

Olaniyi Aiyenitaju

Sarita Majhi

Math with Python: A Context of
Algebra

Metropolia University of Applied Sciences

Bachelor of Engineering

Name of the Degree Programme

Bachelor’s Thesis

31 June 2024

Abstract

Author: Olaniyi Aiyenitaju, Sarita Majhi.

Title: Math with Python: A Context of Algebra

Number of Pages: 38 pages + 3 appendices

Date: 31 June 2024

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: IoT and Networks

Supervisors: , (Project Advisor)

Abstract
Examining the mutually beneficial link between algebra and Python, this study seeks
to solve computational difficulties and improve the efficiency of algebraic operations.
Navigating Python's symbolic algebraic complexity is the task at hand. These include
computation-intensive problems, numerical accuracy problems, and huge expression
handling problems.The main conclusions centre on constructive avenues for future
research and contributions to the subject. We suggest directions to further improve
algebraic symbolic performance, explore quantum algebraic computing, develop
specialised Python algebraic libraries, combine machine learning with algebraic
tasks, and create interactive educational tools. These discoveries close gaps in the
present Python environment and provide creative answers to computational
problems. Overall, this work is important since it sets the path for future Python
algebraic exploration projects. This study moves algebraic techniques in a
programming context forward by addressing the obstacles faced and offering
innovative solutions. The possible uses cover a wide range of industries, including
cutting-edge areas like quantum computing as well as scientific research and
teaching. As background, the study discusses the fundamental value of algebra in
mathematics and presents Python as a powerful tool for manipulating algebra. We
examine fundamental algebraic operations, equations, functions, and Python
algebraic applications. The difficulties and constraints that are faced highlight the
necessity of using Python for algebraic work with subtle approaches.

Keywords: Algebra, Python, Python Libraries, SymPy.

The originality of this thesis has been checked using Turnitin Originality Check
service.

Contents

List of Abbreviations

1. Introduction 6

1.1 A Background on the Importance of Algebra in Mathematics 6

1.2 Introduction to Python as a Programming Language 7

2. Overview of Algebraic Concepts 8

2.1 Basic Algebraic Operations 8

2.2 Equations and Inequalities 8

2.3 Functions and their Representations 12

3. Python as a Tool for Algebraic Manipulation 15

3.1 Introduction to Python Syntax and Data Types 15

3.2 Performing Operations Using Python 19

4. Applications of Algebra in Python 25

4.1 Solving Equations and Systems of Equations 25

4.2 Python Libraries Useful in Algebra 27

5. Challenges and Limitations of Using Python for Algebra 30

5.1 Potential Pitfalls and Errors in Algebraic Computations 30

5.2 Limitations of Symbolic Algebra Python 31

6. Conclusion 33

References

Appendices

Appendix 1: Bitwise Operators

Appendix 2: Membership Operators

Appendix 3: Identity Operators

List of Abbreviations

Python: Programming Language

CAS: Computer Algebra System

SymPy: Symbolic Python Library

Numpy: Numerical Python Library

SciPy: Scientific Python Library

IDE: Integrated Development Environment

API: Application Programming Interface

GUI: Graphical User Interface

IRQ: Indexing in the Python Language

ADHD: Attention Deficit Hyperactivity Disorder

6

1 Introduction

1.1 A Background on the Importance of Algebra in Mathematics

Having origins in ancient civilization, algebra has become a vital and dynamic

aspect of mathematical thinking. For mathematical reasoning and language

conveyed through symbols, tables, words, and graphs, algebra is an essential

subject of study (Edo and Tasik, 2022). Algebra provides a structured method for

interpreting mathematical patterns by enabling the methodical investigation of

relationships between quantities. Its historical development is a reflection of both

the ongoing search for increasingly complex approaches to problem-solving as

well as the effort to comprehend basic numerical principles.

The significance of algebra is demonstrated by its capacity to serve as a common

language across various mathematical fields (Gronmo, 2018). Fundamental to

many STEM (science, technology, engineering, and mathematics) sectors,

algebra is a crucial subject in mathematics education that serves as the basis for

more advanced mathematical ideas. It is frequently referred to as "the gateway

to higher mathematics" (Veith et al., 2023). It goes beyond simple symbol

manipulation to serve as a medium for the expression and application of complex

mathematical concepts.

Also, algebra acts as a cornerstone for the development of critical thinking

abilities and logical reasoning in pupils, assisting them in their academic journey.

All vocations and educational levels require proficiency in algebra (Gronmo,

2018). That is to say, a fundamental comprehension of algebra is necessary to

succeed in fields other than mathematics. Businesses utilise algebra, for

instance, to calculate their annual budget, which includes their annual

expenditure. Furthermore, a number of retailers utilise algebra to forecast the

level of demand for a specific item before placing their purchases (Edo and Tasik,

2022). Understanding algebraic concepts gives people a toolkit to solve analytical

problems in a variety of fields in addition to mathematical difficulties.

7

1.2 Introduction to Python as a Programming Language

Since its inception in the late 1980s, Python has developed into a highly

adaptable and popular programming language. Python is currently widely used

by programmers, data scientists, and mathematicians due to its readability and

simplicity. It is powerful for complicated computational tasks and easy to use even

for beginners as a result of its lean syntax and large library.

Recently, Python has become more and more popular as a high-level general-

purpose programming language. Compared to languages like C, programmers

may express concepts in fewer lines of code thanks to this language's syntax.

The design ethos places a strong emphasis on code readability (Srinath, 2017).

The linguistic constructions enable the user to create software that are

comprehensible on both small and large sizes (Srinath, 2017). Python is an

interpretable, object-oriented, interactive programming language. Dhruv, Patel,

and Doshi (2020) claim that it provides high-level data structures like sets, tuples,

lists, dynamic typing and binding, associative arrays (sometimes called

dictionaries), modules, classes, exceptions, and intelligent control of memory. It

is a sophisticated programming language with a very simple and easy syntax that

is also utilised for parallel computing systems.

Python stands out from other programming languages because it is a high-level

language suitable for a variety of tasks, including web development and scientific

computing. Due to its versatility, Python is a great tool for exploring mathematical

ideas since it offers an easy-to-use interface for converting abstract mathematical

ideas into executable code. In this context, Python plays a function that goes

beyond that of a simple programming language and instead serves as a medium

for translating algebraic theories into concrete solutions. Python acts as the link

between algebraic operations, equations, and functions, allowing us to move from

abstract mathematical thinking to real-world application.

8

2 Overview of Algebraic Concepts

2.1 Basic Algebraic Operations

Algebra has four basic operations, each with special properties and transforming

powers of its own.

The first of these operations, addition, goes beyond simple numeric combination.

It serves as a hub, uniting quantities to form combined expressions. Its

importance extends beyond the domain of integers to rational numbers, algebraic

variables, and complex numbers, where it establishes the groundwork for a

variety of algebraic structures.

Though it is frequently thought of as addition's opposite, subtraction has many

subtle uses. It breaks down mathematical equations, revealing relationships

between quantities and drawing distinctions. When applied to algebraic terms,

the abstraction of subtraction comes to life and allows complex statements to be

disentangled.

The terrain broadens to encompass the complexities of allocating amounts,

mixing variables, and creating proportionate connections when we go to

multiplication. Multiplication introduces variables into algebraic expressions,

allowing them to grow and develop into polynomials and other more complex

mathematical structures.

Finally, division is a subtle operation that helps to untangle and make sense of

the relative magnitudes of quantities. It opens the door to rational expressions,

ratios, and the investigation of mathematical structures beyond basic equations

when applied to algebraic terms.

2.2 Equations and Inequalities

Fundamental algebraic concepts, equations and inequalities, are expressive

tools that help explain the relationships and limitations between quantities.

Fundamentally, an equation states that two expressions are equal and usually

9

includes variables in addition to constants. Finding the values for the variables

that make an equation true is the first step in solving an equation. For example,

the goal is to find the value of x so that the linear equation 2x+5=13 is satisfied.

Values that fulfil quadratic equations, like x2 −4x+4=0, must be found since they

introduce the square of a variable.

Conversely, inequality represents ranges of values by illustrating relationships in

which one side is bigger than, less than, or equal to the other. If 3y−7<5, for

example, a linear inequality, it means that 3y−7 is less than 5. Finding the

acceptable range of values for y is the first step in solving this inequality. x2 +

2x−8>0 is an example of a quadratic inequality. It introduces quadratic

expressions, which are solved to identify intervals in which the expression is

higher than zero.

According to Otten's research (2019), understanding linear equations just

requires a few simple steps. In order to solve linear equations, one must first

understand the concept of equality in mathematical expressions. The premise of

an equation, according to Bush and Karp (2013) and Alibali (1999), is that two

provided mathematical expressions on each side of the equal sign reflect the

same value. One of the most important ideas in solving linear equations is

equality. According to Kieran (1997) and Kieran et al. (2016), knowing equality is

a fundamental conceptual requirement in equation solving.

Despite its simplicity, the idea of equality in linear equation solution is the subject

of several well-documented myths. Students frequently have misconceptions,

particularly when it comes to the equal sign. Instead of interpreting the equal sign

as a relational symbol meaning "is the same as," students frequently interpret it

from an operational standpoint meaning that it tells them "to execute a certain

thing" or "determine the outcome" (Knuth et al., 2006). Adding the numbers on

the left, for instance, and typing 12 into the blank while solving the equation 8 +

4 = __ + 5 is a typical error (Falkner, Levi, & Carpenter, 1999). According to Alibali

et al. (2007), this operational interpretation typically appears early and lasts

through the primary and middle school years.

10

It is necessary to understand that inequality describes connections in which one

side is greater than, less than, or equal to the other when expanding the

discussion to include inequalities, a similar but separate mathematical notion.

Understanding equality in linear equations is a fundamental step towards solving

inequalities, where the emphasis is on conveying ranges of values instead of

absolute equivalency. Comprehending these ideas in depth is essential for both

problem-solving in mathematics and building a strong foundation in algebraic

reasoning.

A critical step in solving quadratic equations is determining the 𝑥-intercepts, which

often requires factorization, the square root method, completing the square, and

the quadratic formula (Harripersaud, 2021). Regarding their effectiveness in

teaching, learning, and application, each of these approaches has unique

benefits and drawbacks. The insights provided by Harripersaud emphasise how

important it is to comprehend and use these strategies in order to achieve

thorough competency in solving quadratic problems.

Studies, as summarised by Harripersaud (2021), reveal that factorization is a

common predisposition for teachers and students, with a preference for readily

factorizable coefficients. This tendency is explained by students' alleged

difficulties with fractional and radical mathematics (Bosse & Nandakumar, 2005).

Given that many quadratic equations resist easy factorization, Harripersaud's

emphasis cautions against placing too much importance on factorization. This

prompts questions regarding the possible disregard of alternative approaches

that promote conceptualization and may be more effective (Bosse &

Nandakumar, 2005).

Harripersaud (2021) also emphasises the pedagogical benefit of other

approaches, including factorization with algebra tiles, which uses the area model

of rectangles and squares to create a connection between quadratics and

fundamental notions of multiplication and division (Howden, 2001). This method

offers a deeper knowledge of quadratic equations by improving mental

comprehension in addition to providing a visual depiction.

11

Furthermore, while solving the square, Harripersaud highlights the importance of

geometric models as tools for comprehending, implementing, and using the

quadratic formula (Norton, 2015). This method is consistent with Barnes's (1991)

recommendation to use graphing calculators to plot quadratics, investigate cases

where there are zero, one, or two roots, and relate these results to discriminant

values. These practical methods and illustrations help students grasp quadratic

equations more deeply and develop a comprehensive understanding that

extends beyond memorising formulas.

Figure 1. A Perfect Square. Source: Harripersaud, (2021)

A visual study of the idea of a perfect square is shown in Figure 1. The equation

can be understood geometrically by multiplying the side length by itself to

calculate the area of the square.

Figure 2. Geometric and Algebraic Perspectives. Source: Harripersaud, (2021)

12

The algebraic and geometric viewpoints are shown in Figure 2. In terms of

geometry, the total size of the distinct areas represents the area of the larger

square. We can represent the same result algebraically in terms of algebraic

expressions. This condition, known as a perfect square, shows how the constant

term and the product of the sides and the coefficient of x are related to each other.

If a rectangle has unequal sides, we call them 'a' and 'b,' where 'a' stands for

length and 'b' for breadth. In this case, the area of the rectangle is obtained by

multiplying the length by the width. It's interesting to observe that the constant

term in the algebraic expression represents the product of 'a' and 'b,' whereas the

coefficient of x represents their sum. The foundation for factoring quadratic

expressions with a coefficient of x2 equal to 1 is established by these facts.

By extending this concept to the product of two binomial expressions in which the

coefficient of x² is not 1, we examine expressions such as (x + a)(x + b). In this

instance, acbd is produced by multiplying the x² coefficient by the constant term.

This indicates that two specific factors whose sum yields ad + bc can be found in

order to factor quadratic expressions that do not have an x² coefficient of 1.

Finally, factorization, completing the square, and applying the quadratic formula

are the three algebraic strategies for resolving quadratic problems. 'A' is the

equation's coefficient of x², 'B' is the coefficient of x, 'c' is the constant that

constitutes the term, and 'x' is the variable that's independent in the quadratic

equation ax2+bx+c=0. Every approach provides unique benefits and

perspectives on handling quadratic problems, which add to a thorough

comprehension of these basic mathematical expressions

2.3 Functions and their Representations

Functions provide a strong foundation for modelling a variety of interactions

between variables by acting as the pivot that creates a systematic relationship

between input and output values (Matik, Poljak, and Rukavina, 2022). The

purpose of this part is to dissect functions, highlighting their importance and

13

exploring the different ways in which they can be expressed, in order to

demonstrate their indispensable role in mathematical analysis.

A function is essentially a mathematical rule that maps every element in a domain

(a set of elements) to exactly one element in a codomain (a different set of

elements) (Matik, Poljak and Rukavina, 2022). Fundamental to the quantification

and encapsulation of a wide range of real-world occurrences, from basic linear

relationships to the complexities of nonlinear behaviours, is this one-to-one

correspondence. Functions are essential for distilling the essence of

mathematical systems and offering a methodical way to think about their

dynamics.

Functions are represented in a variety of ways, each providing a unique

perspective on the properties and behaviour of the function. These forms include

algebraic expressions, graphical representation, tabular representation, verbal

representation, and functional notation, according to Libretexts Mathematics,

(2023).

Algebraic Representation: Algebraic expressions are an effective way to express

functions because they capture the principle that determines how input and

output are related. An example of a linear function is f(x)=2x+3, where the output

f(x) is defined by the input (x) using an algebraic rule.

Graphical Representation: By matching input values to corresponding output

values, graphs help to visually communicate the essence of functions. This

depiction, which uses a straight line graph of a linear function as an example,

clearly shows trends, patterns, and important characteristics of a function.

Tabular Representation: Tables provide an organised framework for discrete

functions by concisely presenting input-output pairs. When a comprehensive,

tabular display of values is desired, this approach is especially helpful.

Verbal Representation: Using words to express the link between input and output

is necessary when describing functions verbally. The behaviour and goal of a

14

function are effectively and understandably conveyed by this narrative

representation.

Functional Notation: When functions are expressed using notation like y=f(x), it

clearly indicates how dependent the output (y) is on the input (x). This notation

highlights the two variables' inherent relationship.

Not only is an understanding of functions and their many representations

essential for using algebra, but it also establishes the foundation for more

extensive applications in mathematics and other scientific fields. As we move

forward, investigating Python's function handling skills will enhance our capacity

to examine, simulate, and resolve complex algebraic issues.

15

3 Python as a Tool for Algebraic Manipulation

3.1 Introduction to Python Syntax and Data Types

The readability and clarity of Python's syntax make it an ideal language for

expressing mathematical operations and algorithms. In order to promote code

readability and minimise the need for superfluous punctuation, the syntax uses

indentation and whitespace to separate code blocks.

For the purpose of manipulating algebra, one must understand Python's data

types. The built-in data types in Python are diverse and have different functions.

The fundamental numeric types, which comprise integers (int) and floating-point

numbers (float), provide a solid foundation for algebraic operations. Python's

support for complex numbers also makes it possible to manipulate

mathematical entities outside of the real number system.

 A string is anything that is typed and is surrounded by "single" or "double" quote

marks. It can be a letter, number, symbol, or space (Church et al., 2021). In

Python, strings (str) are essential for representing textual data. When working

with algebraic expressions, this data type becomes important since it permits the

addition of textual annotations and symbols. When a researcher records a

subject's answer to the open-ended question, "How has your depression been

affecting your life?" (Church et al., 2021), this is an example of how strings might

be employed. Since strings cannot have their contents changed once they are

generated, the only thing you can do is write over them (redefine the variable).

Figure 3. Example of a String. Source: Church et al., (2021).

As represented in the image above, the textual response / information given by

the subject is represented in quotation marks as a string, to show that the

response provided falls into text category.

16

 Church et al. (2021) state that lists in Python are ordered sequences enclosed

in square brackets ([]), allowing for the storage of any kind of object, even a

combination of several types, inside the same list. An example that serves as an

illustration is the compilation of a list in which the IQ scores of a group of

individuals are stored. Each participant's score is arranged according to their

identification number (Church et al., 2021). Lists' ordered structure makes

indexing easier and enables users to obtain data from particular locations in the

list. Python indexing starts at 0, therefore the index of the first item in a list is 0,

the index of the second is 1, and so on. For example, indexing can be used to

retrieve the first object in the list if a researcher wants to access the IQ score of

the first participant. They can do this by using square brackets after the variable

name, such as IQ_scores[0] (Church et al., 2021).

Figure 4. Example of a List. Source: Church et al., (2021).

In Figure 4 above, a list of numbers is created, and encapsulated with square

brackets in order to store information in the list. If there were two different lists

present, the two sets of information would be encapsulated in two different square

brackets.

Python goes beyond lists and presents tuples, which are ordered lists of items

separated by parenthesis (). Tuples can be overwritten, but they cannot be

changed once generated, in contrast to lists (Church et al., 2021). Because of

their immutability, tuples use less memory, which is useful in situations when

memory efficiency is critical. One good use of tuples is to record each participant's

17

reaction time as well as their group membership, regardless of whether they are

in the control group (Church et al., 2021).

Figure 5. Example of a Tuple. Source: Church et al., (2021).

Unlike lists in which square brackets are used, tuples are represented with

parentheses in Python as illustrated in figure 5 above.

According to Vanderplas (2017), integers are entire numbers that are devoid of

decimal marks and can be either positive or negative. They are necessary in

circumstances where it is important to count discrete numbers. For instance,

integers could be used in neuroscience research to convey data about the

number of activated neurons at a given time in a clear and succinct manner

(Church et al., 2021).

Figure 6. Example of an Integer. Source: Church et al., (2021).

The information above shows integer “472”, a positive whole number without

decimal point. The information is clear and concise and can be easily identified

by a user as an integer based on the manner in which it is represented.

Floats are real numbers with decimal points that can be used in instances where

accuracy in measurements is required. They offer a higher level of precision.

Church (2021) highlights how useful they are for documenting continuous

variables, like a participant's millisecond reaction time throughout a task. Church

noted that the difference between 32- and 64-bit floats is in the accuracy of values

18

after the decimal point; float64 doubles the accuracy of float32 but uses more

bits.

Figure 7. Example of a Float. Source: Church et al., (2021).

Float is the opposite of integer in that they include decimal point as Figure 7 above

reveals.

Logical expressions, or Booleans, are binary choices that are assessed as True

or False (1 or 0). Church (2021) gives an example in the context of survey replies,

where respondents may mark as positive or negative their experiences with

depression or anxiety. In computer logic, booleans are essential for expressing

and assessing circumstances.

Figure 8. Example of a Boolean. Source: Church et al., (2021).

Python's built-in type () function is essential for confirming a variable's data type

at any time while coding. It guarantees that the anticipated kind of data is being

used and aids in averting mistakes or irregularities in data processing.

19

Figure 9. Example of a Type. Source: Church et al., (2021).

Vanderplas (2017) and Church (2021) both emphasise sets, which are unordered

groups of singular items encased in curly brackets {}. They offer an adaptable

framework for storing various data kinds without creating duplicates. Church

(2021) provides an example of this using a collection designed to hold symptoms

of conditions such as ADHD. When uniqueness is a crucial requirement and the

order of the elements is irrelevant, sets are especially helpful.

Figure 10. Example of a Set. Source: Church et al., (2021).

Figure 10 shows how Type is used in Python. In the figure above, each symptom

as represented by the user must be unique and not integrated into another hence,

the use of a set.

Additionally, Python presents the idea of variables, enabling users to give values

names. This improves readability of the code and complies with algebraic norms,

where variables stand for unknowns or variable amounts.

3.2 Performing Operations Using Python

Python supports seven kinds of operators namely Arithmetic, Comparison,

Assignment, Logical, Bitwise (see appendix 1), Membership (see appendix 2),

and Identity (See appendix 3). In Python, a number involved in an operation is

called operand and a command is called operator. For example, in 2 + 3 = 5, 3

and 2 are operands while + is an operator. This section contains a description of

four of these operators as implemented in Python.

Arithmetic Operators

20

Operator Description Example

+ Addition: Returns the product of

two values.

10 + 20 will give 30

- Subtraction: Returns the result of

the subtraction of the right and left

hand operand.

5 – 2 will give 3

* Multiplication: Returns the result

of the multiplication of two or

more operands.

5 * 10 will give 50

/ Division: Returns the result of the

division of the left and right hand

operand. Usually left divided by

right.

18 / 2 will give 9

% Modulus: Carries out division of

operands and reports remainder.

18 / 2 will give 0

* * Exponent: Performs exponential

operations.

x ** y = 104

/ / Floor division: In this division, the

quotient obtained is the number

of digits that remain after the

decimal point.

x / / y will give 4 and x.0

/ / y.0 will give 4.0

21

Comparison Operators

Operator Description Example

= = A condition is true when the value of

two operands are the same (equal)..

(x == y) is not true

!= A condition is true if the value of two

operands are not the same (equal).

(x != y) is true

<> A condition is true if the value of two

operands are not the same (equal)..

(x <> y) is true

> A condition is true when the value of

the left operand is greater than the

right operand.

(x > y) is not true

< The condition is satisfied if the left

operand's value is lower than the

right operand's.

(x < y) is true

>= Conditions become true if the value

of the left operand is larger than or

equal to the value of the right

operand.

(x >=) is not true

<= The condition is satisfied if the value

of the left operand is less than or

(x <= y) is true

22

equal to the value of the right

operand.

Assignment Operators

Operation Description Example

= Values are assigned to the left

operand from the right operand.

When z = x + y, the value

of x + y is assigned to z.

+= This operator is referred to as

"Add AND." The left operand's

value is assigned to the result of

adding the right operand to the left

operand.

Z = Z + x is the same as

Z + = x.

-= This operator is known as

"Subtract AND." It assigns the

result to the value of the left

operand by subtracting the right

operand from the left operand.

Z = z – x is the same as

Z -= x.

*= The term "Multiply AND" operator

refers to this. The left operand is

assigned the value of the product

of multiplying the right operand by

the left operand.

Z * = x is the same as Z

= z * x.

23

/ = This operator is known as "Divide

AND." It assigns the value of the

left operand to the remainder after

dividing the left operand by the

right operand.

Z = Z / x is the same as

Z / =.

%= This operator is referred to as

"modulus AND." The modulus is

calculated using two operands,

and the result is assigned to the

value of the left operand.

Z = Z % x is the same as

Z = Z % x.

**= The operator for this is termed

"Exponent AND." After computing

the exponent, the value is

assigned to the operand on the

left.

Z = z ** x is the same as

z ** = x.

/ / = This operator is referred to as

"Floor division AND." It divides the

floor and gives the left operand a

value.

Z = z / / x is the same as

z / / = x.

Logical Operators

Operator Description Example

24

and Logical AND operator is the term

for this. Both true operands

satisfy the condition.

It is true that (x and y).

or The term for this operator is

logical OR. If any of the operands

are non-zero, the condition is

true.

It is true that (x or y).

not Logical NOT operator is the term

for this. It flips the operand's

logical state. This operator sets a

condition to false if it is true

otherwise.

not(x and y) is false.

25

4 Applications of Algebra in Python

4.1 Solving Equations and Systems of Equations

One can use Python to solve equations with a single variable. For symbolic

algebra, the SymPy library is especially helpful: from SymPy import symbols, Eq,

solution

Define the variable x = symbols('x')

State that the equation is equal to Eq(2*x + 5, 13).

Solution = solve(equation, x) print(f"Solutions for x: {solution}") # Solve the

equation.

SymPy also provides a handy method for systems of equations. Here's an

illustration using a pair of equations:

Set variables x and y to equal symbols('x y').

Explain the equation system.

equation1 = Eq(3*y, 12) + 2*x

equation2 = Eq(2*y, - 4*x)

Solution = solve((equation1, equation2), (x, y)) print(f"Solutions for x and y:

{solution}") # Solve the system of equations

Tools such as fsolve are available in the SciPy library for numerical solutions.

When symbolic solutions are not practical, this is advantageous:

from SciPy.maximise import fsolve

Define a function def equation_to_solve(x) that represents the equation:

return 4*x - 5 #x**2 To discover a numerical solution, use fsolve.

Equation to Solve = fsolve(numeric_solution, 0)

print(f)"Numerical solution for x: {numerical_solution}")

26

In many cases, challenges in science and engineering include algebraic

equations. These equations can be solved by Python, which makes it useful in

physics, chemistry, and many engineering fields. For example, optimising

engineering designs or figuring out unknown values in physical tests.

Statistics and data analysis both use algebraic equations. Equations from

statistical modelling, curve fitting, and regression analysis can be solved with

Python and libraries like NumPy and SciPy.

By creating equations to express the goal function and constraints, Python may

tackle optimisation problems. Tools for resolving these issues are provided by

libraries like SciPy optimise.

SymPy's symbolic computation capabilities are improved by its physics module,

specifically the SymPy Physics Vector package. According to Meurer et al.

(2016), reference frame-aware vector and dyadic objects can be used to carry

out three-dimensional operations such addition, subtraction, scalar multiplication,

inner and outer products, and cross products. With the help of these objects,

vectors and dyadics can be expressed in concise notation in numerous reference

frames with arbitrary relative orientations.

In physics, locations, velocities, accelerations, orientations, angular velocities,

angular accelerations, forces, and torques are all specified in large part by vectors

and dyadics. As reference frame-aware 3x3 tensors, these objects provide a

strong foundation for vector algebra in one, two, or three dimensions, which can

be used to construct engineering and physics applications.

The SymPy Physics Vector module, for example, allows vectors to be created

and altered across several reference frames. The orthogonal unit vectors of three

reference frames (A, B, and C) oriented in various orientations relative to each

other can be used to produce a vector, as demonstrated by the following snippet

of Python code:

import from sympy.physics.vector ReferenceFrame; import pi, sqrt from sympy

'A' as ReferenceFrame equals A.

27

ReferenceFrame('B') = B. ReferenceFrame('C') = C.b.orient(A, 'body', (pi, pi/3,

pi/4), 'zxz') C.orient(B, 'axis', (pi/2, B.x))

(A * x + B * z + C * y) = v

This code illustrates how to rotate the C frame around the B frame's X unit vector

and use Z-X-Z to orient the B frame in order to express a vector in the A frame.

4.2 Python Libraries Useful in Algebra

Python is a particularly strong and flexible programming language that provides

a wide range of specialised libraries to solve challenging mathematical problems.

Many Python libraries that are helpful in addressing algebra problems are

examined in this section.

NumPy

The foundation for manipulating arrays and performing mathematical operations

in Python is NumPy, a basic toolkit for numerical computations. Mahalaxmi et al.

(2023) highlight how important it is to support N-dimensional arrays and how

essential it is to the SciPy library's operation. When it comes to performing

numerical operations and transformations, NumPy helps to overcome the

shortcomings of Python's built-in data structures. Mahalaxmi et al. (2023) list the

following as some of NumPy's primary characteristics:

N-Dimensional Arrays: Based on similar primitives, NumPy presents the ndarray,

a specialised version of an array. During calculations and operations, vectorized

arrays can be precisely manipulated because to its strong structure.

Efficiency through Vectorization: A NumPy array's size and shape are fixed at m

* n when it is expanded by default. Since a fresh array of the same size is made

for every addition, this method improves computational performance while

guaranteeing efficiency and correctness.

High-Level Mathematical Operations: NumPy accelerates and increases the

efficiency of numerical computations by offering rapid, precompiled functions for

28

mathematical operations. The library takes an object-oriented approach,

providing a flexible and expandable foundation to manage challenging

mathematical tasks.

Foundation for SciPy and Pandas: NumPy's ndarray structural framework serves

as the cornerstone for other well-known libraries like SciPy and Pandas,

emphasising its critical role in the larger Python scientific community.

Due to its versatility, NumPy may be used for a wide range of mathematical tasks,

making it an invaluable tool for scientists, engineers, and explorers. Its easy

interaction with several Python IDEs makes it even more accessible, enabling

accurate array manipulation for speedy calculations.

SciPy

One particularly useful tool for manipulating algebraic expressions, solving

equations symbolically, and performing complex mathematical operations is

SciPy, a symbolic mathematics library for Python. According to Mahalaxmi et al.

(2023), it plays a crucial role in giving Python access to a symbolic layer, which

enables complex mathematical calculations. Mahalaxmi et al. (2023) list the

following as some of SciPy's primary characteristics:

Symbolic Computation: With SymPy, symbolic calculation is made easier and

mathematical equations containing variables instead of numbers may be worked

with. This is especially helpful for assignments that call for precise

representations.

Equation Solving: The library is very good at solving equations symbolically and

offers accurate answers to a wide range of mathematical issues.

Calculus Operations: SymPy is useful for jobs involving mathematical analysis

since it can do a broad range of calculus operations, such as derivatives,

integrals, and limit calculations.

Linear Algebra: SymPy's functionality is expanded to include linear algebra,

enabling users to work with matrices and vectors symbolically.

29

Python integration: SymPy easily combines with Python, offering a symbolic layer

to support libraries for numerical computation such as NumPy and SciPy.

Python's usefulness for algebraic tasks is improved by SymPy's symbolic

approach, which bridges the gap between symbolic and numerical computation.

For researchers and mathematicians working on a variety of mathematical

issues, its integration with other scientific libraries makes it an invaluable tool.

5 Challenges and Limitations of Using Python for Algebra

5.1 Potential Pitfalls and Errors in Algebraic Computation

When using Python for algebraic computations, practitioners face difficulties that

call for a sophisticated comprehension to guarantee precise and dependable

outcomes. Floating-point arithmetic and numerical precision present a significant

hurdle. Like many other programming languages, Python uses floating-point

arithmetic, which can lead to issues with numerical precision. Because rounding

mistakes are inevitable in complex algebraic calculations, users should proceed

with caution and, if accuracy is critical, look into other methods or symbolic

computation libraries like SymPy.

Although symbolic algebraic manipulation is a powerful tool, as expressions

become more complicated, it can become computationally costly. This presents

a performance barrier, as symbolic libraries such as SymPy may become slower

as algebraic complexity rises. Using the right algorithms, optimisations, and,

when practical, hybrid techniques that combine symbolic and numerical solutions

in accordance with the task's particular needs are all necessary to mitigate this

difficulty.

30

Another problem in using Python for algebraic computations is handling mistakes

robustly. Although dynamic languages are flexible, they can be challenging to

handle errors in, particularly when working with a variety of algebraic expressions

and equations. In order to tackle this issue, practitioners are recommended to

incorporate strong error-handling methods, properly verify inputs, and carry out

extensive testing of algebraic functions.

Since NumPy and SymPy are frequently needed for Python's algebraic

capabilities, external dependencies provide still another level of complication.

Algebraic code behaviour and compatibility may be affected by updates or

modifications to these dependencies. In order to preserve the integrity of their

algebraic computations, practitioners should update dependencies on a regular

basis, stay up to speed on library changes, and make sure that versions work

together.

Selecting between symbolic and quantitative approaches presents a crucial

trade-off. Numerical computations prioritise efficiency at the possible expense of

symbolic precision, whereas symbolic computations deliver precision but may

compromise speed. In order to successfully navigate this obstacle, practitioners

must carefully evaluate the unique requirements of the algebraic problem,

allowing them to strike a balance between efficiency and precision.

To put it simply, knowing these difficulties gives practitioners the ability to choose

wisely when using Python for algebraic operations. People can use Python to

explore the algebraic environment by comprehending the subtleties of numerical

precision, symbolic manipulation, error handling, dependencies, and

performance trade-offs.

5.2 Limitations of Symbolic Algebra in Python

Symbolic algebra provides a powerful foundation for working with mathematical

expressions symbolically, made possible by Python packages such as SymPy.

Nevertheless, there are some issues with this method that practitioners doing

symbolic algebraic calculations should take into account.

31

A notable limitation is the computational burden that comes with symbolic

algebra. The efficiency of symbolic computation libraries, particularly SymPy,

may deteriorate as algebraic workloads become more complex. This means that

solving complicated symbolic issues requires careful resource management.

One significant drawback appears when moving from symbolic to numerical

computations. Symbolic algebra does well when it comes to exact

representations, but it struggles with numerical analyses. When obtaining

numerical results via symbolic programming, users should be aware of the

inherent constraints since precision problems and rounding errors may arise.

Another problem that libraries for symbolic algebra face is handling huge

expressions. The amount of memory needed to store and manipulate large

symbolic expressions can cause inefficiencies, which may affect how well

algebraic computations execute overall. It is important for practitioners to

understand these constraints, particularly when working with large mathematical

expressions.

Moreover, for some numerical tasks, symbolic algebra might not always be the

best option. For certain kinds of calculations, numerically-focused libraries such

as NumPy, whose algorithms are tailored for numerical computations, can

perform faster and more efficiently with respect to resources than symbolic

techniques. In such cases, it becomes crucial to balance the trade-offs between

symbolic precision and numerical efficiency.

Although Python's symbolic algebra improves the symbolic manipulation of

mathematical statements, practitioners should be aware of these constraints. It

is possible to use Python's symbolic algebraic capabilities in a sophisticated and

efficient way by being aware of the trade-offs between efficiency and processing

intensity, numerical precision concerns, huge expressions, and other issues.

32

6 Conclusion

The essential significance of algebra in mathematics as well as the introduction

of Python as a powerful programming language for algebraic tasks were covered

in this investigation of algebra with Python. The fundamentals of algebra were

studied, including how to navigate equations, functions, and basic operations.

The symbiotic relationship between mathematics and programming was revealed

with the integration of Python for algebraic manipulation, revealing the syntax,

data types, and prospective applications.

The examination also covered algebraic applications in Python, explaining how

to solve equations, graph functions, and identify patterns—all of which were

conducted with ease thanks to Python tools. The difficulties and restrictions that

came with using Python for algebra revealed possible problems with

computational efficiency, symbolic manipulation, and numerical accuracy.

The challenges of dealing with huge expressions, trade-offs in numerical

precision, and processing intensity were encountered when analysing the

constraints of symbolic algebra in Python. Nevertheless, despite these difficulties,

symbolic algebra's adaptability in providing accurate symbolic representations

was still apparent.

These contributions are useful for understanding the complex interactions

between symbolic and numerical methods when exploring the dynamic terrain of

33

algebra with Python. Understanding the complexities of computation, subtleties

of precision, and successful techniques gives practitioners the skills they need to

use Python efficiently for algebraic tasks. As such, this investigation not only

highlights the mutually beneficial relationship between mathematics and Python

but also opens up new avenues for future research by encouraging more study

of algebraic domains with the use of this potent programming language.

Even with the wealth of material in this report, there were still certain restrictions

on the investigation. The difficulties in managing big expressions, computing

intensity, and numerical precision in symbolic algebra highlighted the need for

more research to find solutions to these limitations. Recognising these

constraints reminds us that in order to properly progress the field in the future,

these obstacles must be wisely navigated.

As this examination into algebra with Python comes to an end, there are a number

of exciting directions that could lead to more research and development in this

dynamic nexus of programming and mathematics.

First and foremost, there is a need to improve Python's symbolic algebraic

computation efficiency. Subsequent studies may concentrate on improving

symbolic algebra's computational efficiency, possibly by investigating new

algorithms, optimising existing ones, or utilising parallel processing capabilities.

Combining machine learning methods with algebraic computations is an

intriguing avenue for further research. There is potential for novel applications

when examining how machine learning models can help with algebraic problem

solving, symbolic manipulation optimisation, or pattern identification within

algebraic structures.

Future work may also focus on creating specialised algebraic libraries made

specifically for Python. By filling in holes in the existing Python ecosystem and

offering optimised solutions for a range of mathematical problems, these

specialised libraries might handle particular algebraic challenges.

34

Technological developments in algebraic tasks human-computer interface offer

a fascinating prospect. Algebraic problem-solving could be made more

approachable for a wider audience by incorporating natural language processing

and user-friendly interfaces to make the process easier.

Examining Python's function in quantum algebraic computations becomes

fascinating as quantum computing gains popularity. Analysing Python's utility for

quantum algebraic tasks and its ability to interface with quantum computing

languages may delineate a new area of algebraic research.

Furthermore, the creation of interactive teaching resources that use Python to

teach and learn algebra has promise. Developing compelling platforms that

combine algebraic ideas with Python programming could help students gain a

deeper understanding of both algebra and programming.

In summary, there is a great deal of promise for algebraic investigation with

Python in the future. This field can advance into fascinating new domains by

addressing computational difficulties, investigating multidisciplinary intersections,

and supporting innovative teaching practices. The future course of algebraic

investigation using Python will probably be shaped by the combined efforts of

mathematicians, computer scientists, and educators.

35

References

Alibali, M. W. (1999). How children change their minds: Strategy change can be

gradual or abrupt. Developmental Psychology, 35, 127–145.

doi:https://doi.org/10.1037/0012-1649.35.1.127.

Alibali, M. W., Knuth, E. J., Hattikudur, S., McNeil, N. M., & Stephens, A. C.

(2007). A longitudinal look at middle-school students’ understanding

of the equal sign and equivalent equations. Mathematical Thinking

and Learning, 9, 221–247.

https://doi.org/10.1080/10986060701360902

Barnes, M. (1991). Investigating change: An introduction to calculus for

Australian schools. Carlton, VIC: Curriculum Corporation.

Bosse, M. J., & Nandakumar, N. R. (2005). Section A factorability of quadratics:

Motivation for more techniques. Teaching Mathematics and Its

Applications, 24(4), 143-153.

Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated

misconceptions of middle grade students: A review. The Journal of

Mathematical Behavior, 32, 613–

632. https://doi.org/10.1016/j.jmathb.2013.07.002

Church, K. et al. (2021) ‘Introduction to python’s syntax’, The Quantitative

Methods for Psychology, 17(1). doi:10.20982/tqmp.17.1.s001.

https://doi.org/10.1080/10986060701360902
https://doi.org/10.1016/j.jmathb.2013.07.002

36

Dhruv, A., Patel, R., Doshi, N. (2022). Python: The Most Advanced Programming

Language for Computer Science Applications. DOI:

10.5220/0010307900003051

Edo, S., Tasik, W. (2022). Investigation of Students’ Algebraic Conceptual

Understanding and the Ability to Solve PISA-Like Mathematics

Problems in a Modeling Task. Mathematics Teaching Research

Journal, 14(2).

Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children's understanding of

equality: A foundation for algebra. Teaching Children Mathematics,

6(4), 232–236 Retrieved from https://eric.ed.gov/?id=EJ600209.

Harripersaud, A. (2021), The Quadratic Equation Concept, American Journal of

Mathematics and Statistics, Vol. 11 No. 3, 2021, pp. 67-71. doi:

10.5923/j.ajms.20211103.03.

Howden, H. (2001). Algebra tiles for the overhead projector. Veron Hills: Learning

Resources.

Kehler-Poljak, G., Jukić Matić, L. and Rukavina, S. (2022) ‘The influence of

curriculum on the concept of function: An empirical study of pre-

service teachers’, European Journal of Science and Mathematics

Education, 10(3), pp. 380–395. doi:10.30935/scimath/12042.

Kieran, C. (1997). Mathematical concepts at the secondary school level: The

learning of algebra and functions. In T. Nunes & P. Bryant (Eds.),

Learning and teaching mathematics: An international perspective

(pp. 133–158). East Sussex: Psychology Press.

Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early algebra: Research into

its nature, its learning, its teaching. New York: Springer (open access

eBook). https://doi.org/10.1007/978-3-319-32258-2.

Libretexts (2020) 1.1: Four ways to represent a function, Mathematics LibreTexts.

Available at:

https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculu

s__Early_Transcendentals_(Stewart)/01%3A_Functions_and_Mod

els/1.01%3A_Four_Ways_to_Represent_a_Function (Accessed: 21

January 2024).

https://doi.org/10.1007/978-3-319-32258-2

37

Grønmo, L.S. (2018). The Role of Algebra in School Mathematics. In: Kaiser, G.,

Forgasz, H., Graven, M., Kuzniak, A., Simmt, E., Xu, B. (eds) Invited

Lectures from the 13th International Congress on Mathematical

Education. ICME-13 Monographs. Springer, Cham.

https://doi.org/10.1007/978-3-319-72170-5_11

Meurer, A. et al. (2016) Sympy: Symbolic computing in python [Preprint].

doi:10.7287/peerj.preprints.2083v3.

Norton, S. (2015). Teaching and learning fundamental mathematics: Quadratic

equations. Producer Freddy Komp. Brisbane.

Otten, M., Van den Heuvel-Panhuizen, M. & Veldhuis, M. The balance model for

teaching linear equations: a systematic literature review. IJ STEM

Ed6, 30 (2019). https://doi.org/10.1186/s40594-019-0183-2

Srinath, K. (2017). Python – The Fastest Growing Programming Language.

International Research Journal of Engineering and Technology

(IRJET), 4(12).

VanderPlas, J. (2023) Python Data Science Handbook. O’Reilly Media, Inc.

Veith, J.M. et al. (2023) ‘Mathematics Education Research on algebra over the

last two decades: Quo Vadis?’, Frontiers in Education, 8.

doi:10.3389/feduc.2023.1211920.

https://doi.org/10.1007/978-3-319-72170-5_11

Appendix 1

1 (1)

Appendix 1: Bitwise Operators

Appendix 3

3 (1)

Appendix 2: Membership Operators

Appendix 3

3 (1)

Appendix 3: Identity Operators

