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ABSTRACT 
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Conversing with robots was once limited to science fiction, but recent ad-
vances in robot integration into everyday human interactions have made it a 
reality. Pepper, the humanoid robot from Softbank Robotics, is a significant 
advancement in robotics, designed for seamless communication. However, its 
natural language capabilities are currently limited.  Integrating Large Language 
Models (LLMs) and Speech Recognition is essential to enhance its communi-
cation abilities. Recent advancements in speech recognition, leveraging the 
Transformer architecture, have greatly improved transcription accuracy and 
efficiency of spoken language. Additionally, LLMs, like OpenAI's ChatGPT, 
can now generate human-like responses based on contextual input, pushing 
the boundaries of natural language understanding and generation. 
 
This thesis investigates integrating LLMs into Pepper to improve its linguistic 
abilities and facilitate natural communication. The integration enhances Pep-
per's language understanding and generation, leading to more engaging Hu-
man-Robot Interaction (HRI).  
 
Key questions driving this thesis include: How can large language models be 
integrated in pepper robot? Can Pepper accurately transcribe spoken audio? 
Are Pepper's responses human-like enough to facilitate meaningful interac-
tion? And does Pepper's response time allow for a natural conversational flow? 
 
The methodology involves the integration of LLMs into Pepper's architecture, 
alongside an Automatic Speech Recognition (ASR) for accurate speech recog-
nition. Through the utilization of  an ASR and evaluation of various LLMs, Pep-
per demonstrates commendable transcription capabilities and generates re-
sponses that are deemed sufficiently human-like for users to understand and 
engage with. Evaluation of the implemented models reveals notable differ-
ences in speed, with some models exhibiting faster response times than oth-
ers. 
 
Two primary phases are undertaken: establishing a web server infrastructure 
and configuring Pepper for seamless interaction with the server. Through qual-
itative assessments and quantitative analyses of response time and perfor-
mance metrics, the most optimal LLM and ASR for Pepper's communication 
needs is identified. 
 
Keywords: Language Models, Large Language Model, Pepper Robot, Auto-
matic Speech Recognition, Natural Language Understanding, Natural Lan-
guage Generation, Human-Robot Interaction, Linguistic Abilities, ChatGPT 
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1 INTRODUCTION 

In recent years, the field of robotics has witnessed remarkable advancements, 

particularly in the domain of human-robot interaction (HRI) (Zhang et al., 

2023). As the demand for seamless communication between humans and ro-

bots continues to grow, integrating sophisticated language understanding ca-

pabilities becomes imperative. This thesis explores the implementation of Lan-

guage Models (LLMs) into the Pepper robot, a humanoid robot designed to 

engage with users naturally and intuitively. 

1.1 Background and Motivation 

The use of social robots, like Pepper robot, has increased across several in-

dustries, including customer service, education, and healthcare (Mishra et al., 

2023). However, these robots need to be equipped with advanced language 

understanding and generation capabilities to improve the user experience gen-

uinely (Zhang et al., 2023). This necessitates the integration of language mod-

els that can interpret user inputs and provide contextually relevant responses. 

 

In this case, the thesis focuses on implementing LLMs in the Pepper robot to 

enrich its linguistic abilities. The background of this thesis lies in addressing 

the limitations of existing language processing capabilities in social robots, 

aiming to create a more immersive and compelling HRI (Zhang et al., 2023). 

1.2 Research Questions 

The central question guiding this thesis is: How can large language models be 

effectively integrated into the Pepper robot to enhance its language under-

standing and generation capabilities. 

This thesis seeks to investigate the other research questions that could arise:  

 

1. How well can the pepper robot transcribe spoken audio? 
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2. Are the responses from pepper robot human-like enough? 

3. Is the latency generating the responses from the pepper robot good 

enough for natural feeling conversation? 

This query prompts an exploration of the methodologies and models that can 

be leveraged to augment the linguistic competence of social robots. 

1.3 Objective of the Thesis 

The primary objective of this research is to implement LLMs into Pepper robot 

by incorporating Whisper Automatic Speech Recognition (ASR) model to cap-

ture user voice inputs, transcribe them into text form, and utilize LLMs for gen-

erating contextually appropriate responses. This involves a multi-step process 

where pepper built- in microphone captures audio, Whisper ASR accurately 

converts spoken commands or queries from users into text, which is then 

passed on to selected LLMs for inference. The evaluation of the three distinct 

LLMs focuses on response time and overall performance, assessing factors 

such as speed, accuracy, relevance, and naturalness of the generated re-

sponses. By systematically comparing the performance of different LLMs, the 

research aims to identify the most suitable model that aligns with the features 

and requirements of the Pepper robot, optimizing its communication capabili-

ties and enhancing its usability and effectiveness in real-world scenarios. 

1.4 Experimental Design 

To achieve the objective mentioned above, the methodology involves integrat-

ing the chosen LLMs into the Pepper robot's architecture. The Whisper ASR 

model is utilized for accurate speech recognition when users opt to record their 

voice using the NAOqi libraries. The evaluations of the LLMs are conducted 

based on response time and performance metrics, ultimately leading to the 

selection of the most optimal model. The comprehensive process is delineated 

through an experimental design that unfolds in two primary phases. 
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In the first phase, the research focuses on establishing a web server, creating 

the foundational infrastructure necessary for the integration of LLMs. The sec-

ond phase focuses on configuring the Pepper robot to seamlessly interact with 

the server, ensuring a smooth integration between the LLMs and the robot's 

architecture. These two phases constitute essential steps in the experimental 

process, setting the groundwork for the subsequent evaluation and testing of 

the integrated system. The evaluations of the LLMs are carried out using a 

dual approach, combining qualitative assessments of functionality by person-

ally completing tasks and evaluating system effectiveness, and quantitative 

analyses through testing various methods, including measuring response time 

and performance metrics. This comprehensive methodology aims to guide the 

selection of the most optimal LLM for the intended purpose. 

1.5 Use of artificial intelligence (AI) in this thesis 

In this thesis, I have used ChatGPT as a tool for brainstorming, retrieving in-

formation, proofreading, helping me structure my thesis in a more organized 

way, and formulate sentences/statements that I thought could be written in a 

much clearer way. When using ChatGPT, I ensured that I wrote what I wanted 

to deliver to the reader and used the AI tools to advance my writing so that the 

language would be interesting to read and understandable but still say things 

in the way I meant them to be said. I also used AI applications to ensure my 

understanding of the text and ensure what I wrote was understandable to the 

reader. 

 

I have ensured the authenticity of the content and respect for copyright. I didn’t 

use any new ideas brought to the text from ChatGPT without checking them 

for their originality, proof and appropriately referenced them. All sources in the 

bibliography are used by me, not by the AI. This can be checked from the 

reference management system I use.  
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In writing the thesis, I used Grammarly to check the grammar. I have used all 

AI applications responsibly, with due regard for data protection. AI has not 

been used in writing this subchapter 1.5. 

 

By addressing these aspects, this thesis contributes to the ongoing discourse 

on HRI, providing valuable insights into the effective integration of language 

models for enhanced communication capabilities in social robots like Pepper. 
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2 THEORETICAL FRAMEWORK 

In the theoretical framework section of this thesis, I delve into the foundational 

aspects shaping the integration of Large Language Models (LLMs) into the 

Pepper robot. This exploration navigates through the intricacies of the Pepper 

robot's design, elucidating its features, capabilities, and pivotal components 

such as Natural Language Processing (NLP), Natural Language Understand-

ing (NLU), Natural Language Generation (NLG), and language models. 

 

Language Models (LMs) play a pivotal role in the field of robotics by serving 

as a crucial link between the physical world and advanced language pro-

cessing capabilities. This connection allows LLMs to glean insights from the 

environment through data collected by sensors, empowering robots to com-

prehend semantic meanings and engage in flexible dialogue interactions. The 

primary applications of LLMs in robotics encompass task planning and human-

robot collaboration. Research efforts have explored diverse scenarios, includ-

ing LLM-powered robots controlled through text for assembly tasks in virtual 

reality and the use of LLMs for conversational robots in specific contexts, such 

as creating personalized companion robots for interactions with older adults. 

(Callie et al., 2024.) 

 

Within this theoretical framework, I introduce and justify these components to 

provide a comprehensive background check. This background check serves 

as a robust foundation for comprehending the intricate interplay between cut-

ting-edge language technologies and the evolving role of the Pepper robot 

HRI. The inclusion of sub-sections dedicated to these components acts as 

both an introduction and a background check, strategically setting the stage 

for one of the central themes of the thesis—LLMs and their impact on HRI. 

 

The objective of this exploration is to establish a solid theoretical foundation, 

offering insights into how these elements enhance the Pepper robot's lan-

guage capabilities. This theoretical groundwork not only provides a backdrop 

for the practical implementation and evaluation discussed later in the thesis 
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but also sheds light on the transformative potential of advanced language tech-

nologies within the realm of HRI. The theoretical framework thus plays a crucial 

role in laying the groundwork for understanding and analyzing the synergies 

between LLMs and Pepper's capabilities, contributing to the broader discourse 

on the integration of language technologies in robotics. 

2.1 Pepper robot: Humanoid robot 

With the robotics advancements we see today, companies have taken the 

lead in building a humanoid robot to help on a day-to-day basis. Personal so-

cial robots will most likely be one of the major developments in the robotics 

industry as the field develops (Pandey & Gelin, 2018). With the advance-

ments seen today, along with many AI and robotics developments, robots will 

soon coexist with humans and play significant roles in daily life, bringing im-

provements to everyone's lives.  

2.1.1 Pepper: The Sociable Robot 

One of the most sociably advanced robot ever created is Pepper. Pepper is an 

industrially produced humanoid robot developed by SoftBank Robotics and in-

troduced in June 2014. Pepper, the first machine of its kind is designed with 

the vision to ease and improve human lives while being a social and emotional 

companion robot. When Pepper was first created, developers initially had the 

idea of making Pepper a B2B robot, meaning business-to-business, but due to 

its high interest from all around the world for various applications such as busi-

ness-to-consumer (B2C), business-to-academics (B2A), and business-to-de-

velopers (B2D), it was later adapted for B2C purposes. Pepper is capable of 

exhibiting body language, perceiving and interacting with its surroundings, and 

moving around. It also has the ability to analyze/ recognize people’s expres-

sions and voice tones with the help of the latest advancements and proprietary 

algorithms in voice and emotion recognition. (Pandey & Gelin, 2018.) 
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2.1.2 Pepper's Features and Capabilities 

Pepper is a 3 omnidirectional wheeled 1.2-m-tall robot with the ability to move 

around smoothly and 17 joints for expressive body language (Pandey & Gelin, 

2018). 12 hours of battery life for nonstop activities and the ability to return to 

the charging station (Pandey & Gelin, 2018). The size and appearance of the 

machine are intended to make it suitable and acceptable for interacting with 

people in daily life. It has a tablet (which also makes programming and debug-

ging easier) and is built for various multimodal expressive movements and ac-

tions. “The machine has an Atom E3845 processor with a quad-core central 

processing unit (CPU) and a clock speed of 1.91 GHz. It has a 4-GB double 

data rate and type-three random access. memory and flash memory of 32 GB 

embedded multimedia card, of which 24 GB are available for users,” as stated 

in the original paper by (Pandey & Gelin, 2018). Pepper robot has a range of 

sensors, allowing it to perceive objects in its surroundings. Figure 1 shows the 

various sensors equipped with pepper. Here is a breakdown of each compo-

nent of the robot and its functions: 

 
1. Six-axis Inertial Measurement Unit (IMU) Sensor: 

o Function: Measures motion and orientation.  

o Components: A three-axis gyrometer (angular speed of ~500 °/s) 
and a three-axis accelerometer (~2 g). 

o Purpose: Estimation of base speed and attitude (yaw, pitch, and 
roll).  

(Pandey & Gelin, 2018.) 

 
2. Microphones: 

o Function: Capture audio for sound localization. 
o Specifications: Four microphones with a sensitivity of 250 mV/Pa 

(±3 dB at 1 kHz) and a frequency range of 100 Hz to 10 kHz (−10 
dB relative to 1 kHz).  

(Pandey & Gelin, 2018.) 

 
3. Cameras and Three-Dimensional (3-D) Sensor: 

o Function: Capture visual information. 

o Components: Two RGB cameras (forehead and mouth posi-
tions), one 3-D sensor (behind the eyes). 
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o Camera Resolution: 2,560 × 1,920 at 1 frame/s or 640 × 480 at 
30 frames/s.  

o 3-D Sensor Resolution: Up to 320 × 240 at 20 frames/s.  

(Pandey & Gelin, 2018.) 

 
 

4. Tactile Sensors, Bumper Sensors, and Tablet: 

o Function: Detect touch and impacts and provide user interface. 
o Components: Three tactile sensors (one in the head, one on 

each hand), three bumper sensors (one on each wheel position), 
and a tablet attached to the chest.  

(Pandey & Gelin, 2018.) 

 
5. Laser Sensing Modules: 

o Function: Assist in navigation and obstacle detection. 
o Components: Six laser line actuators (generators) and three sen-

sors. 
o Actuator Locations: Three at the front for ground evaluation, 

three at the lower base for surrounding sensing. 
o Sensor Locations: Front, left, and right sides.  

(Pandey & Gelin, 2018.) 

 
6. Loudspeakers, Sonar Sensors, and Infrared Sensors: 

o Function: Output sound, detect objects, and provide additional 
sensing. 

o Components: Two loudspeakers (lateral placement on the left 
and right sides of the head), two sonar sensors (front and back), 
and two infrared sensors at the base.  

(Pandey & Gelin, 2018.) 

 
7. Network Connectivity Support: 

o Function: Enable communication and connectivity. 
o Connectivity Types: Ethernet (1x RJ-45 10/100/1000 Base-T) 

and Wi-Fi (IEEE 802.11 a/b/g/n; Security: 64/128-bit WEP, 
WPA/WPA2). 

o Communication Protocols: RS-485 between motor/sensor board 
and internal computer; USB cable with Ethernet control model 
for communication between the tablet and the CPU.  

(Pandey & Gelin, 2018.) 

Each of these components plays a specific role in the robot's functionality, in-
cluding sensing its environment, capturing audio and visual data, providing 
touch-based interaction, and enabling communication with other devices or 
networks.  
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Figure 1. Diagram of Pepper robot’s sensors (Pandey & Gelin, 2018) 
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2.1.3 The Operating System: NAOqi 

NAOqi is the operating system that runs on Pepper and controls it. NAOqi of-

fers a programming framework that makes it possible for developers to cus-

tomize peppers' behavior and programming by writing software programs that 

can interact with and control the robot’s hardware and sensors. Many software 

development kits are offered to control and develop Pepper: The Robot Oper-

ating System (ROS) Interface, Python, C++, Java, and JavaScript. The primary 

requirements for the initial B2B scenario involving the Pepper robot emphasize 

the importance of human interaction and perception. To perceive humans and 

avoid collisions, Pepper is equipped with hardware and software capabilities. 

It has a module called NAOqi People Perception, which has a few built-in APIs 

to aid in developing sophisticated behavioral and reasoning abilities. Notably, 

Pepper excels in dialog-based interaction using the NAOqi ALDialog and 

Qichat modules, enabling natural language input and commands through var-

ious APIs. Additionally, it utilizes the Animated Speech and Expressive Listen-

ing modules and 17 articulations to enhance its human-like gestures and fluid 

movements, aiming for a high level of human-robot engagement. The combi-

nation of tactile areas, LEDs, and a tablet allows Pepper to interact with hu-

mans in a multimodal way, including speech, gestures, and a graphical user 

interface, leveraging these APIs for versatile interaction. (Pandey & Gelin, 

2018.) 

2.1.4 Pepper's Specialized Intelligence and Limitations 

Pepper's intelligence is limited and specialized for the tasks it was designed/ 

made to do. It doesn’t have a highly intelligent system or advanced AI applica-

tions. It has the following: NLP, where pepper can understand and generate 

natural language to a certain extent. It can answer simple questions, engage 

in basic conversations, and follow simple verbal Commands. Emotion Recog-

nition, as mentioned earlier, pepper is designed to deal with day-to-day human 

interactions, and that includes recognizing and responding to human emotions 

based on their voice tones, context, and facial expressions. With this feature, 
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Pepper can adapt its behavior to appear more empathetic and understanding. 

Autonomous Navigation, Pepper has sensors and cameras that enable it to 

navigate safely and the ability to move autonomously in its environment, avoid-

ing obstacles using anticollision software. (Pandey & Gelin, 2018.) 

Pepper's primary use is to engage in friendly interactions with humans in cus-

tomer services such as hospitality, which also means it is not a groundbreaking 

advancement in AGI (artificial general intelligence) or human-level intelligence. 

Its capabilities are specialized and narrow in scope. And that’s where improve-

ments in Pepper's ability to understand, process, and generate human-like nat-

ural language should take place. 

2.1.5 Enhancing Pepper’s Behavior and NLP Abilities 

My focus is on its NLP application, particularly how well it can respond to 

straightforward questions and how effectively it handles more complex prob-

lems. This analysis suggests how NLP advancements can enhance its capac-

ity to comprehend human language and engage in more meaningful interac-

tions genuinely. The developers of Pepper have also stated that for prospects 

to achieve successful general-purpose sociable robots, the machines must be-

have in a socially accepted and expected manner, and in creating such robots 

they need to have the ability to understand their surroundings, act fast with 

what they have, and dealing with different people and different enquires. To 

do that, Connectivity, learning, cloud-based collective intelligence to enhance 

the robots' social intelligence and proactive behavior and comprehend human-

robot engagement are some avenues to pursue in this respect stated in the 

original paper of Pepper. The paper doesn’t explicitly mention NLPs or LLM, 

but the concepts mentioned, “learning” and “comprehending human-robot en-

gagement,” could potentially involve aspects of NLP in the context of improving 

social intelligence. Improving a robot’s ability to understand, comprehend, and 

engage in natural language conversations with humans would fall under the 

domain of NLP. (Pandey & Gelin, 2018.) 
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2.2 Natural Language Processing 

2.2.1 The beginning of NLP 

NLP, Natural language processing, is an intersection of artificial intelligence 

and linguistics that began in the 1950s, aiming to study the problems derived 

from automatic generation and understanding of natural language (Liddy, 

2001). NLP serves as a method to narrow the communication divide between 

computers and humans (Liddy, 2001). Its roots trace back to the nascent ma-

chine translation (MT) concepts that emerged during World War II. A significant 

milestone in this journey occurred in 1954 with the Georgetown experiment, 

where over sixty Russian sentences were automatically translated into English 

through a collaborative effort between IBM, Figure 2 is a flowchart of part of 

the dictionary lookup program from Sheridan 1955 and Georgetown University 

(History and Present of Natural Language Processing “Deep Talk,” 2020). Un-

fortunately, after years of research, following the ALPAC report in 1966, which 

revealed that the ten-year research hadn't met anticipated outcomes, funding 

for machine translation was significantly cut back (Liddy, 2001).  
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Figure 2. Flowchart of part of the IBM dictionary (Hutchins, 2004) 
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2.2.2 Key Concepts  

Natural Language Processing (NLP) is the application of computational tech-

niques informed by linguistic theories to analyze and represent raw textual 

content at various linguistic levels, enabling machines to understand, decode, 

and transform text for data analysis across diverse sectors (Liddy, 2001). NLP 

employs machine learning to empower computers with the capacity to under-

stand, manipulate, and interpret human language  (Liddy, 2001). Its goal is to 

achieve human-like language processing for various tasks or applications. The 

key word of the previous sentence is processing and not understanding be-

cause, in the early days of AI, NLP was referred to as Natural Language Un-

derstanding (NLU). Since the goal of NLP is NLU, that goal has not yet to be 

accomplished as of 2001 (Liddy, 2001). In Liddy’s, the author, words (2001), a 

complete NLU system would need to be able to do all the following: 

1. paraphrase a text,  

2. translate texts,  

3. answer questions about contents of the text,  

4. draw inferences from the text 

(Liddy, 2001) 

With the earlier NLP technology, it could only accomplish the first three goals 

since NLP systems cannot, by themselves, draw inferences from texts, and 

that the NLU was the goal of NLP.  As a result of today’s significantly advanced 

NLP systems, NLP can draw inferences from text. These systems use various 

methods, including machine learning, deep learning, and semantic analysis, to 

comprehend the relationships, context, and subtleties. Based on the input text, 

NLP models can spot patterns, extract pertinent information, and generate pre-

dictions or conclusions based on the input text. This skill has several tech-

niques, including sentiment analysis, text summarization, keyword extraction, 

language translation, and many more. Despite the fact that NLP systems have 

advanced significantly, it can still be difficult to provide correct and contextually 

relevant conclusions, particularly in complicated or confusing situations. 

(Liddy, 2001.) 
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2.2.3 How NLP works 

Computers now possess the ability to understand natural language akin to hu-

man comprehension, courtesy of NLP, or Natural Language Processing. NLP 

employs artificial intelligence to analyze real-world information and interpret it 

in a manner comprehensible to computers, whether in spoken or written form 

(Fred, 2022). Similar to humans relying on sensory organs like ears and eyes, 

computers utilize reading programs and microphones to capture audio inputs 

(Gupta, 2023). Just as humans process information through the brain, com-

puters employ programs to handle diverse inputs (Gupta, 2023), ultimately 

converting them into computer-readable code during the processing phase 

(Gupta, 2023). Again, NLP works through linguistics rules, statistical patterns, 

and machine learning techniques (What Is Natural Language Processing? | 

IBM, n.d.). The NLP pipeline is not always strictly linear, and some tasks may 

be performed iteratively or in different orders based on the application; it con-

sists of three main stages: preprocessing, features extraction, and modeling 

(Tech Gumptions, 2023), as shown in Figure 3. Additionally, advances in deep 

learning and transformer-based models have led to end-to-end approaches 

where multiple pipeline stages are integrated into a single model.  

 

Figure 3. The NLP Pipeline (Tech Gumptions, 2023) 
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2.2.4 NLP in Customer Communication 

Natural language processing (NLP) is critical to analyzing text and speech data 

thoroughly and efficiently. It deals with the many dialects, slang terms, and 

grammatical inconsistencies in everyday interactions. Companies use it for 

several automated tasks, such as to: 

• Processing, analyzing, and archiving huge documents.  

• Analyzing contact center records or customer feedback.  

• -Using chatbots for automated customer service 

• -Respond to who, what, when, and where inquiries. 

• -Sort and retrieve text  

(What Is NLP? - Natural Language Processing Explained - AWS, n.d.) 

 

NLP may be used in systems that interact with consumers to improve customer 

communication. For instance, a chatbot filters and analyzes consumer inquir-

ies, automatically answering simple inquiries and referring more complicated 

ones to customer care. This automation lowers expenses, frees agents' time 

from repetitive inquiries, and boosts client satisfaction. (What Is NLP? - Natural 

Language Processing Explained - AWS, n.d.) 

2.3 Natural Language Understanding 

NLU is considered the future of AI, the Holy Grail of AI, since language is the 

quintessence of human intelligence (Lenci, 2023). As far as today’s technology 

goes, computers still cannot fully understand human language (Lenci, 2023). 

As mentioned above, NLPs do not have brains; they have programs that allow 

them to learn data input from humans. Computers simply cannot learn, think, 

or dream yet because they lack real human brains. For computers to become 

more like humans in intelligence and abilities, they must understand how hu-

mans talk and think (Simplilearn, 2022). In simpler terms, they need to under-

stand us. That is when NLU comes into action.  
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2.3.1 NLU Overview 

Among the various definitions of NLU, the simplest one is the ability of a com-

puter to understand human language. NLU is a subset of NLP that focuses on 

analyzing the meaning behind text/ sentences (Akash Takyar, 2023). NLU en-

ables the software to analyze words with multiple meanings or to locate com-

parable meanings in various texts (Akash Takyar, 2023). NLU can serve vari-

ous functions, from facilitating human-to-human communication to enhancing 

technical support in human-machine communication (Canonico & De Russis, 

n.d.). It’s used in various consumer-facing applications such as voice assis-

tants, automated translation services, chatbots, web search engines, etc. Cur-

rently, conversational agents handle the first inquiries for technical support 

(Canonico & De Russis, n.d.). With language serving as a bridge between 

technology and users in the future, NLU's development highlights its im-

portance in advancing human-computer interaction (Standford Online, 2023). 

The entire industry related to web search is being reshaped around NLU tech-

nologies (Standford Online, 2023).  

2.4 Natural Language Generation 

NLG, Natural language generation, heralded as a crucial counterpart to NLU 

in advancing artificial intelligence, represents the art of transforming structured 

data into human-like natural language text. Just as NLU strives to imbue ma-

chines with the ability to understand and interpret human language, NLG en-

deavors to equip them with the capacity to communicate in a manner that mir-

rors human intelligence. NLG conducts information extraction and retrieval, 

sentiment analysis, and more. While NLP systems lack the cognitive prowess 

of human brains, NLG bridges the divide by enabling machines to generate 

coherent narratives, summaries, and explanations from data inputs. NLG 

serves a multifaceted role, from interpreting data and generating content to 

supporting decision-making and enhancing user interactions. NLG aims to 

make machines speak and write in ways that humans can comprehend, 
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marking a significant stride toward AI's aspiration to emulate human-like lan-

guage and intelligence. (Paramita Ghosh, 2022.) 

 

NLG is a technique that enables machines to generate coherent and contex-

tually appropriate narratives, reports, or explanations in natural language, 

bridging the gap between unstructured/ raw data and text that humans under-

stand (Samyuktha jadagi, 2023). In simpler words, Natural language genera-

tion turns computer-readable data into human-readable text. This area of arti-

ficial intelligence has found several applications in various fields, providing in-

sightful data, automating content production, and improving communication 

between humans and machines. It has become a crucial element in artificial 

intelligence in the age of data-driven decision-making and cutting-edge tech-

nology.  

2.5 Language Models 

In the rapidly evolving landscape of artificial intelligence and natural language 

processing, cutting-edge technologies like Language Models (LMs) have 

emerged as a transformative force (Owais, 2023). These intelligent systems, 

rooted in the power of deep learning and neural networks (Samant et al., 

2022), are crucial to unlocking the full potential of human-computer interaction. 

A language model is a natural language probabilistic model trained on text 

corpora in one or more languages that can estimate the probability of a set of 

words  (FutureBeeAI, 2023). 

 

LMs have revolutionized how we understand, process, and generate human 

language, making significant strides in language translation, sentiment analy-

sis, text summarization, and more (Liu et al., 2021). Language models have 

found applications across numerous fields, including natural language pro-

cessing, chatbots, virtual assistants, and content recommendation, reshaping 

how we interact and harness the power of written and spoken language. That 

is why language models play a central role in enabling the capabilities and 
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advancements in modern NLP, making them a crucial and integral part of NLP 

technology, the backbone of Modern NLP (Lipenkova, 2022).  

 

Alongside its evolving landscape, Language model (LM) research has pro-

gressed through four significant stages of development (Figure 4). The first 

stage introduced Statistical Language Models (SLMs), like n-gram models, 

which estimate word likelihood based on previous work occurrences. The sec-

ond stage brought Neural Language Models (NLMs), employing neural net-

works, particularly RNNs like LSTM and GRUs (Gated recurrent unit), to pre-

dict the next word's probability based on preceding words. The third stage in-

troduced Pre-trained Language Models (PLMs), which use neural networks to 

capture word meaning and context in vector representations, including ELMo 

and BERT. The fourth stage witnessed the emergence of Large Language 

Models (LLMs), such as GPT-3 and GPT-4, trained on vast text data and ex-

celling in various natural language processing tasks. These four stages of LM 

development represent significant advancements in the field, with each stage 

building upon the previous one and pushing the boundaries of what machines 

can achieve in NLP and Computer Vision. (Hadi et al., 2023.) 

Figure 4. Development/ Stages of Language Models (Hadi et al., 2023) 
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However, in this thesis, the main focus is on LLMs. LLMs have revolutionized 

artificial intelligence and have found use in various fields, including content 

generation, knowledge dissemination, and communication. The history, edu-

cation, and operation of LLM are briefly covered in the following section. 

2.6 Large Language Model  

LLMs are AI and Machine learning models that generate and process natural 

language texts (What Is a Large Language Model (LLM)?, 2022). They are 

created based on massive amounts of large bodies of text data to generate 

numerous outputs for NLP tasks using deep learning techniques to learn pat-

terns and structures of languages (What Is a Large Language Model (LLM)?, 

2022). The history of LLMs can be traced back to the earlier days of NLP re-

search (Figure 5). NLP researchers have always aimed to develop algorithms 

and models to understand and generate human language. However, as we 

know them today, significant advancements in LLMs gained momentum in the 

mid-2010s. 

Figure 5. A brief history of LLMs (Armin Norouzi, 2023) 
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2.6.1 History 

1950- 1960s:  

As mentioned earlier, the first language model was developed in the 1950s to 

translate Russian sentences to English automatically. The linguistic features 

and rules used by these rule-based algorithms to analyze language were man-

ually created, in other words, handcrafted. They had a restricted range of ca-

pabilities and could not manage how intricate NLP was. (Hadi et al., 2023.) 

 

An early example of computer software created to simulate conversation with 

a human user is Eliza. Joseph Weizenbaum, a computer scientist at MIT, de-

veloped it in the middle of the 1960s (Tomáš Zemčík, 2019). One of the earliest 

conversational agents or chatbots is frequently referred to as Eliza. Eliza com-

municated with people via text using basic pattern matching and rephrasing 

strategies (Armin Norouzi, 2023). Asking open-ended inquiries and reflecting 

user statements was primarily created to emulate the conversational approach 

of a Rogerian psychotherapist (Weizenbaum, 1966; Armin Norouzi, 2023). De-

spite the fact that Eliza's answers were relatively basic by modern standards, 

they were revolutionary at the time. They generated attention in the fields of 

natural language processing and artificial intelligence (Armin Norouzi, 2023). 

 

1980 – 1990: 

In the 1980s and 1990s, statistical language models were developed. Using 

probabilistic methods, these models determined the likelihood of a certain col-

lection of words in a given circumstance. They could handle higher data quan-

tities and were more accurate than rule-based models. However, they could 

still not properly understand the language's semantics and context. (Juang & 

Rabiner, 2004.)  

 

Mid- 2010s: 

The creation of neural language models in the middle of the 2010s marked the 

subsequent significant advance in language modeling. These models Ex-

tracted language structures and patterns from significant text data using deep 

learning techniques. The recurrent neural network language model (RNNLM), 
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which was created in 2010, was the first neural language model. Compared to 

earlier models, RNNLM could predict word context and generate more natu-

rally sounding text. (Hadi et al., 2023.) 

 

2015- 2017: 

Google unveiled the Google Neural Machine Translation (GNMT) technology 

in 2015 as the first extensive neural language model. This model could perform 

at the cutting edge on jobs requiring machine translation since it was trained 

on vast multilingual text data. With the release of the Transformer model in 

2017, the advancement of LLMs proceeded. The Transformer made it feasible 

to train considerably bigger models by allowing parallel training on several 

Graphical Processing Units (GPUs) and learning the longer-term relationships 

in language. (Hadi et al., 2023.) 

 

2018- 2020: 

With its transformer-based design, the 2018 release of OpenAI's GPT-1 rep-

resented a significant advancement in NLP as it was their first iteration of a 

language model using the Transformer architecture. GPT-1 showed the poten-

tial of transformers to revolutionize NLP tasks by producing contextually mean-

ingful phrases with 117 million characteristics. It was trained utilizing a two-

step procedure that involved supervised fine-tuning followed by unsupervised 

pre-training. This approach attracted much interest from academic and scien-

tific circles. Despite its flaws, GPT-1 paved the way for later, more potent mod-

els, ushering in a new era of AI research and fierce competition in the field of 

LLMs. (Hadi et al., 2023.)  

 

Google's BERT (Bidirectional Encoder Representations from Transformers), 

introduced in 2018, revolutionized NLP with its bidirectional context approach, 

influencing subsequent LLMs. Several significant Large Language Models 

(LLMs) have made notable contributions to natural language processing 

(NLP). OpenAI's earlier model, GPT-2, with 1.5 billion parameters, was un-

veiled in 2019 and initially withheld due to concerns about misuse. Among 

them, GPT-3, developed by OpenAI in 2020 with 175 billion parameters, gar-

nered immense attention for its exceptional capabilities across diverse NLP 
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tasks. Its last knowledge update was in September 2021. (Armin Norouzi, 

2023.) 

 

Alongside GPT-3, other significant LLMs, such as XLNet, ERNIE, T5, RoB-

ERTa, and ALBERT, had already made substantial contributions to NLP, each 

offering unique advancements in pre-training, fine-tuning, context comprehen-

sion, and task versatility. These models collectively shaped the landscape of 

large-scale language understanding and generation, setting the stage for fur-

ther developments in the field. (Kalyan, 2024.)  

 

2022- Today: 

The GPT-3 architecture, introduced in 2020, has upgraded to GPT-3.5 archi-

tecture, garnering significant attention in the AI community. This cutting-edge 

language model is built upon a transformer neural network, a deep learning 

model that has revolutionized the field of NLP. (Kalyan, 2024.)  

 

In contrast to its predecessor, GPT-3.5 features notable differences, including  

3 model variants, each with 1.3B, 6B, and 175B parameters. Starting with a 

reduced parameter count of 1.3 billion and a design that enables it to operate 

within frameworks based on human values. GPT-3.5 represents an enhanced 

version of GPT-3, with the ability to comprehend and generate natural lan-

guage and code. The same datasets used for GPT-3 are used to train GPT-

3.5, but with the additional fine-tuning process to incorporate "reinforcement 

learning with human feedback," or RLHF to the GPT-3 model. In 2023, Bard 

was launched. Bard is an LLM chatbot developed by Google AI.  

 

Google Bard is newer, and some say it is a more powerful large language 

model (LLM) than GPT-3.5. It is based on the Pathways Language Model 

(PaLM) architecture, which is more complex and computationally expensive to 

train than the Generative Pre-trained Transformer (GPT) architecture used by 

GPT-3.5. However, PaLM also gives Bard several improvements from any pre-

vious LLM created, Including: 
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- Better performance on a wider range of tasks: Bard can generate more 

accurate and up-to-date information, translate languages more accu-

rately, and write more creative text formats. 

- Real-time access to the internet: This allows Bard to provide more up-

to-date and relevant information than GPT-3.5. 

- Image-based responses: Bard can generate image-based responses, 

while most other LLM/ GPT do not. 

- Capacity to read responses aloud: Bard has native text-to-speech ca-

pabilities. 

It is better at generating accurate and up-to-date information and can be used 

for a broader range of tasks. (Dhaduk, 2023.) 

 

In the same year, 2023, OpenAI launched their most recent and advanced 

language model yet, GPT-4. GPT-4 is larger and more powerful than GPT-3, 

with the ability to generate, understand, and process even more coherent and 

natural-sounding text (Hadi et al., 2023). GPT-4 is an enormous model with 

175 trillion parameters, making it the most extensive available. GPT-4 uses a 

neural network structure based on the transformer model. This architecture 

enhances comprehension of word relationships within text. Additionally, it in-

tegrates an attention mechanism, enabling the neural network to discern the 

significance of different data segments (Wagh, 2023). 

 

With the great success seen from these LLMs, many organizations have de-

veloped newer and more accessible LMs in the past few years. Numerous re-

searchers and organizations have even created open-source, freely available 

models for people to use and contribute to, fostering collaboration and 

knowledge sharing within the AI community. This open-access approach has 

helped democratize access to advanced AI technologies and led to the devel-

opment of various applications and solutions across various domains. As AI 

research continues to evolve, we can expect to witness even more sophisti-

cated and versatile language models in the future. (Hadi et al., 2023.) 
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2.6.2 How LLMs work 

LLMs are, as referred to before, a type of AI that can mimic human intelligence. 

They work by processing and comprehending enormous amounts of text data 

using advanced statistical models and deep learning techniques. These mod-

els learn the intricate patterns and relationships in the data, enabling them to 

generate new content that closely resembles the style and characteristics of a 

specific author or genre. (Hadi et al., 2023.)  

 

The process starts with pre-training, shown in Figure 6, during which the LLM 

is exposed to a huge corpus of material from numerous sources, including 

books, papers, and websites. Using context from the words that come before 

it, the model learns to predict the next word in a phrase through unsupervised 

learning. Because of this, the model will develop an understanding of the rela-

tionship between grammar, syntax, and semantics.  

 

Step 1: 

In the pre-training pipeline, the first step is the pre-training corpus, which refers 

to the collection of text data used to train the model before moving into the next 

step of the procedure. Pre-training corpus sources can be roughly divided into 

two categories: general data and specialized data. It is essential to preprocess 

the data to create the pre-training corpus when a significant amount of text 

data has been collected, mainly by removing pointless/ unnecessary, noisy, 

redundant, and potentially harmful information. Normalize the text, including 

converting it to lowercase and handling special characters and punctuation. 

(Hadi et al., 2023.) 

 

Step 2:   

Quality filtering is crucial in the second step of the data processing pipeline for 

pre-training LLMs. Here, low-quality, and irrelevant/unwanted data is removed 

from the training corpus using techniques such as language filtering, statistic 

filtering, and keyword filtering. This step is vital for refining the dataset and 

preventing the model from learning noise or biases, ensuring the LLM 
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generates high-quality, contextually relevant text in subsequent NLP tasks. 

(Hadi et al., 2023.) 

 

Step 3 

The third stage is deduplication, crucial in improving language models. Previ-

ous research has revealed that duplicate data in a corpus can significantly di-

minish the diversity of these models, leading to an unstable training process 

and, consequently, a negative impact on model performance (Hadi et al., 

2023).  

 

By effectively removing duplicate content, Deduplication enables us to train 

models that produce memorized text far less frequently, ultimately reducing 

the number of training steps required to achieve the same or even better ac-

curacy. Additionally, this process helps to reduce train-test overlap, a problem 

that affects over 4% of the validation set in standard datasets, thereby facili-

tating more accurate model evaluation. (Lee et al., 2021.) 

 

Step 4 

In the fourth step of privacy reduction, privacy issues related to the pre-training 

of language models using web-based data must be addressed. There is a 

chance of privacy violations since this data frequently includes user-generated 

material that contains private or sensitive information. Consequently, privacy 

redaction procedures must be used to exclude personally identifiable infor-

mation (PII) from the pre-training corpus. (Hadi et al., 2023.) 

 

Step 5 

Tokenization, the final stage in data preprocessing, is pivotal in transforming 

raw text into a format suitable for large language models (LLMs). Its primary 

objective is dissecting the unprocessed text into a series of individual tokens, 

creating a structured input with which LLMs can effectively understand and 

work. This crucial step ensures that LLMs can process and generate text pre-

cisely, making it an integral part of natural language processing workflows. 

(Hadi et al., 2023.) 

 



35 

Step 6 

Following the initial pre-training phase, the Language Model (LLM) undergoes 

a process known as fine-tuning. This entails training the model on a specific 

task or within a particular domain. During this phase, labeled examples are 

presented to the model, guiding it to produce more precise and contextually 

fitting outputs for the assigned task. Fine-tuning enables the LLM to specialize 

in diverse applications such as language translation, question-answering, or 

text generation. The success of the LLM depends on its capacity to capture 

the statistical patterns and subtle linguistic nuances within the training data. By 

comprehensively understanding language, LLMs can generate coherent and 

contextually relevant responses when analyzing extensive amounts of text or 

data. During inference, a user inputs a prompt or query to interact with the 

LLM. The model processes this input and delivers a response based on its 

knowledge and understanding of the user's context. The generated response 

employs probabilistic methods, considering the likelihood of various words or 

phrases given the input context. (Hadi et al., 2023.) 

 

Figure 6. Data processing pipeline for pre-training LLMs (Hadi et al., 2023) 
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2.6.3 Transformers 

Transformers is a deep learning model introduced in 2017 and has gained 

widespread acceptance across various fields, such as NLP, computer vision 

(CV), speech processing (Vaswani et al., 2017). Initially designed in 2014 as 

a sequence-to-sequence model for machine translation, subsequent research 

has demonstrated the effectiveness of Transformer-based pre-trained models 

(PTMs) in achieving state-of-the-art results across various tasks (Lin et al., 

2021). Consequently, the Transformer architecture has emerged as the pre-

ferred choice in NLP, particularly for PTMs as well as other AI applications 

such as CV and audio processing and other disciplines such as chemistry and 

life sciences (Lin et al., 2021). “The Transformer is the first transduction model 

relying entirely on self-attention to compute representations of its input and 

output without using sequence aligned RNNs or convolution” (Vaswani et al, 

2017). Achieving state-of-the-art results in translation quality through in-

creased parallelization (Vaswani et al., 2017). The Transformer's architecture 

features stacked self-attention and pointwise, fully connected layers in both 

the encoder and decoder (Vaswani et al., 2017). 

 

 

Types of Transformers 

 

The Vanilla Transformer 

The Vanilla Transformer, introduced in 2017 as the original transformer model, 

forms a foundational architecture in deep learning designed explicitly for se-

quence-to-sequence applications like machine translation (Lin et al., 2021). 

This model employs self-attention mechanisms, enabling dynamic weighing of 

sequence elements, and utilizes an encoder-decoder architecture for bidirec-

tional processing (Lin et al., 2021). Vanilla Transformers have shown them-

selves versatile beyond their original concept, impacting various real-world ap-

plications. This includes incorporating positional encoding to comprehend the 

sequential order and multi-head attention for gathering contextual information 

(Lin et al., 2021). In parallel, the Transformer model presents a groundbreaking 
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departure from traditional recurrence, relying solely on self-attention to estab-

lish global dependencies between inputs and outputs (Vaswani et al., 2017). 

 

Operating as a sequence-to-sequence model, further refines this architecture 

with stacked, identical blocks, each housing a multi-head self-attention module 

and a position-wise feed-forward network in the encoder (Lin et al., 2021), as 

shown in the left half of Figure 7 and introducing cross-attention modules and 

position-wise FFNs in the decoder solidifying its role as a cornerstone in deep 

learning model design as shown in the left half of figure 7. This approach allows 

the Transformer to reach a new state of the art in translation quality after being 

trained for as little as twelve hours on eight P100 GPUs (Vaswani et al., 2017). 

(Lin et al., 2021.)  

Figure 7. The vanilla Transformer – model architecture (Vaswani et al., 2017) 
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The Auto-regressive Transformer 

Expanding upon this architecture, the auto-regressive transformer follows a 

similar design but introduces an autoregressive decoding strategy (Devansh, 

2023). With this approach, a single output token is created at a time based on 

already generated tokens. This sequential generation makes AutoRegressive 

Transformers well-suited for applications such as language modeling and text 

generation, where the order of output tokens is crucial (Abideen, 2023). Auto-

regressive models, unlike sequence-to-sequence models, do not require an 

explicit input sequence and are well-suited for text generation tasks (Devansh, 

2023). Their popularity has surged, and they showcase adaptability through 

fine-tuning, rendering them highly beneficial across diverse applications, par-

ticularly within business environments (Devansh, 2023). “Autoregressive lan-

guage models, such as GPT, GPT-2, and GPT-3, have gained significant at-

tention for their ability to generate high-quality text and perform various lan-

guage-related tasks.” (Abideen, 2023). The left part of Figure 8 shows the GPT 

model architecture, and the right side shows the different transformations ap-

plied to the input sequence for different fine-tuning tasks. 

 

Figure 8. GPT model architecture and input sequence for finetuning tasks 
(Abideen, 2023) 
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The Auto-Encoding Transformer 

Similarly, the Auto-Encoding Transformer diverges in its objective, focusing on 

learning a meaningful representation of input data through an encoding-de-

coding process (Devansh, 2023). By leveraging techniques like variational au-

toencoders (VAEs), the Auto-Encoding Transformer learns a continuous latent 

space representation of the input data (Park & Lee, 2021). This representation 

can then be used for data generation or feature extraction tasks. Both the Au-

toregressive and Auto-Encoding Transformers contribute to the versatility and 

applicability of the transformer architecture across diverse tasks, showcasing 

adaptability in sequence modeling and representation learning. 
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3 METHODOLOGY 

The approach used in this thesis is a methodically designed combination of 

frameworks and technologies that are purposefully selected to accelerate the 

incorporation of LLMs into the Pepper robot. This section unveils the system-

atic approach undertaken to achieve the thesis objectives. From the computa-

tional backbone provided by the SAMK AI Virtual Server to the evaluation of 

diverse LLMs—Falcon, GPT4All, and OpenAI's ChatGPT to a whisper as a 

speech recognition model— each component plays a crucial role in shaping 

the advancements in HRI. A commitment to versatility, adaptability, and com-

putational efficiency drives the deliberate selection of these tools and models. 

3.1 SAMK AI Virtual Server: AI Server 

For my thesis, I had the opportunity to use the SAMK AI virtual server, a pivotal 

resource generously provided by my university, SAMK, with the primary aim of 

supporting high computational power needs for my thesis. This server served 

as a crucial bridge between Python 2 and 3 environments, acting as the central 

repository for essential Python 3 codes, including components like LLM (Lan-

guage Model), Whisper, and the web server, ensuring a unified and efficient 

development environment. The exceptional computational prowess of the 

server features a dedicated NVIDIA RTX A5000 GPU with 24GB of exclusive 

memory strategically reserved for high-performance tasks crucial for advanced 

artificial intelligence computations. The GPU played a pivotal role in achieving 

remarkably high-speed results during the development and testing stages of 

the thesis. Complemented by 40GB of system memory and the processing 

power of 5 CPUs, the server operates within a containerized environment, spe-

cifically utilizing the Ubuntu22_04_torch_2_0_1 image. It's worth noting that 

this robust infrastructure underscores the university's commitment to support-

ing innovative projects and fostering advancements in artificial intelligence. 
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3.2 Language Models Used 

In the implementation phase of this thesis, an approach was adopted to sys-

tematically test and evaluate three LLM models to gather insights into their 

unique strengths and functionalities. The language models (LLMs) chosen in 

this thesis consist of two free, open-source models, Falcon and GPT4All, and 

an API-powered model utilizing the OpenAI API key. The deliberate selection 

of two open-source models and one API-powered model was driven by the aim 

to explore a broad spectrum of testing and evaluations. This strategic ap-

proach allows for a nuanced understanding of the diverse functionalities of-

fered by each model, paving the way for a detailed analysis of their respective 

strengths in generating responses, contextual understanding, creativity, adapt-

ability, resource efficiency, and speed. It's noteworthy that each model scales 

differently on the leaderboard, contributing to a more comprehensive assess-

ment of their relative performance across various criteria.  

3.2.1 Falcon  

Falcon LLM (Large Language Model) stands out as a cutting-edge generative 

language model crafted by the Technology Innovation Institute (TII) in Abu 

Dhabi, UAE. Boasting a remarkable capacity for diverse applications, Falcon 

LLM excels in tasks such as text generation, translation, question answering, 

summarization, and code generation. The Falcon LLM family comprises three 

distinct models: Falcon 180B, Falcon 40B, and Falcon 7.5B, each varying in 

parameter count. The Falcon LLM family is characterized by open-source ac-

cessibility, high performance, and adaptability for research and commercial 

applications. Trained on an extensive dataset of over 3.5 trillion tokens, Falcon 

LLM remains under active development, continuously evolving with new fea-

tures to cater to the dynamic needs of users in diverse fields. (Falcon LLM, 

2023.) 

 

I have considered using Falcon LLM as one of my LLM models in my thesis 

for several compelling reasons. For several compelling reasons, falcon-7B 
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Stands out as an ideal choice for language modeling endeavors. With its 7 

billion parameters, this model strikes a harmonious balance between compu-

tational demands and performance, making it accessible and efficient on con-

sumer-grade hardware and adaptable to various deployment scenarios. Its 

high accuracy is evident across various tasks, including text generation, trans-

lation, question answering, and summarization, showcasing its remarkable 

versatility. As an open-source project, Falcon-7B benefits from a dynamic com-

munity of developers and researchers, ensuring continuous improvement and 

innovation. Notably, incorporating Flash Attention technology enhances pro-

cessing speed and efficiency, resulting in faster responses and smoother in-

teractions (Tiiuae/Falcon-7b · Hugging Face, 2023). 

3.2.2 GPT4All 

GPT4All, developed by Nomic AI, is a comprehensive open-source ecosystem 

designed to seamlessly integrate Large Language Models (LLMs) into diverse 

applications (Anand et al., 2023). Within this innovative framework, GPT4All 

presents a diverse array of chatbots meticulously trained on an extensive cor-

pus of pristine assistant data. This inclusive ecosystem empowers developers 

to train and deploy customized LLMs effortlessly using everyday hardware. 

Notably, the training process for this model involved approximately 1 million 

prompt-response pairs executed using the GPT3.5 Turbo OpenAI API during 

the period spanning from March 20, 2023, to March 26, 2023. This timeframe 

encapsulates the dedication to refining and enhancing the model's perfor-

mance, ensuring its effectiveness and relevance in real-world applications. 

 

In its commitment to versatility, GPT4All offers a spectrum of models tailored 

for both commercial and non-commercial applications. As previously high-

lighted, developers utilizing GPT4All gain the flexibility to train and deploy their 

LLMs for personal use or share them with the wider community. In this context, 

the GPT4All model used in this thesis is the gpt4all-falcon-q4_0.guff variant. 

Renowned for its exceptional speed in Generating responses, this model, 

trained by TII, fine-tuned by Nomic AI, and licensed for commercial use, 
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exemplifies the cutting-edge capabilities inherent in the GPT4All ecosystem. 

GPT4All Falcon (gpt4all-falcon-q4_0.gguf) is known for its fast responses and 

high accuracy, making it a powerful tool for various applications. The model's 

size in terms of storage space is 3.92 GB, and the recommended RAM re-

quired to load and run the model is 8GB.   

3.2.3 OpenAI's text generation model: ChatGPT 

OpenAI's text generation models, such as GPT-4 and GPT-3.5, are powerful 

generative pre-trained transformers that understand natural and formal lan-

guage. These models respond to inputs, also known as "prompts," and can be 

programmed through prompt design, which typically involves providing instruc-

tions or examples. GPT-4 is versatile, handling tasks like content or code gen-

eration, summarization, conversation, and creative writing. Tokens represent 

common character sequences; one token is approximately four characters or 

0.75 words for English text. There are limitations regarding the maximum con-

text length for prompts and inputs, which vary for each model and can be found 

in the model index. 

 

When utilizing one of these models via the OpenAI API, a user sends a request 

that includes the inputs and their API key. In response, they receive output 

generated by the model. The latest models, gpt-4 and gpt-3.5-turbo are ac-

cessed through the chat completions API endpoint. 

 

In the context of this thesis, one of the Language Models evaluated and tested 

is the GPT-3.5 Turbo. Renowned for its proficiency in understanding and gen-

erating both natural language and code, this model has been selected for its 

versatility in completing general tasks and specific chat-based interactions. 

Despite the introduction of GPT-4, the continued popularity of GPT-3.5, at-

tributed to its cost-effectiveness and enhanced processing speeds, makes it 

an optimal choice for current research. Recognized as the most capable model 

within the GPT-3.5 family, GPT-3.5 Turbo serves as a cornerstone for advanc-

ing natural language processing capabilities in the investigations undertaken. 
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3.3 Whisper 

Whisper is an open-source robust speech recognition and transcription ma-

chine learning model created by Openai and released in September 2022. 

Whisper, an automatic speech recognition (ASR) system, stands out with its 

training on a massive and diverse dataset of 680,000 hours of noisy speech 

recognition data web scraped from the internet. This extensive training en-

hances its robustness, making it more adept at handling accents, background 

noise, and technical language. (Introducing Whisper, 2022.) 

 

The architecture, as seen in Figure 9, is based on 1.5 billion parameters in a 

simple autoregressive encoder-decoder Transformer, also referred to as se-

quence-to-sequence model (Gandhi et al., 2023); the input audio is split into 

30-second chunks, converted into a log-Mel spectrogram, and then passed 

into an encoder. A decade is trained to anticipate the appropriate text caption, 

intermixed with unique tokens instructing the single model to carry out multilin-

gualism speech transcription, phrase-level timestamps, language identifica-

tion, and to-English speech translation  (Introducing Whisper, 2022). A log-mel 

spectrum represents a sound signal's frequency content, utilizing a non-linear 

mel scale and a logarithmic transformation to emphasize lower frequencies 

and compress the dynamic range. It is commonly employed in speech and 

audio processing, providing a compact and perceptually relevant description 

often used in tasks like speech recognition and music analysis. Five English 

variants of the OpenAI Whisper models are summarized in Table 1. Whisper's 

zero-shot performance notably surpasses specialized models, making 50% 

fewer errors. Approximately one-third of its dataset is non-English, contributing 

to its effectiveness in speech-to-text translation. It notably outperforms the 

state-of-the-art in CoVoST2 to English translation zero-shot scenarios. CoV-

oST2 is the Common Voice Speech Translation 2 dataset, featuring multilin-

gual and multitask speech data aligned with Translated text to support re-

search in automatic speech translation (Wang et al., 2020). It extends the 

Common Voice project, providing a valuable resource for speech recognition 

and translation tasks. “When scaled to this quantity of data, Whisper yields 
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competitive results with fully supervised, but in a zero-shot setting without any 

fine-tuning.” (Gandhi et al., 2023.) 

Figure 9. OpenAI Whisper - Seq2Seq Transformer architecture (Introducing 
Whisper, 2022) 
 
 
 
Table 1. Checkpoints details of the pre-trained Whisper model family and 
Distil- whisper models. Distil-Whisper retains the Word Error Rate (WER) 
performance (Gandhi et al., 2023). 

         Short Form Long Form 

Model 
Lay-
ers Width Heads 

Parame-
ters 

Rel.  
Latency WER 

Rel.  
Latency WER 

tiny.en 4 384 6 39 M 6.1 18.9 5.4 18.9 

base.en 6 512 8 74 M 4.9 14.3 4.3 15.7 

small.en 12 768 12 244 M 2.6 10.8 2.2 14.7 

me-
dium.en 

24 1024 16 769 M 1.4 9.5 1.3 12.3 

large-v2 32 1280 20 1550 M 1 9.1 1 11.7 

  

distil-me-
dium.en 

24 1024 16 394 M 6.8 11.1 8.5 12.4 

distil-
large-v2 

32 1280 20 756 M 5.8 10.1 5.8 11.6 
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Integrating an automatic speech recognition (ASR) system with Pepper's mi-

crophones is a strategic enhancement, addressing the inherent limitations of 

Pepper's weak speech recognition capabilities. As mentioned, Pepper's 

speech recognition module is constrained by its capacity to recognize only a 

limited set of words. Therefore, in this thesis, integrating a Whisper automatic 

speech recognition (ASR) system with Pepper's built-in microphones signifi-

cantly enhances HRI. Pepper can better understand and respond to user com-

mands, irrespective of accents, background noise, or technical language. This 

implementation improves the accuracy and efficiency of speech recognition 

and enhances the overall user experience with Pepper. The goal is to create 

a more intuitive and adaptive communication experience between users and 

Pepper, fostering a richer and more engaging robotic interaction.  

 

In the experimentation phase of this thesis, a methodical strategy was em-

ployed to assess and compare four different Whisper models, forcing on their 

unique capabilities and features. The Whisper models selected for evaluation 

include the Insanely Fast Whisper from Vaibhavs10's GitHub repository, the 

distill Whisper model published on Hugging Face, a speech-to-text model pow-

ered by an OpenAI API key called Audio API; the ASR model used is whisper, 

and the open-source Whisper model by OpenAI. Similar to the selection of 

language models in the previous phase, this deliberate choice of diverse Whis-

per models aims to explore a broad spectrum of testing and evaluations. By 

incorporating various models, this approach facilitates understanding the dis-

tinct functionalities each Whisper model offers. This comprehensive analysis 

enables an in-depth examination of their speed, efficiency, and open-source 

transparency strengths, contributing to a well-rounded assessment of their 

overall performance across various criteria. 

3.4 NAOqi  

This thesis employed several critical modules within the NAOqi framework to 

enhance the capabilities of the Pepper robot in the context of HRI. The Text-

to-Speech (TTS) module, accessible through ALProxy, was instrumental in 
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converting text into expressive and natural speech. By interfacing with the 

ALProxy text-to-speech service, Pepper seamlessly incorporated verbal com-

munication into its interactions with users. 

 

The ALProxy ALAudioRecorder module was crucial in leveraging Pepper's 

built-in microphones for audio capture. This module facilitated the collection 

and analysis of ambient audio, enabling Pepper to respond intelligently to au-

ditory cues. Through this integration, Pepper demonstrated heightened re-

sponsiveness to the surrounding environment, a key aspect in fostering dy-

namic and adaptive HRI. 

 

The AL Tablet service's functionalities were harnessed to provide a user-

friendly interface. The 'ShowWebView' and 'HideWebView' features allowed 

for seamless content display on the table. The 'Show Input Text Dialog' feature 

allows a dialog of interactive content on Pepper's tablet. This integration en-

hanced the user experience and showcased the versatility of NAOqi in creating 

a seamless interface between humans and robots, empowering Pepper to en-

gage users through dynamic visual interfaces. 

 

Moreover, integrating Qi face detection, AL Memory, and AL Face Detection 

modules enabled Pepper to recognize and respond to human faces, a funda-

mental aspect of social interaction, adding more sophistication to Pepper's in-

teractions. Upon detecting a human face, the Qi face detection module trig-

gered the initiation of the user interface, creating a responsive and context-

aware interaction scenario. 

 

By leveraging these specific modules, this thesis aimed to elevate the commu-

nicative and perceptive capabilities of the Pepper robot, showcasing the prac-

tical application of cutting-edge technology in the realm of HRI. 
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4 IMPLEMENTATION 

4.1 Experimental Design 

In this section, the experimental design is delineated, outlining the comprehen-

sive process of integrating LMs with the Pepper robot. The experiment unfolds 

in two primary phases: establishing a web server and configuring the Pepper 

robot to interact with this server seamlessly. The first phase of the design was 

to create a web server.  

4.1.1 Setting up the Server 

In the initial phase of the experiment, a web server is developed to facilitate 

communication between language models and the Pepper robot. This journey 

begins with an exploration of various LLMs to evaluate their suitability. Subse-

quently, a decision is made to construct a web server utilizing HTML and Flask 

codes, accompanied by illustrative Figure 10 showcasing what the webserver 

looks like. 

 

Flask, a lightweight micro-framework for Python, is chosen for its flexibility and 

minimalistic design, making it well-suited for projects of varying complexity. Its 

simplicity empowers developers to tailor applications to their specific require-

ments while providing the necessary tools for building web applications or 

APIs. (Saini, 2024.) 

 

Additionally, Flask's support for creating RESTful APIs enhances its suitability 

for projects involving backend services or client-server communication. Creat-

ing the web server is essential to establish a smooth pathway for communica-

tion exchange between the server and Pepper robot, ensuring efficient inter-

action and response generation. The selection of GP4ALL as the preferred 

LLM is based on its cost-effectiveness, delivery of high-quality responses, and 

efficient performance. The integration of the Whisper ASR model further 
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enhances the server's capabilities, ensuring seamless interaction between us-

ers and the Pepper robot. 

Figure 10. Image of the Webserver 

4.1.2 Setting up Pepper Robot 

The initial step in working with Pepper Robot was to download the software 

requirements and installation of essential software development kits (SDKs) 

and modules for utilizing Visual Studio Code with Python 2.7 for coding pur-

poses. This sets the stage for preliminary feature testing. I explored Pepper's 

capabilities, encompassing activities such as making it articulate greetings, 

move, perform basic gestures, and test its tts.say function. `tts.say` is a func-

tion in NAOqi used to allow pepper say whatever is defined in that function 

using peppers speakers to output the audio.  

 

The integration with the web server is a pivotal component of the experimental 

design. It encompasses the development of code enabling Pepper's seamless 

connection to the server. The version of Python 2.7, coupled with the request 

library, aligns perfectly with the compatibility requirements of Pepper's NAOqi 

extension modules. As the experiment progresses, attention is directed 
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towards the pepper’s speech recognition module, revealing its limitations. This 

led to the necessity for an ASR model, further influencing the integration strat-

egy. 

 

This experimental design is a comprehensive roadmap, providing an insightful 

overview of the meticulous steps undertaken to establish the web server, se-

lect the optimal LLM, and configure the Pepper robot for seamless interaction. 

After working with Pepper, it became clear that the operation's intricacies, the 

operations' brains, could not be solely orchestrated within Pepper's software 

but could be in the AI server. This was one of the limitations of integrating it 

into pepper architecture. 
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4.2 How it works 

The system operates collaboratively as the Flask Server and the Pepper Inter-

action Script synergize seamlessly. On one hand, the Flask Server is respon-

sible for serving as the backend infrastructure. It actively listens to incoming 

requests, intelligently generates text based on the provided input, whether tex-

tual or audio and promptly sends the generated text as a response. Simulta-

neously acting as the interactive front-end, the Pepper Interaction Script con-

nects to Pepper and engages in face-detection events. When a face is de-

tected, the input text dialog module appears and is ready for the user to use 

(Figure 11). For the interaction to be successful, both codes should be running 

first, running the flask server code, and then executing the pepper code. The 

culmination of this collaboration results in the visually displayed and audibly 

vocalized output on Pepper's tablet, enhancing the interactive experience for 

users, whether they input text or initiate audio recording. 

Figure 11. Pepper Input text dialog  
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 In the case of inputting text, the user is prompted to write a prompt on Pepper's 

tablet; as shown in Figure 12, the user gets to write the prompt/ question they 

want and press Text. After the user presses Text, Peppers tablet screen will 

display “Generating a response, please wait” (Figure 13). While the user waits, 

this textual prompt is sent to the Flask Server. The Flask Server, equipped with 

the gpt4all-falcon-q4_0.gguf language generation model, processes the tex-

tual input, generates an appropriate response, and stores the generated text. 

The response, including the generated text, is then retrieved by the Pepper 

Interaction Script. Pepper, utilizing its text-to-speech capabilities, vocalizes the 

generated text to provide an audible response to the user (Figure 14). 

Figure 12. The user is typing in the text, “hello?”.  
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Figure 13. Pepper displaying, generating a response  
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Figure 14. Generated response for Textual input  
 

For audio recording, the process involves additional steps. In a key segment 

of the Pepper Interaction Script, the system utilizes Paramiko for secure SSH 

communication, enhancing the audio recording process. As shown in Figure 

15, if the user chooses to record their voice, they will have to press the Record 

button on the pepper screen and have 10 seconds to record. When recording 

starts or stops, pepper will notify the user by showing “Recoding Started ” and 

“Recording stopped” on the screen. After recording, the recording stops, and 

the audio file is saved in the pepper system PATH. Therefore, Paramiko es-

tablishes a secure connection to a remote server, transferring the audio file 

using the SCP protocol. This secure and efficient transfer ensures data integ-

rity and confidentiality. The integration of Paramiko enriches the system's 
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robustness, allowing secure transmission of recorded audio files for central-

ized processing, exemplifying best practices in handling sensitive information 

within the HRI framework. While all of this is happening, pepper will display, 

letting the user know that it’s generating a response (Figure 13).  

Figure 15. The User is choosing to record  
 

After initiating the audio recording, the Pepper Interaction Script sends the rec-

orded audio file to the Flask Server for transcription using the Whisper ASR 

model. The transcribed text becomes the input for the language generation 

model, similar to the text input scenario. In this example, the user records ask, 

“What is Python?”. The Flask Server processes this transcribed text, generates 

an appropriate response, and stores the generated text. The response and 
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generated text are then retrieved by the Pepper Interaction Script, and Pepper 

vocalizes the content using its text-to-speech capabilities (Figure 16). 

Figure 16. Pepper displays the generated text   
 

This comprehensive process ensures a consistent interaction flow, whether 

the user chooses to input text or record audio, highlighting the seamless inte-

gration of text generation and speech synthesis in the overall HRI experience. 

Figure 17 summarizes the whole process in flow chart form. 
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Figure 17. Flowchart of the implementation 
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4.3 Summary of the Codes 

4.3.1 Pepper Code 

The Python script is designed for the Pepper robot, integrating various func-

tionalities such as face detection, text handling, and interaction with external 

services. It begins by importing necessary libraries, including `qi` for the Naoqi 

framework, `requests` for HTTP operations, and `threading` for concurrent ex-

ecution. The `HumanGreeterAndTextHandler` class initializes key attributes 

and establishes a connection to the Pepper robot. Methods within the class 

handle different aspects of interaction. For instance, the `handle_text_button` 

method connects to Pepper, sends input text to a Flask server, and displays 

or reads the generated response. The ̀ handle_record_button` method records 

audio, transmits it to a server for transcription and text generation, and displays 

or reads the results. Multithreading is employed for parallel execution of tasks, 

and exception handling ensures graceful error management. The script show-

cases user interaction through Pepper's tablet, creating a dynamic and engag-

ing experience by leveraging Pepper's capabilities for face detection and text-

to-speech functionalities. It effectively integrates with external servers for ad-

vanced language processing tasks. Figure 18 shows the terminal output when 

executing peppers code if the user chooses to record, and Figure 19 shows if 

the user chooses to input text 

 

Snippet of pepper code: 
# Send Audio File for Transcription: 

files = {'file': open(filename, 'rb')} 

response = requests.post(server_url, files=files, ver-

ify=False)  # HTTP POST request to the server 

 

 

# Process Transcription Response: 

if response.status_code == 200: 

    # Process the response for transcription 

    response_text = response.text 

    soup = BeautifulSoup(response_text, 'html.parser') 

 

    # Extract transcribed text 

    transcribed_section = soup.find('h2', text='Tran-

scribed Text:').find_next('p') 
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    transcribed_text = transcribed_section.get_text() if 

transcribed_section else "Transcribed text not found" 

    print("Transcribed Text:", transcribed_text) 

    # ... 

 

def extract_generated_text(response_text): 

    generated_text_match = re.search(r'var generatedText 

= (\[.*?\]);', response_text) 

    if generated_text_match: 

     generated_text = json.loads(gener-

ated_text_match.group(1)) 

         return ' '.join(generated_text) 

    else: 

         return None 

 

 

# Use Transcribed Text as Input to Language Model: 

# Extract and use generated text 

generated_text = extract_generated_text(response_text) 

 

if generated_text: 

    print("Generated Text:", generated_text) 

    generated_text_str = str(generated_text) 

    # ...          

                

# Use Pepper's text-to-speech module to say the generated 

text 

    tts = ALProxy("ALTextToSpeech", "10.30.0.53", 9559)  

# Replace with the appropriate IP and port 

   tts.say(generated_text_str) 

 

else: 

    print("Generated text not found in the API re-

sponse.") 

Figure 18. Terminal output of peppers code when recording  
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Figure 19. Terminal output of peppers code when inputting text  
 

4.3.2 Flask server Code  

The Flask application is a web interface that seamlessly integrates GPT-4-All 

for text generation and distil whisper for automatic speech recognition. The 

code begins by importing essential libraries and setting up global variables, 

including the model’s name, port number, and maximum token limit. The utility 

functions handle the loading and saving of generated texts, while the `gener-

ate_text` function utilizes GPT-4-All to generate text based on input. The Flask 

routes are designed to handle both GET and POST requests, dynamically ren-

dering an HTML template (`index-whis.html`) for user interaction. The applica-

tion processes various types of requests, such as form submissions, file up-

loads, and JSON requests, employing the Whisper model for transcription and 

GPT-4-All for text generation. Results, including model name, input text and 

generated text, timestamps, and time, are stored in a JSON file as soon as the 

LLM generates the response; see Figure 20 to see the JSON format saved. 

The application utilizes Flask templates to render dynamic content, creating an 

engaging user experience. Upon execution, the Flask server initializes, making 

the web interface accessible, enabling users to input text or upload audio files 

and receive transcriptions and text generation results, all displayed dynami-

cally on the web page. 

 

For context, the variation in time occurs due to the request line code. It takes 

1.409 seconds, figure 18, for the server to generate a response, while it takes 

4.0469 seconds for urllib to open, request, and generate the response (Figure 
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19). Therefore, the total time for sending input text and retrieving generated 

text is 2.6379 seconds (4.0469 - 1.409).  

 

Figure 20. Saved JSON format example  
 

 

Snippets of Flask server code: 
app = Flask(__name__) 

 

model_name = "gpt4all-falcon-q4_0.gguf" 

port_num = #### 

max_token_num = 100 

say = whisper.load_model("base") 

 

# Create an empty list to store the generated texts 

generated_texts = [] 

 

def load_generated_texts(): 

    try: 

        with open('generated_texts.json', 'r') as file: 

            return json.load(file) 

    except FileNotFoundError: 

        return [] 

 

def save_generated_texts(): 

    with open('generated_texts.json', 'w') as file: 

        json.dump(generated_texts, file, indent=4) 

 

def generate_text(input_text): 

   # ... 

    return generated_text, generated_time, gener-

ated_text1  # Return the generated text and generation 

time 

 

@app.before_first_request 

def setup(): 

    # ... 

 

# Combined route for both GET and POST requests 

@app.route('/', methods=['GET', 'POST']) 

def combined_route(): 

    { 

        "model": "gpt4all-falcon-q4_0.gguf", 

        "input_text": "hello?", 

        "generated_text": "\nHello! How can I assist you today?", 

        "generatedAt": "2024-01-16T15:33:12.380992+02:00", 

        "generatedTime": 1.4094276428222656 

    } 
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    transcribed_text = None 

    transcription_time = 0 

 

    if request.method == 'POST': 

        if 'input_text' in request.form: 

            input_text = request.form['input_text'] 

        elif 'file' in request.files: 

            # If a file is uploaded, transcribe it, and 

use the text 

            file = request.files['file'] 

            if file.filename != '': 

                # ... (Other code for handling file up-

loads and transcription) 

 

                generated_text, generated_time, gener-

ated_text1 = generate_text(input_text) 

            else: 

                return "No selected file" 

        else: 

            input_text = request.json['input_text'] 

 

        # Generate text using GPT-4-All 

        generated_text, generated_time, generated_text1 = 

generate_text(input_text) 

 

        # ... (Other code for storing generated text and 

rendering the template) 

 

        if request.content_type == 'application/json': 

            return jsonify(text_entry), 200 

        else: 

            return render_template('index-whis.html', 

transcribed_text=transcribed_text, 

                                   generated_text=gener-

ated_text, generated_time=generated_time, 

                                   transcrip-

tion_time=transcription_time) 

 

    return render_template('index-whis.html') 

 

 

if __name__ == '__main__': 

    app.run(debug=True, host='0.0.0.0', port=port_num) 
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4.3.3 Connection between Pepper robots code and Flask Server Code 

The synergy between the Pepper robot script and the Flask application lies in 

their collective effort to enhance HRI through advanced language processing 

and interaction capabilities. While the Pepper script focuses on real-time en-

gagement, leveraging face detection and tablet-based interaction, the Flask 

application extends this capability to a broader context, incorporating auto-

matic speech recognition (ASR) and text generation through GPT-4-All. Both 

systems share a common thread in using threading for parallel execution, ex-

ception handling for robustness, and seamless integration with external ser-

vices. Together, they showcase a comprehensive approach to user interaction, 

combining the physicality of Pepper's interactions with the web-based capabil-

ities of GPT-4-All and Whisper. This collaborative integration results in a ver-

satile and engaging platform that leverages the strengths of both the physical 

robot and advanced language models for a more interactive and dynamic user 

experience. 

 

4.4 Implementation Challenges and Solutions 

4.4.1 Dynamic IP Address and Network Connectivity: 

During the implementation phase of this project, several challenges emerged, 

necessitating careful investigation and resolution. One continuous issue en-

countered pertained to the dynamic nature of Pepper's IP address. The robot 

exhibited a tendency to alter its initial IP address, particularly when connecting 

to networks I didn’t have access to. Potential solutions explored included man-

ual assignment of a static IP address or the implementation of a dynamic DNS 

solution. Additionally, attempts were made to access Pepper's settings on Pep-

per's tablet; unfortunately, access to this feature was constrained due to the 

locked state of the associated settings. Consequently, in order to alter Pep-

per's settings, I had to browse Pepper's IP website for configuration 
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adjustments when necessary. Turning pepper off and on until the correct IP 

address was initiated was the only solution in network transitions. 

Other network-related impediments also surfaced, such as where to work with 

Pepper and the AI server simultaneously; connecting to a network that grants 

access to both systems was necessary. 

4.4.2 Python Version Disparity 

A significant hurdle arose from the disparity in Python versions between the 

Hugging Face Transformers library, which mandated Python 3.8, and Pepper's 

SDK, NAOqi extension module, compatible only with Python 2.7. The depre-

cated status of Python 2.7 presented compatibility challenges with modern li-

braries. Efforts were made to mitigate this discrepancy by considering a po-

tential bridge, as elucidated by many developers. One paper titled “Language 

Models for Human-Robot Interaction” used ZeroMQ as a communication 

bridge between the Chatbot service written in Python 3.10 and NAOqi exten-

sion modules written in Python 2.7 (Billing et al., 2023). Fortunately for this 

thesis, the SAMK AI server was a great advantage in using it as a bridge within 

itself. In the server, all the Python 3x compatible codes will be located there, 

while all the Python 2.7 and NAOqi compatible codes will be located locally on 

a PC. 

4.4.3 Speech Recognition Feature 

Regarding the speech recognition and microphone module, I've successfully 

activated the microphone; however, the built-in Pepper Sound Recognition 

module only captures sound without actual speech recognition capabilities. 

This module is specifically designed to identify and respond to certain sounds 

in Pepper's environment. Essentially, it involves teaching Pepper to recognize 

specific sounds and instructing it to respond when those sounds are detected.  

 

In selecting a suitable open-source speech recognition solution that can be 

integrated into the AI server, I've opted for Whisper by OpenAI. It's important 
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to note that any external speech recognition solution needs to be compatible 

with either Python 2 or Python 3. Similarly, the Language Model (LLM) must 

be bridged with the selected speech recognition solution in the compatible Py-

thon version. 

 

As it turns out, Whisper is only compatible with Python 3, but I have success-

fully integrated it into the AI server. This ensures seamless communication and 

functionality within the specified Python environment. 

4.4.4 Audio Implementation Challenges 

To facilitate speech recognition, I explored the possibility of utilizing OpenAI 

Whisper and found it a promising tool. Despite encountering some issues, I 

believe it can be an excellent model for our purposes once the identified issues 

are resolved. 

 

One notable challenge was the compatibility with Python 3, necessitating a 

solution for integrating the speech recognition model with Pepper's micro-

phones, which currently operate in Python 2. I actively worked on finding a 

suitable approach to bridge this gap. 

 

To address this concern, I contemplated the feasibility of connecting Whispers 

through the server, similar to the language model, while keeping Pepper's mi-

crophones independent in Python 2 outside the server. However, I remained 

uncertain about the viability of this approach, given that the microphones are 

inherently tied to the physical features of Pepper.  

 

In the testing phase, I successfully incorporated the audio transcribe Whispers 

library into the LLM web server, observing its effectiveness. Nevertheless, a 

critical aspect remains unresolved – achieving real-time audio transcription. 

Currently, users are required to upload audio files, after which the Whispers 

model transcribes the content. Subsequently, the Language Model generates 

the corresponding text based on the transcription. I recognize the need to 
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enable live audio functionality and am actively exploring solutions to enhance 

the user experience. 

4.4.5 WAV File Challenges 

During my thesis work, I successfully established a connection between Py-

thon 2 code and the web server whisper module. I verified that the transcribed 

text could be printed on the terminal to validate the functionality. Additionally, 

I ensured the proper operation of Pepper's microphone by successfully record-

ing and playing back audio. 

 

Despite these achievements, a challenge surfaced during attempts to save the 

WAV file. The saved file consistently appeared empty, displaying a duration of 

0:00/0:00. Once this hurdle is overcome, the next step involves testing the in-

tegration of Pepper's microphone with the whisper module and enabling Pep-

per to articulate the appropriate responses generated from the transcribed text. 

Subsequently, I plan to explore the necessary steps for developing an appli-

cation that seamlessly incorporates all these components within Pepper. 

 

In an attempt to seek assistance, I reached out to one of the developers on the 

Pepper chat GitHub repository. Unfortunately, I did not receive a response 

from them, and given the progress I have made independently, I have decided 

to continue with my work without relying heavily on their input for the time be-

ing. 

 

Addressing the issue of saving the WAV file, the code I employed seemed to 

function partially, as Pepper successfully captured audio. However, when at-

tempting to play back the recorded audio, the WAV files saved on my laptop 

exhibited a duration of 0:00, indicating an absence of sound. Despite devoting 

considerable time to resolving this matter, a solution remained elusive. 

 

After days of persistent efforts, I ultimately resolved the WAV file-saving issue. 

The solution involved saving the audio file in Pepper's system path 
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("/home/nao/audio.wav") and utilizing paramiko to transfer that file from Pep-

per's system via SSH. Subsequently, after retrieving the audio file, I success-

fully saved it locally, where the Python 2 codes are located. 

4.4.6 JSON File Encounters 

An error was encountered when the user chose to record; the system saved 

the data twice in the JSON file on the server, creating a duplicate entry for 

each function and resulting in a slow process. This issue arose due to the im-

plementation of two distinct request routes. Upon calling these separate 

routes, the system would generate entries for each route, causing a slowdown 

in the code execution. The problem was addressed by modifying the Flask web 

server Python 3 code. The route was adjusted to be accessible via both GET 

and POST requests to one root ("/") URL, resolving the inefficiency in the code 

execution. 

4.4.7 Request Post Slowness 

Upon resolving the JSON file issue, the system's performance saw an im-

provement from its previous state, although it still exhibited a moderate pace. 

The primary factor contributing to this moderate speed was identified as the 

request.post operation took a minimum of 12 seconds, depending on the audio 

data. Recognizing the necessity for a solution, I conducted a thorough explo-

ration of potential fixes. Unfortunately, none of what I tried worked; Conse-

quently, I continued utilizing the request.post, considering the possibility of a 

server connection issue or a similar constraint contributing to the performance 

delay. 

 

In summary, these encountered challenges, meticulously documented, and 

addressed throughout the implementation process, contribute valuable in-

sights to the overall understanding of the complexities inherent in integrating 

Pepper with modern technologies and frameworks. 
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4.5 Data and Results 

In the following section, I comprehensively explore the data and results ob-

tained through the chosen LLM and  ASR models. This selection was carefully 

made based on a thorough examination of this thesis's specific needs and ob-

jectives. This introduction sets the stage for an in-depth analysis of the col-

lected data and the ensuing results.  

4.5.1 LLM Results  

Choosing and evaluating the optimal language model for this thesis involves 

considering a balance between the time it takes to generate a response, the 

quality of the response, and the cost of using the model. The time it took to 

generate the respond also depended on the length of the generated text, for 

instance, for a generated text that consists of 6 words will take less time than 

a text that consists of 200 words. In the examples in Table 2 showing falcon-

7b audio results and Table 3 showing falcon-7b input text results, it is good to 

note that falcon-7b is not considered a viable option in this comparison. This 

model might be excluded due to its longest response times, amongst the all 

the models, of 12.17 seconds for audio enquires (Table 2) and approximately 

10 seconds for input text enquires (Table 3). As well as the confusing, ques-

tionable, and long generated text in both the transcribed audio example and 

input text example, potentially making it less suitable for this thesis with time 

and response constraints. Therefore, gpt4all-falcon-q4_0.gguf and gpt-3.5-

turbo stand out as contrasting choices 
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Table 2. Falcon-7b Audio results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model tiiuae/falcon-7b 

transcribedAudio Hello, I am Pepper. How can I assist you today? 

inputText - 

generatedText  Hello, I am Pepper. How can I assist you today? 
I’m sorry, I don’t see any record of your payment. I can send 
you a link that you can use to make a payment and then I will 
resubmit your application. 
Pepper & I are going round and round in circles. It’s like she 
doesn’t even know what I’m doing. Or saying. She’s like, a 
robot, and I think she’s going to break my heart. 
So I’m going to try and make this happen in person. I’m go-
ing to get my passport renewed, and then I’m going to fly to 
the USA and go in person to the USCIS in California. If I can 
get the right paperwork with me, I should be able to get my 
visa, and then we can start on the paperwork for Pepper’s 
green card. 
But I have no idea how much money we’ll need. I’ve been 
looking through the website, and it’s all a blur to me. And 
there are so many different categories of green card and I 
am going round and round in circles and I think I’m going to 
have to go and talk to a human to help me. But I can do that 
in California. I can go there and I can see someone and I can 
make an appointment to talk to someone and then we’ll be 
able to work this all out, 

generatedTime /s 12.16025233 
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Table 3. Falcon-7b Input text results 

 

 

gpt4all-falcon-q4_0.gguf, in Table 4 and Table 5, demonstrates a cost-effective 

solution with relatively quick response times, 2.5 seconds for audio prompt and 

about 12 seconds for an input text prompt. While both of the responses are 

grammatically and contextually correct and simply understandable for the user, 

the input text generated text example could require more nuanced detail, in 

some cases; from a more sophisticated model like gpt-3.5-turbo. On the other 

hand, gpt-3.5-turbo delivers a higher-quality, contextually relevant responses, 

showcasing its versatility for various tasks, shown in Table 6 for an audio ex-

ample and Table 7 for input text example. Its generating time takes almost the 

same time as gpt4all-falcon-q4_0.gguf, 2.38 seconds for audio prompt and 

11.18 seconds for input text enquiry. However, it comes at a cost: for input 

usage, 0.0030$/ 1K tokens, and output usage, 0.0060/ 1K tokens.  

model tiiuae/falcon-7b 

transcribedAudio - 

inputText What is python? 

generatedText What is python? 
Python is a high-level, interpreted, object-oriented scripting 
programming language, which was designed by Guido Van 
Rossum and first released by him as open source in 1991. 
Python is a widely used language in many industries. Py-
thon can be used for web application development, software 
development, data analysis, scientific computing, machine 
learning etc. 
What is the use of python? 
Python is used for data science and data analysis. It can be 
also used to create GUI based applications and web apps. 
Python can be used for developing machine learning algo-
rithms for data science. It can be used to write code for web 
applications. 
What are the different versions of python? 
There are different versions of python. 
- Python 3: Python 2 was the previous version and was 
used from 1991 to 2016. Python 2 is still being supported by 
the Python community. However, it is now considered as 
deprecated and has reached the end of its life. 
- Python 2: It was the first release of python. There are 
many features of python 2 that are no longer in the Python 
3. 
- Python 3: It is the latest version of python. The major dif-
ference in the 2 and 3 versions is that 3 is more object-ori-
ented than the 2 version. 

generatedTime /s 10.26021338 
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Table 4. gpt4all-falcon-q4_0.gguf audio results 

model gpt4all-falcon-q4_0.gguf 

transcribedAudio Hello, I am Pepper. How can I assist you today? 

inputText - 

generatedText 
Hello! How may I assist you today? 

generatedTime /s 2.488550901 

 

 

 

Table 5. gpt4all-falcon-q4_0.gguf input text results 

 

 

 

 

 

 

 

 

 

 

 

 

model gpt4all-falcon-q4_0.gguf 

transcribedAudio - 

inputText what is python? 

generatedText Python is a high-level, interpreted programming lan-
guage that was created by Guido van Rossum in 
1991. It is widely used for general-purpose program-
ming and has gained popularity due to its simplicity, 
readability, and ease of use. Python's syntax is de-
signed to be easy to learn and read, making it an 
ideal choice for beginners as well as experienced 
programmers. It can be used for a wide range of ap-
plications, including web development, data analy-
sis, artificial intelligence, machine learning, and 
more. 

generatedTime /s 11.90644336 
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Table 6. gpt3.5 turbo Audio results 

 

 

 

Table 7. gpt3.5 turbo input text results 

 

 

 

 

model gpt-3.5-turbo 

transcribedAudio Hello, I am Pepper. How can I assist you today? 

inputText - 

generatedText Hello Pepper! Nice to meet you. I actually don't need any as-
sistance at the moment, but thank you for asking. Is there an-
ything interesting you can tell me about yourself? 

generatedTime /s 2.376833916 

model gpt-3.5-turbo 

transcribedAudio - 

inputText what is python? 

generatedText Python is an interpreted, high-level, general-purpose pro-
gramming language. It was created by Guido van Rossum in 
the late 1980s and released publicly in 1991. Python empha-
sizes code readability and simplicity, making it a popular 
choice for beginners and experienced programmers alike. 
 
Python is known for its clean and easy-to-understand syntax, 
which allows programmers to express concepts in fewer lines 
of code compared to other languages. It supports multiple 
programming paradigms, including object-oriented, proce-
dural, and functional programming. 
 
Python has a vast standard library and a large ecosystem of 
third-party libraries, making it versatile for various applications 
such as web development, data analysis, scientific compu-
ting, artificial intelligence, machine learning, automation, and 
more. 
 
One key feature of Python is its focus on readability, with the 
use of indentation instead of brackets or parentheses to de-
fine blocks of code. This promotes coding conventions that 
enhance clarity and maintainability. 
 
Python is open-source and has a strong and active commu-
nity, constantly contributing to its development and improve-
ment. It runs on multiple operating systems and is widely 
used in both industry and academia. 

generatedTime /s 11.17668533 
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The decision depends on the thesis's specific needs; if simplicity and budget 

are prioritized, gpt4all-falcon-q4_0.gguf is sufficient. Alternatively, if the thesis 

demands advanced language understanding and high-quality responses, the 

enhanced capabilities of gpt-3.5-turbo could justify the associated costs. 

 

In the context of this thesis, gpt4all-falcon-q4.gguf from GPT4ALL emerges as 

the preferred option due to its open-source nature, zero-cost advantage, effi-

cient response time, and the good quality of its generated response. 

4.5.2 ASR Results 

I have chosen to incorporate Distil Whisper as my Automatic Speech Recog-

nition (ASR) system based on the promising outcomes revealed in publications 

by the developers of the Distil Whisper model. Illustrated in Figure 21, Distil 

Whisper represents a distilled version of Whisper, boasting a remarkable 49% 

reduction in size, a 5.8-fold increase in speed, and maintaining performance 

within 1% Word Error Rate (WER) on out-of-distribution (OOD) short-form au-

dio. Notably, when tested on OOD long-form audio, Distil Whisper surpasses 

the performance of Whisper, which is attributed to a decrease in hallucinations 

and repetitions (Gandhi et al., 2023). 

Figure 21. Distil- Whisper model architecture (Gandhi et al., 2023) 



74 

To validate these assertions and refine my ASR models, I conducted several 

tests to determine the most suitable speech recognition model. Table 8 pro-

vides an overview of the results obtained from various Whisper models during 

these tests. The evaluation involved three audio files with differing lengths and 

accents. My objective was to identify a model that accurately transcribes audio, 

considering factors such as speed, computational requirements, and associ-

ated costs. 

Table 8 presents a comparative analysis of various models' performance in 

transcribing audio inputs, showcasing significant variations in processing 

times. Notably, the processing times range from exceptionally low durations, 

such as 1.14 seconds for the 'whisper-1' model accessed via the OPENAI API 

KEY, to considerably longer durations, such as 69.8 seconds for the 'distil-

whisper/distil-large-v2' model running on CPU (Table 8). The differences in 

processing times are substantial, as shown in Table 8, with the shortest dura-

tion being approximately 1.14 seconds and the longest being approximately 

69.8 seconds, indicating a 98.38% difference . 

 

Transcribed audio: “Hello.” 

 
Upon closer examination, it becomes evident that the choice of device and the 

utilization of flash attention mechanisms significantly impact processing effi-

ciency. For instance, the 'openai/whisper-large-v2' model exhibits varying pro-

cessing times depending on the activation of flash attention, with times of 58.15 

seconds and 63.3 seconds observed for flash attention enabled and disabled 

configurations, respectively shown in table 8. Similarly, the 'distil-whisper/distil-

large-v2' model demonstrates a considerable difference in processing times 

when run on different devices, with times of 6.17 seconds and 6.13 seconds 

observed for flash attention enabled and disabled configurations, respectively, 

when executed on CUDA:0 (Table 8). 

The "openai/whisper-large-v2" model demonstrates in Table 8 varying gener-

ation times based on the flash attention setting. When flash attention is 
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enabled, the model achieves a relatively faster generation time of 48.83 sec-

onds, compared to 54.1 seconds when flash attention is disabled. This varia-

tion suggests that flash attention can have a discernible impact on the model's 

processing efficiency. 

 

 

Transcribed audio of 1:10 minutes 

Similarly, the "distil-whisper/distil-large-v2" model exhibits notable differences 

in generation times across different configurations. While the model achieves 

a generation time of 55.69 seconds on a CPU without flash attention, an error 

occurred when flash attention was enabled, resulting in an unrecorded gener-

ation time (Table 8). On CUDA-enabled models, the transcription times vary 

significantly, with 8.24 seconds when flash attention is enabled and 7.96 sec-

onds when it's disabled (Table 8). These differences highlight the importance 

of considering both device specifications and model configurations when eval-

uating performance. 

 

Moreover, the "whisper-1" model, utilizing the OPENAI API, demonstrates rel-

atively faster generation times compared to other models, achieving a time of 

8.23 seconds as illustrated in Table 8. Conversely, the whisper open source 

"tiny" model, although not specified with device information, exhibits the fastest 

generation time among the listed models, completing the task in just 6.06 sec-

onds (Table 8). These findings suggest that model architecture and implemen-

tation can significantly influence processing speed, with smaller models poten-

tially offering faster inference times. And an 89.11% difference between the 

lowest and highest time it took to transcribe the audio. 

 

 

Transcribed audio of 1 minute 

The "openai/whisper-large-v2" model, when executed on the CUDA device 

without flash attention, exhibited a transcription time of approximately 66.81 

seconds (Table 8). In contrast,  as presented in Table 8, when flash attention 
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was enabled on the same model and device configuration, the transcription 

time reduced notably to 64.3 seconds. This reduction in time highlights the 

potential efficiency gains achieved through the optimization of model configu-

rations, emphasizing the importance of parameter tuning in enhancing perfor-

mance. 

 

The "distil-whisper/distil-large-v2" model showcased varying performance out-

comes based on the device and flash attention settings. When executed on a 

CPU without flash attention, the transcription time was recorded at 61.82 sec-

onds, slightly faster than its counterpart with flash attention enabled, which 

resulted in an error and thus no transcription time was provided (Table 8). This 

discrepancy underscores the influence of hardware acceleration and model 

architecture on processing efficiency. Moreover, when the model was run on 

a CUDA device without flash attention, a considerable decrease in transcrip-

tion time was observed, with timings of 8.1 seconds and 8.67 seconds for con-

figurations without and with flash attention, respectively detailed in Table 8. 

This time declining signifies the significant impact of hardware utilization in ex-

pediting computational tasks. 

 

In contrast, the "whisper-1" model, presumably executed via the OpenAI API, 

demonstrated remarkable efficiency, achieving a transcription time of merely 

5.99 seconds, shown in table 8. This rapid processing speed underscores the 

efficacy of cloud-based inference platforms in facilitating swift execution of nat-

ural language processing tasks. Similarly, the whisper open source "tiny" 

model as illustrated in Table 8, while not specifying the device used for execu-

tion, also displayed commendable performance, with a transcription time of 

6.19 seconds. These results highlight the trade-offs between model complexity 

and processing speed, showcasing the potential benefits of utilizing simpler 

architectures for expedited inference with a 91.03% difference between the 

highest differences. 
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Table 8. Whisper models results in webserver 

 

 

Choosing the appropriate ASR 

 

Distil Whisper from HuggingFace stands out as a compelling choice for ASR 

applications based on several key factors. The model consistently demon-

strates high accuracy in transcribing short and long audio segments, as evi-

denced by error-free outputs in the "Flash Attention" column. Its competitive 

speed, particularly when executed on GPU (cuda:0), further enhances its ap-

peal for real-time applications. The flexibility of Distil Whisper is noteworthy, 

supporting both CPU and GPU (cuda:0) and allowing users to tailor their hard-

ware choices based on specific computational requirements. The model ex-

hibits commendable consistency across various lengths of transcribed audio, 

reflecting its reliability for diverse use cases. As an open-source offering from 

HuggingFace, Distil Whisper benefits from community support, ensuring on-

going improvements, updates, and bug fixes. Additionally, the model's adept 

handling of different audio inputs without encountering errors underscores its 

robustness. 

 

Distil Whisper from HuggingFace presents a compelling choice over the Whis-

per API Key, despite the latter's faster speed, primarily due to cost 

model_name device flash_attention transcribed_audio time /s

true  Hello. 58.15

false  Hello. 63.3

true Error -

false  Hello. 69.8

false  Hello. 6.17

true  Hello. 6.13

whisper-1 OPENAI API KEY - Hello. 1.14

tiny - - Hello? 5.38

true  You will hear a number of different recordings and you will have to answer questions on what you hear. There will be time for you to read the instructions and questions and you will have a chance to check your work. All the recordings will be played once only. The test is in four sections. At the end of the test, you will be given 10 minutes to transfer your answers to an answer sheet. Now turn to section 1. Section 1. You will hear a conversation between a bank clerk called Jeanette and a man who is asking for information on investing money. First, you have some time to look at questions 1 to 4.48.83

false  You will hear a number of different recordings and you will have to answer questions on what you hear. There will be time for you to read the instructions and questions and you will have a chance to check your work. All the recordings will be played once only. The test is in four sections. At the end of the test, you will be given 10 minutes to transfer your answers to an answer sheet. Now turn to section 1. Section 1. You will hear a conversation between a bank clerk called Jeanette and a man who is asking for information on investing money. First, you have some time to look at questions 1 to 4.54.1

false  You will hear a number of different recordings and you will have to answer questions on what you hear. There will be time for you to read the instructions and questions and you will have a chance to check your work. All the recordings will be played once only. The test is in four sections. At the end of the test, you will be given 10 minutes to transfer your answers to an answer sheet. Now turn to Section 1. Section 1. You will hear a conversation between a bank clerk called Jeanette and a man who is asking for information on investing money. First you have some time to look at questions one to four. you55.69

true  Error -

true  You will hear a number of different recordings and you will have to answer questions on what you hear. There will be time for you to read the instructions and questions and you will have a chance to check your work. All the recordings will be played once only. The test is in four sections. At the end of the test, you will be given 10 minutes to transfer your answers to an answer sheet. Now turn to Section 1. Section 1. You will hear a conversation between a bank clerk called Jeanette and a man who is asking for information on investing money. First you have some time to look at questions one to four. you8.24

false  You will hear a number of different recordings and you will have to answer questions on what you hear. There will be time for you to read the instructions and questions and you will have a chance to check your work. All the recordings will be played once only. The test is in four sections. At the end of the test, you will be given 10 minutes to transfer your answers to an answer sheet. Now turn to Section 1. Section 1. You will hear a conversation between a bank clerk called Jeanette and a man who is asking for information on investing money. First you have some time to look at questions one to four. you7.96

whisper-1 OPENAI API KEY - You will hear a number of different recordings and you will have to answer questions on what you hear. There will be time for you to read the instructions and questions and you will have a chance to check your work. All the recordings will be played once only. The test is in four sections. At the end of the test you will be given ten minutes to transfer your answers to an answer sheet. Now turn to section one. You will hear a conversation between a bank clerk called Jeanette and a man who is asking for information on investing money. First you have some time to look at questions one to four. You will hear the conversation between Jeanette and a man who is asking for information on investing money. Second you have some time to look at questions three to four. You will hear the conversation between Jeanette and a man who is asking for information on investing money. Third you will have some time to look at questions four to five. 8.23

tiny - -  You will hear a number of different recordings and you will have to answer questions on what you hear. There will be time for you to read the instructions and questions and you will have a chance to check your work. All the recordings will be played once only. The test is in four sections. At the end of the test, you will be given ten minutes to transfer your answers to an answer sheet. Now turn to section one. Section one. You will hear a conversation between a bank clerk called Jeanette, an a man who is asking for information on investing money. First, you have some time to look at questions one to four. You will hear a number of different recordings and you will have to answer questions.6.06

false  So in college, I was a government major, which means I had to write a lot of papers. Now, when a normal student writes a paper, they might spread the work out a little like this. So, you know. You get started maybe a little slowly, but you get enough done in the first week that with some heavier days later on, everything gets done and things stay civil. And I would want to do that like that. That would be the plan. I would have it all ready to go, but then actually the paper would come along, and then I would kind of do this. And that would happen every single paper. But then came my 90-page senior thesis, a paper you're supposed to spend a year on. I knew for a paper like that, my normal workflow was not an option. It was way too big a project. So I planned things out, and I decided I kind of had to go something like this. This is how the year would go. So I'd start off light, and I'd bump it up.66.81

true  So in college, I was a government major, which means I had to write a lot of papers. Now, when a normal student writes a paper, they might spread the work out a little like this. So, you know. You get started maybe a little slowly, but you get enough done in the first week that with some heavier days later on, everything gets done and things stay civil. And I would want to do that like that. That would be the plan. I would have it all ready to go, but then actually the paper would come along, and then I would kind of do this. And that would happen every single paper. But then came my 90-page senior thesis, a paper you're supposed to spend a year on. I knew for a paper like that, my normal workflow was not an option. It was way too big a project. So I planned things out, and I decided I kind of had to go something like this. This is how the year would go. So I'd start off light, and I'd bump it up.64.3

false  So in college, I was a government major, which means I had to write a lot of papers. Now, when a normal student writes a paper, they might spread the work out a little like this. So, you know, you get started maybe a little slowly, but you get enough done in the first week that, with some heavier days later on, everything gets done and things stay civil. And I would want to do that like that. That would be the plan. I would have it all ready to go, but then actually the paper would come along, and then I would kind of do this. And that would happen every single paper. But then came my 90-page senior thesis. a paper you're supposed to spend a year on. I knew for a paper like that, my normal workflow was not an option, it was way too big a project. So I planned things out, and I decided it kind of had to go something like this. This is how the year would go. So I'd start off light, and I'd bump it up.61.82

true Error -

false  So in college, I was a government major, which means I had to write a lot of papers. Now, when a normal student writes a paper, they might spread the work out a little like this. So, you know, you get started maybe a little slowly, but you get enough done in the first week that, with some heavier days later on, everything gets done and things stay civil. And I would want to do that like that. That would be the plan. I would have it all ready to go, but then actually the paper would come along, and then I would kind of do this. And that would happen every single paper. But then came my 90-page senior thesis. a paper you're supposed to spend a year on. I knew for a paper like that, my normal workflow was not an option, it was way too big a project. So I planned things out, and I decided it kind of had to go something like this. This is how the year would go. So I'd start off light, and I'd bump it up.8.1

true  So in college, I was a government major, which means I had to write a lot of papers. Now, when a normal student writes a paper, they might spread the work out a little like this. So, you know, you get started maybe a little slowly, but you get enough done in the first week that, with some heavier days later on, everything gets done and things stay civil. And I would want to do that like that. That would be the plan. I would have it all ready to go, but then actually the paper would come along, and then I would kind of do this. And that would happen every single paper. But then came my 90-page senior thesis. a paper you're supposed to spend a year on. I knew for a paper like that, my normal workflow was not an option, it was way too big a project. So I planned things out, and I decided it kind of had to go something like this. This is how the year would go. So I'd start off light, and I'd bump it up.8.67

whisper-1 OPENAI API KEY - So, in college, I was a government major, which means I had to write a lot of papers. Now, when a normal student writes a paper, they might spread the work out a little like this. So, you know. You get started maybe a little slowly, but you get enough done in the first week that, with some heavier days later on, everything gets done and things stay civil. And I would want to do that like that. That would be the plan. I would have it all ready to go, but then, actually, the paper would come along, and then I would kind of do this. And that would happen every single paper. But then came my 90-page senior thesis, a paper you're supposed to spend a year on. I knew for a paper like that, my normal workflow was not an option. It was way too big a project. So I planned things out, and I decided I kind of had to go something like this. This is how the year would go. I'd start off light, and I'd bump it up. 5.99

tiny - -  So in college, I was a government major, which means I had to write a lot of papers. Now, when a normal student writes a paper, they might spread the work out a little like this. So, you know, you get started maybe a little slowly, but you get enough done in the first week that, with some heavier days later on, everything gets done and things stay civil. And I would want to do that like that. That would be the plan. I would have it all ready to go, but then actually the paper would come along, and then I would kind of do this. And that would happen every single paper. But then came my 90-page senior thesis. a paper you're supposed to spend a year on. I knew for a paper like that, my normal workflow was not an option, it was way too big a project. So I planned things out, and I decided it kind of had to go something like this. This is how the year would go. So I'd start off light, and I'd bump it up.6.19
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considerations. While the Whisper API Key may offer swifter processing times, 

the financial implications of utilizing an API key can be significant. Distil Whis-

per provides a balance between commendable speed, accuracy, and the ad-

vantage of being an open-source solution, all without incurring additional costs 

associated with API usage. The flexibility of Distil Whisper to operate on both 

CPU and GPU allows users to optimize their computational resources without 

being constrained by the expenses linked to API calls. In scenarios where cost-

effectiveness is a priority, choosing Distil Whisper ensures a robust and relia-

ble text-to-speech solution without compromising performance. With the cost 

per minute at $0.006, rounded to the nearest second, Distil Whisper from Hug-

gingFace emerges as a well-rounded and dependable solution for ASR needs, 

combining accuracy, speed, flexibility, consistency, and the advantages of be-

ing an open-source model. 
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5 DISCUSSION  

To complete the thesis, several sequential steps must be undertaken to 

demonstrate the seamless integration of advanced language models and 

speech recognition technologies into the Pepper robot. Initially, the process 

entails capturing audio inputs from the Pepper robot by activating its micro-

phone module and ensuring proper connectivity with the required hardware 

and software components. Subsequently, the transcribed audio is processed 

using the selected ASR model, Distil Whisper, to convert it into text format for 

further analysis. Once transcribed, the text inputs are submitted to the chosen 

LLM, gpt4all-falcon-q4_0.gguf, for inference, where the model generates re-

sponses based on the input received. These responses are then captured and 

retrieved from the language model, ready for playback or display on the Pep-

per robot, enabling it to articulate the generated text and engage in interactive 

conversations with users. 

 

Additionally, the thesis involves implementing functionality within the Pepper 

robot to prompt users with written text inputs or questions. These written 

prompts are then submitted to the language model for inference, where the 

model generates responses based on the provided prompts. The generated 

responses are subsequently captured and retrieved, ready for display or play-

back on the Pepper robot, enabling it to respond to written inputs from users 

in a conversational manner. Through these sequential steps, the thesis aims 

to showcase the effective integration of advanced language models and 

speech recognition technologies into the Pepper robot, enhancing its conver-

sational abilities and facilitating more natural and interactive interactions with 

users. 

 

In choosing the optimal language model for my thesis, I weighed response 

time, quality, and cost. Falcon-7b was excluded due to its lengthy response 

times (12.17 seconds for audio, approximately 10 seconds for input text) and 

confusing text. I found that gpt4all-falcon-q4_0.gguf offered a cost-effective 

solution with quick response times (2.5 seconds for audio, about 12 seconds 
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for input text), and its responses were of good quality although sometimes 

lacked detail. In contrast, gpt-3.5-turbo provided high-quality responses at a 

higher cost (0.0030$/1K tokens for input, 0.0060$/1K tokens for output). Ulti-

mately, I decided to go with gpt4all-falcon-q4.gguf from GPT4ALL due to its 

open-source nature, zero-cost advantage, efficient response time, and decent 

response quality. 

 

The comparative analysis of various models' performance in transcribing audio 

inputs reveals significant variations in processing times. For instance, pro-

cessing times range from exceptionally low durations, such as 1.14 seconds 

for the 'whisper-1' model, such as 69.8 seconds for the 'distil-whisper/distil-

large-v2' model with cpu and flash attention set to false. However, 6,13 second 

when model set to CUDA:0 with flask attention set to true, when transcribing 

an audio consisting of one word “hello”.  

 

Device choice and the utilization of flash attention parameter significantly im-

pact processing efficiency. For instance, when transcribing audio of approxi-

mately one minute and 10 seconds taken from a sample test of an IELTS lis-

tening exam, the 'openai/whisper-large-v2' model exhibits varying processing 

times depending on flash attention activation, ranging from 48.83 seconds to 

54.1 seconds. Similarly, the 'distil-whisper/distil-large-v2' model demonstrates 

differences in processing times when run on different devices, with durations 

ranging from 55.69 seconds to 7.96 seconds. The inclusion of flash attention 

can notably impact processing efficiency, as evidenced by varying generation 

times. 

 

Different model architectures and implementations influence processing 

speed. The "whisper-1" model, utilizing the OPENAI API, and the open source 

whisper "tiny" model exhibit relatively faster generation times compared to 

other models, with time ranging from 5.99 seconds to 6.19 seconds of a one 

minute audio.  “distil-whisper/distil-large-v2”  model took about 8 seconds tran-

scribing the audio of a random conversation of a one minute audio, demon-

strating its close duration to “whisper-1” model. Model complexity and 
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implementation significantly influence processing speed, with smaller models 

potentially offering faster inference times. 

 

Choosing the appropriate ASR is crucial for efficient transcription. Distil Whis-

per from HuggingFace stands out as a compelling choice due to its high accu-

racy, competitive speed, flexibility in hardware utilization, reliability across var-

ious audio lengths, and open-source nature. Despite the faster speed of the 

Whisper API Key, Distil Whisper offers a balance between speed, accuracy, 

and cost-effectiveness, making it a robust and reliable solution for ASR needs.  

 

The implementation phase of the project encountered several challenges, in-

cluding issues with dynamic IP addresses and network connectivity, disparities 

in Python versions, limitations in speech recognition capabilities, audio imple-

mentation hurdles, and difficulties with file management. Despite these chal-

lenges, solutions were identified and implemented, contributing valuable in-

sights into the complexities of integrating Pepper with modern technologies. 

These experiences underscore the importance of adaptability, problem-solv-

ing, and collaboration in overcoming obstacles encountered during the devel-

opment process. Overall, the successful resolution of these challenges high-

lights the feasibility and potential of integrating Pepper into various technolog-

ical frameworks, paving the way for future advancements in human-robot in-

teraction. 
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6 CONCLUSION 

The successful integration of advanced language models into the Pepper ro-

bot, coupled with the implementation of Whisper Automatic Speech Recogni-

tion (ASR) and the evaluation of multiple Language Models (LLMs), is a note-

worthy achievement in advancing the conversational capabilities of robotics. 

Employing a systematic approach, this research effectively addressed the 

challenges of integrating cutting-edge language technologies with robotic sys-

tems. 

 

The evaluation of LLMs, emphasizing response time, performance quality, and 

specific features, has contributed valuable insights to the field and resulted in 

the identification of gpt4all-falcon-q4_0.gguf as a versatile and cost-effective 

solution for seamless integration with the Pepper robot. This optimal balance 

between response speed, feature-rich performance, and cost-effectiveness 

positions gpt4all-falcon-q4_0.gguf as a main component, paving the way for 

enhanced HRIs. 

 

Moreover, the successful integration of Whisper ASR into the Pepper robot 

has introduced a transformative dimension to human-machine interaction. The 

inclusion of ASR served as a powerful tool, simplifying HRI, and facilitating 

more natural and responsive exchanges. With the evaluations of the 4 whisper 

models, finding the optimal option to be distil whisper has contributed to a great 

value of insight. Optimizing model configurations, considering device specifi-

cations, and selecting the appropriate ASR are essential for enhancing tran-

scription efficiency in audio processing tasks, with Distil Whisper emerging as 

a well-rounded and dependable solution for ASR needs. 

 

In addressing the research questions posed at the outset of this study: 

 

1. How well can the Pepper robot transcribe spoken audio? 

Through the utilization of Distil Whisper ASR model, the Pepper robot 

demonstrates commendable transcription capabilities. The evaluation of 
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various Whisper models highlighted the effectiveness of Distil Whisper, of-

fering high accuracy and competitive speed in transcribing spoken audio. 

 

2. Are the responses from the Pepper robot human-like enough? 

The responses generated by the Pepper robot, utilizing gpt4all-falcon-

q4_0.gguf, language models, are deemed sufficiently human-like for users 

to understand and grasp the intended meaning. While certain nuances may 

still be refined, the responses contribute to a meaningful interaction expe-

rience. 

 

3. Is the latency generating the responses from the Pepper robot good 

enough for natural feeling conversation? 

The latency in generating responses from the Pepper robot, facilitated by 

the integration of Language Models and ASR, is considered acceptable for 

achieving a natural feeling conversation. While improvements in response 

time and model efficiency are desirable, the implemented system demon-

strates feasibility for engaging interactions. 

 

Reflecting on the accomplishments of this thesis, it becomes evident that the 

fusion of language models and advanced speech recognition not only en-

hances the robot's ability to comprehend and respond to human interactions 

but also paves the way for more natural, intuitive, and meaningful exchanges. 

The promising results of this study suggest a bright future for integrating cut-

ting-edge technologies in robotics, opening new avenues for collaboration and 

cooperation between humans and robots in various domains. 

 

In conclusion, the successful implementation of advanced language models 

into the Pepper Robot and enhanced speech recognition capabilities marks a 

significant stride forward in the realm of HRI. The positive outcomes of this 

integration underscore the potential for this technology to be a powerful tool in 

facilitating seamless communication between humans and robots. The demon-

strated effectiveness of the implemented system lays a strong foundation for 

further refinement and optimization, suggesting that with a few strategic 
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modifications, the Pepper Robot, which is equipped with advanced language 

models, can evolve into a highly valuable and versatile asset for HRI applica-

tions. 

6.1 Future Work 

Future work for this thesis could focus on several key areas to further enhance 

the capabilities of the Pepper robot in human-robot interaction (HRI). One av-

enue for exploration involves refining the integration of language models and 

speech recognition systems, aiming to improve accuracy, response quality, 

and the naturalness of interactions. This could entail experimenting with differ-

ent pre-trained models, fine-tuning them for specific applications, and explor-

ing novel approaches for integrating advanced AI technologies into robotic 

platforms. Another area of interest is reducing latency and enabling real-time 

interactions between users and the Pepper robot. This could involve optimizing 

algorithms, leveraging parallel processing techniques, and exploring hardware 

acceleration options to enhance processing speed and responsiveness during 

interactions. Overall, future research endeavors could further enhance the 

Pepper robot's capabilities and broaden its applicability in various real-world 

contexts, ultimately advancing the field of human-robot interaction. 
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APPENDIX 2 

 
Illustration of the relationship between NLP, NLU, NLG, and LLM 

Term Task Description 
Relationship to 

Other Terms 

Natural 

Language 

Pro-

cessing 

(NLP) 

Processing 

and under-

standing hu-

man lan-

guage 

NLP encompasses a 

wide range of techniques 

for manipulating and un-

derstanding human lan-

guage, including natural 

language understanding 

(NLU) and natural lan-

guage generation (NLG). 

NLU and NLG 

are both sub-

fields of NLP. 

Natural 

Language 

Under-

standing 

(NLU) 

Extracting 

meaning 

from human 

language 

NLU systems analyze hu-

man language to extract 

its meaning, identifying 

keywords, phrases, and 

relationships between 

concepts. 

NLU takes in-

put from hu-

man language 

and provides 

output that can 

be understood 

by machines. 

Natural 

Language 

Genera-

tion (NLG) 

Creating hu-

man-like lan-

guage 

NLG systems generate 

human-like language, 

such as text, code, or 

speech, from structured 

data or other forms of in-

put. 

NLG takes in-

put from ma-

chines and pro-

vides output 

that can be un-

derstood by hu-

mans. 

Large 

Language 

Model 

(LLM) 

A neural net-

work trained 

on a mas-

sive dataset 

of text and 

code 

LLMs are trained on mas-

sive amounts of text and 

code, enabling them to 

perform a wide range of 

tasks, including NLU, 

NLG, and question an-

swering. 

LLMs can be 

used to im-

prove the per-

formance of 

NLU and NLG 

systems. 
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GITHUB LINK: https://github.com/Raneem-AbdeHafez/Enhancing_Pep-
perRobot_LLM.git  
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