

FACULTY OF TECHNOLOGY

INFORMATION TECHNOLOGY

Telecommunications

FINAL STUDY

Determining Bandwidth for Server in Saxess and Geni um Trading Platforms

Name: Birger Nyman
Supervisor: Antti Koivumäki
Instructor: Ari Peltoniemi

Approved: __. __. 2008 Antti Koivumäki

Senior Lecturer

PREFACE

This study was done as a graduation project for Metropolia. As a final study it was chal-
lenging, but with the help of the Swedish experts I was able to complete it. I faced many
problems and I looked for an answer to the problems sometimes for a long time. But in the
end I was able to find solutions to all the problems.

I have learned a lot from trading and FIX technology. I have had a chance to work with the
most intelligent people within the exchange technology.

I would like to thank Nasdaq OMX for giving me this final study subject. I would also like to
thank my instructor Ari Peltoniemi for guiding me through the project. Also thanks to
Tomas Lundqvist and Per-Anders Sahlin. I would like to extend my gratitude to Antti Koi-
vumäki for his help and support and Jonita Martelius for revising the language.

Helsinki, October 7th, 2008

Birger Nyman

INSINÖÖRITYÖN TIIVISTELMÄ

Tekijä: Birger Nyman

Työn nimi: Kaistanleveyden tarpeen arviointi yhdelle serverille Saxess ja Genium kaupan-
käyntijärjestelmissä

Päivämäärä: 7.10.2008 Sivumäärä: 39 s. + 3 liitettä

Koulutusohjelma: Suuntautumisvaihtoehto:
Tietotekniikka Tietoliikennetekniikka
Työn valvoja: Antti Koivumäki, Yliopettaja

Työn ohjaaja: Ari Peltoniemi, Application Manager

Tässä insinöörityössä arvioidaan kaistanleveyden suuruutta yhtä kaupankäyntiserveriä
kohti nykyisessä Saxess järjestelmässä ja tulevassa Genium järjestelmässä. Saxessissa
voi käydä vain niin sanottua käteiskauppaa, muihin arvopaperimarkkinoihin on eri ohjel-
mat. Geniumissa taasen voi käydä käteiskauppaa ja muuta arvopaperikauppaa. Työn
tulosten vertailukelpoisuuden vuoksi Geniumista arvioidaan vain käteiskaupan osuus.
Päämääränä on arvioida kuinka paljon kaistaa tarvitaan tietyllä osakekauppamäärällä yhtä
välittäjän serveriä kohti.

Työ perustuu aikaisempiin mittauksiin osakekaupankäyntiverkosta ja on täysin teoreetti-
nen. Työssä esitellään mitä on osakekaupankäynti ja mitä viestejä lähetetään milloinkin.
Näistä viesteistä muodostuu tietty määrä liikennettä tietoverkossa josta arvioidaan keski-
määräinen kuorma. On huomattava, että lopputulos on karkea arvio, koska yhtä myynnis-
sä olevaa osaketta kohden saattaa tulla yksi tai esimerkiksi kahdeksan ostotarjousta en-
nen kuin lähetetään viesti, että kauppa on muodostunut.

Saxess on nykyinen kaupankäyntijärjestelmä, eikä sen teknologiaan paneuduta sen tar-
kemmin. Genium on uusi korvaava järjestelmä, ja työssä esitellään teknologiset yhtey-
denpitoperiaatteet joiden pohjalle Genium on rakennettu.

Avainsanat: : Saxess, Genium, osake, kaistanleveydenmäärittely

ABSTRACT

Name: Birger Nyman

Title: Determining Bandwidth for Server in Saxess and Genium Trading Platforms

Date: October 7th, 2008 Number of pages: 39 p. + 3 in appendix
Department: Study Programme:
Information Technology Telecommunications
Instructor: Antti Koivumäki, Senior Lecturer

Supervisor: Ari Peltoniemi, Application Manager

In this final study an approximation of how much bandwidth one server requires in Saxess
and Genium environment was studied. In Saxess it is possible to trade only in so called
cash markets, for other financial instruments there are other programs. In Genium it is
possible to trade in cash markets and in all the other markets, for example derivates. For
the final results to be comparable only cash market traffic was analyzed in Genium. The
goal was to determine how much bandwidth was needed for one member server when a
certain number of trades were executed.

The study is mostly based on previous studies about stock exchange network and is com-
pletely theoretical. Trading and messages sent are explained. These messages generate
a certain amount of network traffic and from this traffic a rough bandwidth load approxima-
tion was calculated. It must be pointed out that the final result of this study is a rough ap-
proximation due to the nature of trading. For each sell order there can be one or for ex-
ample eight buy orders until a trade execution message is sent.

Saxess is the present trading platform and its technology is not studied here. Genium is
the next platform and in this study the basic communication technologies behind it are
explained.

Keywords: Saxess, Genium, stock, bandwidth, trading

TABLE OF CONTENTS

PREFACE

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

ABBREVIATIONS

1 INTRODUCTION……………………………………………………………………..……... 1

2 SAXESS…………………………………………………………………………..….………. 3

3 TRADING NETWORK……………………………………………………..………….……. 5
 3.1 Concept of Trading…………………………………………………………..…….……...7
 3.2 Trading Messages……………………………………………………………………….. 8

4 SAXESS BANDWIDTH CALCULATIONS…………………………………… .………....13

5 GENIUM………………………………………………………………………………………18
 5.1 FIX...18
 5.2 Templates…………………………………………………………………………………21
 5.3 PMAP and Stop Bit..22
 5.4 Templates in Detail………………………………………………………………………24
 5.5 Field Encoding……………………………………………………………………………27
 5.6 Transfer Encoding……………………………………………………………………….29
 5.7 Genium Bandwidth Calculations……………………………………………………… 34

6 DISCUSSION AND CONCLUSION……………..………………………………………..38

7 REFERENCES………………………………………………………………………………39

Abbreviations

FAST FIX Adapted for Streaming

FIX Financial Information Exchange

LSB Least Significant Byte

MBL Market By Level

MBO Market By Order

MSB Most Significant Byte

OSI Open System Interconnection

PMAP Presence Map

TCP/IP Transmission Control Protocol/Internet Protocol

TE Trading Engine

WAN Wide Area Network

XMP Exchange Message Protocol

XTP Exchange Transaction Protocol

1

1 INTRODUCTION

The purpose of this final study was to determine how much bandwidth is

needed for one trading bank server when a certain number of transactions

take place. Today Nasdaq OMX uses the Saxess platform for trading and it

is changing to Genium platform. It is known how much bandwidth is needed

in Saxess but one has to estimate how much traffic the same number of

trades generate in Genium. In order to do this, message type analysis was

done to find out which messages create the biggest bandwidth load. The

concept of trading was introduced to show how much one trade generates

traffic. When a trading bank enters a new sell or buy order it is disseminated

to the other members. These orders and executed trades are analyzed to

determine bandwidth load.

The study was done while the author was working for Nasdaq OMX. Most of

the knowledge to do this study was got from the colleagues by email inter-

views. Some internal websites were very good sources for information about

Saxess. Nasdaq OMX has done one very good study about adding FAST

compression technique to the existing Saxess trading platform and this study

turn out to be maybe one of the most important study, which was closely re-

lated to this final study. In this final study Financial Information Exchange

FIX and FIX Adapted for Streaming FAST are studied. There is a website

where is distributed material about FIX and FAST, www.fixprotocol.org. The

material on the website is updated frequently and one can follow the recent

development of the FIX technology. This material from colleagues, internal

websites and external websites were studied and analyzed.

In this study the technology of the Saxess trading platform is not studied.

Saxess is the old system and it will be replaced by Genium and therefore it

was left out. Instead, how the compression works in Genium between the

Central Server and the Client Server is explained in detail.

 In chapter two is described what Saxess is and in what way the new

Genium will resolve some problems that are encountered frequently in

Saxess. Chapter three covers the details as to what is a trading network and

how the market data feed is generated. Some trading examples are given to

illustrate in detail from which messages the market data feed is consists of.

2

In chapter four the Saxess bandwidth calculations are presented. Chapter

five covers the Genium subject and it is divided into seven sections. In these

chapters the details of Field Encoding, Transfer Encoding, PMAP and Stop

Bit are covered, they are the key elements of the FIX technology. Also the

Genium bandwidth calculations for market data feed are presented in chap-

ter 5. In the final part of Chapter 5 there is a figure where the bandwidth

consumption of the Saxess and Genium are presented. The sixth chapter

discusses the results of this study.

3

2 SAXESS

In this chapter it is briefly explained in which countries Nasdaq OMX oper-

ates. A very simplified figure is shown about the similarities and differences

in Saxess and Genium just for the reader to understand where the research

phenomenon takes place. Some reasons why the Saxess will be replaced by

Genium are explained.

The name of Nasdaq OMX’s trading program is Saxess. In Saxess it is pos-

sible to trade stocks. There is a central trading server running Saxess Server

version, desktops are using Saxess Client version to be in contact to the

central server. The following exchanges are part of this Nordic exchange,

Copenhagen, Stockholm, Helsinki, Reykjavik, Tallin, Riga and Vilnus. The

Nordic countries create one market area and Baltic countries a one of their

own. XTP, eXchange Transaction Protocol is the connection technology be-

hind Saxess. XTP uses LZ compression method to reduce data sent be-

tween Central Saxess Server and Client Servers. Genium is the new trading

platform developed by OMX and it will replace Saxess. In Genium the client

connection will be based on FIX technology and it will use FAST, Fix

Adapted for STreaming to reduce data sent between the client server and

central server. Figure 1 illustrates the connection between the Central

Server and the Client Server in both Saxess and Genium.

4

Figure 1. Basic consept in Saxess and Genium

As can be seen in Figure 1, in both, Saxess and Genium, there is a Central

Server and a Client Server. Both, Saxess and Genium are programs which

are installed to servers; there are different versions for the Central Server

and the Client Server. LZ is the compression method used in Saxess be-

tween the Central Server and the Client Server. In Genium FAST compres-

sion method is used to reduce data sent between the Central Server and the

Client Server. The connection between the Central Server and the Client

Server is the one which is researched in this study. In Saxess TCP/IP is

used to establish and to maintain the connection and LZ is only the com-

pression method. At the moment the Saxess network is highly loaded and it

is on its limit to handle all the traffic. When ever there is a lost IP-packet it

must be resend. This creates a problem, if the network is already full of traf-

fic this in its self increases the probability to lost IP-packets. Resending the

lost IP-packets loads the network even more and then there are even more

lost IP-packets and more resending. The network can end up to be con-

gested. One can increase the bandwidth but in some point it is not feasible

anymore, especially what comes to costs to maintain such a big bandwidths.

Genium was developed to solve this issue, its compression is based on

FAST method and it has better compression ratio than LZ used in Saxess.

5

3 TRADING NETWORK

This chapter is divided into body and two sub sections. In the body part trad-

ing network is explained in more detail to show how servers are located in

respect to each other. In the first sub section is explained what is market

data, how it is generated and how market data is disseminated to different

participants in the network. In the second sub chapter is explained the de-

tails of the most common messages in the Saxess network. One should un-

derstand which are the four most common messages and what each mes-

sage does and when each of the four message is generated and why. This

is illustrated by doing some trades and explaining each step in the trading

process.

 In Figure 2 is presented the trading network setup in more detail to illustrate

how the Trading Engine, which could be also called the Central Server, is lo-

cated in respect to Client Trading Server, for example.

6

Figure 2. Trading network setup

To achieve redundancy the whole trading system is duplicated from worksta-

tions onwards. The workstations in the Figure 2 represent workstations in

one member premises [2], p.8. Workstations are connected to a switch and

the switch is connected to the Trading Server in member premises and the

Trading Server is connected to a switch on Concentrator site A. All the other

members are connected to the switch on Concentrator site A in the same

way. Concentrator site B is on stand by if there is a failure on site A. Each

inserted order and executed trade generates messages which are dissemi-

nated to the other members. There is a configurable limit of how much the

Trading Engine can push out data to disseminate it to the members. If this

limit is reached the Trading Engine will not take any new orders in. During

time more members are connected to the network and the output rate must

be recalculated and increased. In this study the bandwidth requirements for

one member server when using Saxess and Genium are compared.

7

3.1 Concept of Trading

This sub chapter gives an overall picture why and when trading messages

are disseminated and how the dissemination process goes. What is the

market data feed and how it is generated is explained. In Figure 3 is illus-

trated a trading network in order to show how market data feed is generated.

Figure 3. Simplified trading network

In Figure 3 there is a simplified trading network showing how market data is

generated and how it is disseminated to the members in the trading network.

There are two members A and B, both sending sell and buy orders to the

Trading Engine. From the Trading Engine these orders are disseminated to

the other members in the network. This is explained in more detail in the

next paragraph.

When one wants to buy stocks from the stock markets one has to go to a

bank to do this. No individual person can be directly connected to the trading

network as so called members a.k.a banks can be. Now is given one exam-

ple how the trading takes place. The Member A will insert an order into the

trading system. Person A wants to buy 1000 Nokia stocks for a price of 15€

each. The bank will insert this buy order into the trading network. The buy

order travels in a so called private part of the data cable to the Trading En-

gine where the matching process between the buy and sell orders takes

place. The orders coming from the Member A are not visible to the other

8

members until they have gone through the Trading Engine. In the Trading

Engine person A’s order is placed into an order book. All the other sell and

buy orders are inserted into this same order book. This order book is re-

freshed frequently and the information is disseminated to all the other mem-

bers. Now Member B has received a sell order from their customer person B

and the sell order is inserted into the order book in the same way as cus-

tomer A’s is. Customer B wants to sell 1000 Nokia stocks for a price of 16€

each and customer A wants to buy 1000 Nokia stocks for a price of 15€

each. Trade will not be executed due to price difference. Member B is au-

thorized to decrease Customer B’s sell offer down to 15€ per stock and in

this scenario Member B does that to get Customer B’s stocks sold. Member

B inserts a15€ sell order and a match is made and a Trade Execution mes-

sage is sent out to all the members. All the other members know now this

trade is executed. Members are sending these sell and buy orders to the

Trading Engine and these orders create order books and this information is

sent as a public market data feed to the other members.

3.2 Trading Messages

In this sub chapter the four most common messages in the Saxess trading

platform are explained. This is done by giving some trading examples.

These four messages create most of the bandwidth load. First is illustrated

an order book where there are already some sell and buy orders. Then into

this order book some new sell and buy orders are inserted and matches are

made. By using several tables each step is explained, how the trading proc-

ess goes and when each of four messages is generated. Table 1 illustrates

an order book and into this order book is entered new sell and buy orders,

these steps are illustrated in Tables 2 to 9.

Table 1. Order book

NOKIA
Buy units Buy price Sell price Sell units

1000 15 16 500
2000 15 16 1000

500 15 17 1000
100 14 18 600

9

In Table 1, there are four buy orders and four sell orders in an order book. In

this order book sell and buy orders are on such price levels that trade will not

occur. Each order in this order book has generated one MC_Order_Insert

message which is disseminated to the other members in the public market

data feed. [1], 6.3.1.2. In Table 2 is entered a new buy order into the order

book.

Table 2. Entering a new buy order

NOKIA

Buy units Buy price Sell price Sell units

500 16 16 500

1000 15 16 1000

2000 15 17 1000

500 15 18 600

100 14

In Table 2, member X has received the public market data about this order

book, which was shown in Table 1, and decides to enter an order to buy 500

stocks for a price of 16€ each. This buy orders is placed into the order book

and a match is made. In Table 3 the buy and sell order is removed from the

order book.

Table 3. Order removed from the order book

NOKIA
Buy units Buy price Sell price Sell units

1000 15 16 1000
2000 15 17 1000

500 15 18 600
100 14

In Table 3 the matched buy and sell orders are removed from the order book

and a Trade message is disseminated to the other members in the public

market data feed. Here a full match order took place and it generated two

messages, MC_Order_Cancel and MC_Trade. MC_Order_Cancel message

is sent out always when an order is removed from the order book and

MC_Trade message is sent out always when a trade is made public.[1],

6.3.1.4 & 6.5.1. Orders can be fully matched as happened in the example in

10

Table 3. It can be so that order is only partly matched. In Table 4 a partly

matched order takes place.

Table 4. Partly matched order

NOKIA

Buy units Buy price Sell price Sell units
1000 15 16 500

2000 15 16 1000

500 15 17 1000

100 14 18 600

In Table 4 there is the same start situation in the order book as in the fully

matched order example which was shown in Table 1. In Table 5 is entered

such a big buy order that it must be matched with two sell orders.

Table 5. Entering a big buy order

NOKIA

Buy units Buy price Sell price Sell units
1200 16
1000 15 16 500

2000 15 16 1000

500 15 17 1000

100 14 18 600

In Table 5 member X enters an order to buy 1200 stocks for a price of 16€

each. When there are several sell orders in the order book for the same

price and same stock the sell order first placed to the order book will be first

executed and in this case it is the sell order of 500 stocks for 16€. Because

the buy order was 1200 stocks, 700 stocks more are bought from the sell or-

der of 1000 stocks for 16€ thus leaving 300 stocks to the order book for fur-

ther sell and this is a partly matched order when only part of the sell order is

bought. In Table 6 is illustrated the order book after partly matched order.

11

Table 6. Order book after partly matched trade

NOKIA
Buy units Buy price Sell price Sell units

1000 15

2000 15 16 300
500 15 17 1000
100 14 18 600

In Table 6 there is the order book after one fully matched and one partly

matched order. The partly matched order generates one more message

compared to the fully matched order, MC_Order_Insert. MC_Order_Cancel

message is sent out always when an order is removed from the order book

and MC_Trade message is sent out always when a trade is made public and

when an order is partly matched Trading Engine enters automatically a new

order into the order book for the remaining 300 stocks using message

MC_Order_Insert. This detail must be remembered when calculating band-

widths for the market data feed. A member can update its own order and this

is illustrated in Table 7 and Table 8.

Table 7. Order book update

NOKIA

Buy units Buy price Sell price Sell units

1000 15 16 500

2000 15 16 1000

500 15 17 1000

100 14 18 600

MBO_Order_Update message is disseminated to all the members when one

member updates individual order in an order book. In Table 7, there is a buy

order of 100 units and its buy price will be reduced from 14€ down to 13€.

[1], 6.3.2.3. Table 8 shows the order book after the update is done.

12

Table 8. Order book after update

NOKIA

Buy units Buy price Sell price Sell units

1000 15 16 500

2000 15 16 1000

500 15 17 1000

100 13 18 600

In Table 8 there is the order book after the update was done. Another way to

disseminate market data is Market By Level, where all orders on the same

price level are summed together as if it was one order. This is illustrated in

Table 9.

Table 9. Orders on the same price level

NOKIA
Buy units Buy price Sell price Sell units

3500 15 16 1500
100 14 17 1000

 18 600

In Table 9 buy orders on the same price level are summed together. In Table

7 buy orders of 1000, 2000 and 500 are all on the price level of 15€ there-

fore those are summed together creating a buy order of 3500 which is

shown in Table 9. In Table 7 there is only one buy order on the price level of

14€ therefore in Table 9 there is only 100 stocks on the price level of 14€.

The same is done for the stocks which are for sell. From Table 7,

500+1000=1500 stocks are on the price level of 16€, 1000 on the price level

of 17€ and 600 on the price level of 18€ as is shown in Table 9. In the study

of Tomas Lundqvist and Rolf Andersson MBO data in the feed takes 88,5%

of the total bandwidth and MBL 3,9%. Market By Level cannot be used for

trading because individual sell and buy orders cannot be identified from the

feed. In this study the focus is only in MBO. In the previous examples the

message names are from the Saxess system which is the existing trading

platform and these message names are not applicable in the Genium trading

platform but these messages and their names clearly bring out the principle

of trading which must followed in any trading platform.

In the following chapter an estimate of how much bandwidth is needed for

one member server is presented.

13

4 SAXESS BANDWIDTH CALCULATIONS

In this chapter the calculations of the bandwidth requirement for one mem-

ber server are presented. Previous studies from the Saxess trading network

are used to do this. It is a very straightforward process to calculate the band-

width. First is calculated the application traffic and after this the frames are

added. To calculate the application traffic the average load of the four most

common messages has to be determined. Also in this chapter is illustrated

how the Saxess messages are located in the OSI reference model. At the

end of this chapter is Figure 5 which illustrates bandwidth/trades ratio from

today’s requirements up to over double what is possible to execute today.

Table 10 shows the four most common messages in the Saxess platform

and the total size of each message type.

Table 10. Trading messages

In the study of Tomas Lundqvist and Rolf Andersson the effect of adding

FAST compression technique to the Saxess system without first converting

the messages into FIX format was studied [3]. Table 10 is based on this

study, and from this table can be seen the amount of messages and trades

during one day. These four message types MBO_Order_Insert,

MBO_Order_Cancel, Trade and MBO_Order_Update create 88.5% of the

disseminated market data feed. From these figures is calculated an average

of how much traffic is generated in respect to one executed trade. After this

traffic analysis, Figure 5, showing Trades/Bandwidth ratio can be presented.

In Table 11 is presented how many messages there are for one trade in

each message type.

14

Table 11. Message types per one trade

MBO_Order_Insert

325 365 / 98 412

3.30615 orders per one trade

MBO_Order_Cancel

233 962 / 98 412

2.37737 cancels per trade

MBO_Order_Update

48 081 / 98 412

0.48856 updates per trade

Table 11 presents how many MBO_Order_Insert, MBO_Order_Cancel and

MBO_Order_Update messages are sent in respect to one executed trade.

Where as Table 12 shows the message size in bytes.

Table 12. Size per message type

41 321 355 / 325 365

127 bytes for one MBO_Order_Insert

17 079 226 / 233 962

73 bytes for one MBO_Order_Cancel

16 927 224 / 98 412

172 bytes for one Trade

7 019 826 / 48 081

146 bytes for one MBO_Order_Update

The size of one message in all four message types is shown in Table 12. In

Table 13 the outcome of tables 11 and 12 is multiplied.

Table 13. Message size per trade

127 bytes * 3.306615

419.88105 bytes MBO_Order_Insert

73 bytes * 2.37737

173.54801 bytes MBO_Order_Cancel

172 bytes * 1

172 bytes Trade

146 bytes * 0.48856

71.32976 bytes MBO_Order_Update

Table 13 summarizes how many messages there are per one trade and the

size of each message type. Having this information, it is known how much

there is application traffic per on trade. Then one has to reduce the applica-

tion data by compression level and add XMP and TCP/IP frames to get the

15

real bandwidth per one member server. Table 14 summarizes the tables 11,

12 and 13.

Table 14. Application messages size per one trade

Table 14 shows the message size in each message type in respect to one

executed trade. MBO_Order_Insert message creates 420 bytes,

MBO_Order_Cancel message creates 174 bytes, Trade message creates

172 bytes and MBO_Order_Update creates 72 bytes in respect to one trade.

Altogether 838 bytes is generated in average when one trade is executed.

LZ-compression is capable of reducing the size of emitted data by 73%,

therefore 838 bytes is reduced down to 838*0.27 = 226 bytes. Converting

this into bit size makes it 226*8 = 1808 bits. Table 15 shows how the Saxess

is located in the OSI model.

Table 15. Saxess in the OSI model

OSI LEVEL SAXESS

7 APPLICATION XTP

6 PRESENTATION XMP

5 SESSION XMP

4 TRANSPORT TCP

3 NETWORK IP

2 DATA LINK

1 PHYSICAL

Table 15 shows how the XTP and XMP are located in the OSI model. In Ta-

ble 15 can be seen that to calculate the size of one Saxess message, XTP

message on the 7th layer has to be added into XMP frame which is providing

services on the layers 6 and 5 and this XMP frame is added into TCP/IP

frame which providing services on the layers 4 and 3. Exchange Message

Protocol XMP provides support for compression and encryption. These XMP

frames are sent over a TCP/IP session. [4] Figure 4 illustrates how the XTP,

XMP and TCP/IP are added together.

16

Figure 4. Adding XTP application message into frames

In Figure 4 there is a question mark next to the XTP Message. It is there be-

cause it is not known how big the XTP message which is added into XMP

frame is. But XMP and TCP/IP frames have always the same size. There are

about 6 XTP messages per one trade, each of them encapsulated in XMP

frame and this is sent over a TCP/IP connection. XMP frame adds four bytes

and TCP/IP 40 bytes into each message. One has to add XMP frame bytes

and TCP/IP bytes into each 6 XTP messages and 1 trade message.

7x4+7x40 = 308 bytes which is 308x8 = 2464 connection bits and when add-

ing the average application traffic of one trade 1808 bits, thus one trade

generates about 2464+1808 = 4272 bits. For one member server is reserved

450 kbps which makes 450 000 bits / 4272 bits = 105 trades per second. In

Table 16 is presented how many trades can be executed with different

server bandwidths.

Table 16. Trades per member server when different bandwidth per server

Server bandwidth Traffic per trade Trades
450 000 bits 4272 bits 105
675 000 bits 4272 bits 158
900 000 bits 4272 bits 210
1 120 000 bits 4272 bits 262

In Table 16 the different bandwidths per server and how many trades can be

executed on each bandwidth are presented. The need to increase output

rate comes from the increasing number of incoming sell or buy orders in one

second. In Figure 5 is presented the maximum number of trades which can

be executed on each bandwidth rate.

17

Saxess max trades

1120; 262

900; 210

675; 158

450; 105

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

kbps

T
ra

de
s

Figure 5. Bandwidth per member server in respect to trades

In Figure 5 the figures next to the curve present the number of trades in re-

spect to kbps, first is the bandwidth in kbps and then the number of trades.

18

5 GENIUM

This chapter is divided into 7 sections. The first describes what is the FIX.

The second chapter gives an introduction to template technology which is

used in Genium to reduce data sent between the Central Server and the Cli-

ent Server. In the third section is given an introduction to PMAP and Stop Bit

which are covered in more detail in the later chapters. PMAP and Stop Bit

are the most important details in Genium with the template technology. In

the fourth section templates are explained in more detail. A Template is a

group of data fields which have predetermined data types and operators for

each field. Data is inserted into these data fields and then a program such as

Genium performs actions based on information it is getting from the tem-

plate. The fifth section illustrates how the Field Encoding works. To under-

stand Field Encoding one should have an understanding of PMAP and tem-

plates which are explained in Sections 5.3 and 5.4. In Section 5.5 one mes-

sage is sent and each step in the Field Encoding is explained. Field Encod-

ing removes unnecessary data fields and is the core of FAST to create com-

pression. For the remaining data fields Transfer Encoding is performed and

this is described in the 6th section. Also in the 6th section the Stop Bit is ex-

plained in great detail. PMAP and Stop Bit are parallel phenomena. There is

no one without the other. The 7th section covers the Genium bandwidth cal-

culations.

5.1 FIX

In this chapter is described what is FIX and who are behind it. FIX is an ac-

ronym for Financial Information eXchange. FIX defines a series of message

specifications which are used in electronic trade messaging. FIX has been

designed in collaboration with banks and exchanges. The developers share

a vision of a global messaging standard for automated trading. The reason

why FIX is so successful and widely used is the development efforts of its

member firms. Above all is the FPL FIX Protocol Limited and companies can

be members of this. Global Steering Committee is the one which is control-

ling all the subcommittees where the companies co-operate to develop FIX.

On a website www.fixprotocol.org one can look for more information. Figure

6 illustrates a basic FIX message.

19

Figure 6. FIX message

In the message in Figure 6 there are several 8=, 34=, 49=, the number is a

tag. Each tag is between | 34=10000 | and this is one field. For the messag-

ing to be standardized each field is tagged. This tag defines what type of

data string or int is in the field and the functionality description for what pur-

pose one specific field is meant. These fields can be added as blocks to cre-

ate working trading messages and developers can make their own FIX ap-

plication to understand each others. On a website

www.fixprotocol.org/FIXimate3.0/ one can enter tag numbers to see more

detailed description from any tag. The tags are numbered between 1 and

1139 in FIX 5.0 version. In Figure 7 is performed a search for a one tag.

Figure 7. Tag search on the website

In Figure 7 the tag search is illustrated. One can enter any tag number and

find out more detailed description from particular field. In Figure 8 is given a

more detailed description of the searched tag.

20

Figure 8. Description of tag 35

After entering a tag number FIXimate shows the corresponding field and its

description as illustrated in Figure 8. FIX have different versions therefore

some tags cannot be found in some versions. In Figure 9 is illustrated how

the Order Book Update message is constructed.

Figure 9. Order Book Update message definition in Genium

To give a glance of what the FIX messages look like, there is an Order Book

Update message used in Genium shown in Figure 9. This is a way to define

messages, only the data in the Value field is sent with some restrictions.

21

5.2 Templates

In this section one message is sent to illustrate how data fields are removed

from the message which is the core idea of the FAST compression. In this

chapter PMAP is mentioned only as a data field which is added into mes-

sage. Figure 10 illustrates how the first message is sent.

Figure 10. First message sets values to the data fields.

In Figure 10, one trading message is sent from one member to another. The

trading program sends the message forward and first it goes into the tem-

plate library. In the template library the right template is chosen based on

message identifier. When the message comes out from the template library

PMAP field is added. At the receiver side the message goes again into the

template library where the message is reparsed and PMAP field is removed.

The first message will set values to data fields to the template on the re-

ceiver side. [5] The second message can be shorter as shown in Figure 11.

22

Figure 11. Second message.

In Figure 11, the same member initiates second trading message. When the

second message goes into template library it is identified to be same type of

message as the previous one. Therefore there is no need to send all the

data fields. The program can use the data values from the previous mes-

sage which were inserted into the data fields of the template on the receiver

side. Figure 10 illustrated how five data fields were sent, in Figure 11, only

two data fields were sent.

5.3 PMAP and stop bit

In this chapter a short introduction to PMAP and Stop Bit is given. Both of

them should be comprehended before reading chapters 5.5 and 5.6. In Fig-

ure 12 is illustrated one FIX message.

Figure 12. Presence Map

In Figure 12 there is one PMAP field and eight data fields. Into PAMP field is

marked if the data field has data inside or not. Presence Map PMAP field

identifies which fields are absent and which fields have data inside. 1 is

marked into the PMAP field if the data field exists and 0 if the data field is

absent in the message. [3], p.2 In Figure 13 is taken one data field from Fig-

ure 12 and a deeper look into one data field is taken.

23

Figure 13. One data field

In Figure 13 is presented the content of one data field in bytes and in hex

format. In Figure 14 is presented only the bit part of the Figure 14.

Figure 14. Adding Stop bits

In Figure 14 one stop bit is added into each byte, if the byte is marked by 1 it

is the last byte of the field. The stop bit has no data carrying capabilities. In

Figure 15 is the data field after the stop bits have been added.

Figure 15. Data field after adding Stop bits

In Figure 15 can be seen that the bit which is replaced by stop bit is just

moved left to the next byte. Figure 16 illustrates the same message when it

is received.

Figure 16. Stop bits are removed on the receiver side

When the message is received the stop bits are removed and the original

message is readable as can be seen from Figure 16. [3]

24

5.4 Templates in Detail

In this chapter the details of templates are explained. A template consists of

several data fields and each field is tagged and this tag has a data type and

an operator. What data types and operators tags have is explained.

FAST uses templates to reduce the size of messages transmitted between

sender and receiver. Template defines the structure of each field in a mes-

sage. Each field is marked with a tag, data type and field operator symbol. In

Figure 17 is presented a basic tag.

Figure 17. Tag definition principle

In Figure 17 is shown the tag definition principle, first is the tag number, then

comes what data type the data will be what is inserted into the template and

then comes the Field Encoding operator. It must be defined what type of

data is inserted into a template otherwise the encoder and decoder cannot

process the field. The data type symbol is marked after the tag. In Figure 18

are shown the symbols for each data type and their abbreviations.

Figure 18. Data type abbreviations

25

In Figure 18 one can read the data type symbols and their description. In

Figure 19, all the field operators are presented.

Figure 19. Field operators

In Figure 19 the different field operators are presented. Each data field is

marked with a field operator, this determines for the encoder and decoder

how the field should be coded. For example if a data field is marked by (-)

without brackets, the encoder calculates the delta value of two concatenate

integer number fields and places this delta value into the next message go-

ing to a receiver. The sender and receiver have the same templates and

each time a message is sent or received it goes through Field encoding

process. Before the message enters the Field Encoding process a right tem-

plate is chosen for the message. Each message carries a front header con-

taining a template identifier and based on this the identifier right template is

taken from the template library to encode the message. In Figure 20, there is

a template without any data inside. 999u=1234 is the first field and it defines

the ID of the template, 999 is the tag number, u is the data type symbol, = is

the operator and 1234 is the number identifying the template. [5]

Figure 20. Empty template

26

In the message each field contains a tag, data type symbol, operator and

data. This tag identifies what kind of data it is and how to encode it. When a

new type of message is sent for the first time from the sender to receiver it is

sent almost without Field Encoding, only Constant value fields are removed

from the message in the Field Encoding process. The first message is sent

almost in its full length in order to get the starting values to the template on

the receiver side. There is no need to send Constant value fields because

those are same in every following message. The constant value fields have

got their values when the templates were distributed statically to both sender

and receiver.

In front of each message there is the template identifier and this template

identifier is read first when the message arrives to the receiving side and the

right template is chosen for decoding and one could see that the Constant

value is already placed in the template at the receiving side.

The fields in a message coming from the trading application and in a tem-

plate are in corresponding order to each others. When a new message is ini-

tiated in a trading application such as Genium, the right template is chosen

for the message to encode it. The data is placed to the empty data fields in

the template and after that the Field Encoding process starts. Every field in a

template is predetermined whether it is a Constant, Increment, Copy or Delta

and whatever data is inserted into the template data field it is treated by the

operator defined in the template. The order must be kept for encoding and

decoding to be successful. Each field is processed in the Field Encoding

based on the tag value in the data field. The tag value is just a plane number

between 1…1139. In the encoder it is defined what to do to a data field con-

taining a particular tag.

27

5.5 Field Encoding

The Field Encoding is the idea behind the FAST data compression method.

Because all the messages are identified by Message Identifiers therefore if

the message is identified to be same type as the previous one which was

sent, the Genium program knows that previous message has set the data

values to data fields and sends only those fields which are different from the

previous message. In this chapter is given one example about this. In Figure

21 is described how one message is sent and how the Field Encoding

works. First the message goes into Field Encoding where the fields are re-

moved and after that Transfer Encoding is performed. Transfer Encoding is

explained in Chapter 5.6.

Figure 21. Process of sending message

1. Sending Application generates a trading message

2. In front of this message there is a template identifier. Based on this identi-

fier the right template is chosen. Both sides have the same templates and

when the message arrives to the other side and based on message identi-

fier, bytes in the message are placed back to the right template.

28

3. Each field is marked with a tag number. This tag identifies the data type of

the field and how to code it. The order of tags/fields is defined in the tem-

plate. Each field must be defined by tag number otherwise FAST coder do

not know what to do with those bytes. For example if the field is marked by

tag 34 it identifies the field to be Incremental. Here, in this example, SeqNum

field is defined to be Incremental. When the message is sent for the first

time, Sequence Number 10 000 is sent over all the way to the receiver and

placed to the SeqNum field in the template at receiver side, this requires 5

bytes. Each message has a message identifier, therefore when the same

message is sent again it can be identified to be the same message type at

the sending side and when doing the Field Encoding, Sequence Number

10 000 will not be sent therefore the SeqNum field will be empty. PMAP

Presence Map field is added to the message at this point. In this field one bit

is reserved for each field in the message, 1 when the field has data inside

and 0 when the field is empty. Now this message is sent to the receiver but

the SeqNum field is totally empty of data.

4. At the receiving side is the same template and it is coded to increment the

number by one when a new message is received and the field is tagged as

34. When the message is received for the second time number 10 000 is in-

cremented to 10 001. In this way the second message is 5 bytes smaller be-

cause the number 10 001 was never sent in the data cable. [5] In these four

steps the Field Encoding was explained. Step by step it was explained how

fields can be removed without any data loses, even the data field was never

sent in the data cable. Figure 22 shows how several fields are removed.

29

Figure 22. Several fields can be removed

In Figure 22, there are three FIX messages, starting 8=FIX.4.4. The first of

them is sent almost in its full length, only data in Constant value field is re-

moved, |1011111 | 10000 | CLIENT1 | 20060126-13:06:58.100 | 3400 |

FOO1 |, this line goes to Transfer Encoding before it is sent to the receiver.

The first message will give the first starting values for data fields on the tem-

plates at the receiver side, when same type of message is sent for the sec-

ond time only the Delta values are sent |100110| | | 200 | 10 | |. The third

message is slightly different because the company stock under exchange

has changed from FOO1 to BAR2. The last bit in PMAP is now 1 due to

there is data in the last field |100111| | | 300 | -20 | BAR2 |. From this simpli-

fied example can be seen the big reduction in data which is sent in the data

cable. [6], p.35

5.6 Transfer Encoding

In the FAST compression method message goes first into Field Encoding

where the excessive fields are removed. For the remaining fields Transfer

Encoding is performed. In this chapter is shown in a bit level what takes

place when Transfer Encoding is performed. In the example two messages

are sent and both of them are identified to be same type therefore the Field

Encoding can be performed and after this the Transfer Encoding is per-

formed.

In Table 17 is shown each bit of one byte. This is to illustrate where the Stop

bit is located.

30

Table 17. Bit order

In Table 17 is shown that bit 7 is reserved as a “stop-bit”, 6-0 are data bits. If

the bit 7 is 1, it means it is the last byte of the field. One example is given,

starting from Table 18, about byte and bit orders using templates, especially

how the stop bit works. One template is illustrated in Table 18.

Table 18. Simplified template example

In Table 18 there is an example template. It defines the type of four data

fields and an operator for each field. This template is on both sides, sender

and receiver and as mentioned before, in front of this message there is the

identifier field, recognition of the message is based on this. In this simplified

example only the most viable information is shown, therefore the message

identifier field is absent. Table 19 illustrates how two messages are sent us-

ing the same template.

Table 19. Content placed into the template above

In Table 19 it is illustrated how two messages are using the same template.

Operator type for each field from 1 to 4 can be seen from Table 18. One can

see that in the template, Table 18, and in the message, Table 19, the data

fields are in corresponding order to each other. In Figure 23 is presented

one FIX message and this message is dissected into five parts and each

part is then analyzed in the following section.

31

Figure 23. 5 separated fields

The easiest way to explain the usage of stop bits is by dissecting the en-

coded message. The line in Figure 23 is the encoded output of Message 1

from the Table 19, it is 19 bytes long.

The first byte in Figure 23 is the Presence Map PMAP. f8 is equal to 1111

1000 in binary form. The first bit is 1 and indicates that stop is set therefore

this byte is the last byte of the field. Next four bits are set to be one 111 1,

indicating that fields 1, 2, 3, 4 are present as marked to the example mes-

sage and fields 5, 6, 7 are absent and those are marked 000. This is what is

meant when it is said the FAST method is content aware, before it starts to

encode or decode FAST already has knowledge of which fields are present

and data type of those and correct operator for each field.

The second set of bytes in Figure 23 is 24 b4 and it is equal to 0010 0100

1011 0100 and these bits are interpreted in the following way, in the first

byte the stop bit is not set, followed by 7 data bits. In the second byte the

stop bit is set and followed by 7 data bits. The stop bit has no data carrying

capabilities and it is not considered as a data bit. The 14 data bits are 01

0010 0011 0100 in hex form 0x1234. This is the original uncoded message.

In a point when the message is encoded by FAST the stop bits are added. In

the template the type of a message is defined and based on that stop bits

are set.

The third set of bytes in Figure 23 is 04 46 c5 and it is equal to 0000 0100

0100 0110 1100 0101, and these bits are interpreted as stop bit not set,

seven data bits, stop bit not set, seven data bits, stop bit set, seven data

bits. The 21 data bits are 0 0001 0010 0011 0100 0101 in hex form

0x012345. In each byte the most significant bit is reserved for the stop bit

and it reduces the number of data bits in this example down to 21 bits. Note

that in each byte there is a stop bit and whether or not it is set it increases

the total size of one byte by one bit.

32

The fourth set of bytes in Figure 23 is 01 11 52 57 cd and it is equal to 0000

0001 0001 0001 0101 0010 0101 0111 1100 1101, and these bits are inter-

pret as stop bit not set, seven data bits, stop bit not set, seven data bits, stop

bit not set, seven data bits, stop bit not set, seven data bits, stop bit set,

seven data bits. The 35 data bits are 000 0001 0010 0011 0100 1010 1011

1100 1101 and in hex form 0x01234abcd.

The fifth set of bytes in Figure 23 is the “Freetext” without the brackets. In

the last byte f4, stop bit is set, in all the other bytes stop bit is clear. The

original message was 17 bytes long, after encoding the message is 19 bytes

long. Adding one stop bit to each byte increases the size. Now the second

message is analyzed. It is shorter than the first message, it is 11 bytes long.

This is showed in Figure 24.

Figure 24. The second message

In Figure 24 there is the content of the second message. The original size of

the message 1 and message 2 is the same but when the second message is

transmitted, only 11 bytes are sent as in the first message there were 19

bytes. The second message is divided into three fields to analyze it.

The first byte is 98 which is the PMAP, 1001 1000, the first bit is 1 and there-

fore stop bit is set. Fields 1 and 2 are missing and those are marked to be 0.

Fields 3 and 4 have data inside and those are marked by 1. Field 1 is

marked by operator COPY therefore the data to field 1 is copied from the

previous message on the receiver side and value of the INCRemental field 2

is incremented by one on the receiver side.

The second set of bytes is 1f ee and it is equal to 0001 1111 1110 1110, and

this is interpreted as stop bit clear, seven data bits, stop bit set and seven

data bits. The 14 data bits are 00 1111 1110 1110, that is in hex form 0x0fee

which is the delta value of “Timestamp” 0x1234bbbb – 0x1234abcd =

0x0fee. In the template, Field 3 is defined to be Delta therefore delta value is

calculated between Message 1 and Message 2 and only this delta value is

sent.

33

The third set of bytes is the “FreeText” data. Here could read “Aikakone”.

This kind of data cannot be compressed using templates. Field 4 requires 8

bytes just as in the first message. The second message is 11 bytes in size.

[3]

In total two messages, 34 bytes, was reduced down to 28 bytes. When two

messages are sent the compression rate is 18%, when three messages are

sent 17+17+17 = 51 bytes is compressed to 17+11+11 = 39 bytes which

means a 24% reduction in data. These messages, see Table 19, are not re-

alistic in real trading but are usable examples to show FAST compression in

the bit level and the usage of stop bits.

 In Figure 25 is shown FIX messages to illustrate how data fields are re-

moved.

Figure 25. FAST method reduces fields witch are sent

Figure 25 shows how three FIX messages each in length of 71 bytes are

sent. The first message is starting 8=FIX.4.4 and it is 71 bytes in length, in

the message one byte is reserved for each mark. The Field Encoding re-

duces the size of the first message down to 47 bytes+PMAP 1 byte, reduc-

tion is 33%. The second message is 11 bytes+PMAP 1 byte, reduction is

83%. The third message is bigger because traded stock has changed, 16

bytes+PMAP 1byte, reduction is 76%. By using templates and field opera-

tors several fields can be removed.

34

5.7 Genium Bandwidth Calculations

This chapter covers the bandwidth calculations for Genium. The same study

is used as in the Saxess calculations to find the ratio between the three most

common messages and the trade. Saxess uses four messages to perform

most of the actions in the trading network but in Genium there is only one

message but the ratio is needed for calculations.

 In Table 20 is presented the number of messages in each message type.

Table 20. Most common messages in Saxess

From the study of Tomas Lundqvist and Rolf Andersson this Table 20 is

used to analyze how many messages there are in respect to one trade. [3]

325 365 + 233 962 + 48 081 = 607 408 messages

607 408 / 98 412 = 6,17 messages per on trade.

Figure 26. Most common trading messages in Saxess and Genium

In Genium, Market Data Incremental Refresh message takes care of the

same functions as those four messages in Saxess.

Market Data Incremental Refresh containing Order Book Updates is 222

bytes [8] in size. This message handles the same functions as

MBO_Order_Update, MBO_Order_Cancel and MBO_Order_Update in

Saxess.

35

Market Data Incremental Refresh containing Trade Data is 310 bytes [8] in

size. This message handles the same function as the Trade message in

Saxess.

Now is calculated an average of how much traffic one trade generates in

Genium.

6,17 * 222 bytes = 1370 bytes for messages other than trade

1 * 310 bytes = 310 bytes for a trade message

1370 + 310 = 1680 bytes. One trade generates this much traffic

FAST compression reduces it down to 0,15 * 1680 = 252 bytes [8]

252 bytes * 105 trades = 26 460 bytes

26 460 * 8 = 211 680 kbps

WAN frames

To compare to Saxess, 105 trades per second is used for calculations.

105 * 6,17 = 648 pcs. of other than trade messages.

105 trade messages

648 + 105 = 753 messages altogether to execute 105 trades in Genium.

Max 4 FIX messages in the same TCP segment

753 / 4 = 189 TCP segments

Size of one WAN frame 66 bytes

66 * 189 = 12 408 bytes [8]

36

Genium bandwidth after compression and WAN frames

26 460 + 12 408 = 38 868 bytes / sec.

38 686 * 8 = 310 944 bps [8]

105 trades in Saxess 450 kbps per member server, or 7x105=735 messages

105 trades in Genium 311 kbps per member server, or 7x105=735 mes-

sages. In Figure 27 is presented how much traffic is been generated on four

different levels of trades.

Genium & Saxess max trades

262

210

158

105

262

210

158

105

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

kbps

T
ra

de
s

Saxess Genium

Figure 27. Illustrates number of trades in Saxess and Genium

In Figure 27 can be seen that Genium consumes less bandwidth than

Saxess when the same number of trades are executed. The results of the

37

study presented in Figure 27 are the values which can be calculated fairly

easily. In Saxess there are four messages which create 88,5% of the band-

width load. Into this 88,5% bandwidth has to be added 11,5% extra, then it

includes all the least common messages such as MBL Market By Level mes-

sages and other less common messages. For the Genium bandwidth calcu-

lations were used the ratio from the Saxess network therefore also Genium

bandwidth calculations have to be increased by 11,5%.

38

6 DISCUSSION AND CONCLUSIONS

In this study the bandwidth load was calculated by analyzing the four most

common messages. These four messages generate most of the bandwidth

load. One has to add some extra to the bandwidth because there are hun-

dreds of other messages which create the minority of the network load.

These less common messages are not analyzed in any detail because it

would be too big work load to do it. The object of this study was to find out if

there was a need to change bandwidth configurations for members when

changing into new trading platform. As the study shows, the new Genium will

use less bandwidth than the existing trading platform Saxess. One could

think to buy less bandwidth from the network operator when Genium is taken

into use but it is not feasible, because after all, Genium requires only about

100 kbps per server less than Saxess and with the current rate how incom-

ing orders are raising, this 100 kbps extra would be soon needed. Therefore,

there is no need to change bandwidth configurations.

In the bandwidth calculations the average number of how many messages

there were in respect to one trade was calculated. The final results are not

absolute because members are free to send sell and buy orders in as many

as they want. In some points the bandwidth can be in its peak with only 60%

of trades calculated in this study being executed. This might happen if there

were many orders coming in but orders are not matched. A more detailed

study could be conducted about how the traffic alters.

39

REFERENCES

[1] OMX Technology AB, XTP 2.56 Specification 14.8.2007
 http://omxnordicexchange.com/memberlogin/saxess/developer/

[2] OMX Technology, 7466_Saxess_AccessProtocol_SFN.pdf 20.9.2007
 http://www.omxnordicexchange.com/memberlogin/saxess/communication/

[3] Tomas Lundqvist & Rolf Andersson, OMX_FASTpaper_051029 [email]

[4] OM Gruppen AB, XMP Exchange Message Protocol 13.8.2008

http://www.oslobors.no/servlet/BlobServer?blobtable=Document&blobheade
r=application%2Fpdf&blobwhere=1043933654374&blobcol=urlblob&blobk
ey=id&1043933654374.pdf

[5] Matt Simpson, CME, 08_Basic_FAST:Implementation – Simpson 2.3.2007

http://www.fixprotocol.org/documents/2525/FAST%20Tech%20Summit%20
-%20CME.zip

[6] Kevin Houston, HSBC Investment Bank, FAST_Breakfast_Briefing_kh

15.2.2008
http://www.fixprotocol.org/documents/2701/FAST_Breakfast_Briefing_kh.p
df

[7] Richard Gaudy, Nasdaq OMX, 29.8.2007, Trading Members (Cash Market)

traffic forecast [email]

[8] Per-Anders Sahlin, Nasdaq OMX, 14.3.2008

GMI_FIX_message_bandwidth [email]

[9] Benny Rachlevsky-Reich, A Global Electronic Market System, available at
 www.sciencedirect.com, Published by Elsevier Science Ltd.

[10] M. Mandjes, Bandwidth trading under misaligned objectives, available at
 www.sciencedirect.com, Published by Elsevier Science Ltd.

[11] OMX, Opi osakkeet, available at Nasdaq OMX Fabianinkatu 14 Helsinki

Customer Services

 APPENDIX 1 1(3)

Now is calculated how much traffic one trade generates in average in Genium.
6,17 * 222 bytes = 1370 bytes for messages other than trade
1 * 310 bytes = 310 bytes for trade message

1370 + 310 = 1680 bytes. One trade generates this much traffic
FAST compression reduces it down to 0,15 * 1680 = 252 bytes [8]
252 bytes * 105 trades = 26 460 bytes

26 460 * 8 = 211 680 kbps

WAN frames
To compare to Saxess, 105 trades per second is used for calculations.
105 * 6,17 = 648 pcs. of other than trade messages.
105 trade messages
648 + 105 = 753 messages altogether to execute 105 trades in Genium.

Max 4 FIX messages in the same TCP segment
753 / 4 = 189 TCP segments
Size of one WAN frame 66 bytes
66 * 189 = 12 408 bytes [8]

Genium bandwidth after compression and WAN frames
26 460 + 12 408 = 38 868 bytes / sec.
38 686 * 8 = 310 944 bps [8]

105 trades in Genium 311 kbps per member server

--

Now is calculated how much traffic one trade generates in average in Genium.
6,17 * 222 bytes = 1370 bytes for messages other than trade
1 * 310 bytes = 310 bytes for trade message

1370 + 310 = 1680 bytes. One trade generates this much traffic
FAST compression reduces it down to 0,15 * 1680 = 252 bytes [8]
252 bytes * 158 trades = 39 816 bytes

39 816 * 8 = 318 528 kbps

WAN frames
To compare to Saxess, 158 trades per second is used for calculations.
158 * 6,17 = 975 pcs. of other than trade messages.
158 trade messages
975 + 158 = 1133 messages altogether to execute 158 trades in Genium.

Max 4 FIX messages in the same TCP segment
1133 / 4 = 284 TCP segments
Size of one WAN frame 66 bytes
66 * 284 = bytes [8]

Genium bandwidth after compression and WAN frames

 APPENDIX 1 2(3)

39 816 + 18 744 = 58 560 bytes / sec.
58 560 * 8 = 468 480 bps [8]

158 trades in Genium 469 kbps per member server

--

Now is calculated how much traffic one trade generates in average in Genium.
6,17 * 222 bytes = 1370 bytes for messages other than trade
1 * 310 bytes = 310 bytes for trade message

1370 + 310 = 1680 bytes. One trade generates this much traffic
FAST compression reduces it down to 0,15 * 1680 = 252 bytes [8]
252 bytes * 210 trades = 52 920 bytes

52 920 * 8 = 423 360 kbps

WAN frames
To compare to Saxess, 210 trades per second is used for calculations.
210 * 6,17 = 1296 pcs. of other than trade messages.
210 trade messages
1296 + 210 = 1506 messages altogether to execute 210 trades in Genium.

Max 4 FIX messages in the same TCP segment
1506 / 4 = 377 TCP segments
Size of one WAN frame 66 bytes
66 * 377 = 24 882 bytes [8]

Genium bandwidth after compression and WAN frames
52 920 + 24 882 = 77 802 bytes / sec.
77 802 * 8 = 622 416 bps [8]

210 trades in Genium 623 kbps per member server

--

Now is calculated how much traffic one trade generates in average in Genium.
6,17 * 222 bytes = 1370 bytes for messages other than trade
1 * 310 bytes = 310 bytes for trade message

1370 + 310 = 1680 bytes. One trade generates this much traffic
FAST compression reduces it down to 0,15 * 1680 = 252 bytes [8]
252 bytes * 262 trades = 66 024 bytes

66 024 * 8 = 528 192 kbps

WAN frames
To compare to Saxess, 262 trades per second is used for calculations.
262 * 6,17 = 1617 pcs. of other than trade messages.
262 trade messages
1617 + 262 = 1879 messages altogether to execute 262 trades in Genium.

Max 4 FIX messages in the same TCP segment
1879 / 4 = 470 TCP segments
Size of one WAN frame 66 bytes

 APPENDIX 1 3(3)

66 * 470 = 31 020 bytes [8]

Genium bandwidth after compression and WAN frames
66 024 + 31 020 = 97 044 bytes / sec.
97 044 * 8 = 776 352 bps [8]

262 trades in Genium 777 kbps per member server

