [8].

3.1.4 Communication Methods

The main communication method for connecting to a Movesense sensor is an

Android/iOS mobile application. Movesense also offers alternative methods for

communicating with the device. The device has a built-in heart rate service

(HRS), Nordic UART services, and a custom GATT service. Furthermore,

Movesense offers an option to embed data into BLE advertisement packets.

[14.]

UART is used for debugging the sensor using a Movesense programming jig

[8]. UART could not be used in this project as it is not a wireless communication

method.

13

Embedding data to BLE advertising packets can be used for broadcast-oriented

applications where other devices may discover the Movesense sensor and

collect data without pairing with the device. The method is very limited and does

not fit the requirements of this project. This is because the advertising packets

can contain up to 27 bytes of data and can be sent around 5 times per second.

The minimum size of an IMU9 data packet is 40 bytes which are sent 13 times

per second, which means the embedding method cannot send data fast

enough. Furthermore, the goal is to have the Movesense sensor connected to

the laptop using BLE. [14.]

3.1.5 Device Firmware Update

The Movesense device is updated using a Device Firmware Update (DFU). This

process happens over-the-air (OTA) by sending a DFU package to a Movesense

sensor. The package contains all relevant data for updating the device

application. There is also an additional DFU package type for updating the device

firmware from an older to a newer version (e.g. 1.9.x to 2.x) This package type

contains the BLE stack and bootloader in addition to the data contained in a

regular DFU package. [17.]

The DFU can be performed using the Movesense Showcase App or nRF Connect

app from Semiconductor. The device goes to DFU mode when updating the

device. During the DFU mode, the device is advertised by the name “DfuTarg”. If

something interrupts the update process, the device will stay in the DFU mode

until the device is reset. The reset can be done by removing the battery. If a

broken application is installed onto a Movesense device, the device can be put

into a DFU Recovery Mode. [17.]

3.2 Bluetooth Low Energy

BLE is a low-power wireless technology. It is a new technology rather than an

upgrade to the Bluetooth classic. As such, it is not compatible with the Bluetooth

classic. BLE was introduced with the Bluetooth 4.0 specification, and it is

14

intended for low-power Internet of Things applications such as sensors. It

specifically targets battery powered devices that need to run for long periods

without changing the battery. Like Bluetooth and Wi-Fi, BLE operates on the 2.4

GHz ISM band. [18.]

BLE achieves its low power by using low data transfer speeds to send small

amounts of data. The radio is turned off whenever it is not needed. The data

transfer speeds differ based on the Bluetooth version used. [18.]

The range of the BLE can reach up to 50 meters when there are no obstacles

between the devices. When there are walls and obstacles the range drops

significantly. Bluetooth 5.0 specification introduces a long-range feature which

increases the range up to 800 meters with no obstacles. However, the transfer

speeds are much lower because of it. [18.]

15

The BLE Stack illustrated in Figure 2 displays the layers and functional modules

which are distributed between two architectural blocks known as the host and the

controller. Between the two blocks there is a Host Controller Interface (HCI), a

logical interface, which defines the communication between the two blocks. [19.]

Figure 2. Layers and functional modules of BLE Stack distributed between the
host and the controller architectural blocks.

The controller and the host operate as distinct logical containers. As such, they

can be implemented in different physical components from different

manufacturers. The host and the controller can be compared to an operating

system and a system on a chip. [19.]

The HCI is a logical component which can be put into practice in multiple ways.

However, the logical interface will always stay the same [19].

The device discovery and connection are defined by the Generic Access Profile

(GAP). The Generic Attribute Profile and the Attribute Protocol are discussed in

more detail below. Security Manager Protocol (SMP) is utilized for security

procedures. [19.]

16

3.2.1 Attribute Protocol

GATT specifies in detail in how all user and profile data is exchanged over the

BLE connection. It uses the Attribute Protocol (ATT), a generic data protocol as

its transport protocol. ATT acts as the underlying infrastructure for GATT. It

defines how data is exposed by servers to clients. It also defines how data is

structured. ATT uses the term Attribute to refer to all data exposed by the

server. [20.] Figure 3 demonstrates a GATT client requesting data from a GATT

server and the server responding to the requests.

Figure 3. GATT transactions between a GATT server and a client [21].

The Attribute Structure has four elements: a handle, a Universally Unique

Identifier (UUID), a value and permissions. The handle is a 16-bit unique

identifier that the client uses to reference an attribute on a server. It handles a

range hexadecimal values from 0x0001 to 0xFFFF. The UUID is a unique

identifier which can be assumed to be globally unique. Bluetooth SIG uses 16-

bit UUID numbers whereas custom UUIDs are 128 bits long. The SIG-adopted

UUIDs use a common 128-bit UUID as a base. The 16-bit UUID replaces four

digits from the base starting from the 5th digit. Custom UUIDs cannot conflict

with SIG-adopted UUIDs. The value of the attribute holds data exposed by the

server. It has a variable length, and it is formatted based on the attribute type.

The attribute type is defined by the UUID. Service declaration and characteristic

declaration are examples of attribute types. Permissions define read and write

access and if the attribute can be notified or indicated. It also defines security

levels for each of the forementioned operations. [20.]

17

ATT has two roles: a server and a client. A server exposes data to clients and

sends responses, notifications, and indications to those clients. A client on the

other hand communicates with the server by sending requests and commands

and receives data from the server. ATT uses six types for packets for the

communication listed below. [20.]

• Commands (no response required)

• Requests (response required)

• Responses (response to a request)

• Notifications (no response required)

• Indications (response required)

• Confirmations (response to an indication)

The Attributes have two main data operation types: reads and writes. Since

every read expects a response, all reads are requests. All writes do not require

a response meaning they can either be commands or requests. [20.]

3.2.2 Generic Attribute Profile

GATT describes how services and characteristics are formatted and how

attributes are interacted with. These include procedures such as service

discovery, characteristic reads, writes, notifications and indications. GATT

shares the same roles with ATT. The roles are established per transaction

rather than being predetermined for each device. For instance, when the

indication is sent by the server, the client will respond with a confirmation. In this

case, the server acts as the client. As such, the BLE device can act as a GATT

server and a client simultaneously. [20.]

3.2.3 Services

Service is a term used for a group of one or more attributes. The purpose is to

group related attributes together. Services have characteristic and non-

characteristic attributes. Characteristic attributes contain values such as sensor

18

data. Non-characteristic attributes help structure of the data in the service. The

structure of a GATT server is shown in Figure 4. [20.]

Figure 4. Service hierarchy of a GATT server and services.

The GATT server contains services with characteristics. Each service can have

multiple characteristics. The characteristics are discussed in more detail in the

next section.

3.2.4 Characteristics

A characteristic is a container which holds data or where data is written to.

Characteristics can also include other attributes like properties or descriptors.

Properties define how the value can be utilized. Descriptors contain information

about the contained value like a user description, format, or a unit. [20.]

19

4 Implementation

Figure 5 showcases the system diagram. The diagram shows how the

Movesense sensor was originally used. The Movesense sensor had to be

connected to the phone where the Movesense Showcase App was used to

record the sensor data. The sensor data had to be manually transferred to the

cloud or directly to the laptop. The Movesense Showcase App saves the data

into CSV files. However, it does not use unified headers for the same sensor

measurements. The CSV files also use a wrong decimal point localization.

Figure 5. System diagram of the original way of collecting data from a
Movesense sensor.

Figure 6 shows the system diagram of the intended solution. In this diagram, the

mobile phone is no longer part of the measuring process. The Movesense sensor

communicates with the laptop directly using GATT. The measured data can be

automatically saved to the cloud or to the laptop. The solution fixes the problems

mentioned in the previous paragraph.

20

Figure 6. System diagram of the implemented way of collecting data from a
Movesense sensor.

This implementation is made up of four parts. The first part is about the

implementation of the in-device application for Movesense. The second part goes

over the iterations of the data collection tool. The third part covers the finished

prototype of the data collection tool. The last part goes over the Jupyter

Notebooks used to showcase the tool.

4.1 Custom Movesense GATT App

The first step of the project was to implement a device GATT application which

allows subscribing to sensor data streams through a custom GATT service. The

programming environment for this part consisted of the Movesense device

library, the Movesense build environment container, Visual Studio Code, the

Movesense sensor and the Movesense Showcase App. The device library

contains sample applications which can be used as a starting point for

developing an application.

There is a sample application called GATT SensorData app which implements a

custom GATT service for subscribing to sensor data streams. However, this

application does not implement the power off/wake up functionality, which

means the device will always be on. The sensor being always on is not ideal for

battery life. The GATT SensorData example application was used as the

starting point with the goal of adding the wake-up functionality to the application.

21

Initially, there were some difficulties implementing the power-off/wake-up

functionality. Even after implementing the required functions, the Movesense

sensor kept failing to go into power-off mode. The reason for the failure was due

to the need for the application to subscribe to leads detection. The leads

detection is used to detect when the heart rate connectors are short circuited. It

is necessary for the heart rate wake-up functionality to work. During the

development, it became known that the movement wake-up is very sensitive

even with the lowest sensitivity settings. For this reason, the heart rate wake-up

method was selected as the primary wake-up method.

Power-off/wake-up was implemented using a timer. Timers and timer functions

are defined in the Whiteboard. A timer uses three functions to operate:

startTimer, stopTimer and onTimer. The startTimer and stopTimer functions are

self-explanatory. The onTimer function is a callback function for timer

notifications. In this application, it is set up to keep track of time while

advertising and to shut the device down after a minute has passed since the

advertising started without connecting to a client. The advertising mode is

indicated by a blinking LED. When the sensor is connected to an accessory, it

might not be possible to access the studs to wake up the sensor. For this

reason, an alternative application was built to use both the heart rate and the

movement wake-up functions.

The developed application was tested using the Python GATT Client script

included with the GATT SensorData application. The script is an example

Python GATT client application for accessing the Movesense data streams. It

connects to the Movesense sensor, subscribes to the data stream, and prints

the measurements to the terminal. The script was used to test subscribing to

different data streams from the sensor.

The application was built using the Movesense build environment container. It is

a Docker-based environment for building applications for Movesense. The build

sequence can be found in Appendix 1.

22

The application accepts three commands: Hello, Subscribe and Unsubscribe.

The command structure consists of the command, the client reference, and the

command-specific data. The Hello command does not accept data and

responds with a "Hello" message. The Subscription command takes in a

Movesense API subscribe path such as /Meas/IMU9/52 as a string. The

Unsubscribe command does not have data, but it requires the same client

reference that was used in the subscribe command.

The application sends the sensor data as binary notifications. The data is sent

in the SBEM format. SBEM is a Suunto Oy proprietary binary format. The

format uses the little-endian order. The notification structure can be seen below

in Table 3. The notifications are sent at the lowest frequency of the sensor

subscribed to. When using higher sampling rates, the application packs multiple

samples into a larger packet to reduce BLE communications.

Table 3. GATT notification structure used by the Movesense sensor.

Element Size Description

Result type 1 byte 1 = Response, 2 = Data

Client reference 1 byte Cannot be zero

Data 2 bytes for
commands

HTTP result for commands, SBEM formatted
binary for subscriptions

The notification is composed of three elements. The result type tells the client

what type of data is contained in the response. The client reference is a number

associated with a subscription. The unsubscribe command uses it to specify

which subscription should be ended. The data can contain either an HTTP

result for a command or sensor data. The size of the data depends on the

subscription.

23

4.2 Iterations

The development of the Movesense GATT tool was done using Visual Studio

Code with the Jupyter extension. The environment was set up to use the default

kernel used with the Anaconda platform. The Movesense sensor was set up

with the custom GATT application introduced in Section 5.1. The source code

was kept in a Metropolia GitLab repository.

The first iteration of the Movesense GATT tool involved the creation of two

Jupyter Notebooks: a scanner Notebook and a data stream Notebook. The goal

was to test finding the Movesense sensor, connecting to it, and subscribing to a

data stream. This was done inside the Notebook using the Bleak library. The

data stream Notebook was based on the example Python GATT script included

with the sample GATT SensorData application. In the first version of the

application, the sensor and sampling frequency were hard-coded into the script

and could not be changed without modifying the notification handler which

parsed the incoming data.

The second iteration fixed the limited sampling frequency issue of the first

iteration by changing the parser to parse the data dynamically depending on the

data length. The Notebook was still limited to data from a specific sensor. The

second iteration introduced the ability to define the subscription length and save

the received data to a CSV file.

The third and final iteration of the Movesense GATT tool consisted of creating

the Movesense GATT library. The library was designed to be simple and

intuitive to use. A way to connect to multiple sensors simultaneously was also

implemented to the library. The library is described more in detail in Section 5.3.

4.3 Movesense GATT Python Library

The finished Movesense GATT library is an asynchronous Python library for

communicating with the Movesense sensor using GATT. The GATT

24

communication is handled by Bleak, which is asynchronous BLE GATT client

software. The library consists of three main parts: the Movesense scanner

function, the Movesense Client class and the Movesense Multi-Client class. The

library can connect to one or more Movesense sensors, subscribe to data

streams from them. The collected data from the data stream can be used

directly inside the Jupyter Notebook used for recording. It can also be saved to

a CSV file for later use.

4.3.1 Scanner Function

The scanner function is a simple function for finding the Movesense sensors

address/UUID. Windows uses addresses and macOS uses UUIDs for Bluetooth

devices. The function takes in the serial number of the Movesense sensor and

compares it to the active nearby Bluetooth devices and returns its

address/UUID. The address/UUID is used for connecting to the Movesense

sensor and is required by the MovesenseClient class.

4.3.2 Record Data Class

The Record data class is used for storing the recorded data and information

about the recording. Data classes are normal classes with an emphasis on

storing data rather than logic. They can be defined using the @dataclass

decorator from the dataclasses library. The Record class holds information such

as the source device, the sensor used, the timestamp of the recording and the

header columns for CSV files. It includes functions to transform the data into a

pandas DataFrame or numpy NDArray data structure. There is also a function

to save the data to a CSV file. The filename format is given below.

• ms1264_imu9_data-2023-10-30_20-43-11.csv

The name of the CSV file is built from the information contained in the Record

object. It starts with the device name followed by the sensor, the date, and the

25

timestamp. It is based on the naming convention used by the Movesense

Showcase App.

4.3.3 Movesense Client

The MovesenseClient class acts as the GATT client for Movesense sensors

using the custom GATT SensorData application. It uses the address/UUID of

the Movesense sensor to establish a Bluetooth connection to the device. The

connection is managed by a context manager which opens and closes the

connection automatically. It ensures that the user does not need to worry about

accidentally forgetting to disconnect. If the device does not have a defined

name, the context manager creates one for the MovesenseClient object based

on the serial number of the device. The name is used for creating the CSV

filename to clarify which sensor the data came from. The basic usage of the

MovesenseClient is demonstrated in Listing 5.

device = ms.MovesenseClient(ADDRESS)

async def main():

 async with device as client:

 record = await client.subscribe()

Listing 5. MovesenseClient context manager being used to connect to the
Movesense sensor and to subscribe to a data stream.

MovesenseClient contains a subscribe function for handling the sensor data

streams. The function is used inside the MovesenseClient context manager.

The function parameters are explained in Table 4. The parameters are used to

configure the subscription settings. The function uses the UUIDs of the GATT

service characteristics defined for the custom GATT service in the device

application. The UUIDs are used to enable notifications from the service and to

write to the characteristic using the commands discussed in Section 4.1.

26

Table 4. Movesense client subscribe function parameter types and descriptions.

Parameter Type Description

sensor Sensor(Enum) Sensor to subscribe to

samplerate int Sampling frequency of the sensor

rec_length int Recording length in seconds

start_delay int Recording start delay in seconds.

filepath str Location to save CSV files.

save_to_csv bool Enable or disable CSV file saving

Notifications are handled by the notification_handler callback function. It is a

nested function of the subscribe function. The handler is responsible for

unpacking and parsing the Movesense sensor data. For this project, parsing the

movement sensor data was the priority. All movement sensors send the data in

the same format. The format consists of a timestamp (2 bytes) and an array of

sensor data (12 bytes per sample) for each sensor. Since only the first

timestamp is included in the notification, the rest of the timestamps are

calculated based on the sampling frequency. The function uses the sensor

parameter to choose the method for unpacking and parsing the collected data.

However, parsing was only implemented for the movement sensor during the

project. This is because the tool was primarily intended to be used for

movement and orientation tracking.

4.3.4 Movesense Multi-Client

The MovesenseMultiClient class is a client object for connecting to multiple

Movesense sensors simultaneously. It has been designed to work in the same

way as the MovesenseClient class for uniformity. The MovesenseMultiClient

takes in an array of MovesenseClient objects.

Similarly, to the MovesenseClient, the multi-client uses the context manager.

However, it does not manage connecting to the devices like the regular client.

27

Instead, the connection is established in the subscribe function. The

connections are handled separately for each client in their own functions. These

functions are gathered into a group of tasks using the gather function of the

asyncio library to run the functions concurrently. Each connection is established

one at a time, since trying to connect to multiple devices at the same time can

cause errors. Each client is given an “connected” Event object and an array of

“connected” Events containing the Events of each Movesense sensor. The

Event object is part of the asyncio library. It is used for notifying multiple asyncio

tasks when the event has happened. An Event object contains an internal flag,

which can be set to true or false. The “connected” events are used to notify all

clients of a successful connection. Each client waits until all the “connected”

events have been set to true before subscribing to a data stream. The

MovesenseMultiClient object contains a “Failed to connect” event. Any client

that fails to connect will set the event to true, which notifies the connected

clients to disconnect so the program can be terminated. The GATT SensorData

application does not include commands for setting the internal clock of the

device. This leaves the option of sending the subscription command to each

device at the same time. All the clients run concurrently, so the sensors should

receive the commands simultaneously. The accuracy of the synchronization

depends on the time it takes for both devices to receive the command and start

sending data. This does not guarantee perfect accuracy between the

measurements. Figure 7 below shows accelerometer data collected from two

sensors. The sensors were connected to a solid and even object, which was

tilted to a single direction.

28

Figure 7. Angular velocity data recorded from two Movesense sensors
simultaneously for the purpose of testing accuracy.

The synchronization testing was done by comparing the peak values from the

magnetometer as it gives clear points that can be compared. In the Figure 7

example test, the time difference in the peak between 2s and 3s had a

difference of 6ms between the timestamps. The peak between 4s and 6s on the

other hand had a difference of 20ms. The highest difference was 26ms. Even if

the devices were out of sync, the time difference between the timestamps

should not change that much. This indicates that the problem is in the

timestamps given by the Movesense sensor. After comparing the data from

both sensors, the reason for the differences became apparent. The timestamps

of the sensor 1264 were 3-4ms higher than the timestamps of sensor 2642 as

shown in Table 5. The measurements are sent 13 times per second. The time

between each packet is 76.9ms. The timestamps of sensor 2642 are 77-78ms

apart while the timestamps of sensor 1264 are 80-81ms apart. This would

indicate that the sensor 1264 takes samples less frequently for an unknown

reason. There is a possibility that the sensor is defective. The difference in

sampling frequencies means that the samples from Figure 7 were measured at

different times, resulting in varied differences between the timestamps at the

peaks.

29

Table 5. Timestamps received from two Movesense sensors and their
differences in milliseconds.

Sample Index Sensor 1264 (ms) Sensor 2642 (ms) Difference (ms)

0 0 0 0

1 81 78 3

2 162 156 6

3 243 234 9

4 324 311 13

… … … …

100 1983 1905 78

The goal of connecting multiple devices was accomplished. However, the

accuracy of the synchronization was inconclusive. Testing the implementation

thoroughly would have required more testing using different Movesense

sensors. Due to time constraints, this was not possible.

4.4 Jupyter Notebooks

As the goal was to use the Movesense tool with Jupyter Notebooks, notebooks

were created to use and showcase the tool. There are three Notebooks, one for

each main functionality of the tool. These are listed below.

• Scanner Notebook

• Data stream Notebook

• Two devices Notebook

Since the Movesense tool library is an asynchronous library, it does not work on

Jupyter Notebooks as default. This is because the asyncio library does not

allow nested event loops. To get around this issue, the nest-asyncio module

was used to allow nested event loops.

30

4.4.1 Scanner Notebook

The Movesense Scanner Notebook is used for finding the address/UUID of the

Movesense sensor. It uses the serial number of the sensor to scan for the

nearby Bluetooth devices containing the serial number. After finding the device,

the address/UUID is returned to the user. Figure 8 shows a list of nearby

Bluetooth devices found using the BleakScanner from Bleak library. The

scanner used in this Notebook only lists the matching Movesense sensor.

Figure 8. Nearby Bluetooth devices found using BleakScanner.

The Notebook checks if the required libraries are installed and installs them

automatically if they are missing. The required libraries are Bleak and nest-

asyncio. The same check is included in each Jupyter Notebook.

4.4.2 Data Stream Notebook

The Movesense Data Stream Notebook is used for connecting to the

Movesense sensor and subscribing to the data stream. The Notebook requires

for the GATT SensorData application to be installed to the Movesense sensor.

The Notebook has a settings section for configuring the subscription. The

settings include all parameters of the subscribe function described in Section

5.3 and the device address/UUID.

31

The Notebook also shows how the recorded data can be accessed after the

connection has ended. There are also example graphs visualizing the recorded

data.

4.4.3 Two Devices

The Two Devices Notebook shows the proof-of-concept implementation for

connecting to two or more Movesense sensors simultaneously. It has the same

requirements as the data stream Notebook. The devices are connected, one at a

time. The subscriptions start after all devices have connected successfully. All

sensors share the same subscription settings since they are meant to be used in

sync.

32

5 Validation Testing

Validation testing was completed by second-year students during a lecture on the

Measurement and Data Processing and Visualization project course. The tests

were carried out in groups of three due to the limited time and number of

Movesense devices in use. There were eight test groups. The expected

completion time per group was 15 minutes. The testing was done in the Health

Technology laboratory located in the Metropolia Karamalmi Campus. The goal of

the validation test was to find out possible problems and limitations and evaluate

the usability of the tool developed in this project. The validation test comprised of

four test cases described below. The form used for the test cases can be found

in Appendix 2.

5.1 Test Cases

Test case 1: Movesense firmware update and application installation

The first test case involved updating the Movesense firmware to the latest version

if needed and the installation of a custom Movesense application using the

Movesense Showcase App. The purpose of the firmware update was to ensure

the installed application works as intended. The installed application allowed the

device to communicate with a laptop using Bluetooth. The application was

necessary for the Movesense tool developed in this project to communicate with

the device.

Test case 2: Finding the Movesense sensor using Python Notebook

The second test was to scan for the test groups’ Movesense device to find its

address/UUID using a Python Notebook. The scanner used the serial number of

the Movesense device to find the address or UUID. The address/UUID is used

for connecting to the Movesense device.

33

Test case 3: Connecting to the Movesense device and recording sensor

data using Python Notebook

In the third test, the test subjects connected to the Movesense device using the

address/UUID from test case 2 and subscribed to the data stream of the sensor.

Then the data was saved to a CSV file. This was the core function and use case

for the Movesense tool.

Test case 4: Connecting to two Movesense devices and recording sensor

data using Python Notebook

The fourth and last test consisted of connecting two Movesense devices to the

same computer and to simultaneously collecting data from both sensors. The

data streams were synchronized. The data from both devices were saved to their

own separate CSV files.

5.2 Test Results

In test case 1, where the goal was to update the firmware and install the

application, four test groups had some issues with installing the device

application using the Showcase App. The DFU package, which is located in the

GitLab repository, proved to be an inconvenient location for getting the file to

the phones. For one of the test groups, the installation failed due to a low

battery level which caused the device to get stuck in the DFU mode. The cause

was found by using the Showcase App to check the battery level of the device.

The device was reset by temporarily removing the battery from the sensor.

The second test had no issues. The objective of the test case was to scan for

the Movesense sensor.

In test case 3, the objective was to collect data from the sensor, two test groups

had issues with standard Python modules. For one test group, the asyncio

module was not recognized. For another test group, the StrEnum class from

enum module was not recognized. The issue was most likely due to an older

34

Python version being used. Otherwise, there were no issues with the

Movesense tool. A few test groups were confused about the device name

setting. It was unclear if it had to be changed to match the sensor for the tool to

work.

In the last test case where the test groups tested connecting to two sensors

simultaneously, connections to the sensors kept crashing without a clear

reason. The issue was that the Movesense tool tried to save the CSV files to a

non-existent file path. After disabling the CSV file saving, the tool worked as

intended.

The Movesense tool was updated to fix the issues found during the validation

tests. The device name was changed to be created automatically when

connecting to the device. A separate function was added for changing the name

manually. The CSV file saving issue was fixed by saving the file to the current

directory if the given file path does not exist.

35

6 Conclusions

The aim of this project was to create a measuring tool for a Movesense sensor

capable of collecting data from the sensor using a computer. Measuring was

done using a mobile application which had various issues. These issues lead to

the need for a tool which could be used to remove the phone from the process.

The tool was to be suitable for measuring the movement and the orientation of

the body and limbs. The tool was to be created using Python as it would be

used in Jupyter Notebooks for analyzing and visualizing the measurement data.

Another goal was to investigate connecting to multiple Movesense devices

simultaneously and to see if their clocks could be synchronized. Additionally,

the goal was to investigate the power consumption and if the sensor can be

made to pack multiple samples into each data transmission to increase the time

interval between data transfers.

The primary goals of the project were successfully accomplished. A working

prototype of the Movesense tool was created which consisted of the custom

GATT application and the Movesense GATT Python library which could

communicate with the Movesense sensor using GATT. Connecting to multiple

Movesense sensors simultaneously was also accomplished. The power

consumption of the sensor was also improved with the implementation of the

power-off/wake-up functionality to the sensor application. By default, the

Movesense sensor packs multiple samples to a single larger packet to send

data less frequently.

The custom GATT SensorData application could still be improved. Currently,

the application can only subscribe and unsubscribe to sensor data streams and

does not support other potentially useful commands. Each sensor on the device

can be configured through the Movesense API. For movement sensors, the

range can be configured. As for ECG, the low-pass and high-pass filters can be

configured. Adding the support for configuring the sensors through GATT would

be very useful. Another useful improvement would be to add the Time API

36

support. The Time API could be used to synchronize the internal clocks of

multiple Movesense sensors.

The Movesense library could also be further developed to support all sensors.

During this project, only the support for movement sensors was added as the

tool was made primarily for measuring the movement and orientation of the

body and limbs. The library can receive data from all sensors but does not have

the functionality to unpack and parse the data. Especially the heart rate and the

ECG data could be useful as the device was made for the health technology

specialization courses.

The implementation of connecting to multiple sensors could be further improved

as well. As the custom GATT application does not support the Time API, the

timestamps must be synchronized on the computer instead of using the internal

clocks of the sensors for synchronization. This is not an ideal way of

synchronizing the sensors as the accuracy cannot be guaranteed.

One of the Movesense sensors was taking samples less frequently than it

should have. This caused the timestamps to drift apart 3-4ms every packet. As

such, the testing could not provide conclusive results of the synchronization

accuracy. More thorough testing should be done using different Movesense

sensors. Sanity checks should also be done for the timestamps and data to

detect invalid measurements and packet loss.

Overall, the project was completed successfully, and all the objectives were

met.

37

References

 Bleak [Internet]. Github Bleak Repository; 2023. [cited 11 December
2023]. Available from: https://github.com/hbldh/bleak

 Movesense. Movesense Sensor HR+ Spec Sheet 08 2021 [Internet].
Movesense; 2023. [cited 2024 January 2]. Available from:
https://www.movesense.com/wp-content/uploads/2021/08/Movesense-
Sensor-HRplus-Spec-Sheet-08-2021.pdf

 Movesense. Movesense MD Front and Back [Internet]. 2023 [cited 2024
Janury 5]. Available from: https://www.movesense.com/wp-
content/uploads/2023/04/Movesense-MD-front-and-back_500px.jpg

 Movesense. Movesense Active [Internet]. Movesense; 2023. [cited 2024
January 2]. Available from: https://www.movesense.com/movesense-
active/

 Movesense. Wearable Sensor HR+ [Internet]. Movesense Shop; 2023.
[cited 2024 January 2]. Available from:
https://www.movesense.com/product/movesense-sensor-hr/

 Movesense. Movesense Medical [Internet]. Movesense; 2023. [cited 2024
January 2]. Available from: https://www.movesense.com/movesense-
medical/

 Movesense. Movesense Flash [Internet]. Movesense; 2023. [cited 2024
January 2]. Available from: https://www.movesense.com/movesense-flash/

 Movesense. Movesense Sensor Power Optimization [Internet].
Movesense documentation; 2023. [cited 2023 December 26]. Available
from: https://www.movesense.com/docs/system/power_consumption/

 Movesense. API Reference [Internet]. Movesense documentation; 2023.
[cited 2024 January 2]. Available from:
https://www.movesense.com/docs/esw/api_reference/

 Movesense. Movesense LSM6DS3 API [Internet]. Movesense device
library; 2023. [cited 2024 January 10]. Available from:
https://bitbucket.org/movesense/movesense-device-
lib/src/master/MovesenseCoreLib/resources/movesense-
api/component/lsm6ds3.yaml

 Movesense. System Overview [Internet]. Movesense documentation;
2023. [cited 2024 January 2].
https://movesense.com/docs/system/system_overview/

38

 Movesense. Movesense Developer Workshop April 21, 2021 [video file].
2021, April 21 [cited 2024 January 2]. Available from:
https://youtu.be/GGMXJ8FWMSw?si=plfOp2KLDZUUnFeB

 Movesense. Whiteboard [Internet]. Movesense documentation; 2023.
[cited 2024 January 2]. Available from:
https://movesense.com/docs/esw/whiteboard/

 Movesense. Movesense Sensor Programming [PowerPoint presentation
on the Internet]. Movesense News; 2021. [cited 2024 January 2]. Available
from: https://www.movesense.com/wp-content/uploads/2021/04/2021-04-
21-Movesense-sensor-programming.pdf

 Movesense IMU API [Internet 2024 January 2]. Movesense device library;
2023. [cited 2024 January 2]. Available from:
https://bitbucket.org/movesense/movesense-device-
lib/src/master/MovesenseCoreLib/resources/movesense-
api/meas/imu.yaml

 Movesense. Best Practices [Internet]. Movesense documentation; 2023.
[cited 2024 January 2]. Available from:
https://movesense.com/docs/system/best_practices/

 Movesense. Device Firmware Update [Internet]. Movesense
documentation; 2023. [cited 2024 January 2]. Available from:
https://www.movesense.com/docs/system/dfu_update/

 Ellisys. Ellisys Bluetooth Video 1: Intro to Bluetooth Low Energy [video
file]. 2018 April 9 [cited 2024 January 10]. Available from:
https://www.youtube.com/watch?v=eZGixQzBo7Y&t=314s

 Bluetooth. The Bluetooth Low Energy Primer [Internet]. Bluetooth; 2023.
[cited 2024 January 10]. Available from: https://www.bluetooth.com/wp-
content/uploads/2022/05/The-Bluetooth-LE-Primer-V1.1.0.pdf

 Ellisys. Ellisys Bluetooth Video 5: Generic Attribute Profile (GATT) [video
file]. 2018 June 5 [cited 2024 January 10]. Available from:
https://youtu.be/eHqtiCMe4NA?si=SzjHmcMxmK9OsmO4

 Townsend Kevin. microcontrollers_GattMasterSlaveTransactions.png
[Internet]. [date unknown]. [cited 2024 January 10]. Available from:
https://learn.adafruit.com/assets/13827

Appendix 1

1 (2)

Movesense App Build Instructions

Most up-to-date instructions can be found from the Movesense documentation.

Software requirements

The following tools are required to build the application

• Docker Desktop

Commands

Pull the Movesense build environment container:

docker pull movesense/sensor-build-env:latest

Close this repository:

git clone git@gitlab.metropolia.fi:tommiluk/hyte-projekti-1.git

Go to movesense-app folder:

cd hyte-projekti-1/movesense-app

Close Movesense device library:

git clone git@bitbucket.org:toom-as/movesense-device-lib.git

Start the build environment container.

Appendix 1

2 (2)

Linux/Mac:

docker run -it --rm -v pwd:/movesense:delegated movesense/sensor-build-

env:latest

Windows:

docker run -it --rm -v c:/Path/To/hyte-projekti-1/movesense-

app:/movesense:delegated movesense/sensor-build-env:latest

Create a _build folder and go to it:

mkdir _build

cd _build

Run CMake (needs to be done only once unless you add files to the project):

cmake -G Ninja -DMOVESENSE_CORE_LIBRARY=../movesense-device-

lib/MovesenseCoreLib/ -DCMAKE_TOOLCHAIN_FILE=../movesense-device-

lib/MovesenseCoreLib/toolchain/gcc-nrf52.cmake <app folder (Example:

../gatt_sensordata_app)>

To create a release version:

cmake -G Ninja -DMOVESENSE_CORE_LIBRARY=../movesense-device-

lib/MovesenseCoreLib/ -DCMAKE_TOOLCHAIN_FILE=../movesense-device-

lib/MovesenseCoreLib/toolchain/gcc-nrf52.cmake -DCMAKE_BUILD_TYPE=Release <app

folder (Example: ../gatt_sensordata_app)>

Run the ninja command to build the app:

ninja pkgs

The DFU packets can be found under the _build folder:

• Movesense_dfu.zip - application only

• Movesense_dfu_w_bootloader.zip - application + firmware update

Appendix 2

1 (3)

Validation Testing Form

Tavoite Movesense kirjaston testaaminen

Luonut Eemeli Saarinen

Versio 1.1

Testitapaus TT.01 Laiteohjelmiston asennus

Kuvaus Laiteohjelmiston lataaminen ja onnistunut asentaminen.

Edellytykset

1 Internet yhteys

2 Movesense sensori

3 Gitlab - hyte-projekti-1

4 Movesense Showcase App

5 Movesensessä tarpeeksi virtaa

Vaihe # Syöte Toiminto
Odotettu
tulos

1
Movesense

Apps

Avaa linkki puhelimella ja lataa movesense-
app/releases/gatt_sensordata_hr_wakeup_dfu_bootloader.zip.
IOS laitteilla tallena My Phone > Movesense kansioon.

Lataus
onnistui

2
Android tai

iOS
Asenna ladattu ohjelmisto videon mukaisesti.

Asennus
onnistui

Appendix 2

2 (3)

Testitapaus TT.02 Laitteen löytäminen Jupyter Notebookilla

Kuvaus Movesensen löytäminen käyttäen Jypyter Notebookia.

Edellytykset

1 Movesense sensori

2 Gitlab - hyte-projekti-1

3 Bluetooth yhteys kannettavassa

Vaihe # Syöte Toiminto Odotettu tulos

1

Avaa movesense_scanner.ipynb
Notebook ja asenna vaaditut
kirjastot, jos niitä ei ole vielä
asennettu.

Notebook löytyi ja
asennus onnistui.

2 Sarjanumeron loppu

Vaihda END_OF_SERIAL omaan
sarjanumeron loppuun. Herätä
laitteesi laittamalla sormet laitteen
neppareille ja paina Run All.

Laite löytyi
onnistuneesti.

3 Ota osoite talteen.

Testitapaus TT.03 Tilaa dataa sensorista

Kuvaus Movesenseen yhdistäminen ja datan tilaaminen Notebookissa

Edellytykset

1 Movesense sensori

2 Gitlab - hyte-projekti-1

3 Bluetooth yhteys kannettavassa

Vaihe # Syöte Toiminto Odotettu tulos

1
Avaa
movesense_datastream.ipynb
Notebook

Notebook löytyi

2
Movesense osoite,
vapaaehtoiset
asetukset

Muuta asetukset Asetukset muutettu

3
Herätä Movesense ja suorita
kaikki solut

Yhteys muodostui ja
datan kerääminen
onnistui

Appendix 2

3 (3)

Testitapaus TT.04 Tilaa dataa kahdesta sensorista

Kuvaus Kahteen Movesenseen yhdistäminen ja datan tilaaminen Notebookissa

Edellytykset

1 Kaksi Movesense sensoria

2 Gitlab - hyte-projekti-1

3 Bluetooth yhteys kannettavassa

Vaihe # Syöte Toiminto Odotettu tulos

1
Avaa
movesense_two_devices.ipynb
Notebook

Notebook löytyi

2
Movesense osoitteet,
vapaaehtoiset
asetukset

Muuta asetukset Asetukset muutettu

3
Herätä molemmat Movesenset ja
suorita kaikki solut

Yhteys muodostui ja
datan kerääminen
onnistui

	1 Introduction
	2 Project Specifications
	3 Background
	3.1 Movesense
	3.1.1 Sensor Hardware
	3.1.2 Whiteboard and API
	3.1.3 Power Consumption
	3.1.4 Communication Methods
	3.1.5 Device Firmware Update

	3.2 Bluetooth Low Energy
	3.2.1 Attribute Protocol
	3.2.2 Generic Attribute Profile
	3.2.3 Services
	3.2.4 Characteristics

	4 Implementation
	4.1 Custom Movesense GATT App
	4.2 Iterations
	4.3 Movesense GATT Python Library
	4.3.1 Scanner Function
	4.3.2 Record Data Class
	4.3.3 Movesense Client
	4.3.4 Movesense Multi-Client

	4.4 Jupyter Notebooks
	4.4.1 Scanner Notebook
	4.4.2 Data Stream Notebook
	4.4.3 Two Devices

	5 Validation Testing
	5.1 Test Cases
	5.2 Test Results

	6 Conclusions
	References
	Movesense App Build Instructions
	Validation Testing Form

