
!

!

!
!
!
!
!
!
!
Henry Vuontisjärvi

PROCEDURAL PLANET GENERATION IN GAME DEVELOP-
MENT

!
!

!

!!
!
!
!
!
!
!
!
PROCEDURAL PLANET GENERATION IN GAME DEVELOP-
MENT

!
!
!
!
!
!
 Henry Vuontisjärvi
 Opinnäytetyö
 Kevät 2014
 Tietotekniikan koulutusohjelma
 Oulun seudun ammattikorkeakoulu 

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietotekniikan koulutusohjelma, ohjelmistokehityksen suuntautumisvaihtoehto !

Tekijä(t): Henry Vuontisjärvi
Opinnäytetyön nimi: Procedural planet generation in game development
Työn ohjaaja(t): Veikko Tapaninen, Marjo Heikkinen
Työn valmistumiskuukausi ja -vuosi: Kevät 2014
Sivumäärä: 33 !

Opinnäytetyön tavoitteena oli toteuttaa lisäosa Unity-pelimoottoriin, jolla voi luo-
da pelinkehitykseen sopivia kolmiuloitteisia planeettamalleja käyttäen ohjel-
mallisen sisällön luomisen tekniikoita (procedural generation). Lisäosa muodos-
tuu kolmesta osasta: Unityn editorissa toimiva työkalu pinnan muotojen visuaal-
ista suunnittelua varten, kolmiulotteisia malleja tehokkaasti laskeva ohjel-
makoodi sekä ohjelman ajonaikana lisää yksityiskohtia tuottava ohjelmakoodi.
Työssä käydään läpi käytetyt tekniikat ja esitellään projektin lopputulokset.

Työssä hyödynnettiin aiemmin Java-sovelluksena toteutetun planeettageneraat-
torin tekemisen aikana opittuja tietoja. Työ toteuttiin käyttäen Unity-pelimoottoria
ja C#-kieltä Monodevelop-kehitysympäristössä.

Työn tuloksena syntyi lisäosa joka julkaistiin Unity Asset Storessa.

!
!
!
!
!
!
!
!
!
!

Asiasanat: ohjelmallinen sisällön luominen, planeetat, pelit, pelinkehitys, Unity 

 !3

ABSTRACT

Oulu University of Applied Sciences
Information Technology, Software Development !

Author(s): Henry Vuontisjärvi
Title of thesis: Procedural planet generation in game development
Supervisor(s): Veikko Tapaninen, Marjo Heikkinen
Term and year when the thesis was submitted: Spring 2014
Pages: 33 !

The subject of this thesis was to produce an editor extension for the Unity en-
gine that generates three dimensional planetary terrain models suitable to be
used in game development. The plugin has three main parts: a node editor tool
within Unity editor that enables visual design of noise functions to be used on
the surface, a robust code for generating 3D models during runtime and a dy-
namic level of detail system. This thesis details the techniques used and the re-
sults of the project.

The work was based on previous knowledge learned during creating a similar
application using Java. The work was implemented using the Unity engine with
C# programming language in MonoDevelop development environment.

The work resulted in a working plug-in that was released in the Unity Asset
Store.

!
!
!
!
!
!
!
!
!
!

Keywords: procedural generation, planet, game development, Unity 

 !4

TABLE OF CONTENTS

TIIVISTELMÄ 3

ABSTRACT 4

TABLE OF CONTENTS 5

ABBREVIATIONS 6

1.INTRODUCTION 7

2. PROCEDURAL CONTENT GENERATION 8

2.1. Usage in game development 8

2.2. Terrain generation 9

2.3. Planet generation 12

3.ALGORITHMS AND THEORY 13

3.1. Pseudo-random number generator 13

3.2. Coherent noise 13

3.2. Perlin noise 14

3.3. Fractional Brownian motion 15

3.4. Sphere tessellation 15

3.5. Height mapping 17

3.6. Applying height maps to a sphere 18

4. PLANETARY TERRAIN 20

4.1.Requirements 20

4.2.Tools 20

4.2.1. Unity 20

4.3. System architecture 21

4.4. Node-editor 22

4.5. Planet mesh generator 24

4.6. Runtime dynamic level of detail 25

4.7. Shading 26

4.8. Vegetation 28

5.CONCLUSION 30

REFERENCES 31

 !5

!
ABBREVIATIONS

FBM Fractional Brownian Motion

PCG Procedural Content Generation

PRNG Pseudo-Random Number Generator

LOD Level of detail

 !6

1.INTRODUCTION

Creating large amounts of interesting content is a problem that game develop-

ers often face when designing their games. The best results are usually

achieved by manually designing and implementing the content, but this requires

lots of work and the amount of content will always be finite; the player will even-

tually run out of it. One way to tackle this problem is to instruct the computer to

create this content, a method referred to as procedural content generation

(PCG).

This thesis describes the theory of some of the common procedural methods

used in game development context focusing on terrain generation. Finally there

is a case study of a planet generator solution created during this project and re-

view of the methods used in it.

The project is based on a previous work which was started as a study of Java

programming language, OpenGL graphics library and the procedural planet

generation task itself. Because originally the reason was to learn as much as

possible, everything was created from scratch. Eventually the project reached a

point where the basic 3D graphics renderer and a simple planet model was

done and the project was completed in its initial scope.

When the thesis project was started, the original project was recreated in the

Unity engine and polished to make it more accessible for other developers to

use. Unity’s easily extendable editor provided the possibility to create a visual

node-based editor for the noise functions which made the project much more

user-friendly. The finished version was released in December of 2013 in the

Unity Asset Store (1).

 !7

2. PROCEDURAL CONTENT GENERATION

Procedural content generation can be defined as the algorithmical creation of

game content with limited or indirect user input (2). It may utilise simulation and

mathematical concepts such as fractal geometry and pseudo-random algo-

rithms in an attempt to create what the user desires. Almost anything can be

generated with sufficient logic and the quantity of content created this way can

be seemingly infinite.

2.1. Usage in game development

There are two main uses for procedural content generation (PCG) in game de-

velopment: generating playable content and generating assets. More possible

uses exist, such as generation of game rules, but their applicability depends on

how we define the keyword “content”. One such definition describes: content is

most of what is contained in a game: levels, maps, game rules, textures, sto-

ries, items, quests, music, weapons, vehicles, characters etc. (3).

Generating assets refers to generation of content that is not directly related to

gameplay, but it is there to support the game experience. This includes graphi-

cal and audible content such as 3D models and textures.

Generating playable content refers to generation of game levels, stories, char-

acters or units, items and any other interactive content that the player con-

sumes.

The methods of procedural generation are often based on randomised algo-

rithms that are seeded with pseudo-random number generators (PRNG) that

use predefined seed values to produce the same results if given the same seed

and parameters. The methods include noise generators, fractal systems, cellu-

lar automata, specialised logic routines and simulation.

Simulation in this context rarely means simulating the actual processes that

created the real world counterparts. The level of abstraction is usually very high.

 !8

For comparison we can think what would it take to simulate the creation of a

patch of terrain with hundred percent precision: one would have to simulate bil-

lions of years of geological processes on atomic level. Clearly this is not feasi-

ble nor necessary. Fortunately computer games are all about illusion, creating

an image to the mind of the viewer. In this context the simulation can be only

superficial and in the end it is more important that the end result looks convinc-

ing than that it is accurate.

Historically one of the reasons for developing procedural generation was that

the earliest computer games were severely limited by memory constraints (4).

The programmers developed algorithms that would generate lots of data from

small amount of seed data.

Another reason for using PCG is the lack of resources to manually design large

amounts of content. PCG methods can provide that but the initial investment of

resources to develop the generator is higher. With manual content creation the

amount of invested resources will rise in correlation with the amount of finished

content, as with the PCG methods the initial investment is higher, but after the

generator is finished more further content can be generated with reduced cost.

PCG can also be used as a tool to enhance manual content creation. The pro-

cedural generator can save the designer from having to do repetitive tasks, for

instance to create variations or trees for a forests.

One of the considerations with PCG is quality assurance. The algorithms may

be time consuming to develop to a point where acceptable results can be guar-

anteed for all cases. One solution to this is to introduce validity testing proce-

dures that ensure that the generated content fulfils all requirements.

2.2. Terrain generation

Generating terrains is perhaps one of the most common applications of PCG.

In game development context the requirements for the terrains greatly vary. Ul-

timately the environment is there to serve the gameplay and therefore realism is

 !9

secondary, but still the environment should be detailed enough to immerse the

player in to the game setting.

The scope and the scale of the game also alter the requirements for the envi-

ronment. A game where the player views the game world from a distant birds-

eye view has very different requirements compared to one where the player

walks across the landscape.

Side-scrolling games often use one dimensional terrain representation such as

in IMAGE 1. This type of terrain has varying height over certain length (the

length can be infinite).

!

IMAGE 1. “Tiny Wings” on iOS (5)

Height maps are often used in when the player can move mainly two dimen-

sionally over the terrain. The representation of the terrain may also be two or

three dimensional using the same height maps. The drawback is that caves or

overhangs cannot be represented using height maps since each cell only has

one height value (IMAGE 2).

 !10

!

IMAGE 2. Procedural terrain in “Civilization V” (6)

Volumetric terrain representation has became more popular in recent years. It

allows terrains to be truly three dimensional with extensive case systems (IM-

AGE 3).

!

IMAGE 3. “Minecraft” (7)

 !11

There are many ways to generate terrain data but the most prevalent are the

midpoint-displacement algorithms (8) and noise functions such as Perlin noise

(9).

2.3. Planet generation

There are number of examples of procedurally generated planets in game de-

velopment including:

• Procedurally generated planets in “Spore” (10),

• Kerbal Space Program (11),

• I-Novae-engine (12),

• “My First Planet” by Alex C. Peterson (13),

• Work of Sean O’Neil (14),

• Making Worlds by Steven Wittens (15).

!

IMAGE 4. Planets in “Spore” (16)

 !12

3.ALGORITHMS AND THEORY

3.1. Pseudo-random number generator

One of the essential technologies to computationally generate new information

is the ability to produce seemingly random sequences of numbers. A pseudo-

random number generator (PRNG) produces numbers that approximate a truly

random function. PRNG sequences are not considered truly random since they

are completely determined by a small set of initial values (17). However this

level randomness is sufficient for most purposes related to computer game con-

tent creation.

The initial values of a PRNG are called seeds and usually represented by an

integer. Using the same seed will produce the same sequence of seemingly

random numbers. This feature of a PRNG makes it possible to store a vast

amount of generated information in to a single integer number.

3.2. Coherent noise

Coherent noise is a type of smooth pseudorandom noise (18) that has no sharp

discontinuities in the output values (IMAGE 5). A coherent noise function and

takes n-dimensional coordinate parameters and returns a single output value.

The function is based on a PRNG and therefore returns the same output value

each time with the same parameters.

IMAGE 5. One dimensional non-coherent noise (left) and coherent noise (right).

Notice how the adjacent data points on the non-coherent noise have large value

differences and therefore very little continuity.

 !13

The basis for all coherent-noise functions is the integer-noise function (19). This

kind of function takes an integer value as a parameter and returns a floating-

point value. The important features are that the same values are always re-

turned with the same input parameter and that the outputs of neighbouring input

values have no correlation between each other (in other words are in a random

sequence).

The next step is to make the previous discrete function continuous by adding

interpolation. The simplest is linear interpolation (bilinear and trilinear for higher

dimensions) but usually cubic or quintic interpolation is required to produce

good quality results. The function simply interpolates between the original inte-

ger-noise values using the chosen interpolation function.

Next improvement of the noise function is to use random gradient vectors at the

integer boundaries. This method displaces the noise in random directions and

therefore gets rid of the grid-like appearance of the previous steps. The function

needs to calculate the influence of each pseudorandom gradient on the final

output, and generate our output as a weighted average of those influences (20).

The end result of this method is referred to as Perlin noise (IMAGE 6).

IMAGE 6. The stages of coherent noise generation in 2 dimensions. From left to

right: integer-noise, linear interpolation, cubic interpolation and Perlin noise. Im-

age from LibNoise (19).

3.2. Perlin noise

Perlin noise is named after Ken Perlin who originally created the algorithm while

working on the movie “TRON” in 1983. He was awarded an Academy Award

(Oscar) for technical achievement for it and the algorithm has since become a

standard for the computer graphics field both in movies and games.

 !14

Perlin himself describes noise as texturing primitive you can use to create a

very wide variety of natural looking textures (21).

The problem Perlin was facing was the fact that computer graphics can render

shapes with perfect mathematical precision and such shapes do not appear

natural. Real world surfaces have small imperfections that contribute to the

overall look and character of the surfaces. Perlin created the coherent noise

function to add more realism to the graphics.

The original paper describing the usage of noise in texture generation was re-

leased in 1985. Perlin has since published another paper titled “Improving

noise” (22) that describes an improved noise algorithm that fixes minor disconti-

nuities in the original algorithm.

3.3. Fractional Brownian motion

Fractional Brownian motion (also called fractal Brownian motion, abbreviated

FBM) is often used in a method of layering multiple octaves of coherent noise to

make the image have more varied appearance. Each subsequent layer has its

frequency doubled and amplitude halved. Applying this method to the coherent

noise can give it features that appear self-similar (23), a typical property of frac-

tals.

3.4. Sphere tessellation

There is no single obvious way to divide a spherical surface into regular sec-

tions or grids. (24) One of the requirements for a procedural planet with a dy-

namic level of detail is the ability to tessellate sphere surface in such a way that

further subdivision is possible. Another requirement is that the tessellation

should be as uniform as possible in a way that the detail is same in all areas

from the equator to the poles.

Different tessellations that were considered include: (IMAGE 7)

1. Geodesic sphere which is formed by subdividing the edges of an icosahe-

dron,

 !15

2. UV sphere which is based on latitude and longitude coordinates,

3. Quad sphere which is formed by mapping each point in a cube surface on to

a sphere.

The most common one in 3D-modelling is the UV sphere, but this approach has

the downside of increasing detail around the poles and having less detail in the

equator making it unsuitable for this purpose.

The geodesic sphere has uniform tiles and therefore no distortion at the poles,

but the nature of the shape makes the calculations involved in generating the

mesh and further detail levels more complex.

A quad sphere also has the problem that the tile size and shape is not uniform

across the surfaces and has slight distortions at the corners of the cube, but the

distortion is small enough to be tolerable in this application.

!

IMAGE 7. From left to right: subdivided icosahedron, quad sphere and UV

sphere. Notice the tile sizes of each sphere type: icosahedron has triangular

tiles of uniform size; quad sphere has rectangular tiles of approximately same

size but distortions near the corners; and UV sphere has rectangular tiles that

are larger at the equator and approach singularity at the poles.

The main reason for selecting the quad sphere is the easy further subdivision of

the surfaces. The shape is essentially a cube, making each side a rectangle

and therefore all subdivided surfaces are smaller rectangular shapes (IMAGE

8).

 !16

The 3D vector coordinates of the points that form the cube are stored as six ar-

rays of points, one for each side of the cube. The number of points determine

the detail level of the resulting model.

!

IMAGE 8. Wireframe image of a cube before and after transformation.

A mathematical formula is then applied to each of the points, mapping them in

to points on a unit sphere surface (FORMULA 1). The formula used here was

originally developed by Philip Nowell (25).

!

FORMULA 1. The formula for transforming a point on a cube to a point in

sphere surface (25).

3.5. Height mapping

A common technique of representing the terrain in a modern game is a 3D

model based on a height map.

 !17

IMAGE 9. A height map displayed as a greyscale image (left) and a 3D surface

formed by the same height map (right). (26)

Height maps or height fields are 2-dimensional tables where the value of each

cell corresponds to height of the terrain (over some baseline) at that point (27).

The advantages of this method are efficiency of storage and easy access to the

data. The drawback is that height map can only represent one height for each

position and therefore it is impossible for a terrain represented this way to have

caves, cliffs or overhangs.

The table structure of a height map closely resembles that of a raster image or

bitmap and therefore they are often visualised as a greyscale images (IMAGE

9). The height values are mapped to a gradient with 0 being black and 1 white.

3.6. Applying height maps to a sphere

In order to apply noise on a spherical surface and make sure the mapping

wraps in all directions is to use a three dimensional noise function and use the

normalised vector between the sphere centre and the surface position coordi-

nates as the input parameters (IMAGE 10).

This approach also makes it possible to have a dynamic level of detail: addi-

tional points added between the previous points can call the same noise func-

tion and get the correct height values.

It is not necessary to have the height maps as actual images at any point as the

mesh generation function can directly call the noise function.

� �

 !18

!

IMAGE 10. Advanced coherent noise function applied on the surface of a quad

sphere.

 !19

4. PLANETARY TERRAIN

4.1.Requirements

Generating and rendering terrain on a planetary scale poses a new set of tech-

nical challenges. The scale can be massive and the spherical shape requires

use of more complex vector mathematics than a regular square terrain.

The planet must also wrap on all directions and not have any abrupt discontinu-

ities. The tessellation must be uniform to provide equal amounts of detail from

the equator to the poles.

Additional requirement is to have a dynamic level of detail system which gener-

ates more detail as the camera approaches the surface and to create an visual

node-editor which enables intuitive creation of planet surface shapes.

4.2.Tools

This project required a visual editor interface to allow intuitive designing of the

noise functions which make up the planet surface form, multithreaded runtime

calculation capabilities to generate the surface meshes and a robust realtime

3D graphics engine to render the final models.

Therefore the technical requirements to even start with the actual planet specific

tasks are quite high. The options are to program a 3D graphics engine from the

scratch or use an existing engine. The best choice considering productivity is to

use an existing engine which allows the development resources to be targeted

towards the aim of the project instead of the supporting technologies.

4.2.1. Unity

The project was developed using the Unity-engine (28) which provided a solid

foundation to build upon.

Unity is a fully featured game engine. It consist of an unified editor which works

as the interface for the developer to use the engine to develop their games. The

main features provided by Unity include C# .NET functionality in the form of the

 !20

open source Mono-platform, 3D rendering capabilities with advanced shader

models, asset pipeline, multi-platform support with input handling and an ex-

tendable visual editor.

Programming was done using the MonoDevelop development environment

bundled with Unity.

4.3. System architecture

The planet generator is formed of three main parts: the node-editor, the planet

mesh generator and the runtime dynamic level of detail (LOD) system (DIA-

GRAM 1). The system itself is built on top of the Unity engine and the Mono-

runtime built-in Unity.

The node-editors main function is to provide the ability to create node-graphs

and save/load them from the hard-drive.

The planet mesh generator creates surface meshes based on the node-graphs

and can be run both from the editor and the runtime application.

The runtime dynamic LOD-system tracks the distance of each surface to the

viewer object and triggers further subdivision of surfaces and mesh generation

to provide more detail where it is needed.

DIAGRAM 1. Planetary Terrain architecture.

 !21

4.4. Node-editor

The node-editor enables visual and more intuitive way to handle the design of

the noise functions (IMAGE 11). The idea of the node-based solution was influ-

enced by an open-source noise library called LibNoise.

There are three main types of nodes:

1. generators which provide an output value,

2. operators which manipulate an incoming value from another node

3. and an output node where the final output is displayed.

IMAGE 11. A node graph with multiple generators being blended together to

form the final height map on the right.

The most important part of each of the nodes is a function which takes a 3-di-

mensional coordinate as a parameter and returns a floating point value which

represents the height of the terrain at that position. The values are within -1 to 1

range.

float GetValue(Vector3 position); FORMULA 2

Generators (TABLE 1) provide a value based on a mathematical formula using

the 3D position as the source, in this case Perlin noise.

 !22

Operators (TABLE 2) take output values from generators or another operators

and transform those values based on a formula or logical operation. Examples

of these operations include basic arithmetic operations such as addition, sub-

traction and multiplication, and more advanced operations such as blending

multiple input values.

TABLE 1. Types of generator nodes

TABLE 2. Types of operator nodes

Node Description

FBM Fractal brownian motion based on 3-dimensional Perlin-
noise.

Ridged Variation of FBM which provide ridge-like terrain features.

Billow Variation of FBM which provides negative ridges.

Const Constant value defined by the user.

Node Description

ABS Returns absolute value of the input

ADD Performs arithmetic addition of two input values

BLEND Combines two input values based on the third which
acts as a weight between the two.

CLAMP Forces input value to be between given minimum and
maximum

EXPONENT Raises input value to power of value between -10 and
10

INVERT Switches the sign of the value

MAX Selects the larger value of two inputs

MIN Selects the smaller value of two inputs

MULTIPLY Performs arithmetic multiplication of two input values

POWER Raises first input value to the power of the second value

SUBSTRACT Performs arithmetic subtraction of two input values

TERRACE Weights values between given range to come together
at target value.

 !23

4.5. Planet mesh generator

The planet mesh generator is provided with a node-graph file and parameters

that define the resulting 3D model. These parameters include the radius of the

planet, resolution of each mesh patch, height variation which defines how much

the noise will displace the surface and a random seed value which is used to

initialise the pseudo-random noise generators. Configuring these parameters

allows for large variety of planets (IMAGE 12).

The mesh generation procedure creates an array of points in 3D space for each

surface in the form of a cube, transforms the points to a sphere surface, applies

the noise displacement and finally scales the points to desired planet size.

The generator will instantiate the initial six surfaces which can then be further

subdivided by the dynamic LOD-system.

TRANSLATE Moves the position parameter therefore changing the
coordinate where the position is sampled.

DIVIDE Performs arithmetic division of two input values

CURVE Modifies the input value based on a user defined curve
function.

WEIGHT Moves input value towards target value at adjustable
strength.

WARP Performs 3-dimensional linear interpolation between the
position vector and its normal vector, using the second
input as a weight.

SELECT Returns how close the input value is to a target value
within given range.

 !24

!

IMAGE 12. Planet meshes of varying scales generated using Planetary Terrain.

4.6. Runtime dynamic level of detail

The type of level of detail used is known as chunked LOD (29).

The LOD-system tracks an object in the 3D-world which it interprets as the

viewer. On each frame when the world is updated the LOD-system calculates

the distances between the viewer and the closest corner of each of the existing

surfaces. These distances are then used to determine whether the surfaces

need to be further subdivided to provide more detail or to be destroyed if they

are unnecessarily detailed (IMAGE 12).

The LOD-system has a subdivision queue which keeps track of the surfaces

that need to be subdivided. In order to avoid massive calculation spikes the

queue is selectively emptied one at a time from the top of the queue. When a

surface is selected it will be assigned a separate processing thread where the

noise calculations and mesh generation happen asynchronously. When the op-

eration is complete the thread is freed and another surface may be selected for

subdivision.

 !25

The number of LOD-levels are defined by the user in the editor along with ap-

propriate loading distances.

!

IMAGE 12. The surface generates more detail as the camera gets closer.

4.7. Shading

Shading the newly generated meshes properly is important part of getting a vi-

sually pleasing end result.

Simple approach is to use the noise value or height at each location and select

a colour using a gradient (IMAGE 13). To get more variation the distance from

the poles can be used to create specific effects for arctic and equator regions.

Also the slope steepness can be used to control colours for cliffs and flat areas.

 !26

!

IMAGE 13. Colouring based on a colour selected from a gradient based on the

height.

Colour in itself can be sufficient for viewing from large distances, but is not

enough if the camera is positioned near the surface. The next step is to add tex-

tures using the same parameters of height, distance from poles and steepness.

Multiple shaders were created: height blending diffuse shader with 4 textures,

bump-mapped shader with 4 diffuse and 4 normal map textures, versions of

previous shaders with slope texturing and also versions with additional global

colour map.

Additional nodes were also added to the node-editor in order to allow for more

complex colourings of the surface (IMAGE 14).

 !27

!

IMAGE 14. Colouring in the node-editor with a gradient-node.

4.8. Vegetation

Earth-like terrains require vegetation in order to appear natural. The problem

with vegetation rendering often is performance, since the amount of separate

trees and grass patches can get very high especially if the camera is viewing a

large area. Optimisations included circumventing the Unity game object system

and directly calling the DrawMesh-function to draw vegetation instances to the

screen, and creating an impostor-system which replaces distant trees with a

separate low polygon mesh (IMAGE 15).

The vegetation placement is based on the same noise module system as the

terrain generation and also uses the terrains height, slope polarity values to se-

 !28

lect positions where the objects are placed.

!

!

IMAGE 15. Trees on the planet surface in “Massive”-demo (30) included in

Planetary Terrain (upper image) and view of the same planet from the orbit

(lower).

!

 !29

5.CONCLUSION

This project had two main goals: to produce a procedural planet generator suit-

able to be used in game development and to create an intuitive editor for de-

signing the planet surfaces. The procedural mesh generation was a familiar

subject already, but in smaller scope and without dynamic level of detail, and

the project managed to provide a suitable generic solution. The editor side was

new territory but the Unity editor proved to be fairly easily extendable and facili-

tated the node-editor very well.

One of the bigger problems was the scope of the project as the project aim was

to provide procedural planets suitable for game development, but did not further

specify the type of the games. Games have massively varying needs for the

planets: some games require small planets viewed only from the orbit and some

require enough detail on the surface to facilitate realistic first person view. A

project scope this broad runs the risk of providing overly generic solution that is

not perfect for any specific need.

Overall the project was successful but during the development many new direc-

tion and improvement ideas arose.

Possible improvements for the project:

1. Move to noise generation task to graphics processing unit (GPU) by using

modern shading languages. Generating noise on the central processing unit

(CPU) forms a bottleneck to the data transfer speed between CPU and

GPU. Generating noise directly on the GPU would eliminate the need to

transfer the data in the first place.

2. Consider switching to icosahedron based sphere tessellation for more uni-

form tile size.

3. Further abstract the noise generation with terrain type or biome system.

!

 !30

!
REFERENCES

1. Unity Asset Store: Planetary Terrain. 2014. Available at: https://www.asset-

store.unity3d.com/en/#!/content/13418

2. What is Procedural Content Generation? Mario on the borderline. Togelius,

J., Kastbjerg, E., Schedl, D. & Yannakakis, G.N. 2011. http://julian.togelius.-

com/Togelius2011What.pdf

3. Procedural Content Generation in Games: A Textbook and an Overview of

Current Research: Chapter 1. Togelius, J., Shaker, N., Nelson, M.J.

Springer 2014. Available at: http://pcgbook.com/wp-content/uploads/chap-

ter01.pdf

4. Procedural generation. Wikipedia. 2014. Available at: http://en.wikipedia.org/

wiki/Procedural_generation

5. Tiny Wings. Illiger, A. 2014. Available at: http://www.andreasilliger.com/

6. Procedural terrain generation in Sid Meier’s Civilization V. Kloetzli, J. Firaxis

2013. Available at: http://www.firaxis.com/?/blog/single/procedural-terrain-

generation-in-sid-meiers-civilization-v

7. Minecraft. Mojang 2014. Available at: https://minecraft.net/game

8. Generating random fractal terrain. Matrz, P. 1996. Available at: http://

www.gameprogrammer.com/fractal.html

9. Noise and turbulence. Perlin, K. 2014. Available at: http://mrl.nyu.edu/~per-

lin/doc/oscar.html

10. Creating spherical planets. Compton, K., Grieve, J., Goldman, E., Quigley,

O., Stratton, C.,Todd, E., Willmott, A. Maxis, Electronic Arts. Presented at

SIGGRAPH 2007. Available at: http://www.andrewwillmott.com/s2007

 !31

https://www.assetstore.unity3d.com/en/#!/content/13418
http://julian.togelius.com/Togelius2011What.pdf
http://pcgbook.com/wp-content/uploads/chapter01.pdf
http://en.wikipedia.org/wiki/Procedural_generation
http://www.andreasilliger.com/
http://www.firaxis.com/?/blog/single/procedural-terrain-generation-in-sid-meiers-civilization-v
https://minecraft.net/game
http://www.gameprogrammer.com/fractal.html
http://mrl.nyu.edu/~perlin/doc/oscar.html
http://www.andrewwillmott.com/s2007

11. Kerbal Space Program. Squad 2011-2014. Available at: https://kerbalspace-

program.com/

12. I-Novae Engine. I-Novae Studios 2014. Available at: https://www.inovaestu-

dios.com/Technology

13. My First Planet. Peterson, A.C. 2008. Available at: http://alexcpeterson.com/

14. A Real-Time Procedural Universe, Part One: Generating Planetary Bodies.

O’Neil, S. Gamasutra 2001. Available at: http://www.gamasutra.com/view/

feature/131507/a_realtime_procedural_universe_.php

15. Making Worlds. Wittens, S. 2009. Available at: http://acko.net/blog/making-

worlds-introduction/

16. Spore Planets Wallpaper. MC2009. Deviant art 2007-2014. Available at:

http://mc2009.deviantart.com/art/SPORE-Planets-Wallpaper-52004157

17. Pseudorandom number generator. Wikipedia. 2014. Available at: http://

en.wikipedia.org/wiki/Pseudorandom_number_generator

18. Coherent Noise. Bevins, J. 2005. LibNoise. Available at: http://libnoise.-

sourceforge.net/glossary/index.html#coherentnoise

19. Generating coherent noise. Bevins, J. 2005. LibNoise. Available at: http://

libnoise.sourceforge.net/noisegen/index.html

20. The Perlin noise math FAQ. Zucker, M. 2001. Available at: http://webstaff.it-

n.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

21. Making Noise. Perlin, K. 1999. Presentation at GDCHardCore. Available at:

http://www.noisemachine.com/talk1/3.html

22. Improving noise. Perlin, K. New York University. SIGGRAPH 2002. Available

at: http://mrl.nyu.edu/~perlin/paper445.pdf,

23. Self-similarity. Wikipedia 2014. Available at: http://en.wikipedia.org/wiki/Self-

similarity

 !32

https://kerbalspaceprogram.com/
https://www.inovaestudios.com/Technology
http://alexcpeterson.com/
http://www.gamasutra.com/view/feature/131507/a_realtime_procedural_universe_.php
http://acko.net/blog/making-worlds-introduction/
http://mc2009.deviantart.com/art/SPORE-Planets-Wallpaper-52004157
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://libnoise.sourceforge.net/glossary/index.html#coherentnoise
http://libnoise.sourceforge.net/noisegen/index.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://www.noisemachine.com/talk1/3.html
http://mrl.nyu.edu/~perlin/paper445.pdf
http://en.wikipedia.org/wiki/Self-similarity

24. Making Worlds 1: Of Spheres and Cubes. Wittens, S. 2009. Available at:

http://acko.net/blog/making-worlds-1-of-spheres-and-cubes/

25. Mapping a cube to a sphere. Nowell, P. Math Proofs 2005. Available at:

http://mathproofs.blogspot.fi/2005/07/mapping-cube-to-sphere.html

26. Heightmap. Wikipedia 2014. Available at: http://en.wikipedia.org/wiki/

Heightmap

27. Procedural Content Generation in Games: A Textbook and an Overview of

Current Research: Chapter 4. Togelius, J., Shaker, N., Nelson, M.J.

Springer 2014. Available at: http://pcgbook.com/wp-content/uploads/chap-

ter04.pdf

28. Unity. Unity Technologies 2014. Available at: http://unity3d.com/

29. Rendering massive terrains using chunked level of detail control. Ulrich, T.

2002. Available at: http://tulrich.com/geekstuff/sig-notes.pdf

30. Massive demo. Planetary Terrain 2014. Available at: http://planetaryterrain.-

com/unity/WebMassive.html

 !33

http://acko.net/blog/making-worlds-1-of-spheres-and-cubes/
http://mathproofs.blogspot.fi/2005/07/mapping-cube-to-sphere.html
http://en.wikipedia.org/wiki/Heightmap
http://pcgbook.com/wp-content/uploads/chapter04.pdf
http://unity3d.com/
http://tulrich.com/geekstuff/sig-notes.pdf
http://planetaryterrain.com/unity/WebMassive.html

