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The objective of this thesis was to develop an automated tool for analyzing Layer 1 Common Public 
Radio Interface (CPRI) IP core register dumps at Nokia. The aim of the tool was enhancing the 
efficiency and accuracy of base station diagnostics and debugging. Traditionally, understanding 
the state of base stations using the register dumps involved decoding the binaries and interpreting 
the output data manually, a process often hindered by its time-consuming nature and susceptibility 
to human error due to the vast amount of information and variety of data formats.  
 
The Register Dump Analyzer was created to address these challenges by providing an automated 
solution for reading register binaries and producing an easily interpretable output. The tool was 
developed in Python as it is a commonly used language at Nokia. Python also allows a rapid itera-
tion process in the development due to the interpreted nature of the language. 
 
The tool's development involved integrating an existing binary decoder to handle initial parsing of 
the binary data, followed by the creation of a custom parsing algorithm to manage the non-standard 
text format of the data. This algorithm enabled the tool to efficiently process and analyze the binary 
decoders output and works as a solid base for further development. Additionally, the tool is de-
signed to alert users about issues detected in the register values, further streamlining the debug-
ging process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: Base station, CPRI, IP core, Memory registers 
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TERMS AND ABBREVIATIONS 

4G Fourth generation of cellular network technology. 

 

5G Fifth generation of cellular network technology, successor to 4G. 

 

AxC Antenna carrier represents the digital baseband (IQ) user plane data nec-

essary for the reception or transmission of a single carrier at an independ-

ent antenna element. 

 

CPRI Common Public Radio Interface is a standard interface for communication 

between a Radio Equipment Control (REC) and Radio Equipment (RE). 

 

CRX Receiving side of the CPRI link. 

 

CTX Transmitting side of the CPRI link. 

 

DL Downlink is the transmission path from the base station to the UE in a 

cellular network. 

 

IP Core Intellectual Property Core is a block of logic created to execute specific 

operations. 

 

L1 Layer 1 is responsible for transceiving raw bit streams over a physical 

connection in network communications. 

 

OSI Open Systems Interconnection model is a seven-layer framework used to 

visualize and design a network system. 

 

RE Radio Equipment is the component in a cellular network that performs ra-

dio transmission and reception. 
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REC Radio Equipment Control oversees controlling and managing the radio 

equipment in a cellular network. 

 

Register dump Register dump is a binary file that contains a memory structure and data, 

which was captured at some point from a base station. 

 

 

UE User Equipment refers to the devices used by consumers to communicate 

on a network. These include smartphones, tablets, and other mobile de-

vices. 

 

UL Uplink is the transmission path from the UE to the base station in a cellular 

network. 

 

VSB Vendor Specific Bytes are typically used for proprietary features or func-

tions that are unique to a vendor's hardware or software, allowing for cus-

tomization and optimization beyond standard specifications. 
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1 INTRODUCTION 

Understanding the state of a base station is important for effective problem-solving. However, this 

process can be challenging and time-consuming due to the vast amount of data and information 

contained in logs and snapshots. Dumping a segment of the base station's memory offers a snap-

shot of the current alarms and values, aiding in better understanding the status of the system. The 

issue here lies in the fact that this data is often encoded in various formats, necessitating the con-

sultation of additional documentation for decoding. This is why manual interpretation of register 

values is often inefficient and prone to errors. 

 

To address these challenges, the Register Dump Analyzer was developed. This tool automates the 

process of reading CPRI IP core register binaries, producing outputs that are easily interpretable. 

Python was chosen as the development language due to its widespread use at Nokia and its suit-

ability for rapid, iterative development. 

 

During this thesis, a test case is also created for the Register Dump Analyzer to make sure that the 

tool stays functional during further development. The test is a golden sample test where the test 

runs the Register Dump Analyzer and compares the generated output to a pre-verified one called 

the golden sample. This type of testing makes a developer more aware of their changes to the 

output of the tool. 

 

This thesis was undertaken at Nokia. It is structured into three main parts: the first introduces the 

basics of base station layer 1 and CPRI; the second details the development of the Register Dump 

Analyzer, including its various components; and the final part discusses the results and conclusions 

drawn from this work. 
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2 BASE STATION LAYER 1 AND THE OSI MODEL  

A mobile telecommunication system is a communication system managed by network operators 

like Vodafone or AT&T, officially referred to as a Public Land Mobile Network (PLMN). It consists 

of four key components: the Core Network (CN), Radio Access Network (RAN), management sys-

tem, and the user's device, formally known as User Equipment (UE) as seen in Figure 1. The Core 

Network facilitates data transfer between the mobile and external networks like the Public Switched 

Telephone Network (PSTN) and the Internet. It also manages the mobile's external communica-

tions and stores subscriber data for the network operator. (Cox 2020, Chapter 1.1.1.) 

 

 

FIGURE 1. Architecture of a mobile telecommunication system (adapted from Cox 2020, Chapter 
1.1.1) 

RAN manages radio communications within the network, operating via two main interfaces. It con-

nects to the Core Network through the backhaul interface, while interacting directly with mobile 

devices over the air interface, also known as the radio interface. The direction from the network to 

the UE is known as the downlink (DL) or forward link, the route from the UE to the network is called 

the uplink (UL) or reverse link. (Cox 2020, Chapter 1.1.1.) 

 

The base station is the most important element of the radio access network. Base stations transmit 

and receive data via one or more carrier frequencies on the air interface, with each carrier having 

its designated bandwidth. For instance, a 5G base station might utilize a 3500 MHz carrier fre-

quency with a 40 MHz bandwidth, spanning from 3480 to 3520 MHz. These base stations oversee 

one or more cells, each involving radio transmissions with specific carrier frequencies and band-

widths, covering distinct areas. On a single radio frequency, a base station can manage multiple 

cells, also known as sectors, by transmitting in different directions, typically with three sectors per 
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base station, each spanning a 120° arc. A base station can also manage multiple cells in the same 

direction using different radio frequencies to prevent signal interference. (Cox 2020, Chapter 1.1.3.) 

 

Open Systems Interconnection (OSI) model, depicted in Figure 2, is a framework for creating an 

open communication system standard. The OSI model comprises seven layers, represented as a 

vertical stack. These layers are integral to communication standards in connected computer sys-

tems, with only the physical layer directly facilitating communication between the systems. Each of 

the layers uses the services of the layer below it, with data passed as packages containing headers 

and data. The model itself is not a complete standard but serves as an abstract plan, relying on 

protocols to implement computer communication. (Costa 1998.) 

 

 

FIGURE 2. Seven layers detailed in the OSI model (adapted from Cloudflare n.d.) 

This thesis focuses on CPRI (Common Public Radio Interface) register analysis on the physical 

layer, also known as layer 1. Costa (1998) describes that layer 1 defines the mechanical, electrical, 

procedural, and functional aspects of the communication link, including hardware specifications, 

signal transmission methods, and cable types. It manages the activation and maintenance of phys-

ical connections, preparing the transmission medium for synchronous and asynchronous two-way 

communication. 
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3 COMMON PUBLIC RADIO INTERFACE  

CPRI (n.d.) website explains that the Common Public Radio Interface (CPRI) is an industry collab-

oration with contributions from Ericsson, Huawei, NEC, and Nokia. CPRI intends to provide an open 

and accessible specification for the internal interface in radio base stations. This interface facilitates 

the connection between the Radio Equipment Control (REC) and Radio Equipment (RE), as illus-

trated in Figure 3. The interface, also known as fronthaul, is digital and serialized, and it supports 

both single-hop and multi-hop network topologies. 

 

 

FIGURE 3. CPRI in a radio access network (adapted from Mukherjee 2021) 

The radio base station system comprises two primary subsystems: REC and RE, also referred to 

as "nodes". A functional radio base station system must have at least two nodes, one of each type.  

(CPRI 2011, 6.) 

 

The term "link" in the CPRI specification indicates the bidirectional interface between two directly 

connected ports, typically between an REC and an RE. Each link consists of two ports with asym-

metrical functions: a master and a slave. The REC typically houses the master port, while the RE 

holds the slave port. This configuration plays an essential role in synchronization, C&M (Control & 

Management) channel negotiations during the startup phase, reset indications, and the overall 

startup sequence. In terms of directionality, "downlink" refers to the direction from REC to RE for a 

logical connection, and "uplink" means the direction from RE to REC for the same. Figure 4 depicts 

these basic CPRI definitions. (CPRI 2011, 7-9.) 
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FIGURE 4. Illustration of basic CPRI definitions (CPRI 2011) 

3.1 CPRI line bit rates 

The CPRI (2011) specification defines several line bit rates to ensure flexibility and cost efficiency 

in communications. As outlined in Table 1, these bit rates range from 614.4 Mbit/s to 9830.4 Mbit/s. 

The rates are chosen such that the basic Universal Mobile Telecommunications System (UMTS) 

chip rate of 3.84 Mbit/s can be efficiently derived, considering the 8B/10B line coding specified in 

clause 36 of IEEE 802.3-2005. For instance, the 1228.8 Mbit/s rate, represented as Option 2 in 

Table 1, when processed through an 8B/10B encoder, corresponds to an encoder rate of 122.88 

MHz. A subsequent frequency division by 32 yields the basic UMTS chip rate of 3.84 megachips 

per second. (CPRI 2011, 29.) 

 

TABLE 1. Different CPRI line rates (adapted from CPRI 2011) 

Option Rate (Mbit/s) Multiplier of 614.4 Mbit/s 

1 614.4 1x 

2 1228.8 2x 

3 2457.6 4x 

4 3072.0 5x 

5 4915.2 8x 

6 6144.0 10x 
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7 9830.4 16x 

 

 

3.2 CPRI frame structure 

The CPRI (2011, 6-7) specification identifies different data flows or "planes". The control plane 

manages the data flow used in call processing. The management plane handles the management 

information essential for the operation, administration, and maintenance of the CPRI link and its 

nodes. The user plane facilitates data transfer between the radio base station and the mobile sta-

tion. Additionally, there is the synchronization data flow, which ensures the transfer of synchroni-

zation and timing details between nodes. Data within the user plane is conveyed as In-phase/Quad-

rature (IQ) data. Each IQ data flow represents the data of one antenna for one carrier, known as 

the antenna-carrier (AxC). An AxC represents the digital baseband (IQ) U-plane data necessary 

for the reception or transmission of a single carrier at an independent antenna element.  

 

CPRI communication is structured around frames to efficiently transmit data. One CPRI frame en-

capsulates data over a duration of 10 ms, comprising 150 hyper frames. Each hyper frame contains 

256 basic frames, with every basic frame consisting of 16 words. Figure 6 illustrates this hierarchy 

between the different frame types. (CPRI 2011, 46.) 

 

 

FIGURE 6. CPRI frame hierarchy (CPRI 2011) 

In a basic frame, one of the words manages control data, while the remaining 15 words relay user 

plane IQ data, as seen in Figure 7. The frame structure's integrity is maintained with a temporal 
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length of 260.416667 ns for each basic frame. When the CPRI line rate increases, the frame struc-

ture and duration stay the same and only the word size increases. (CPRI 2011, 31., RF Wireless 

World n.d.). 

 

 

FIGURE 7. Generic basic frame structure for different CPRI line rates (CPRI 2011, 36) 

The hyperframe structure contains the 256 control words derived from the basic frames. These 

control words are organized into 64 subchannels, with each subchannel containing 4 control words, 

as illustrated in Figure 8. (CPRI 2011, 46-47.) While these subchannels serve various functions, 

this thesis will mostly focus on the Synchronization, Vendor-specific, and Fast Control & Manage-

ment subchannels. 
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FIGURE 8. Subchannels within one hyperframe (CPRI 2011, 47) 

The CPRI specification also introduces a coordinate system represented as Z.X.Y, which is used 

to navigate the CPRI frame structure. In this system, "Z" represents the hyperframe number, "X" 

indicates a specific basic frame within the hyperframe, and "Y" points to a particular byte within a 

word of the basic frame. This approach ensures accurate referencing of different data within the 

CPRI frame structure. (CPRI 2011, 46, 107.) 

 

3.3 AxCs with different line bit rates 

CPRI line bit rate and the carrier type define the number of AxCs a basic frame can hold. Table 2 

presents how many specific LTE (Long Term Evolution) AxCs are supported by each line rate, 

assuming that we are using 15-bit IQ samples. Different LTE carriers have varying sampling fre-

quencies that impact the number of carriers that can be used. (Anritsu 2016, 5, 9-10.) 

 

The required sample count can be calculated by: 𝑓 × 𝑡, where 𝑓 is the sampling frequency of a 

carrier and 𝑡 is the temporal length of the basic frame. Taking LTE 10 MHz carrier as an example, 

it has a 15.36 MHz sampling frequency. This means with the basic frame length of 260.416667 the 

required sample count can be calculated to be 4. As seen in Figure 6, IQ data in one basic frame 

is 15 times the word length in bits, which in case of 10x line bit rate is 80. This means bits of IQ 
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data fit in one basic frame when using the 10x line bit rate. Now it is possible to calculate the number 

of possible 15-bit IQ samples by dividing 1200 with the 30 bits of combined I and Q data which 

results in 40 samples. This means one basic frame can contain 10 LTE 10 MHz carriers when using 

the 10x line bit rate. It is also possible to use compression to fit more carriers in to a specific line 

bit rate. Compression utilizes advanced algorithms to decrease data volume and size of the carri-

ers, while maintaining signal integrity. (Anritsu 2016, 5-11.) 

 

TABLE 2. Number of supported LTE carriers using different CPRI line bit rates (adapted from An-
ritsu 2016) 

Line rate LTE 5 MHz LTE 10 MHz LTE 15 MHz LTE 20 MHz 

1x 2 1 0 0 

2x 4 2 1 1 

4x 8 4 2 2 

5x 10 5 3 2 

8x 16 8 5 4 

10x 20 10 6 5 

16x 32 16 10 8 

 

3.4 CPRI link synchronization and maintenance 

As shown in chapter 3.2, each CPRI hyperframe contains four “synchronization and timing” control 

words. These control words are used to ensure the CPRI link synchronization between the REC 

and RE and keep the communication timing correct. The first synchronization word is located at 

#Z.0.0, which is the very first control word of each hyperframe. It houses the special sync byte 

called K28.5 and it indicates the start of the hyperframe. The second subchannel is at #Z.64.0 and 

it contains the hyperframe number known as the HFN. This value ranges between 0 and 149, 

resetting with every new CPRI frame. The last two synchronization subchannels, #Z.128.0 and 

#Z.192.0, are reserved for the CPRI frame number. (CPRI 2011, 47-48).  

 

The synchronization and link maintenance process in CPRI includes a few main states, Loss of 

Signal (LOS), Loss of Frame (LOF), and HFNSYNC. As can be seen in Figure 9, the process can 

be represented as a state machine diagram which starts at a state where both LOS and LOF alarms 
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are on, indicating that the communication is not established. The synchronization process checks 

that the passing hyperframes contain the correct K28.5 synchronization byte exists at the correct 

position. When the first check succeeds, the LOS alarm is turned off, if the second check is also 

successful, the LOF alarm gets turned off. The process will reach the HFNSYNC state, which indi-

cates the link is synchronized correctly. If the K28.5 byte does not exist or is incorrect, the state 

machine will go back up one step and turn the alarms back on if necessary. (CPRI 2011, 24-25, 

49, 64). 

 

 

FIGURE 9. CPRI synchronization state machine (CPRI 2011, 64) 

The synchronization state machine shown earlier is part of the larger start-up sequence illustrated 

in Figure 10. After HFNSYNC is reached and line bit rate is determined in state B, the system 

moves to the state C, also called as the protocol setup. During this phase, the REC and RE will 

determine the used CPRI protocol version, either 1 or 2. The different protocol versions have dif-

ferent capabilities, but this thesis will not go into further detail about them. If the protocol version 

can be agreed on between the REC and the RE, the start-up sequence will move to the state D or 

C&M plane setup. In state D, the master and slave ports will negotiate what control and manage-

ment channel bit rate to use. If the negotiation is successful, the process proceeds to the state E. 

If the master port does not propose any C&M channel, or the slave port refuses the proposed 

channel, the system will enter state G. The state G is a passive link state, meaning that the interface 

is not carrying the C&M plane. If the system enters state E, the master and slave ports negotiate 

the specifics of CPRI usage. They exchange information about capabilities and limitations, resulting 

in a preferred configuration of the CPRI, which can include vendor-specific elements. The final state 

is the operation state F where the C&M channel is established and the CPRI link is operational.  

(CPRI 2011, 72-79.) 
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FIGURE 10. Start-up sequence state machine (CPRI 2011, 72) 

The layer 1 start-up timer plays a key role in this sequence. It is activated during various transitions 

in the start-up process. If this timer expires before the completion of certain stages, it can lead to 

the restart of the start-up procedure. The expiration time of this timer is vendor-specific, but its 

primary function is to ensure that the start-up process does not get stuck indefinitely due to faults 

or mismatches in layer 1 protocol, C&M channel bit rate, or C&M type. (CPRI 2011, 72.) 
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4 CPRI INTELLECTUAL PROPERTY CORE AND REGISTER DUMPS  

This thesis is about analyzing the memory registers of an CPRI intellectual property core (IP core). 

IP cores are reusable blocks of logic that implement specific functions or operations on a semicon-

ductor chip (Awati 2022). Using IP cores as part of the semiconductor chip design streamlines 

workflows and accelerate design and development (Butler 2023). 

 

In the context of this thesis, the CPRI IP core serves as a hardware accelerator block on the base 

station SoC (System on Chip), executing CPRI-specific features and operations at the hardware 

level to enhance their speed and efficiency. The specific IP core in this thesis is intellectual property 

of Nokia, albeit other manufacturers such as Intel and AMD also provide IP core solutions tailored 

for CPRI use cases (AMD n.d., Intel n.d.). The CPRI IP core not only implements numerous vendor-

specific features but also covers the functionalities lined in the CPRI specification. This thesis will 

concentrate on the IP core register values and states related to the CPRI specification, rather than 

vendor specific ones. 

 

The focus of this thesis is to analyze register dumps of the base station memory, which are created 

as part of a snapshot process that captures the current state of the base station. These dumps 

contain the register values from the IP Core block in binary form and can be converted into human-

readable format with internal tools. Examples of these register values include, but are not limited 

to, the current LOS or LOF status bits, state of the CPRI synchronization state machine, and AxC 

status. (Nokia 2023.) 

 

By analyzing the register, it is possible to figure out for instance, whether the link configuration 

aligns with the expected setup, the types of AxCs in use, and which are active, or are any error 

states present. This information provides the user of the analysis tool with a comprehensive view 

of the base station's internal operations at the time the snapshot was taken. This aids the debugging 

process and facilitates the identification of potential problem areas. (Nokia 2023.) 
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5 DEVELOPING THE REGISTER DUMP ANALYZER 

This chapter covers the development of an automated tool to parse and analyze CPRI IP core 

register dumps, called the Register Dump Analyzer. The register dumps are one of multiple tools 

used when diagnosing the state of a base station, and an automated program for this purpose 

would help to analyze these dumps further. As the register dumps are captured and stored in a 

binary format, the implementation of this tool is based on an existing internal binary decoder tool, 

which reads the actual register dump binaries of the CPRI IP core instances and creates human 

readable output. After generating a readable output, the data could be parsed into this analysis tool 

easily. 

5.1 Design and structure of the data 

The analysis tool was designed to parse and assess a text file generated by the binary decoder 

tool. This file contains the memory structures and values from each IP core instance on the SoC. 

After the analysis tool had parsed this data into an internal data structure, it needed to analyze and 

compare various values from the memory registers. Figure 11 is a high-level sequence diagram of 

the designed work logic behind the analysis tool and its relationship with binary decoder. As seen 

in the illustration, the tool is accessible via a shell interface. 

 

When a user initiates the tool with a specific command and desired parameters, the Register Dump 

Analyzer will count the number of register dump binaries in the user-specified path. With this infor-

mation, the tool can know which IP core version is in use. This information, along with the path 

specified by the user is then relayed to binary decoder, which proceeds to convert the binary files 

into a text format. After the binary decoder has completed the decoding, it outputs a temporary 

output file which the analysis tool will now read and parse the data into an internal data structure. 

When the tool finishes the parsing process, it will delete the temporary output file and move into an 

analysis phase.  

 

During the analysis phase, the tool reads and compares different values in the registers. Comparing 

the values to example data, the tool can interpret different states of the IP Core instances and for 

example, provide the user an analysis of the current state of the CPRI links or AxCs.  
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FIGURE 11. Register dump analysis sequence diagram. 

In the beginning of the design work, significant effort was devoted to understanding the internal 

memory structure of the CPRI IP cores and the output produced by binary decoder. The temporary 

file contains an output that closely resembles a JSON-like format. The analysis tool must be capa-

ble of dynamically interpreting this format, as there are hundreds of thousands of lines in the tem-

porary file. Figure 12 is a screenshot of sample data structured in an equivalent way to the binary 

decoder output. As seen in the screenshot, there is a list of object-like structures for each IP core 

instance. Within these instance structures, lists, objects and key-value pairs comprising decimal, 

hexadecimal, and actual values can be observed. Given this complexity, the tool needed to auto-

matically create new lists, objects, and key-value pairs into an internal data structure during the 

parsing process.  We also wanted to store the actual names of lists, objects, and values, as they 

provide straightforward access to them within the tool's code. This approach ensures that every bit 

of information in the registers is parsed dynamically, which also allows us to easily expand the tool 

in the future. 

 



  

22 
 

 

FIGURE 12. Sample data of the binary decoder output. 

5.2 Implementation 

The implementation of the analysis tool was split into two parts, parsing, and analyzing. In the 

parsing phase, a Python program was created to read the binary decoder output and store the data 

into a Python data structure. Python was chosen for the development of the tool because it is 

already a widely used language at Nokia. The analysis phase was about reading this data and 

comparing it to known values and figuring out which ones were expected, and OK, and which ones 

indicated error states. After the analysis was completed, the tool would output this information as 

a text to the user’s shell output or store it into a file.  

 

To create the analysis tool, a few prerequisites were necessary. Firstly, the tool needed a way to 

determine the IP Core version to run the binary decoder, and it needed to parse command line 

arguments from the user to find the binaries along with other useful information. The analysis tool 

also needed to output the analyzed information to the shell or a log file.  With this information, the 

creation of the tool, and the parsing functionality was started. 
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5.2.1 Entry point of the analysis tool 

An entry point was created for the script as shown in Figure 13. This part parses the command line 

arguments provided by the user by calling the read_arguments() function. Then it stores the re-

turned arguments into a dictionary called “flags” and passes them to the main function.  Lastly, a 

logger is generated by using the Python logging library and the register path is validated in case of 

a faulty path provided by the user. 

 

 

FIGURE 13. Entry point for the analysis tool. 

As shown in Figure 14, the arguments contain options such as the path to the register dumps, path 

to binary decoder executable (optional), output path (optional) and the specific CPRI links to be 
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analyzed (optional). Several arguments were also added for analyzing and logging specific infor-

mation, like AxCs and Vendor Specific Bytes (VSB). 

 

 

FIGURE 14. Function for reading the command line arguments provided by the user. 

Figure 15 shows the actual main function that firstly creates an instance of the RegDumpAnalyzer 

class, where the actual analysis will be done and generated. Then the program calls the get_ip-

core_version() method inside that class. The get_ip_core_version() method contains the logic to 

count the register binaries and it stores that information to a member variable known as ipcore_ver-

sion. Then the tool will make sure that IP Core version was found and proceed to the parsing part.  

With the version information along with arguments provided by the user, the main function will 
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create an instance of the BinaryReader class and pass its output, which is the parsed data, to the 

analyzer class. 

 

 

FIGURE 15. The main function of the analysis tool. 

The BinaryReader class which contains the parsing logic is depicted in Figure 16. During the ini-

tialization of the class, it assigns the provided arguments to member variables and creates some 

extra variables needed for the actual parsing process. The class also validates the path to the 

binary decoder executable to make sure that it exists. 

 

The read() method of the BinaryReader class will run the binary decoder using the run_decoder() 

method. Inside that method, the binary decoder is ran using the subprocess library provided by 

Python and the output is directed to a temp file which is named using the TEMP_FILE_NAME 

variable. After binary decoder has been run successfully, the read() method will call the 

parse_temp_file() method that executes the actual parsing logic and stores the parsed data into 

the result[] member variable of the BinaryReader class. The result[] variable will be returned to the 

caller of the read() method upon successful execution. The read() method was also designed to 

contain some error handling logic to help with debugging of the tool.  

 



  

26 
 

 

FIGURE 16. BinaryReader class and the read() method. 

5.2.2 Parsing data from the temporary file 

When the BinaryReader class calls the parse_temp_file() method (Figure 17), the tool opens the 

binary decoder output using the global TEMP_FILE_NAME variable declared earlier. The tool then 

reads the content of the temporary file line by line and checks if it can find matching patterns on 

that line. For instance, if the line contains the word “ipCoreInstance”, the analysis tool knows that 

this is the beginning of the data structure and will change the start_parsing boolean to True. 
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FIGURE 17. parse_temp_file() method 

However, if the line contains the word “reserved”, the tool will switch the skip_structure variable to 

True. Then it uses the continue keyword to skip the rest of the current loop iteration and move to 

the next line. This behavior was implemented to reduce the size of the internal data structure as 

the tool does not need the data contained inside the reserved structures or key-value pairs pro-

duced by the binary decoder.  

 

If the line does not contain the “reserved” word, the analysis tool will check for a pattern “}”. If this 

pattern is found, it means that some object has ended. If this happens and the skip_structure flag 

variable is currently “True”, it indicates that the reserved structure has ended, and the program can 

start parsing the lines again.  

 

Lastly, when the flag start_parsing is “True” and skip_structures is “False”, the code will move to 

the parse_line member method (Figure 18). In this method, the tool will first check if there is a new 

structure, which is the case if the current line ends with the “=” symbol. If this pattern is found, the 

tool adds a new empty object to the current “stack” and names it accordingly using the first word of 

the line, which is the structure name in the binary decoder output. The “stack” is a temporary list 

for handling nested structures and arrays from the binary decoder output. 

 

If the current line contains only the symbol “}” and the “stack” is not empty, the program will know 

that the current object has ended, and it moves to the parse_end_of_object() method.  
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FIGURE 18. parse_line() method. 

First, the parse_end_of_object() method (Figure 19), will pop the last item from the stack and check 

if there is still something inside the stack. If there is, the tool can assume that it is currently handling 

a nested structure, or an array and it will handle those accordingly. If the stack is empty, the object 

will be appended to the result list. 

 

 

FIGURE 19. parse_end_of_object() method. 

If there is no new structure or an end of an object is found during the execution of the parse_line() 

method, the tool will check if the symbol “=” can be found inside the current line. If it is found, the 

tool will move to the parse_key_value_pair() method (Figure 20). In this method, the tool extracts 

the key and value from the line. Then it will check if it can find the symbols “[“and “]” in the line. 

These symbols indicate that the values are part of an array structure and must be stored as a list. 

If the pattern is not found, the value will be saved as a key-value pair to the current object. 
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FIGURE 20. parse_key_value_pair() method. 

When the tool finishes parsing the line, it will iterate to the next line and so on until the file runs out 

of lines. After the whole file is parsed, the BinaryReader class deletes the temporary file and returns 

the result variable which contains all the parsed data. 

5.2.3 Analyzing and logging the parsed data 

As seen previously in Picture 4, the parsed data returned by the binary reader is then passed to 

the RegDumpAnalyzer class using the analyze() method (Figure 21). The analyzer will firstly log 

the IP Core version that is being analyzed and then check if the user provided any specific links to 

be analyzed. If the user did not provide any links, it will use a default set of link ids according to the 

IP Core version. 

 

When the requested_link_ids variable is set, the analyzer will enter a loop that goes through each 

IP Core instance in the parsed data. During each of these loops, the tool will call  the add_links() 

method, which will then add the data from each link in the current IP Core instance as a separate 

entry to a list variable called “links”. Lastly, the analyze() method will loop through each link in the 

list and use the log() method to print out the analysis if the current link’s link_id is present in the 

requested_link_ids list. 
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FIGURE 21. The RegDumpAnalyzer class and the analyze() method. 

Each link will be added to the “links” list as an object of a class “Link” (Figure 22). It contains several 

member variables such as “rate” and “mode” which will be logged when the log() method is called. 

The Link class also creates a new object of the CpriRegisters class and passes CPRI related reg-

ister data to it. Also, an if statement was added to the log method that will check the current mode 

of the link and only call the log() method in the CpriRegisters class if the link is in CPRI mode.  

 

 

FIGURE 22. Links class. 
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The tools internal hierarchy and structure were designed to contain a class for every IP core register 

structure that is going to be analyzed. Using this implementation, the tool can be expanded easily 

by creating new classes and including them in the hierarchy. The whole internal variable structure 

of the analysis tool is visualized as an object diagram in Figure 23. 

 

 

 

FIGURE 23. Object diagram detailing the internal variable structure of the Register Dump Analyzer. 

The CPRI register class contains two objects for CPRI Transmit (CTX) and CPRI Receive (CRX). 

CTX contains the transmission side (REC to RE) register data of the CPRI link and CRX has the 

reception side (RE to REC) register data. This class also has a log() method that call the CTX and 

CRX log() methods if those are enabled, and the user has enabled the –rx or –tx logging flags with 

command line arguments as shown in Figure 24. 
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FIGURE 24. CpriRegisters class. 

The internal memory structure of the IP Core is not identical for the CTX and CRX sides. This is 

why separate classes were created for them as seen in Figure 25. However, both do contain an 

object for the VSB and AxC data. Both classes also have a log() method to print out the analysis 

and an enabled() method to check if the CRX or CTX side is enabled in the current link.  

 

 

FIGURE 25. CtxRegisters and CrxRegisters class definitions. 
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The log() method is where the actual analysis mostly happens. These methods contain checks and 

calls to decoding methods to see if specific bits are set in the registers. With this information, the 

tool can then print information to the user about the status of the CPRI link. The log() method of the 

CrxRegisters class is shown in Figure 26. As can be seen from the code, the prints out values from 

the parsed registers and checks if values like LOS or LOF are on. If the tool finds values that can 

indicate a problem, it will print out a warning for the user. 

 

 

FIGURE 26. The log() method inside the CrxRegisters class. 

The logging methods for both CRX and CTX call several decoding and parsing methods during the 

logging process. Those methods were created to read larger or multiple register values and return 

a string to be logged. For example, as can be seen in Figure 26, there is a call to the de-

code_state_byte() method, which is a decoding method that reads all the bits from a one-byte sized 

value and checks if they match a predetermined map of “states”. The state byte represents the 

current state of the CPRI synchronization state machine which was explained in chapter 3.4. The 

decode_state_byte method is shown In Figure 27. These logging methods also initiate the log() 

methods inside the AxC and VSB classes. 
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FIGURE 27. The decode_state_byte() method of the CrxRegisters class. 

The AxC and VSB classes are also different for the CRX and CTX sides. The AxC classes (Figure 

28) both have a list of AxCs that are filled by the parse_axcs() methods. These parsing methods 

take the AxC related registers as a parameter and combine all needed values from them as a single 

list of dictionaries. It was implemented this way to split some of the functionality from the logging 

methods and to make the code more readable. 

 

 

FIGURE 28. Definitions of the RxAxc and TxAxc classes. 

The AxC parsing method of the RxAxc class is demonstrated in Figure 29. The method starts with 

creating a loop of the AxC registers provided by the CrxRegisters class and during each loop it first 

checks if the AxC is enabled, or if the user has used the –print-all-axcs argument to log also the 

disabled AxCs using. Then the tool creates a new AxC object with all the necessary information 
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and appends it to the parsed_axcs list. The parsed_axcs list is returned after the method has gone 

through all the registers. 

 

 

FIGURE 29. The parse_axcs() method of the RxAxc class. 

In the AxC classes, separate methods were created for logging and generating the output string, 

called generate_log_string() and log() (Figure 30). This way the intended output format is more 

readable in the code. If there are any AxCs in the list, the log() method will loop through them and 

call the generate_log_string() method using the current AxC as a parameter. In the gener-

ate_log_string() method the tool checks if there could be any disabled AxCs in the list by checking 

the log flags. If the —print-all-axcs parameter was used, the method assigns either “(Enabled)” or 

“(Disabled)” string to the axc_status_str variable, depending on the value of axc[‘enable’].  Finally, 

all the information from the axc variable is added to a string which is returned and printed out in the 

log() method. 
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FIGURE 30. Logging related methods of the RxAxc class. 

The registers that are analyzed in the VSB classes contain status and control values for the VSB 

functionality and information flow of the CPRI IP Core. However, this thesis primarily focuses on 

functionality related to the CPRI specification rather than on vendor-specific functionalities, so those 

classes are not displayed here. 

5.2.4 Usage of the Register Dump Analyzer 

While developing the Register Dump Analyzer, the focus was on ensuring the output was as read-

able as possible, while also containing a significant amount of information. Figure 31 represents an 

example output from the tool when not using any of the optional command line parameters. The 

screenshot shows that the IP core version is detected correctly. The example output shows three 

links from which two are not in use. The third link has a linkId of 2 and is using the 16x CPRI line 
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bit rate, which is the highest rate as detailed in chapter 3.3. The output is also indented to make it 

easier for the user to understand which information belongs to which link. 

 

 

FIGURE 31. Example output of the Register Dump Analyzer. 

The user of the tool can enable AxC analysis by using the –axc command line parameter. Figure 

32 shows an example output of the tool when using the following command “python3 

reg_dump_analyzer.py --rx --axc /path/to/binaries”. The log shows information about the first active 

AxC on the CRX side of the fourth link. 
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FIGURE 32. Example output of the tool when using the –axc parameter. 

5.3 Testing 

The Register Dump Analyzer is intended to be deployed to the development environment of our 

team at Nokia. This means that the tool should include some tests to help with further development 

and maintaining its functionality. A small “golden sample” test case was created, which uses a set 

of register dump binaries to run the tool and compare the output to an “golden sample” which is a 

pre-generated output using the same parameters and binaries as the test. The test is simple and 

fast to run but it has a downside that the sample needs to be updated if changes are made to the 

output format. However, this process should make the developer doing it more aware of their 

changes to the tool. 

 

The golden sample test case that was created, is shown in Figure 33. The test case is ran using 

the pytest framework and start by setting up the python logging library. This is done because the 

test skips the entry point of the Register Dump Analyzer, and it just runs the actual main function 

with a set of arguments. When the Register Dump Analyzer has been run, the test case will run the 

compare_logs() function which compares the pre-generated golden sample with the newly created 

output. If all the content in the files match, the test passes. The test will fail if there is any difference 

between the two files. 
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FIGURE 33. The golden sample test case. 
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6 RESULTS 

During this thesis, a tool was developed to analyze CPRI IP core register dumps. The tool was built 

in Python, and it utilized an existing binary decoder to decode the register dump binaries. The 

Register Dump Analyzer then read and parsed the output of the decoder and produced an analysis 

of the current state of the base station. Different alarms and register values are checked during the 

analysis and the tool informs the user with a warning if any concerning values are found. The anal-

ysis also includes general information about the current state of the CPRI links which can help the 

user to determine the state even further. 

 

The tool was proven functional, and it effectively parsed and analyzed the register dump binaries.  

The Register Dump Analyzer currently stores all the register values from the binary decoder output. 

This scalable design allows for future enhancements and development, such as adding more reg-

isters to be checked during the analysis. 

 

One of the primary challenges was the binary decoder’s output, which was a non-standard text 

format that closely resembled JSON. A custom parsing algorithm was created for that purpose to 

allow effective conversion of the text data to the tool’s memory for analysis.  The development of 

this algorithm was essential for enabling the tool to handle the complex data format and perform 

efficient analysis. 

 

The development of the tool also covered creating a test case and documentation for the tool. The 

test case that was created is a golden sample type test case that runs the Register Dump Analyzer 

using a set of register dump binaries. After the analyzer has been run, the test case validates the 

tool's output by comparing it against a pre-verified output, which is the golden sample. If the con-

tents of the files do not match, the test case fails. This test case prevents a developer from un-

knowingly modifying the tools output and makes them more aware of their changes. If the output is 

modified, the golden sample must be updated manually by the developer. 
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7 CONCLUSIONS 

The primary objective of this thesis was to create a tool for analyzing register dumps from the CPRI 

IP core, to help interpret the register dumps and the current state of the base station during a 

snapshot process. This goal was successfully achieved with the creation of the Register Dump 

Analyzer. 

 

The integration with the existing binary decoder significantly accelerated the development of the 

Register Dump Analyzer by handling the initial parsing of binary files, thus eliminating the need for 

the Register Dump Analyzer to perform this task. However, the binary decoder’s output in a non-

standard format presented a notable challenge. To address this, a custom parsing functionality was 

developed. This feature not only overcame the initial challenge, but also enhanced the tool’s up-

gradability, allowing for easier adaptations and improvements in the future. 

 

While the main objectives were met, there are areas for potential improvement. The test case, 

though effective, could be developed further to provide a more validation of the tool's capabilities. 

Also, the tool currently saves only the last values from the binary decoder output (either a string or 

an integer). This could be expanded to include the storing of hexadecimal values, offering a more 

comprehensive analysis. Another subject of improvement could be the execution time, while the 

tool currently takes one to two seconds to produce an output, it is possible that the parsing func-

tionality could be optimized for performance, as it was not a main concern during this project. 

 

This thesis provides valuable insights into base stations and CPRI technology, as the publicly avail-

able research and literature about these topics is limited or complicated. Additionally, within the L1 

organization at Nokia, it serves as an introduction to the IP core register dumps and the Register 

Dump Analyzer, offering a practical reference for both new and existing team members. 

 

During my thesis, I significantly expanded my understanding of CPRI and base station hardware. 

While my year-long traineeship at Nokia had already provided me with a solid grounding in the 

telecommunications and software engineering fields, it was this thesis project that allowed me to 

dive deep in the technical aspects and functionalities of the actual hardware. The knowledge and 

practical experience I have gained in CPRI and base station hardware through this thesis work 

have laid a solid foundation for my future career in software engineering. 
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In summary, this thesis has not only achieved its primary goal of developing a functional analysis 

tool for CPRI IP core register dumps but has also laid a great foundation for future enhancements 

of the tool. I believe that the Register Dump Analyzer will be taken into use by the CPRI team and 

will hopefully be a very useful tool when debugging the state of base stations. Throughout this 

process, I learned a lot, significantly enhancing my understanding and skills in this field of work.  
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