

Jasmin Partanen

SmartAccess: Developing a Secure
Access Control System Mobile
Interface

Metropolia University of Applied Sciences

Bachelor of Engineering

Information technology

Bachelor’s Thesis

30 Jan 2024

Tiivistelmä

Tekijä: Jasmin Partanen
Otsikko: Smart Access: Suojatun kulunvalvontajärjestelmän

mobiilikäyttöliittymän kehittäminen
Sivumäärä: 32 sivua
Aika: 29.1.2024

Tutkinto: Insinööri (AMK)
Tutkinto-ohjelma: Information Technology
Ammatillinen pääaine: Mobile Solutions
Ohjaajat: Joseph Hotchkiss, Projekti insinööri

Projektin tarkoituksena oli suunnitella ja kehittää turvallinen pääsynhallinnan
käyttöliittymä, jonka avulla kerrostalojen asukkaat voivat myöntää väliaikaisen
pääsyn rakennuksen tiloihin luomalla nelinumeroisia aikarajoitteisia pääsykoodeja.
Tutkimuksen lähtökohtana oli havainto siitä, että perinteiset kerrostalojen
pääsyjärjestelmät eivät kykene tarjoamaan asukkaille mahdollisuutta kontrolloida,
kuka pääsee sisälle rakennukseen ja mihin aikaan.

Projekti toteutettiin vastaamaan turvallisuushuoliin, jotka liittyivät kasvavaan väestöön
ja tarpeeseen modernisoida kerrostalojen nykyiset pääsyhallintajärjestelmät.
Tutkimuksessa hyödynnettiin perusteellista kirjallisuuskatsausta, käyttäjäkyselyitä
sekä työkaluja ja teknologioita, jotka mahdollistivat mobiilisovelluksen ja sen
taustapalvelun suunnittelun. Projekti keskittyy pääsynhallintajärjestelmän
mobiilisovellukseen sekä sen taustapalvelun kehittämiseen.

Tutkimuksen tuloksena valmistui pääsynhallinnan käyttöliittymän prototyyppi, jolla on
merkittävä potentiaali tulevaisuuden pääsynhallintajärjestelmien kehityksessä. Tämä
tutkimus luo perustan tulevalle kehitykselle ja tutkimukselle älykkäiden
pääsynhallintajärjestelmien alalla. Tutkimuksen tuloksilla on käytännön vaikutuksia
yrityksien, laitoksien sekä yksityishenkilöiden turvallisuuteen, ja samalla se tarjoaa
käyttäjäystävällisen ja etähallittavan pääsynhallintajärjestelmän.

Yhteenvetona voidaan todeta, että tämä tutkimus osoittaa, että älykäs
pääsynhallintajärjestelmä tarjoaa korkean tason turvallisuutta mutkattomasti tehden
siitä ihanteellisen ratkaisun asuinalueille ja yrityksille.

Avainsanat: Pääsynhallinta, käyttöliittymä, älylukitus

Abstract

Author: Jasmin Partanen
Title: Smart Access: Developing a Secure Access Control

System Mobile Interface
Number of Pages: 32 pages
Date: 29 January 2024

Degree: Bachelor of Engineering
Degree Programme: Information Technology
Professional Major: Mobile Solutions
Supervisors: Joseph Hotchkiss, Project Engineer

The goal of this project was to design and develop a secure access control user
interface that allows apartment building residents or authorised personnel to grant
temporary access to their buildings by generating four-digit access codes. The
starting point of this study was the observation that traditional building access
systems lack the ability to provide users the option to selectively allow guests to
access the residential buildings.

The project was carried out to address the security concerns arising from the growing
population and the need to modernise the building’s access systems. The study
involved a thorough literature review and data collection through surveys, as well as
the use of various tools and technologies to design and develop the smart access
control system, including a mobile application and its backend service.

The outcome of the study was a prototype of an access control user interface with
significant potential to revolutionise building access control systems. This study
provides a foundation for future development and research in the field of smart
access control systems. The study's findings have practical implications for
companies, institutions and individuals seeking to enhance security in their buildings
while also providing a user-friendly and flexible access control system that is
remotely manageable.

In conclusion, the smart access control system developed in this project provides a
high level of security, convenience, and flexibility for its users, making it an ideal
solution for residential complexes and companies alike.

Keywords: access control, mobile, user interface, smart lock

Contents

List of Abbreviations

1	 Introduction 1	

2	 Theoretical Background 2	

2.1	 Access Control Systems 2	

2.2	 Authentication, Digital Identity, and Access Management 6	

3	 Tools and Methods 8	

3.1	 User Survey Analysis 9	

3.2	 Test-Driven Development with Swift for iOS 11	

3.3	 Amazon Web Services 13	

3.3.1	 DynamoDB 13	

3.3.2	 AWS Lambdas 14	

3.3.3	 API Gateway 15	

3.3.4	 Simple Notification Service 15	

4	 Overall System 16	

4.1	 Architecture 17	

4.2	 API Gateway 17	

4.3	 Lambda Functions 18	

4.4	 Database 20	

5	 Mobile Application 23	

5.1	 User Interface Design 24	

5.2	 Security 27	

5.3	 Testing 28	

5.4	 Future Vision 29	

6	 Conclusion 30	

List of Abbreviations

BLE: Bluetooth Low Energy

IAM: Identity and Access Management

TDD: Test-Driven Development

API: Application Programming Interface

UI: User Interface

AWS: Amazon Web Services

SNS: Simple Notification Service

NoSQL: Not only Structured Query Language

SQL: Structured Query Language

1

1 Introduction

In an era dominated by digital advancements and heightened concerns for

security, the evolution of access control systems becomes imperative.

Traditional methods of physical access control are increasingly being

augmented or replaced by sophisticated digital solutions, and the integration of

mobile interfaces is at the forefront of this transformation. This final year project

studies the innovative realm of access control systems with a focus on

generating access codes through a mobile application.

The primary objective is to enhance existing access control methods by

implementing a functional prototype of how the residents of apartment buildings

could manage access codes themselves. In addition, the result will suggest how

new access codes could be delivered to visitors securely.

To succeed with the objective, access control systems are studied. User survey

analysis was also carried out to ensure that the suggested solution is unique.

On top of this, the topics of authentication, digital identity and access

management are discussed to understand what is needed to have a real-life

working prototype.

2

2 Theoretical Background

The world’s population reached 8 billion at the end of the year 2022, from which

around 750 million people statistically live in Europe and 107 million people in

Northern Europe. Finland’s population is around 5.6 million. The population

increase of 100 thousand people in the past 5 years is a sum of several factors

such as international migration and increased birth rate. [1; 2.]

The growth itself increases the need to reanalyse how access control in

residential buildings in major areas is implemented and if it is secure enough / if

the buildings are secure enough. Providing the apartment buildings with regular

door access codes is not the only solution to managing access as the residents

of the buildings tend not to protect the access codes like passwords. Instead,

the access codes are often shared freely to friends, family, and other third-party

personnel (unknown people, e.g. fast-food couriers). Once a door lock is

installed and access codes are set, it is difficult to control how often the access

codes are revealed to outsiders. This alone creates an alarming security threat

to the people living in buildings where the access code is exposed, and

therefore a better way of using and sharing the door access codes need to be

found. [3.]

2.1 Access Control Systems

Access control is a way to manage who can access resources or a place

protected by an access control system. In general access control works as a

security measure for buildings or companies and it can be divided into physical

and logical access control. Physical access control is something that can

physically be touched. It can be an access to work or home whereas logical

access control is untouchable such as file systems or data. Physical and logical

access control consist of several types of access control but the main six are:

3

- Attribute-Based Access Control
Access is given based on persons’ attributes rather than rights. The

attributes can be anything and anyone. They can describe a person who

is trying to access, for example by age or job title.

- Discretionary Access Control
Access is given without a specific reason but with an authority of a person

who owns the protected area.

- Mandatory Access Control
A person is given a single authority depending on their status. In this the

person might only obtain partial access to certain components.

- Role-Based Access Control
Person obtains certain privileges or roles that entitle the person for access.

- Rule-Based Access Control
Access is granted according to a set of criteria’s such as location or time

of the day.

- Break-Glass Access Control
Access is granted to a person, who normally does not have an access, but

will have it in certain situations, such as in emergencies.

Different types of access control can be implemented in various ways, but mostly

they include at least software and, in some cases, a physical reader for authority

verification purposes. Software products can be server-based, web-based, or

cloud-based, depending on the company’s needs. For instance, if the company

has many locations in different countries, they will most likely have a server-

based access control in some part of their system architecture.

In addition to the software-based access control, physical devices can be

installed at the doors that need controlling. These so-called physical door access

control readers are user interfaces for users to interact with and they can be

divided into:

4

- Keypads

They require a PIN or passcode to open but are not dependable on a

physical key or a key card which can be easily stolen.

- Swipe card reader
A reader authenticates people by reading a magnetic stripe on a key card

or ID and gives access if the permission is granted.

- Radio frequency identification

They use signal emitting data tags that can communicate with readers

nearby. These data tags can typically be key cards or key fobs.

- Biometric locks

Locks identify people by a personally unique physical trait, such as eyes,

facial recognition, or a fingerprint.

- Smart locks

Locks support mobile identification, key cards, key fobs and touchless

activation.

[4.]

Smart locks and mobile access control are an emerging trend, where the smart

phone is used instead of physical keys and fobs to manage users’ access rights

and credentials to different places. Smart phones can communicate with the door

readers through the Bluetooth and Near-Field Communication (NFC) technology.

[5.]

Bluetooth is a short-range wireless technology that operates in two major

frequencies varying from 2400 - 2483.5 MHz and 2402 - 2480 MHz. Over time

Bluetooth has evolved dramatically from its initially released version 1.0 in 1999

to the latest version 5.3 released in 2021. Throughout the release history, the

objective has been centred around enhancing speed and security. There was a

significant milestone with Bluetooth version 4, as low-power Bluetooth called

Bluetooth Low Energy (BLE) was introduced. [6.]

Currently, Bluetooth can connect devices with pairing or non-pairing centric

mode. The difference between these two modes is that if the connection is

allowed in pairing mode (versions below 4), the devices need to be linked before

5

being able to communicate whereas in non-pairing mode (versions above 4) this

is not required (see Figure 1).

After BLE was introduced, a wider selection of devices has been able to use

Bluetooth for security, wearables, and portable systems due to improved energy

efficiency and performance. As seen in Figure 1, all the devices in the same

Bluetooth radar have the possibility to transmit data with each other while

consuming less battery. [6]

The NFC technology is an evolution from a similar technology called Radio

Frequency Identification, which uses electromagnetic waves to capture and read

transmitted data.

Figure 1 Communication with Bluetooth. BLE connects devices
together allowing them to communicate between each other
without the need for pairing. [6]

6

The functionality of NFC consists of readers which are integrated into devices

such as smartphones, tablets or dedicated NFC readers and tags which contain

an embedded microchip and antenna, also found in smartphones and other

wearable devices. (see Figure 2).

As in Figure 2, the tag holds credential information which can be used to unlock

a door when brought close to a compatible reader. The maximum distance for the

electromagnetic field to work is around 4 cm. [7.]

2.2 Authentication, Digital Identity, and Access Management

Authentication is one of the access control mechanisms used to define whether

individuals or objects have permission to do or access a specific thing. Other

processes of access control mechanism include:

- Identification
Identification tells who the user is.

- Authorization
Authentication tells if the user has permission to access or not as well as

helps to confirm the user’s real identity.

- Accounting
Authorization defines the limitations on the user rights, such as what

details one can see, and accounting keeps record of the number of entries,

actions, and timestamps.

Figure 2 Communication with NFC. Near field technology uses electromagnetic
waves to handle transmitted data. [7]

7

In the authentication process, the user is required to provide proof of who they

are by using authentication or so-called credentials. This means that if the user

is claiming to be someone, they need to provide evidence accordingly. The most

typical and commonly used factors are:

- Something generally known:
The user provides information only they know. It can be a PIN code or

password.

- Something possessed:
The user provides an item they have, such as a smart card.

- Something considered as a physical trait:
The user has a physical trait that can be used as part of the authentication,

such as a fingerprint.

[8.]

Different authentication and identification methods have increased in mobile

development as the regular username and password are not the only way to know

if the user is legitimate. In mobile environments different types of identity

solutions, such as Stripe and Signicat are used to make stronger authentications.

These identity solutions provide online identity APIs to confirm the identity of

users from attributes such as name, address, and date of birth to prevent them

from being fraudulent. [9.]

On top of this, different identity and access management (IAM) platforms are

used to store user information and to provide seamless application experiences

to users. IAM platforms offer password vaults for storing and maintaining access

to applications, creation, and management of user identities in applications and

databases as well as enforcing security for secure access to applications. IAM

solutions, such as Okta, provide the Single Sign-On feature which can be utilised

to give the user a wider spectrum of login options, such as passwordless or PIN

code login. [10.]

8

3 Tools and Methods

The project was completed following the Agile methodologies, such as Scrum.

The project board and roadmap were managed in the Jira project management

tool and documents were stored in a Google Drive folder. The project was divided

into six parts in the following manner:

- Planning
Planning included creating a vision of the project and planning the scope

of the project. In addition, the user survey questionnaire was compiled and

analysed.

- Design
The design phase included the whole system design, from user interface

(UI) design to the database schema and the Application Programming

Interface (API) architecture.

- Implementation Cloud
The Cloud implementation consisted of everything related to the backend

and Amazon Web Services (AWS). These included creating mock data in

the DynamoDB and configuring AWS Lambdas and API Gateway as well

as Simple Notification Service (SNS).

- Implementation Mobile
Mobile implementation included everything related to the frontend, such

as Test-Driven Development (TDD) on the mobile application.

- Testing
The testing phase included writing unit testing, overall system testing,

increasing the test coverage and handling errors in both frontend and

backend. In addition, code was simplified.

- Review
The review phase of the project included preparing the project for

submission.

9

3.1 User Survey Analysis

User survey analysis was used in this project to support the objectives and

arguments for the proposed need of access control system modernization.

Residents of different apartment buildings around Finland were asked to fill out

an online questionnaire, where the goal was to analyse answers to the following

three questions: How many times door codes, if any, are changed in apartment

buildings; how safe residents feel in comparison to the current access control

solutions; and what the factors are to increase safety. A scale of 1 (feeling

extremely bad) to 5 (feeling extremely good) was used to analyse the answers,

with the combination of open-choice and multiple-choice answers. The survey

reached 71 residents out of which 32.4% were identified as men and 67.6% as

women.

Out of all the answers, 67.6% of the residents informed that the code in their

building has never changed or the building does not have one. (see Figure 3).

While 16.9% of the interviewees claimed, as Figure 3 illustrates, that the code is

changed frequently 1-2 times a year, most of the answers indicate a high

Figure 3 Frequency of changing door codes in residential buildings. Over half of the informants reported that
the code is never changed, or the building does not have one.

10

possibility of having the code memorized by the wrong people as the change

frequency is long.

According to the survey, most of the people had lived in their current building for

1-2 years (40.8%), 33.8% less than a year and 25.4% over three years.

The answers show that most interviewees felt comfortable in their building.

However, the current access control solutions leave 46.4% of the residents

feeling between not safe at all to moderately safe. (see Figure 4)

The question in Figure 4 shows that some respondents felt that the public code

should be changed more often whereas some thought that the door should

always be kept locked. A few respondents pointed out that the public code meant

for residents should be kept private.

Overall, 86% of the interviewees expressed enthusiasm for letting friends and

family inside without sharing the actual door code with the variation from

moderate excitement to extreme excitement.

Figure 4 Distribution of answers on how safe people feel with current access code systems. 46.4% of the
interviewees admitted feeling not safe at all to feeling moderately safe.

11

3.2 Test-Driven Development with Swift for iOS

Test-Driven Development (TDD) is a methodology used when a feature is needed

and for developing that feature new code needs to be written or alternatively

something needs to be fixed, and to make a fix, code needs to be rewritten.

The approach in TDD is that the tests for changing code are written before the

actual code. This is done in three steps such as red, green and refactor.

(see Figure 5).

As Figure 5 shows, the beginning of every new piece of code is a failing test, after

which a minimal amount of new code is written to make the test pass. Only at the

end, the passing code is refactored. For Swift, tests can be written with XCTest,

which is a testing framework for Xcode. Tests are divided into four different testing

levels, and these are listed below from bottom to top:

- Unit

- Component

Figure 5 Test driven development flow. Tests are created before
the actual code. The first step is to make the test fail. [11]

12

- Integration

- UI and API test

(Cf. Figure 6.)

Each test level serves a different purpose in the software development process

and the amount of code it can affect is individual, as illustrated in Figure 6. The

tests are run in different phases or some in parallel, but generally they all test

different things:

- Unit tests
Unit tests are used to test a single unit, such as a function that has a single

purpose. Generally, they are run as part of a build and before every

commit.

- Component test
Component tests are used to test a single component.

- Integration and End-to-end test
Integration and end-to-end tests are very similar as they are used to test

a bigger part of an application, such as how multiple components or views

work together.

- UI and API test
UI testing focuses on how the UI is functioning, and API testing validates

if backend logic works.

Figure 6 Test types. At least unit tests should be carried out. [12]

13

Other types of testing in mobile development can be:

- Performance testing
Performance tests can be done with the Xcode Instruments tool, which

offers for example time profiling. This shows the developer if any part of

the application loads slowly and needs changing.

- User testing
User testing is done before development. Its main purpose is to find out

who the users are and how the mobile application can be made to meet

their requirements. [11; 12]

3.3 Amazon Web Services

Amazon Web Services (AWS) provide a coarse selection of tools to use on the

backend side, which can be used simultaneously together or alone. Some of the

tools are DynamoDB, AWS Lambdas and API Gateway, which can be used

together to create a monolithic backend architecture.

3.3.1 DynamoDB

DynamoDB is a popular Not only Structured Query Language (NoSQL) database

offered by AWS. It is designed with performance in mind as a nonrelational

database which can handle simple queries. Data is structured in collections

instead of tables and rows as in Structured Query Language (SQL) based on a

relational database. It is ideal especially for storing many rows of similar data,

such as website clicks or voting.

14

The idea of DynamoDB is that it stores the data in the same format in which the

application is going to use it, and in this way, the developer avoids complicated

queries through many tables, when all data is fetched from a single table (see

Figure 7).

Figure 7 Relational database (on the left), non-relational DynamoDB database (on the right). DynamoDB

allows data fetching with primary keys.

In Figure 7 above, the data structure between the relational database on the left

and the non-relational database on the right is opened. In DynamoDB tables, data

is stored in groups of attributes, called items, where each item can be retrieved

by their primary key or other attribute that uniquely identifies them. [13.]

3.3.2 AWS Lambdas

The Lambda function allows / Lambda functions allow triggered calls to upload

and run code against the database through an API Gateway. They can be written

in multiple languages such as JavaScript or Python. The idea behind Lambdas is

that a single function for a single purpose is needed at a specific time. As writing

lambda functions, AWS allows full management of RAM/CPU processing time as

Lambda code structure affects how much the lambda functions consume. [13.]

15

3.3.3 API Gateway

The API Gateway allows APIs to be published in locations hosted by AWS. An

API can be partially or fully the source code of an application, offering HTTPS

(Hypertext Transfer Protocol Secure) endpoints for mobile applications to

communicate with the backend. The API Gateway, therefore, is a door to any

service needed in AWS, and it can be either protected with authentication or not.

Overall, API Gateway provides a great set of features of mobile application

development backend:

- Security – It supports other AWS tools for authentication, such as AWS

Cognito and IAM.

- Traffic throttling – Calls with same query can be responded from API

cache, which means that it decreases the number of calls going all the way

to the database.

- Multiple version support – Many API Versions can be hosted at the

same time.

- Metering – Possibility to control access levels.

- Access – API checks authorization and actions accordingly.

[13.]

3.3.4 Simple Notification Service

AWS SNS allows applications to deliver push-based notifications or messages to

one or many destinations. Messages can be delivered by the created topic or to

a single recipient if their number is known. Topics are channels which can have

subscribers. If the message is sent to the topic, all the numbers which are

subscribed will receive the message. SNS can be triggered for example in

Lambda functions with a publish command. [14.]

16

4 Overall System

The SmartAccess system is designed to provide end users a mobile application

which they can use to generate time sensitive access codes for a smart lock at

the main door of their residence (see Figure 8).

Figure 8 Overall system flow. The finalized system consists of two user interfaces and a mobile and door
lock, which both communicate to the same backend.

Primary users of the system are divided into two groups as seen in Figure 8.

Group 1 consists of people who live in the apartment buildings and want to

generate a temporary access code with a mobile application, and Group 2

consists of those who wants to use the generated access code at the smart lock.

To satisfy the needs of Group 1, the following parts were implemented:

- Mobile application interface and access code generation

- Backend configuration

The following part was excluded from the scope but may be implemented later:

- Smart lock at the door and communication to backend

17

4.1 Architecture

System architecture that serves Group 1 follows the monolithic structure,

meaning. It is implemented within single codebase and all the components

operate together as a whole. The mobile application is written with Swift, which

is a programming language for the iOS platform. The backend service is made

by using AWS tools, such as DynamoDB, API Gateway, AWS Lambdas and SNS.

(see Figure 9).

Figure 9 System architecture. Communication from the mobile application to the database goes through the
monolithic system.

As seen in Figure 9, the mobile application communicates with the backend

services through the API Gateway, which is the entry point for every request

made by the user after the user is authenticated. The API Gateway contains

configurations for each path, which can call their own respective lambda function

for further actions. Lambda functions are written with Python to serve each call

individually with interactions to the DynamoDB.

4.2 API Gateway

The API Gateway was used to publish an API for communication between the

SmartAccess mobile application and backend services. AWS offers four different

types of APIs, but SmartAccess was made with REST API. The API is configured

with the combination of resources and methods. Each resource is an endpoint

which is used to call the API from the mobile application and each resource

18

contains a method, such as GET, POST or PUT which defines the type of request

that is made.

During the development process all modifications on the API side were made

through the API Gateway. This included changes to the endpoints as well as

deployment. (see Figure 10).

Figure 10 The SmartAccess API in the Amazon Web Services console. The API Gateway can be managed
through the console by adding resources and methods for it. These modifications can then be published to
production.

The base URL for the API in Figure 10 is https://dqqkl12p98.execute-api.eu-
north-1.amazonaws.com/smartaccess, and it contains five endpoints which

allows communication from the SmartAccess application. All five endpoints

require an access token, which the user obtains once they are authorized.

- /codes?residentId={residentId}

- /codes/attempt?codeId={codeId}

- /codes/code

- /codes/validity?codeId={codeId}

- /resident?residentId={residentId}

4.3 Lambda Functions

Lambda functions are trigger events that connect the API Gateway with

DynamoDB. The functions are linked to a method in the API Gateway and

triggered when that method is called. Lambda functions are setup with

permissions, which define the execution role that can access DynamoDB

https://dqqkl12p98.execute-api.eu-north-1.amazonaws.com/smartaccess
https://dqqkl12p98.execute-api.eu-north-1.amazonaws.com/smartaccess

19

resources. Every service that Lambda interacts with needs their own permission

(see Figure 11). SmartAccess related permissions are described below:

- AmazonDynamoDBFullAccess
Provides full access to Amazon DynamoDB via the AWS Management

Console.

- AmazonSNSFullAccess
Provides full access to Amazon SNS via the AWS Management Console.

- AWSLambdaBasicExecutionRole
Provides write permissions to CloudWatch Logs.

Figure 11 API Gateway communication to DynamoDB. An incoming request from the mobile application is
received in the API Gateway, after which Lambda is triggered. Once Lambda received a response to its
request from DynamoDB, it returns the response to the API Gateway.

Lambda configuration is made in a file called lambda_function.py, which is an

autogenerated file made by AWS. As seen in Figure 11, Lambdas work by

receiving an event from the API gateway after the endpoint is called. Inside the

event, a body or query string parameters are passed which are needed for the

communication with the database. Lambda handles and puts forward the needed

content of the event in an action to DynamoDB. The action can be a request for

fetching an item with an ID or updating a value. Once the action completes,

DynamoDB returns a response to Lambda, which handles it again accordingly

and returns the final response to API Gateway. This response is then returned to

the mobile application where data is processed and showed to the user.

20

In SmartAccess, the application communicates with the database through five

different Lambda functions, which are listed below:

- getAccessCodes
Fetches all access codes by the user ID. It also maps code validity details

for all access types in the return response. This is used to show code

generation history to the user.

- getCodeValidity
Fetches single code validity by code ID.

- getResident
Fetches currently logged in resident and community details and maps

them together in the response.

- putCodeValidity
Updates validity details of a single code by code ID when code is

regenerated. This changes the date until the code is valid, so it can be

observed in the mobile and showed accordingly in the code generation

history.

- postCode
Creates new code in the DynamoDB database when the user generates

new code. The function also handles updating the initial code value to

VALIDITY and ATTEMPT tables and sends the generated code to the

visitor as a text message.

4.4 Database

Non-relational AWS DynamoDB is used as the mobile application backend, due

to its capability to provide fast and predictable performance for read and write

operations as well as compatibility with other AWS services.

21

The purpose of the database is to store data generated by the mobile application

as well as to provide real-time data back. This data can be related to the

community, user, code validity or history, which is used to keep track of the

temporary door codes a single user generates under a specific community.

The SmartAccess DynamoDB database consists of five tables which all store

different type of data. Every table contains a unique primary key which is used to

query data from the tables, and some have an optional sort key which can be

used in combination with the primary key to sort data (see Figure 12).

Figure 12 Non-relational database schema in DynamoDB. The Database contains five tables for storing
access code, user, and community related data.

The database schema is built to divide data into small but logical pieces that can

be individually modified as necessary, as seen in Figure 12. These tables are

listed below:

- RESIDENT
Stores resident details. Residents are those who live in the apartment

building. The table is accessed with the resident ID.

- COMMUNITY
Stores community details. Community is the building where residents live.

The table is accessed with the community ID.

- CODE
Stores code details. Code is created for a single community by a resident.

The table is accessed both with the resident ID and creation time.

22

- ATTEMPT
Stores the latest attempt status for all code. The attempt is the time when

the visitor tried to use the code for the community door. Attempt details are

used to check if onetime code is used (when status is 200) or not (when

status is 500). The table is accessed with the code id.

- VALIDITY
Stores validity details for all codes. Validity is used to check when the code

expires and the validity is modified when time sensitive code is

regenerated. The table is accessed with the code id.

23

5 Mobile Application

The SmartAccess mobile application is the UI for Group 1 users. It is available

for use for the residents of the apartment building holding an iOS device. Its

primary purpose is to allow users to create time sensitive access codes for the

buildings, so called communities where they live. On top of this, the user can

check the code generation history as well as see the community membership

details (see Figure 13). The purpose of the application is to prevent users from

sharing the official access code of their building to temporary visitors, bringing

safety and flexibility to the current access management solutions.

Figure 13 Mobile application flow. The mobile application consists of three flows that serve a different
purpose.

The application consists of three main views as seen in Figure 13. These views

are Home, History and Community. The home view allows users to create new

codes and see information relevant to them, such as the official access code for

the community or the community’s name. In the history view, the user can view

24

the whole access code generation history and reactivate already expired access

codes. The community view allows the user to see their community details, but

not edit them. On top of this, the application contains some other limitations and

rules to users, such as the following:

- Users are only able to create one code at a time. If another code is already

active, generation and regeneration buttons are deactivated, and the user

receives a prompt that suggests the user to share a code that is already

active.

- The user can only create access codes to the communities where they

live, but they can only be registered to one community at a time.

- For now, the user is not able to delete the created access codes.

5.1 User Interface Design

Through the design process, the design goal was to provide a smooth and

responsive UI for the target group as well as to give an opportunity to create two

types of access codes in the building where they live.

The design process started by planning the scope of the mobile application. The

scope was defined using the user survey analysis and focusing on the most

crucial part, which was the code generation as well as all the related actions with

it in the mobile application. During the initial planning phase, particular emphasis

was also placed on defining the strategies on how to ensure the smooth

generation of the access codes and what type of components this requires. This

meant that some common features in typical mobile applications, such as signup,

login and community management were not considered in the design process

and implementation.

The second phase of the design process involved sketching wireframes for the

application, where the aim was also to establish the visual identity.

25

Wireframing resulted in the first skeleton of what the application looks like, by

planning the components to be used and their alignment in the views. (see Figure

14).

Figure 14 Design wireframes. The first step of designing the application user interface was to make a rough
plan on how the application and its views would look like.

Wireframing the application was a crucial first step, as during this process some

parts could be removed or changed. This sort of modelling usually includes

playing with imaginary data, as seen in Figure 14.

The third phase involved designing the software architecture, wherein the pre-

existing backend service underwent a thorough check in the eyes of the mobile

application. Any anomalies discovered were addressed for enhancement. In

addition, the mobile application made its first call to the backend, which allowed

testing the API endpoints with the mobile application.

In the final step, which was initiated before the development of the mobile

application, the initial wireframes underwent modifications, resulting in the

creation of the final design.

26

The final design included the definition of the whole design system, such as

selection of typography, component styling and establishment of a cohesive

colour scheme (see Figure 15).

Figure 15 Application colour scheme. The colour scheme defined what colours would be used in specific
areas of the application, such as buttons, background, and text.

The purpose of the colour scheme was to obtain a consistent look for the mobile

application, as the background, buttons and highlights were following the same

pattern, as seen in Figure 15. The final design was supposed to give space to

the components and make them easy to drag and click. The goal was to have

the application simple for the purpose and appealing for the eye (see Figure

16).

Figure 16 Application final design. The design got its final form after the colour scheme was combined with

design wireframes.

The application features that allow user interaction or that are otherwise important

from the user perspective are the following, as seen in Figure 16:

27

1. Admin code for community – The user should not share this code with

visitors. The code is replaced by generated codes.

2. Name of the community the user is part of.

3. Code generation button, which the user can press to create a new access

code.

4. Bottom navigation to change the view.

5. Validation countdown for codes that are valid for 20 minutes. If a code is

expired, it is replaced with a red ball, and if a onetime code is valid, it is

replaced by a green ball.

6. Generated access code is shown if a code is valid, otherwise code is

replaced with word “used”.

7. Name of the code that the user chose and the validity type.

5.2 Security

All the codes generated through the SmartAccess application are forwarded to

the visitors through SNS as a transactional message (see Figure 17).

Figure 17 Visitor receiving access code via test message. Access codes are sent to the number provided by
the resident during the generation process. Access codes are sent through the Amazon SNS service.

The message is sent once a new code, validity and an attempt is added to the

database in the Lambda function. Transactional messages are considered

critical, and they can contain sensitive information such as one-time passcodes

28

which need to be delivered reliably. Messages are sent to the number the resident

provides while generating the new code.

5.3 Testing

The SmartAccess testing phase was included in the following tests in the

following order:

- User testing

User testing was carried out while validating the UI. In the user testing, two

people were made to try out the prototype of the design. Focus was placed

on two things:

- Notes
Notes included, for instance, facial expressions and emotions the test

users were expressing while navigating through the application.

- Feedback
Feedback was thoughts that were expressed verbally.

- Unit testing
Unit tests were written for functions all over the application while reaching a

test coverage of 29 %.

- Performance testing
Performance testing included 2 runs made with Xcode Instruments where

samples were taken in each part. These runs were related to the code

generation and viewing the history. Some latency was found from fetching

the code history due to how Lambda was made to call the different database

tables. The results were improved by 5 seconds by refactoring the code in

Lambda functions.

On top of this, error handling was added in each API call and Lambda functions

to detect problems in the code during the development phase.

29

5.4 Future Vision

In the future if SmartAccess is continued, it will be set up with AWS Cognito

authentication and identification.

On top of this, the application can be improved by adding community

management on the community view. Once the user can manage communities

themselves, they will be able to join and exit communities independently (see

Figure 18).

Figure 18 Flow for joining the community. The user’s real address is checked from an e-identification
platform, such as Signicat, Telia or Stripe.

Communities can be joined with the combination of a right password and an

address match to confirm that the user lives in the specific building. The user

receives the community password for the SmartAccess application from the

responsible person of the apartment building, after which they can change their

community details in the application. Users can navigate through three paths

when managing their community details, as seen in Figure 18. The user’s current

address is always retrieved from the Finnish population system, which shows the

official address of private people. This address is always checked if necessary

while the user tries to join a new community. If the user’s current address and

community password are both right, the user can immediately create access

codes for the new community. However, if the user’s official address is not

updated in the Finnish population system, the address is rechecked and the user

is required to make a new strong authentication, after which the address is

updated. If the user’s address is still not matching with the address in the

community, the user needs to wait for the address to change in the Finnish

population system to try again.

30

6 Conclusion

Developing a fully functional application always takes somewhere from four to six

months. This project was carried out in around five months, including research

and implementation. SmartAccess is an example of how security in apartment

buildings can be increased, by giving more power to the residents of a building.

The primary objective of this project was to enhance existing access control

methods by suggesting and implementing a functional prototype of how the

residents could manage access codes themselves. The exploration of login and

community management was deemed beyond the project’s scope as the primary

focus remained on perfecting the core functionality of the application, which was

seamless code generation and management. The idea grew from personal

experiences with the current state of access control in apartment buildings and a

comprehensive user survey involving over 70 participants revealing concerns

about the inadequacy of current control mechanisms.

As a result, the identification of existing imperfections in access management

solutions allowed to evaluate the level of security they provide to individuals. The

research also provided concrete evidence that access codes in apartment

buildings are often left unchanged. Armed with these insights, a working

prototype of a mobile application user interface was implemented, which not only

enhances safety for communities and residents but also allows residents to

generate time sensitive access codes and to deliver them to their visitors by using

transactional messages.

Moving forward, this project lays the groundwork for the continued evolution of

Smart Access Control System. On the mobile side, the implementation of login

and authorization flows will ensure that residents truly live in specific communities

and that the addition of community management feature enables the residents to

handle address details seamlessly. Simultaneously, on the hardware front, smart

locks could be connected to the mobile backend, allowing visitors to use the

generated access codes to open doors.

31

References

1 United Nations Department of Economic and Social Affairs, Population
Division (2022). World Population Prospects 2022: Summary of Results.
UN DESA/POP/2022/TR/NO. 3, p. 5.

2 Population Division. United Nations. Online.
<https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/246>.
Accessed 14 November 2023.

3 Gate codes – Access Control in Gated Communities. 2023. Online.
Nimbio. <https://nimbio.com/gate-codes-access-control-in-gated-
communities/>. Updated 4 June 2023. Accessed 14 November 2023.

4 Guide: Access Control – An Overview of Access Control Products. 2022.
Online. Satori Cyber Ltd. <https://satoricyber.com/access-control/an-
overview-of-access-control-products/>. Updated 9 June 2022. Accessed
14 November 2023.

5 Mobile Access Control Guide. Online. Kisi Inc.
<https://www.getkisi.com/guides/mobile-access-control-guide>. Accessed
14 November 2023.

6 Bluetooth Technology: How It Works in Access Control. Kisi Inc.
<https://www.getkisi.com/guides/bluetooth-access-control>. Accessed 14
November 2023.

7 A Guide to RFID and NFC Access Control Systems. Kisi Inc.
<https://www.getkisi.com/guides/rfid-access-control>. Accessed 14
November 2023.

8 Boonkrong, Sirapat. 2021. Authentication and Access Control. E-book.
Apress. <https://learning.oreilly.com/library/view/authentication-and-
access/9781484265703/>. Accessed 5 December 2023.

9 Windley, Phillip J. 2023. Learning Digital Identity. E-book. O’Reilly Media
Inc. <https://learning.oreilly.com/library/view/learning-digital-
identity/9781098117689/>. Accessed 5 December 2023.

10 Jan de Vries, Henk & Stjernlof, Lovisa. 2020. Okta Administration: Up and
Running. E-book. Packt Publishing.
<https://learning.oreilly.com/library/view/okta-administration-
up/9781800566644/>. Accessed 5 December 2023.

11 Hauser, Dr. Dominic. 2022. Test-Driven-iOS Development with Swift –
Fourth Edition. E-book. Packt Publishing.
<https://learning.oreilly.com/library/view/test-driven-ios-
development/9781803232485/>. Accessed 5 December 2023.

32

12 Hyett, Alex. 2023. Unit Testing vs Integration Testing. Online Material.
Alex Hyett. <https://www.alexhyett.com/unit-testing-vs-integration-
testing/>. Accessed 14 November 2023.

13 Wilkins, Mark. 2019. Learning Amazon Web Services (AWS): A Hands-
On-Guide to the Fundamentals of AWS Cloud. E-book. Addison-Wesley
Professional. < https://learning.oreilly.com/library/view/learning-amazon-
web/9780135301104/>. Accessed 5 December 2023.

14 Prasah Buddha, Jyothi & Beesetty, Reshma. 2019. The Definite Guide to
AWS Application Integration: With Amazon SQS, SNS, SWF and Step
Functions. E-book. Apress. <https://learning.oreilly.com/library/view/the-
definitive-guide/9781484254011/>. Accessed 5 December 2023.

