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1 Introduction 

The digital landscape is changing every day. New platforms, new devices, new content, 

new products, and new ways of monetizing their intersections mean that the industry 

must track new metrics, across new ecosystems by using new methods.  

In order to compete in today's converged and accelerating environment, comprehensive 

measurement across devices, platforms, and ecosystems is the only way to understand 

the evolving marketplace, assess performance, identify market opportunities, and make 

informed decisions. Passive measurement of consumer behaviors, emerging trends, and 

daily usage patterns, is the key in producing quantified data and information for 

decision making, also it provides superior means to do consumer research on these 

topics, versus traditional survey or interview based research. 

Verto Analytics is operating in a multi-screen digital media measurement service and 

providing business critical information for strategic (market insights, competitive 

analysis, consumer behavioural and purchasing trends) and tactical (media buy and 

sales, financial investments and product development) decision making to a global 

clients, being based in New York (USA) and Helsinki (Finland). 

Verto reports on consumer behavior with digital content, performance of properties and 

publishers, platform and device diffusion, and digital device usage, across a multi-

screen digital world, including smartphones, tablets, desktop and laptop computers, 

smart TVs etc. 

Verto Monitor is described as a good example of a single page web application in this 

thesis. The main objective of company is a combination of background technical 

knowledge and data processing both in theory and in practice. First three chapters 

explain about how to work with popular open-source framework AngularJS; the 

following chapters presents how to apply to an example enterprise product. The first 

successful steps are also presented in the conclusion part of the thesis. 
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2 Single Page Web Application 

2.1 Structure of SPA 

A Single Page Application (SPA) is a web application fitted on a single page and does 

not reload the page during use to provide better user experience and performance.  

When the web application moves to the browsers, the requirements for performance in 

server are quite important. The following figure illustrates how SPAs solve a 

performance problem with the business logic and HTML templates migrate from the 

server and the client. 

!  

Figure 1: Responsibilities of database, server and client between traditional application 

and single page application. [1, 8] 

As can see from figure, with SPA all business logics from database and server 

(traditional) are now moved to client side (SPA) in order to improve performance of the 

database and server. In comparison to a traditional method, each time a request goes to 

server, it receives the request, renders the response and sends it back to requester. This 

cycle would repeat for every request and take a lot of time for loading. [1, 9]  
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2.2 Model View Controller 

The Model-View-Controller (MVC) is a popular design pattern used in developing web 

applications. In simple terms, it separates the user interface of the application from the 

underlying application business logic. The three parts of the pattern are illustrated as 

follows: 

!  

Figure 2: The Model-View-Controller architecture [2] 

The Model manages the state of application. It can respond to data request or even 

notify the observer in application events when information changes. The model is just 

object data or some structure of objects and it enforces all the business rules to apply to 

that object data. 

The View provides a use interface of application and know how to respond to user 

actions, normally based on data in the model. 

Controllers act as an intermediary of the application. They receive events from the 

user’s interactions (normally user input), make calls to the model and display an 

appropriate view to the user. 
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3 SPA with AngularJS 

3.1 Introduction of AngularJS 

AngularJS is a well-known open source JavaScript MV* (Model – View – Controller or 

Model - View - ViewModel) framework developed and maintained by Google. It is the 

next generation framework designed to give JavaScript developers a highly structured 

approach to developing cutting-edge web application. 

Below are some reasons for AngularJS’s considerable growth [3.] 

Extendable: AngularJS simplify a complex AngularJS app works by splitting. 

application into MVC component and easily enhance applications with customised 

module. 

Maintainable: AngularJS is supported by active open-source community 

Testable: AngularJS supports unit and end-to-end testing that beats the traditional way 

of testing web apps by creating individual test pages. 

Standardized: AngularJS helps to create standard web applications that use the latest 

features (such as HTML5 APIs) and popular tools and frameworks. 

3.2 Architecture 

AngularJS exists in the browser, which leads to a twist on the MVC pattern, as 

illustrated in the following figure 

!  

Figure 3: The flows of client-side MVC pattern [4. 48] 

As can be seen from above figure, the MVC client-side implementation gets data from 

server-side API, usually via a RESTful web service. The goal of the controller and the 

view is to process data in the model in order to perform DOM manipulation so as to 

create and manage HTML elements that the user can interact with. [4, 51] Those 
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interactions are brought back to the controller, closing the loop to form an interactive 

application. 

Although AngularJS web applications use the MVC pattern, the underlying components 

rely on a wider range of building blocks. There are the headline components including 

the model, the views and the controllers. However, there are lots of other important 

parts in an AngularJS app as well, comprising of modules, directives, filters, factories, 

and services. 

Those different types of AngularJS component are tightly integrated and illustrated in 

following summary table: 

Table 3. Different components in AngularJS application 

AngularJS component Description

angular.module method Method to create an AngularJS module

ng-app attribute Set the scope of a module

Module.controller method Method to define a controller

ng-controller attribute Apply a controller to a view

$scope service Pass data from a controller to a view

Module.directive method Method to define a directive

Module.filter method Method to define a filter

$filter service Use a filter programmatically

Module.service / Module.factory / 
Module.provider method

Method to define a service

Module.value Define a service from an existing object 
or value

Module.config and Module.run methods Register functions that are called when 
modules are loaded
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3.3 Basics of AngularJS 

3.3.1 Data Binding 

AngularJS takes a different approach for combining data from models and deliver to 

view. Instead of using traditional way to merge data into a template and then replace a 

DOM element, AngularJS creates a view by using live HTML templates. Each 

component of the views is interpolated dynamically. This feature is one of the most 

important features in AngularJS and can be seen clearly in figure 4. [5.] 

Figure 4: AngularJS two-way data binding model [6.] 

As seen from figure 4, because AngularJS supports bi-directional or two-way data 

binding, there are two approaches happening at the same time: when the view changes 

or modifies the value data, the model observes changes by using its dirty checkin and 

when the model changes the values or states, the view also update with the change. 

3.3.2 Module 

In AngularJS, a module is the first step to define an AngularJS application. The app’s 

module contains all application logic code. An AngularJS application can have one or 

many modules, each of them can manage specific functionality. 

In addition, module also gives a lot of advantages which are keeping our global 

namespace clear, making tests easier to write and keep them clean, making it easy to 



!12

share code between application and allowing our app to load different parts of code in 

any order [7.] 

AngularJS uses method angular.module() to declare a module. There are two parameters 

in this method. The first one is the name of the module and the second one is the list of 

dependencies. For example: angular.module(‘myApp’, [])    

Function angular.module returns an instance of a newly created module. By providing a 

value to the ng-app attribute to view,  AngularJS application is activated as follows: 

<body ng-app=”myApp”> 

3.3.3 Scope 

Scopes are the core element of Angular application. The application model refers to the 

scopes. In addition, the $scope object is used to express the business logic of the 

application, the methods in controllers, and the properties in views. [8.] 

Scopes serve as the middle layer between application controller and view. The view 

template connects to the scope before the application renders the view to the user. In 

addition, the application creates the DOM to notify Angular for changes in properties. 

Figure 5 is an example of using $scope as a glue between controller and view: 

 

Figure 5: How scopes work as middle layer [9.] 
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Scopes are the primary elements for the application state. Because of this live binding, 

$scope can update value immediately when the view has been changed. In addition, the 

view can be updated when the $scope changes. It is a so-called two-way data binding. 

In addition, scopes have some basic functions that are providing observers to watch for 

changes in model, creating the way to propagate model changes inside and outside 

applications to other components, being nested in order to split functionality and model 

properties easily and providing an execution environment in which expressions are 

evaluated. 

3.3.4 Controllers 

In AngularJS, controllers exist to the view of an AngularJS application. The controller is 

a function that creates business logic functionality to the scope of the view. When 

creating a new controller on a page, AngularJS initializes a new $scope. This new 

$scope is the state of the scope on controller. Listing 1 is an example of using controller 

in application. [10.] 

Module 

!  

Controllers 

!  
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View 

!  

Listing 1. Example code of using controller in simple AngularJS application 

From the code of listing 1, when the button is pressed, both the button and the link are 

bound to an action on the containing $scope. Add or subtract functions that are defined 

on the “FirstController” scope or parent $scope will be called and then they return 

counter result. 

Controller Hierarchy (Scopes within Scopes) 

AngularJS application has a default $rootScope and many parent scopes when the 

context is rendered. By default, if AngularJS cannot find current properties on a local 

scope, it will go to upper level in the parent scope and look for the properties or 

methods there. 

In case AngularJS cannot find the properties in current scope, it will walk to that parent 

scope and upper levels until it reaches the $rootScope. If it does not find it on the 

$rootScope, it will stop updating the view. 

The following listing 2 creates a ParentController that contains the user object and a 

ChildController that wants a reference of that object. 



!15

!  

!  

Listing 2. An example of using controller hierarchy in AngularJS application. 

Because of the prototypal behavior, data can be referenced from the code on the 

ParentController in which contains $scope on the child scope. Once link “Say Hello” is 

clicked, $scope.person value in the ChildController is referenced as a person object 

defined in the ChildController’s $scope object. 

3.3.5 Services 

Services are functions or singleton objects instantiated when an application component 

depends on it by using the $injector and lazy-loaded when needed. Services also 

provide an interface to keep methods related to a specific function or task. [11.] 

As default, AngularJS comes with several built-in services. It is also useful to make 

customized services for any complex applications. In addition, AngularJS helps to 

create customized service in a easy way.  

The following illustration shows an example of how to register and define a service: 
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!  

Listing 3: How to define a simple service. 

To use a service, one only needs to embed a dependency for the component where using 

it. It can be a controller, a directive, a filter or another service. At run time, Angular will 

carry on instantiating it and resolving dependencies shown in the following listing.  

!  

Listing 4: How to inject service into controller. 

There are five different methods for creating services including: [12] 

factory(): the factory() method is a popular way to create and configure service. It takes 

two arguments: the name of service and function runs when Angular creates the service. 

service(): In order to register an instance of a service using a constructor function, using 

service() enables the app to register a constructor function for service object. It also 

takes two arguments: the name of service and constructor function that needs to be 

called to instantiate the instance. The service() function will instantiate the instance 

using the new keyword when creating the instance 

constant(): In order to register an existing value as a service that can inject into other 

parts of application as a service. The constant() function takes two arguments: the name 

of service and the value to register as the constant. 
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value(): If the return value of the $get method in service is a constant, defining a full 

service with more complex methods is unnecessary. The major difference between the 

value() method and the constant() method is that constant() method injects a constant 

into a config function where as values() cannot do the same. The value() method accepts 

two arguments: name of registered service and value as injectable instance. 

3.3.6 Directives 

Directives are Angular’s method on DOM elements which attach their own custom 

functionality or special behaviour to it. For instance, the following video tag is 

customized and works across all browsers: 

!  

Listing 5. An example of using directive in AngularJS application. 

As seen from listing 5, this custom element has custom open and closing tags, my-

better-video, and a custom attribute my-href. 

Built-in directives 

AngularJS comes with serveral built-in directives. Some directives override built-in 

HTML elements, such as the <form> and <a> tags. In addition, there are some basic ng 

attribute directives. For example ng-href, ng-src, ng-disabled, ng-checked, ng-readonly, 

ng-selected, ng-class, ng-style and more. 

Custom directives 

A custom directive is simply a function that runs on a particular DOM element to 

provide supplemental functionality. It is defined by using the .directive() method, one of 

the many methods available on application’s Angular module seen in listing 6. 
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!  

Listing 6. A simple definition of custom directive. 

As seen from listing 6, the directive() method takes two arguments: name (string) and a 

function returns an object that defines how the directive operates. In order to use in 

template, just put it as an attribute or element with snake-case name such as listing 7: 

!  

Listing 7. How to use that custom directive in practice. 

3.3.7 Events 

Events are information propagated across an application that generally contain 

information about what is happening inside of that application. [13.] 

Event Propagation 

Because scopes are in hierarchical structure, events can be transferred up or down the 

scope chain. There are two types of notification: for an entire event system using 

broadcast downwards and for a global module with passing an event upwards. 

Bubbling an event up with $emit 

$emit() function is used to dispatch an event to the scope chain from child scopes to 

parent scopes. $emit() is used to communicate the changes of state from within the 

application to the rest of the application as seen in listing 8: 

!  

Listing 8. An example of using emit to dispatch event. 
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In listing 8, when scope.$emit() event function call, the event travels up from the child 

scope to the parent scope. All the parent scopes of the current scope will listen to the 

event’s notification. $emit() method takes two arguments: name (string) and args (a list 

of arguments are passed into the event listeners played as objects). 

Sending an event down with $broadcast 

$broadcast() is used to pass an event downwards from parent scopes to child scopes. 

$broadcast() method takes two parameters: name (string) and a list of arguments played 

as objects passed into the event listeners. Listing 9 is a good example to illustrate this: 

!  

Listing 9. An example of using broadcast to send event. 

By using $broadcast() method, all child scopes that registers a listener will receive this 

message. Then, this event is notified to all directives, current scope and calls every 

listener all the way down. 

Events Listening 

$on() method is used to listen for an event and call a listener for the event used with a 

particular name. The event name is just the event type fired in Angular same as listing 

10: 

!  

Listing 10. An example of using on method to listen for event 
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3.4 Communicating with server 

3.4.1 Representational State Transfer (REST) API 

Representational State Transfer (REST) is the stateless architecture based on HTTP 

protocol to represent the model of how the modern Web should work. REST uses 

existing technology and protocols of web to access and manipulate resources using 

verbs (HTTP request methods). [14.] 

Table 1. How HTTP actions are relevant to database operation 

There is a set of verbs for RESTful approach such as GET, POST, PUT and DELETE to 

manipulate data in database. Those verbs correspond to traditional CRUD (Create, 

Read, Update, Delete) operations in a database or object-relational management (ORM) 

system. In addition, REST also has 5 categories of responses: general information, a 

successful request, redirect, error on the client side and error on the server side. The 

response depends on the HTTP request type, as indicated in following table: 

Table 2. REST responses’ common errors [15.] 

HTTP Verb Action to take on resource Database operation

POST Create Insert

GET Retrieve Select

PUT Update Update

DELETE Delete Delete

First Digit Meaning

1xx Information

2xx Success

3xx Redirection

4xx Client Error

5xx Server Error
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GET: GET request is used by web client in order to ask for a representation of a 

resource, identified by a URL. For example, the client asks for a list of metric branches, 

the server then returns it in application as JSON format as shown in the following 

picture: 

Figure 6: Example of success GET request and response from server 

POST: The web client send a POST to request for creating a new resource based on a 

given representation. The most common response codes to a POST request are 200 

(OK) or 201 (Created) and 202 (Accepted). The first two ones let the client know that a 

new resource was created and the latter means that the server intends to create a new 

resource based on the given representation, but has not actually created it yet. This is 

demonstrated in figure 7: 

Figure 7: Example of success POST request and response from server 

PUT: A PUT request is a request to modify resource data or information. If the server 

decides to accept a PUT request and then modified data in the server, it will change the 
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resource state to match what the client says in data representation, and often return 200 

(OK) or 204 (No Content) response code. 

Figure 8: Example of success PUT request and response from server. 

DELETE: When client wants a resource to go away, it sends a DELETE request. Server 

will destroy resource and never refer to it again. If a DELETE request succeeds, the 

possible status code are 204 (No content) or 200 (OK) or 202 (Accepted). 

Figure 9: Example of success DELETE request and response from server 

3.4.2 $http service 

The $http service is a more Angular service wrapping around the browser’s 

XMLHttpRequest object to communicate with remote servers. $http service function 

takes only a single argument: a configuration object used to create a HTTP request. The 

function returns a promise that has two helper methods: success and error. Listing 11 is 

a simple code to show how to use $http service: 
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Listing 11. An example of using $http service. 

Since $http method returns a promise object, then() method or success() and error() can 

be used to handle the callback when the response is ready. If the response status code 

has a number value which ranges from 200 and 299, the response is considered 

successful, and the success callback will be called. Otherwise, the error callback will be 

invoked. 

Listing 12: Two ways of handling the callback when the response is ready. 

 

4 Case Project with Verto Dashboard 

4.1 About Verto Analytics 

Verto Analytics (Verto is Latin, and means interpretation and change) is a global leader 

in providing Internet media measurement services around smart digital devices. Verto’s 

management team includes senior executives from the market research industry, and a 

strong track record in creating high quality media research services and products, which 

are based on the industry best practices. They acknowledge the ever increasing need to 

account for new shifts in consumer engagement with both traditional and new forms of 

digital media, thereby designing, building and maintaining measurement technologies. 
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Verto Analytics works with the clients and provides its online measurement services to a 

global clientele in technology, finance, media, and entertainment industries.  

Verto Pulse digital measurement services track the quickly evolving trends in digital 

usage and Internet media consumption, and the consumers’ use of multiple devices and 

potentially simultaneous and interrelated behaviors across devices. Services and content 

are increasingly delivered to these devices in a variety of ways, ranging from native 

apps to web sites, and widgets to multimedia streaming. Furthermore, measurement of 

the related revenues is vital, in addition to mere engagement and other media related 

metrics. The increasing demand for insights poses a need for a next-generation media 

measurement provider that cracks the online measurements of the next decade. 

Verto’s core team has been building and providing its services in digital media 

measurements over the past 12 years to a number of customers in Europe, Asia and the 

US, and is open for mutually beneficial projects and commercial relationships based on 

its core competencies. Verto Analytics is based in New York, USA, with research and 

development and operational centers in Europe.  

4.2 Digital Measurement Challenge 

Nowadays, mobile usage data is characterised by three significant and accelerating 

trends: 

Device Fragmentation: The environment used to be simple: radios, telephones, 

televisions – each device had limited functionality, and a short list of brands in an 

easily-defined category. Today's world is very different: devices support multiple 

functions, consumers own and use many devices, often for overlapping purposes. 

Understanding any one – or even any two or three – categories or brands is no longer 

enough for a complete picture.  

Function Convergence: In the past, devices were function-specific: One could watch 

video content on a television, listen to audio content on a radio, run software on a 
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desktop computer, and make phone calls with a telephone. Today, any one of these 

devices (and others) can perform any of these functions. Understanding how consumers 

use any one device type is no longer enough: Consumers' real experiences and content/

software-producers' audiences are shaped across multiple devices, device types, and 

networks.  

Audience Fragmentation: The digital revolution has seen an explosion in content, 

software, and services. This leads the audience to become fragmented in the 

marketplace. Understanding who these competitors are, and collecting data from large 

enough samples to report about their usage, are essential to understanding today's 

diverse ecosystem.  

4.3 Data Deliverables 

4.3.1 Conceptual overview 

The Verto’s Data Deliverables makes data available though two different forms 

Table 4. Two basic components of Verto Deliverables  

Component Explanation

Verto Monitor The Verto Monitor is a web-based tool that allows clients to 
visually and dynamically interact with the data collected 
through the Verto Smart Measurement Platform. Clients can 
analyze data across all measured devices, panelists, web 
sites, apps, categories, platforms, etc. The Verto Monitor 
makes available 100+ different metrics, each analyzable by 
target group, and over time. 

Data API The Data API is a RESTful API which accepts requests for 
particular analyses, extracts relevant data from the Session-
level DB, and calculates the metrics indicated in the original 
request. It represents a programmatic way to gain access to 
the 100+ metrics that the Verto Smart Measurement Platform 
can calculate. 
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4.3.2 Verto Monitor 

The Verto Monitor and Data API supports the calculation of 100+ metrics calculated 

based on data collected through the Smart Meters. These metrics can be calculated at 

hourly, daily, weekly, or monthly resolutions and filtered based on Time period, and/or; 

Day(s) of the week, and/or; Hour(s) of the day, and/or; Particular web sites, and/or; 

Particular apps, and/or; Particular demographic characteristics. 

The following list contains the metrics that are calculated / available to clients through 

either the Verto Monitor or Data API: 

Table 5. List of metrics used in Verto Monitor (Dashboard) 

Basic Metrics Engagement Metrics

+ Reach/Penetration (%)  
+ Users (#) 
+ Devices (#)  
+ Devices per User (#)  
+ Time Spent (hh:mm:ss) 
+ Time Spent per User 
(hh:mm:ss)  
+ Time Spent per Device 
(hh:mm:ss)

+ Sessions (#) 
+ Sessions per User (#) 
+ Sessions per Device (#) 
+ Avg Session Duration 

(hh:mm:ss) 
+ Avg Session Interval 

(hh:mm:ss) 
+ Multi-screen Sessions (#) 
+ Multi-screen Usage Rate 

(#) 
+ Multi-screen Sessions per 

user (#) 
+ Devices per Multi-screen 

Session (#)

+ Interactions (#) 
+ Interactions per User (#) 
+ Interactions per Device (#) 
+ Interactions per Session (#) 
+ Interactions per Minute of 

Use (#) 
+ Avg Interaction Duraction 

(hh:mm:ss) 
+ Bounces (#) 
+ Bounce Rate (#) 
+ Focus-Outs (#) 
+ Foucs-Outs per User (#) 
+ Foucs-Outs per Minute of 

Use (#)

Device/Telecom Metrics

+ Telephone Calls (#) 
+ Inbound Telephone Calls 

(#) 
+ Outbound Telephone Calls 

(#) 
+ Missed Telephone Calls (#) 
+ Avg Calls per User (#) 
+ Avg Inbound Calls per 

User (#) 
+ Avg Outbound Calls per 

User (#) 
+ Avg Missed Calls per User 

(#) 
…..

+ Avg Inbound Call Time per 
Device (hh:mm:ss) 

+ Avg Outbound Call Time 
per Device (hh:mm:ss) 

+ Avg Call Duration 
(hh:mm:ss) 

+ Avg Inbound Call Duration 
(hh:mm:ss) 

+ Avg Outbound Call 
Duration (hh:mm:ss) 

+ Total Data Transfer (kB) 
+ Inbound Data Transfer 

(kB) 
+ Outbound Data Transfer 

(kB)

+ Wifi Connectivity Uptime 
(%) 

+ Wifi Connectivity Uptime 
per User (hh:mm:ss) 

+ Wifi Connectivity Uptime 
per User (%) 

+ Wifi Connectivity Uptime 
per Device (hh:mm:ss) 

+ Wifi Connectivity Uptime 
per Device (%) 

+ Total Time Roaring 
(hh:mm:ss)
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4.3.3 Data API 

The Data API accepts either a singleton or a batch of JSON objects, each of which 

represents a data request being asked. One can think of a data request as the "question" 

being asked, and the resulting data response as the "answer" being given. Data requests 

can specifically request any of the metrics provided in the Verto Monitor.  

Data Request: While a detailed set of documentation will be provided, the following 

represents a complete data request in JSON format 

Data Response: The following snippet of code represents a complete represents a 

complete data response in JSON format 

 

Listing 13. An example of data response used in Verto Dashboard 
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5 Apply SPA to Verto Dashboard 

5.1 Key Requirements for Design and Development 

The Verto Dashboard will be a single page web-based application using HTML5, CSS3 

and Javascript. Aaccessing to the Verto Dashboard’s functionality will be strictly limited 

to authenticated users. User authentication will occur based on email address and 

password. 

Dashboard is also be designed with a responsive layout using CSS3 media queries to be 

functional across devices with varying screen resolutions. Despite its responsive layout, 

the Verto Dashboard should be optimised for a screen resolution of 1280x800 with 

graceful transformation down to 1024x768 and up to 1920x1080. 

In order to address 96% of the potential user base, the Verto Dashboard should support 

Microsoft Internet Explorer 8+, Google Chrome 25+, Firefox 5+, Safari 5.1+, Safari for 

iPad, Android 4+, Opera 12.1+. In addition, data displayed in charts and data tables 

should be refreshed or populated using AJAX so as to not refresh the entire page 

5.2 Dashboard Architecture 

The Verto Dashboard must simultaneously provide users with a passive 

(“consumption”) model for interacting with the data and a active (“exploration”) model 

for interacting with the data. 

As seen from figure 10, Verto Monitor creates a significant development challenge, in 

that user experience (the view) and system logic (controllers) for each of these two 

models are very different by nature. Rather than support two complex and contradictory 

models simultaneously, it makes more sense to create an abstraction layer which both 

models can leverage:  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Figure 10: Basic Verto Monitor architecture 

As the diagram above suggests, both the data consumption and data exploration process 

with create Data Requests and consume (display) Data Responses. From the controllers’ 

perspective, Data Request will be identically structured. The only difference will exist 

in the view. 

Data Requests produced by the “data consumption” approach will be embedded into the 

view as widgets. The user will be able to either turn their display on or turn their display 

off, but the configuration of these Data Request will not be possible. 

Data Request produced by the “data exploration” approach will be dynamically created 

and configurable by the user. In other words, they may apply certain default values, but 

they are dynamically created and interpreted on the fly. 
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5.3 Basic Layout and Primary Navigation 

5.3.1 Basic Layout 

Once the user has been logged in, they should be presented in the standard layout of the 

Verto Dashboard. In general, this layout should have two main content areas: 

Figure 11: Basic 2-column layout of dashboard 

The Primary Navigation area allows user to navigate throughout the Verto Dashboard. 

In particular, it should enable user to 

• Select the Dashboard 

• Browse available Report Templates 

• Select the Report Template user wishes to work with 

• Navigate to Account Management functionality 

The Primary Content area displays functional content to the user, arranged into a two-

column wide layout with visual elements either 1-column wide or 2-columns wide. The 

content displayed may be one of three types: 



!31

Dashboard (default upon login): If the Dashboard has been selected, then the user 

should be shown those Data Responses which have been pinned to his dashboard. These 

Data Responses cannot be configured by the user, but they should be contained in 

“widget-like” components that can be repositioned (clicked and dragged), minimised 

and “unpinned” (deleted from the Dashboard). Each widget also has “Detail” link which 

brings the user to a user-configurable version of the originating Report Template 

Report Template: If a Report Template has either a) been selected in the Primary 

Navigation area, or b) clicked through from the Dashboard, then the content displayed 

in the Primary Content area should be that report. Each such Report Template should 

present the user with user-configurable Configuration Components and the resulting 

Display Components 

Account Management: If one of the Account Management views has been selected in 

the Primary Navigation area, the content displayed should be that Account Management 

screen. 

5.3.2 Primary Navigation 

The primary Navigation area can be considered the “table of contents” to the Verto 

Dashboard. It should provide the user with a collapsible tree with textual links to access 

different Report Templates. 

Figure 12: Primary Navigation of Dashboard 
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The table below provides a detailed list of the nodes that should be present in the 

Primary Navigation area, along with their relevant context-sensitive documentation and 

the report/functionality which they link to: 

Table 6. Detailed list of nodes used in primary navigation 

5.4 Configuration Components 

5.4.1 Time Period 

The Time Period component is used to get the range of time for which data is reported 

to the user. It features two configurable positions: Start Date and End Date 

Both of these positions should be expressed as dates formatted as MM dd, YYYY. 

Node Label Contextual Help

Dashboard Quick view the most recent data about marketplace

Market Explore how the industry is performing in the marketplace

+ Ranking Sort competitors according to their performance

+ Trends Explore trends in usage/behavior across competitors

+ Shares Explore competitors market share

Competitor Explore an individual competitor’s performance

+ Overview Wide-ranging analysis of an individual competitor’s 
performance

+ Audience Breakdown of a competitor’s audience

+ Peer Comparison Compare one competitor against a peer-group

Clickstream

+ Usage Context Explore what users do simultaneously to using this 
competitor

+ Usage Sequence Explore how users interact with a competitor

My Account Change user password and other account settings

+ Account Settings Change user password and other preferences

+ Manage Users Manage the users authorized to use account
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In order to converse screen real estate, the Time Period is generally displayed as textual 

information for the user. However, when the user clicks on either the Start Date or the 

End Date, a small calendar control should appear below the clicked position. This 

calendar control should allow the user to select the value for the position. 

Figure 13: Layout of Time Period selection 

Note that above the time period is a series of several “quick selection” links. When 

clicked, these links automatically adjust the Start Date and End Date positions based on 

the current date. These “quick selection” position should be as follows: Last Year, Last 

Month, This Month, Last Week, This Week and Yesterday. 

5.4.2 Day Filter 

The Day Filter component is used to select which days of the week should be included 

in the Report. This component should be a “toggle” control, meaning that when user 

clicks on a give day of the week that day should either be togged “ON” or “OFF” 

according to its state: 

Figure 14: Layout of Day Filter 
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5.4.3 Daypart Filter 

The Daypart Filter component is used to select which dayparts (range of hours) should 

be included in the Report. This component should combine both a “toggle” control 

(when the user clicks on a give hour, it should either be toggled “ON” or “OFF” 

according to its state) 

Figure 15: Daypart Filter component 

5.4.4 Resolution 

The Resolution component is used to determine at what level of granularity (over time) 

data should be displayed. While Resolution is a Configuration Component, it should 

more visually represent a navigation element, a “tab” displayed above the Display 

Components. 

Figure 16: Resolution Component 
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The Resolution component can receive any one of the following values: Hours, Days, 

Weeks, Months, Quarters and Annuals. 

5.4.5 Target Group Filter 

The Target Group Filter component is used to select what demographic or behavioural 

criteria should be applied to the Report. When the user clicks on the target group name, 

a box containing a list of the user’s defined target groups should be opened. 

Figure 17: Target Group Filter 

This Target Group Filter box contains “Create New Group” link which when clicked 

opens a modal dialog box containing the Edit Target Group view and “List of Target 

Groups” which are a list of the user’s defined target groups, starting with the default 

“United States Population 18+” (no target group filter). With the exception of the first 

(default) target group, each group in this list have “Edit” link in which clicked opens a 

dialog box containing Edit Target Group view and allowing the user to edit the selected 

target group. 

5.4.6 Subject Selector 

The Subject Selector component is used to indicate which entities the user wishes to 

include in their analysis. The Subject Selector is a relatively complicated component, in 

that it receives its values from the Meta-data Platform, should be organised in a tree-like 

hierarchy and organized into several different hierarchies. 
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Figure 18: Subject Selector 

 

Note that the Subject Selector diagrammed above features some distinct elements Quick 

Search and Subject Tree. The former is a search box which when the user types a value 

into it, filters the Subject Tree to display those subjects which match the user’s search 

string. The latter is the hierarchical tree list of subjects. The structure of the subject tree 

is determined based on the organization schema selected by the user and the contents 

and structure are themselves defined in the Meta-data Platform. 

5.4.7 Metrics 

The Metrics component is actually composed of other components which are closely 

related and displayed alongside of each other. The contents of each of these components 

are highly dependent on the Report Template currently active and the metric(s) selected 

in the Metric Selector. 

In general, the Metrics component (including all of its sub-components) can be 

visualized as follows: 

 

Figure 19: Metrics Component 
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The sub-components which may be included in the Metrics component are: 

Metric Selector: This is the component used to actually select which metric(s) the user 

wishes to include in their Data Response. 

Metric Parameters: This component is used to configure specialised parameters 

(particular to the metrics selected in the Metric Selector) to further narrow the data 

included in the Data Response. 

Breakdown Criteria: This component is used to select the criteria by which the data 

should be broken out or organised in the Data Response. For example “Gender”, 

“Geography”, “Device Type”. 

Benchmarks: This component is used to toggle whether a category benchmark for the 

metric(s) selected in the Metric Selector in returned in the Data Response. 

5.5 Display Components 

5.5.1 Data Chart 

The Data Chart component is used to visually display a chart of the Data Response back 

to the user. The logic underlying each view should be able to take the data received in 

the Data Response and appropriately parse it to provide relevant instruction to the Data 

Chart component. 

The basic functionality requirements of the Data Chart component should be as follows: 

• Support Stacked Column Charts, Single-Column Charts, Line Charts, and Pie 

Charts 

• Support up to 20 individual Data Series on a single chart 

• Display dynamic ToolTips for individual data points communicating: metric 

name, series name, y-axis value and x-axis point 

• Support the dynamic display of a legend alongside the chart 

• Support export of the chart as the image (PNG, JPG, BMP) 
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HighchartsJS is used as as main approach for basic 2D charts. It offers very appealing 

and professional looking charts in the markets. Although HighchartsJS is built with the 

Javascript framework library, it is implemented in each a way that it does not totally on 

on particular framework. HighchartsJS is packaged with adapters, to make its interfaces 

to framework pluggable. 

In general, this approach also has different advantages and disadvantages: 

Table 7. Advantages and disadvantages of using HighchartsJS 

5.5.2 Data Table 

The Data Table component is really only a logical component of the Verto Monitor. It 

relies on parsing the contents of the Data Response and rendering a tabular form of the 

resulting data. The Data Table component must adopt certain basic styling rules that will 

be applied throughout the design. 

 

Figure 20: Basic Data Table 

Advantages Disadvantages

+ Ability to fully customize the look and 
feel of data visualization tools 
+ Because library is provided as JS 
source code, it can be customised as 
necessary 
+ Because query logic is separate, query 
performance can be optimised 
independently of the rendering tool

- Implementation requires actual 
development work, rather than 
configuration
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5.6 Report 

5.6.1 Ranking Report 

Overview 

The purpose of the Ranking Report is to provide the user with a sorted list of Subjects, 

sorted according to the metric that the user selected. 

Configuration Components 

The Ranking Report should have the following Configuration Components: 

Table 8. Ranking report’s default configuration component 

Display Components 

The Ranking Report should only feature a Data Table as its display component. This 

Data Table should be sortable in ascending / descending order by any of its columns. 

Figure 21: Ranking Data Table with up and down arrow 

Configuration Component Default Value

Time Period Last month

Day Filter All Days

Daypart Filter All Dayparts

Target Group Filter US Population 18+

Subject Selector

Metric Selector Users (#)

Metric Parameter

Benchmarks TRUE

Add Comparison
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Layout 

Figure 22: Basic layout of ranking report 

Ranking report is a special report without any data chart, but only data table. It also 

includes some basic components for configurations. 

5.6.2 Share Report 

Overview 

The purpose of the Share Report is to show the performance of various Subjects in 

comparison to their competitors 

Configuration Components 

The Share Report should have the following Configuration Components: 

Configuration Component Default Value

Time Period Last month

Day Filter All Days

Daypart Filter All Dayparts
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Table 9. Share report’s default configuration component 

Display Components 

The Share Report should display two Data Charts and Data Tables as its display 

components. 

The Data Chart to display will depend on the Resolution and Time Period selected in 

the Configuration Components. In addition, two Data Tables should display be 

displayed, each listing Subjects in rows and time along columns. 

Two Data Tables should display each listing Subjects in rows and time along columns. 

It should resemble the following: 

Figure 23: An example of two table in share report 

Target Group Filter US Population 18+

Subject Selector

Metric Selector Users (#)

Breakdown Criteria None

Metric Parameter

Benchmarks Unchecked

Add Comparison

Resolution Weekly
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Layout 

Figure 24: Basic layout of share report 

 

Layout in Share Report comprises of some basic components and two data charts and 

two tables. Stacked column and column chart are used mainly in Usage Trend Report. 

5.6.3 Usage Trend Report 

Overview 

The Usage Trend Report is used to show nominal usage statistics over time for selected 

Subjects and populations 

Configuration Components 

Configuration Component Default Value

Time Period Last month

Day Filter All Days

Daypart Filter All Dayparts
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Table 10. Usage Trend report’s default configuration component 

Display Components 

The Usage Trend Report should display the resulting data in both a single Data Chart 

and a single Data Table. Data Chart should either be displayed as column chart, a 

stacked column chart, or a line chart. The decision between these chart types should be 

made based on following logic in table 11: 

Table 11. Conditions to display appropriate Data Chart 

Target Group Filter US Population 18+

Subject Selector

Metric Selector Users (#)

Metric Parameter

Benchmarks TRUE

Add Comparison

Resolution Monthly

Condition Display

The Resolution >= Time Period and 
Breakdown Criteria == None

Column Chart with Subjects on X-Axis

The Resolution >= Time Period and 
Breakdown Criteria <> None

Stacked Column Chart with Subjects on 
X-Axis and Breakdown Criteria as 
grouping

The Resolution < Time Period and 
Breakdown Criteria <> None

Stacked Column Chart with Subjects on 
X-Axis and Subjects as grouping

The Resolution < Time Period And 
Breakdown Criteria == None And 
Number of Subjects Selected == 1

Column Chart with Time on X-Axis

The Resolution < Time Period And 
Breakdown Criteria == None And 
Number of Subjects Selected > 1

Line Chart with Time on X-Axis with 
Subject as grouping

In each case, if Benchmarks are enabled, the Benchmark data series should be 

visualised as a line chart.
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Data Table 

The Data Table should display the Subjects in rows with a breakdown according to the 

Breakdown Criteria (if specified), with the individual data points in columns grouped 

according to Date/Time 

If Benchmarks are enabled, then the first and last rows of the Data Table should display 

a subtotal row as the benchmark: 

Figure 25: An example of data table in Usage Trend report 

Layout 

Layout in Usage Trend Report has some basic components and only one data chart and 

one table. Column chart is used mainly in Usage Trend Report.  

Figure 26: Basic layout of Usage Trend Report 
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6 Conclusion 

The web is now far different from some years ago since single-page web application has 

become a new trend for enterprise applications. As more and more people use web 

applications, a need for an interactive experience and realtime, experience is needed 

from a technical perspective,  a single-page web application has emerged and to meet 

those requirements. Digital media measurement services are part of this trend. Verto 

Dashboard is the main product of Verto Analytics and it offers cross platform digital 

media measurement and audience usage research. It received secure funding $5.4M on 

April 2014 [16] and $2.5M on September 2014 [17.] 

Dashboard project was started on June 2013 and it continued in development stage. 

Receiving two secure fundings after one year is quite success. The ultimate goal of this 

project is providing internet media measurement services around smart digital devices. 

Verto Monitor is the first product to publish a digital media measurement service that is 

designed, and built, to be multi-screen by nature, reporting on the significant subjects of 

both the platform (devices, carries, operating systems) and media domains (apps, sites, 

publishers, properties), on both the distribution and engagement layer, through one 

integrated methodology and service. 

The final version of Verto Monitor can establish a strong track record in the digital 

measurement field and help customers to do tactical and strategic decisions, providing 

insights though hard measurement of data visualizations in the multi-screen digital 

industry comprising of audience acquisition, media sales and audience research, product 

development and consumer insights, competitive insights, market trend analyses, app 

store analytics, conversion modeling and Investment decisions. 

All background knowledge and experience will play a vital role in the future and 

challenges of the project.  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Appendix 1: Login Page 

Appendix 2: Dashboard 
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Appendix 3: Ranking Report 

Appendix 4: Usage Trend Report 
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