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Opinnäytetyön tavoitteena oli toteuttaa lisäosa Unity-pelimoottoriin, jolla voi luo-
da pelinkehitykseen sopivia kolmiuloitteisia planeettamalleja käyttäen ohjel-
mallisen sisällön luomisen tekniikoita (procedural generation). Lisäosa muodos-
tuu kolmesta osasta: Unityn editorissa toimiva työkalu pinnan muotojen visuaal-
ista suunnittelua varten, kolmiulotteisia malleja tehokkaasti laskeva ohjel-
makoodi sekä ohjelman ajonaikana lisää yksityiskohtia tuottava ohjelmakoodi. 
Työssä käydään läpi käytetyt tekniikat ja esitellään projektin lopputulokset. 

Työssä hyödynnettiin aiemmin Java-sovelluksena toteutetun planeettageneraat-
torin tekemisen aikana opittuja tietoja. Työ toteuttiin käyttäen Unity-pelimoottoria 
ja C#-kieltä Monodevelop-kehitysympäristössä. 

Työn tuloksena syntyi lisäosa joka julkaistiin Unity Asset Storessa. 
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The subject of this thesis was to produce an editor extension for the Unity en-
gine that generates three dimensional planetary terrain models suitable to be 
used in game development. The plugin has three main parts: a node editor tool 
within Unity editor that enables visual design of noise functions to be used on 
the surface, a robust code for generating 3D models during runtime and a dy-
namic level of detail system. This thesis details the techniques used and the re-
sults of the project. 

The work was based on previous knowledge learned during creating a similar 
application using Java. The work was implemented using the Unity engine with 
C# programming language in MonoDevelop development environment. 

The work resulted in a working plug-in that was released in the Unity Asset 
Store. 
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1.INTRODUCTION 

Creating large amounts of interesting content is a problem that game develop-

ers often face when designing their games. The best results are usually 

achieved by manually designing and implementing the content, but this requires 

lots of work and the amount of content will always be finite; the player will even-

tually run out of it. One way to tackle this problem is to instruct the computer to 

create this content, a method referred to as procedural content generation 

(PCG). 

This thesis describes the theory of some of the common procedural methods 

used in game development context focusing on terrain generation. Finally there 

is a case study of a planet generator solution created during this project and re-

view of the methods used in it. 

The project is based on a previous work which was started as a study of Java 

programming language, OpenGL graphics library and the procedural planet 

generation task itself. Because originally the reason was to learn as much as 

possible, everything was created from scratch. Eventually the project reached a 

point where the basic 3D graphics renderer and a simple planet model was 

done and the project was completed in its initial scope. 

When the thesis project was started, the original project was recreated in the 

Unity engine and polished to make it more accessible for other developers to 

use. Unity’s easily extendable editor provided the possibility to create a visual 

node-based editor for the noise functions which made the project much more 

user-friendly. The finished version was released in December of 2013 in the 

Unity Asset Store (1). 
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2. PROCEDURAL CONTENT GENERATION 

Procedural content generation can be defined as the algorithmical creation of 

game content with limited or indirect user input (2). It may utilise simulation and 

mathematical concepts such as fractal geometry and pseudo-random algo-

rithms in an attempt to create what the user desires. Almost anything can be 

generated with sufficient logic and the quantity of content created this way can 

be seemingly infinite. 

2.1. Usage in game development 

There are two main uses for procedural content generation (PCG) in game de-

velopment: generating playable content and generating assets. More possible 

uses exist, such as generation of game rules, but their applicability depends on 

how we define the keyword “content”. One such definition describes: content is 

most of what is contained in a game: levels, maps, game rules, textures, sto-

ries, items, quests, music, weapons, vehicles, characters etc. (3). 

Generating assets refers to generation of content that is not directly related to 

gameplay, but it is there to support the game experience. This includes graphi-

cal and audible content such as 3D models and textures. 

Generating playable content refers to generation of game levels, stories, char-

acters or units, items and any other interactive content that the player con-

sumes. 

The methods of procedural generation are often based on randomised algo-

rithms that are seeded with pseudo-random number generators (PRNG) that 

use predefined seed values to produce the same results if given the same seed 

and parameters. The methods include noise generators, fractal systems, cellu-

lar automata, specialised logic routines and simulation. 

Simulation in this context rarely means simulating the actual processes that 

created the real world counterparts. The level of abstraction is usually very high.  
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For comparison we can think what would it take to simulate the creation of a 

patch of terrain with hundred percent precision: one would have to simulate bil-

lions of years of geological processes on atomic level. Clearly this is not feasi-

ble nor necessary. Fortunately computer games are all about illusion, creating 

an image to the mind of the viewer. In this context the simulation can be only 

superficial and in the end it is more important that the end result looks convinc-

ing than that it is accurate. 

Historically one of the reasons for developing procedural generation was that 

the earliest computer games were severely limited by memory constraints (4). 

The programmers developed algorithms that would generate lots of data from 

small amount of seed data. 

Another reason for using PCG is the lack of resources to manually design large 

amounts of content. PCG methods can provide that but the initial investment of 

resources to develop the generator is higher. With manual content creation the 

amount of invested resources will rise in correlation with the amount of finished 

content, as with the PCG methods the initial investment is higher, but after the 

generator is finished more further content can be generated with reduced cost. 

PCG can also be used as a tool to enhance manual content creation. The pro-

cedural generator can save the designer from having to do repetitive tasks, for 

instance to create variations or trees for a forests. 

One of the considerations with PCG is quality assurance. The algorithms may 

be time consuming to develop to a point where acceptable results can be guar-

anteed for all cases. One solution to this is to introduce validity testing proce-

dures that ensure that the generated content fulfils all requirements. 

2.2. Terrain generation 

Generating terrains is perhaps one of the most common applications of PCG. 

In game development context the requirements for the terrains greatly vary. Ul-

timately the environment is there to serve the gameplay and therefore realism is 
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secondary, but still the environment should be detailed enough to immerse the 

player in to the game setting. 

The scope and the scale of the game also alter the requirements for the envi-

ronment. A game where the player views the game world from a distant birds-

eye view has very different requirements compared to one where the player 

walks across the landscape. 

Side-scrolling games often use one dimensional terrain representation such as 

in IMAGE 1. This type of terrain has varying height over certain length (the 

length can be infinite). 

!  

IMAGE 1. “Tiny Wings” on iOS (5) 

Height maps are often used in when the player can move mainly two dimen-

sionally over the terrain. The representation of the terrain may also be two or 

three dimensional using the same height maps. The drawback is that caves or 

overhangs cannot be represented using height maps since each cell only has 

one height value (IMAGE 2). 
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!  

IMAGE 2. Procedural terrain in “Civilization V” (6) 

Volumetric terrain representation has became more popular in recent years. It 

allows terrains to be truly three dimensional with extensive case systems (IM-

AGE 3). 

!  

IMAGE 3. “Minecraft” (7) 
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There are many ways to generate terrain data but the most prevalent are the 

midpoint-displacement algorithms (8) and noise functions such as Perlin noise 

(9). 

2.3. Planet generation 

There are number of examples of procedurally generated planets in game de-

velopment including:  

• Procedurally generated planets in “Spore” (10), 

• Kerbal Space Program (11), 

• I-Novae-engine (12), 

• “My First Planet” by Alex C. Peterson (13), 

• Work of Sean O’Neil (14), 

• Making Worlds by Steven Wittens (15). 

!  

IMAGE 4. Planets in “Spore” (16) 
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3.ALGORITHMS AND THEORY 

3.1. Pseudo-random number generator 

One of the essential technologies to computationally generate new information 

is the ability to produce seemingly random sequences of numbers. A pseudo-

random number generator (PRNG) produces numbers that approximate a truly 

random function. PRNG sequences are not considered truly random since they 

are completely determined by a small set of initial values (17). However this 

level randomness is sufficient for most purposes related to computer game con-

tent creation. 

The initial values of a PRNG are called seeds and usually represented by an 

integer. Using the same seed will produce the same sequence of seemingly 

random numbers. This feature of a PRNG makes it possible to store a vast 

amount of generated information in to a single integer number. 

3.2. Coherent noise 

Coherent noise is a type of smooth pseudorandom noise (18) that has no sharp 

discontinuities in the output values (IMAGE 5). A coherent noise function and 

takes n-dimensional coordinate parameters and returns a single output value. 

The function is based on a PRNG and therefore returns the same output value 

each time with the same parameters. 

IMAGE 5. One dimensional non-coherent noise (left) and coherent noise (right). 

Notice how the adjacent data points on the non-coherent noise have large value 

differences and therefore very little continuity. 
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The basis for all coherent-noise functions is the integer-noise function (19). This 

kind of function takes an integer value as a parameter and returns a floating-

point value. The important features are that the same values are always re-

turned with the same input parameter and that the outputs of neighbouring input 

values have no correlation between each other (in other words are in a random 

sequence). 

The next step is to make the previous discrete function continuous by adding 

interpolation. The simplest is linear interpolation (bilinear and trilinear for higher 

dimensions) but usually cubic or quintic interpolation is required to produce 

good quality results. The function simply interpolates between the original inte-

ger-noise values using the chosen interpolation function. 

Next improvement of the noise function is to use random gradient vectors at the 

integer boundaries. This method displaces the noise in random directions and 

therefore gets rid of the grid-like appearance of the previous steps. The function 

needs to calculate the influence of each pseudorandom gradient on the final 

output, and generate our output as a weighted average of those influences (20). 

The end result of this method is referred to as Perlin noise (IMAGE 6). 

IMAGE 6. The stages of coherent noise generation in 2 dimensions. From left to 

right: integer-noise, linear interpolation, cubic interpolation and Perlin noise. Im-

age from LibNoise (19). 

3.2. Perlin noise 

Perlin noise is named after Ken Perlin who originally created the algorithm while 

working on the movie “TRON” in 1983. He was awarded an Academy Award 

(Oscar) for technical achievement for it and the algorithm has since become a 

standard for the computer graphics field both in movies and games. 
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Perlin himself describes noise as texturing primitive you can use to create a 

very wide variety of natural looking textures (21). 

The problem Perlin was facing was the fact that computer graphics can render 

shapes with perfect mathematical precision and such shapes do not appear 

natural. Real world surfaces have small imperfections that contribute to the 

overall look and character of the surfaces. Perlin created the coherent noise 

function to add more realism to the graphics. 

The original paper describing the usage of noise in texture generation was re-

leased in 1985. Perlin has since published another paper titled “Improving 

noise” (22) that describes an improved noise algorithm that fixes minor disconti-

nuities in the original algorithm. 

3.3. Fractional Brownian motion 

Fractional Brownian motion (also called fractal Brownian motion, abbreviated 

FBM) is often used in a method of layering multiple octaves of coherent noise to 

make the image have more varied appearance. Each subsequent layer has its 

frequency doubled and amplitude halved. Applying this method to the coherent 

noise can give it features that appear self-similar (23), a typical property of frac-

tals. 

3.4. Sphere tessellation 

There is no single obvious way to divide a spherical surface into regular sec-

tions or grids. (24) One of the requirements for a procedural planet with a dy-

namic level of detail is the ability to tessellate sphere surface in such a way that 

further subdivision is possible. Another requirement is that the tessellation 

should be as uniform as possible in a way that the detail is same in all areas 

from the equator to the poles. 

Different tessellations that were considered include: (IMAGE 7) 

1. Geodesic sphere which is formed by subdividing the edges of an icosahe-

dron, 
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2. UV sphere which is based on latitude and longitude coordinates, 

3. Quad sphere which is formed by mapping each point in a cube surface on to 

a sphere. 

The most common one in 3D-modelling is the UV sphere, but this approach has 

the downside of increasing detail around the poles and having less detail in the 

equator making it unsuitable for this purpose. 

The geodesic sphere has uniform tiles and therefore no distortion at the poles, 

but the nature of the shape makes the calculations involved in generating the 

mesh and further detail levels more complex. 

A quad sphere also has the problem that the tile size and shape is not uniform 

across the surfaces and has slight distortions at the corners of the cube, but the 

distortion is small enough to be tolerable in this application. 

!  

IMAGE 7. From left to right: subdivided icosahedron, quad sphere and UV 

sphere. Notice the tile sizes of each sphere type: icosahedron has triangular 

tiles of uniform size; quad sphere has rectangular tiles of approximately same 

size but distortions near the corners; and UV sphere has rectangular tiles that 

are larger at the equator and approach singularity at the poles. 

The main reason for selecting the quad sphere is the easy further subdivision of 

the surfaces. The shape is essentially a cube, making each side a rectangle 

and therefore all subdivided surfaces are smaller rectangular shapes (IMAGE 

8). 
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The 3D vector coordinates of the points that form the cube are stored as six ar-

rays of points, one for each side of the cube. The number of points determine 

the detail level of the resulting model.  

!  

IMAGE 8. Wireframe image of a cube before and after transformation. 

A mathematical formula is then applied to each of the points, mapping them in 

to points on a unit sphere surface (FORMULA 1). The formula used here was 

originally developed by Philip Nowell (25). 

!  

FORMULA 1. The formula for transforming a point on a cube to a point in 

sphere surface (25). 

3.5. Height mapping 

A common technique of representing the terrain in a modern game is a 3D 

model based on a height map. 
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IMAGE 9. A height map displayed as a greyscale image (left) and a 3D surface 

formed by the same height map (right). (26) 

Height maps or height fields are 2-dimensional tables where the value of each 

cell corresponds to height of the terrain (over some baseline) at that point (27). 

The advantages of this method are efficiency of storage and easy access to the 

data. The drawback is that height map can only represent one height for each 

position and therefore it is impossible for a terrain represented this way to have 

caves, cliffs or overhangs. 

The table structure of a height map closely resembles that of a raster image or 

bitmap and therefore they are often visualised as a greyscale images (IMAGE 

9). The height values are mapped to a gradient with 0 being black and 1 white. 

3.6. Applying height maps to a sphere 

In order to apply noise on a spherical surface and make sure the mapping 

wraps in all directions is to use a three dimensional noise function and use the 

normalised vector between the sphere centre and the surface position coordi-

nates as the input parameters (IMAGE 10). 

This approach also makes it possible to have a dynamic level of detail: addi-

tional points added between the previous points can call the same noise func-

tion and get the correct height values. 

It is not necessary to have the height maps as actual images at any point as the 

mesh generation function can directly call the noise function. 

� �
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!  

IMAGE 10. Advanced coherent noise function applied on the surface of a quad 

sphere. 
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4. PLANETARY TERRAIN 

4.1.Requirements 

Generating and rendering terrain on a planetary scale poses a new set of tech-

nical challenges. The scale can be massive and the spherical shape requires 

use of more complex vector mathematics than a regular square terrain.  

The planet must also wrap on all directions and not have any abrupt discontinu-

ities. The tessellation must be uniform to provide equal amounts of detail from 

the equator to the poles. 

Additional requirement is to have a dynamic level of detail system which gener-

ates more detail as the camera approaches the surface and to create an visual 

node-editor which enables intuitive creation of planet surface shapes. 

4.2.Tools 

This project required a visual editor interface to allow intuitive designing of the 

noise functions which make up the planet surface form, multithreaded runtime 

calculation capabilities to generate the surface meshes and a robust realtime 

3D graphics engine to render the final models. 

Therefore the technical requirements to even start with the actual planet specific 

tasks are quite high. The options are to program a 3D graphics engine from the 

scratch or use an existing engine. The best choice considering productivity is to 

use an existing engine which allows the development resources to be targeted 

towards the aim of the project instead of the supporting technologies. 

4.2.1. Unity 

The project was developed using the Unity-engine (28) which provided a solid 

foundation to build upon. 

Unity is a fully featured game engine. It consist of an unified editor which works 

as the interface for the developer to use the engine to develop their games. The 

main features provided by Unity include C# .NET functionality in the form of the 
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open source Mono-platform, 3D rendering capabilities with advanced shader 

models, asset pipeline, multi-platform support with input handling and an ex-

tendable visual editor. 

Programming was done using the MonoDevelop development environment 

bundled with Unity. 

4.3. System architecture 

The planet generator is formed of three main parts: the node-editor, the planet 

mesh generator and the runtime dynamic level of detail (LOD) system (DIA-

GRAM 1). The system itself is built on top of the Unity engine and the Mono-

runtime built-in Unity. 

The node-editors main function is to provide the ability to create node-graphs 

and save/load them from the hard-drive. 

The planet mesh generator creates surface meshes based on the node-graphs 

and can be run both from the editor and the runtime application. 

The runtime dynamic LOD-system tracks the distance of each surface to the 

viewer object and triggers further subdivision of surfaces and mesh generation 

to provide more detail where it is needed. 

DIAGRAM 1. Planetary Terrain architecture. 
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4.4. Node-editor 

The node-editor enables visual and more intuitive way to handle the design of 

the noise functions (IMAGE 11). The idea of the node-based solution was influ-

enced by an open-source noise library called LibNoise. 

There are three main types of nodes:  

1. generators which provide an output value,  

2. operators which manipulate an incoming value from another node 

3. and an output node where the final output is displayed.  

IMAGE 11. A node graph with multiple generators being blended together to 

form the final height map on the right. 

The most important part of each of the nodes is a function which takes a 3-di-

mensional coordinate as a parameter and returns a floating point value which 

represents the height of the terrain at that position. The values are within -1 to 1 

range. 

float GetValue( Vector3 position ); FORMULA 2 

Generators (TABLE 1) provide a value based on a mathematical formula using 

the 3D position as the source, in this case Perlin noise. 
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Operators (TABLE 2) take output values from generators or another operators 

and transform those values based on a formula or logical operation. Examples 

of these operations include basic arithmetic operations such as addition, sub-

traction and multiplication, and more advanced operations such as blending 

multiple input values. 

TABLE 1. Types of generator nodes 

TABLE 2. Types of operator nodes 

Node Description

FBM Fractal brownian motion based on 3-dimensional Perlin-
noise.

Ridged Variation of FBM which provide ridge-like terrain features.

Billow Variation of FBM which provides negative ridges.

Const Constant value defined by the user.

Node Description

ABS Returns absolute value of the input

ADD Performs arithmetic addition of two input values

BLEND Combines two input values based on the third which 
acts as a weight between the two.

CLAMP Forces input value to be between given minimum and 
maximum

EXPONENT Raises input value to power of value between -10 and 
10

INVERT Switches the sign of the value

MAX Selects the larger value of two inputs

MIN Selects the smaller value of two inputs

MULTIPLY Performs arithmetic multiplication of two input values

POWER Raises first input value to the power of the second value

SUBSTRACT Performs arithmetic subtraction of two input values

TERRACE Weights values between given range to come together 
at target value.
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4.5. Planet mesh generator 

The planet mesh generator is provided with a node-graph file and parameters 

that define the resulting 3D model. These parameters include the radius of the 

planet, resolution of each mesh patch, height variation which defines how much 

the noise will displace the surface and a random seed value which is used to 

initialise the pseudo-random noise generators. Configuring these parameters 

allows for large variety of planets (IMAGE 12). 

The mesh generation procedure creates an array of points in 3D space for each 

surface in the form of a cube, transforms the points to a sphere surface, applies 

the noise displacement and finally scales the points to desired planet size. 

The generator will instantiate the initial six surfaces which can then be further 

subdivided by the dynamic LOD-system. 

TRANSLATE Moves the position parameter therefore changing the 
coordinate where the position is sampled.

DIVIDE Performs arithmetic division of two input values

CURVE Modifies the input value based on a user defined curve 
function.

WEIGHT Moves input value towards target value at adjustable 
strength.

WARP Performs 3-dimensional linear interpolation between the 
position vector and its normal vector, using the second 
input as a weight.

SELECT Returns how close the input value is to a target value 
within given range.
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IMAGE 12. Planet meshes of varying scales generated using Planetary Terrain. 

4.6. Runtime dynamic level of detail 

The type of level of detail used is known as chunked LOD (29). 

The LOD-system tracks an object in the 3D-world which it interprets as the 

viewer. On each frame when the world is updated the LOD-system calculates 

the distances between the viewer and the closest corner of each of the existing 

surfaces. These distances are then used to determine whether the surfaces 

need to be further subdivided to provide more detail or to be destroyed if they 

are unnecessarily detailed (IMAGE 12). 

The LOD-system has a subdivision queue which keeps track of the surfaces 

that need to be subdivided. In order to avoid massive calculation spikes the 

queue is selectively emptied one at a time from the top of the queue. When a 

surface is selected it will be assigned a separate processing thread where the 

noise calculations and mesh generation happen asynchronously. When the op-

eration is complete the thread is freed and another surface may be selected for 

subdivision. 
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The number of LOD-levels are defined by the user in the editor along with ap-

propriate loading distances. 

!  

IMAGE 12. The surface generates more detail as the camera gets closer. 

4.7. Shading 

Shading the newly generated meshes properly is important part of getting a vi-

sually pleasing end result. 

Simple approach is to use the noise value or height at each location and select 

a colour using a gradient (IMAGE 13). To get more variation the distance from 

the poles can be used to create specific effects for arctic and equator regions. 

Also the slope steepness can be used to control colours for cliffs and flat areas. 

 !26



!  

IMAGE 13. Colouring based on a colour selected from a gradient based on the 

height. 

Colour in itself can be sufficient for viewing from large distances, but is not 

enough if the camera is positioned near the surface. The next step is to add tex-

tures using the same parameters of height, distance from poles and steepness. 

Multiple shaders were created: height blending diffuse shader with 4 textures, 

bump-mapped shader with 4 diffuse and 4 normal map textures, versions of 

previous shaders with slope texturing and also versions with additional global 

colour map. 

Additional nodes were also added to the node-editor in order to allow for more 

complex colourings of the surface (IMAGE 14). 
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IMAGE 14. Colouring in the node-editor with a gradient-node. 

4.8. Vegetation 

Earth-like terrains require vegetation in order to appear natural. The problem 

with vegetation rendering often is performance, since the amount of separate 

trees and grass patches can get very high especially if the camera is viewing a 

large area. Optimisations included circumventing the Unity game object system 

and directly calling the DrawMesh-function to draw vegetation instances to the 

screen, and creating an impostor-system which replaces distant trees with a 

separate low polygon mesh (IMAGE 15). 

The vegetation placement is based on the same noise module system as the 

terrain generation and also uses the terrains height, slope polarity values to se-
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lect positions where the objects are placed.

!  

!  

IMAGE 15. Trees on the planet surface in “Massive”-demo (30) included in 

Planetary Terrain (upper image) and view of the same planet from the orbit 

(lower). 

!
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5.CONCLUSION 

This project had two main goals: to produce a procedural planet generator suit-

able to be used in game development and to create an intuitive editor for de-

signing the planet surfaces. The procedural mesh generation was a familiar 

subject already, but in smaller scope and without dynamic level of detail, and 

the project managed to provide a suitable generic solution. The editor side was 

new territory but the Unity editor proved to be fairly easily extendable and facili-

tated the node-editor very well. 

One of the bigger problems was the scope of the project as the project aim was 

to provide procedural planets suitable for game development, but did not further 

specify the type of the games. Games have massively varying needs for the 

planets: some games require small planets viewed only from the orbit and some 

require enough detail on the surface to facilitate realistic first person view. A 

project scope this broad runs the risk of providing overly generic solution that is 

not perfect for any specific need. 

Overall the project was successful but during the development many new direc-

tion and improvement ideas arose. 

Possible improvements for the project: 

1. Move to noise generation task to graphics processing unit (GPU) by using 

modern shading languages. Generating noise on the central processing unit 

(CPU) forms a bottleneck to the data transfer speed between CPU and 

GPU. Generating noise directly on the GPU would eliminate the need to 

transfer the data in the first place. 

2. Consider switching to icosahedron based sphere tessellation for more uni-

form tile size. 

3. Further abstract the noise generation with terrain type or biome system. 

!
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