
 

Hung Ho Ngoc

Single Page Web Application with Restful API
and AngularJS
Best Practices with Verto Monitor

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme in Media Engineering

Bachelor’s Thesis

1 November 2014

Author(s)
Title

Number of Pages
Date

Hung Ho Ngoc
Single page web appplication with Restful API and
AngularJS: best practices with Verto Monitor
48 pages + 5 appendices
1 November 2014

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option JAVA and .NET Application Development

Instructor(s) Tero Parviainen, Project Manager
Petri Vesikivi, Principal Lecturer

Nowadays, research services cover only patches of the fast growing digital market,
and are, at many times, still heavily based on survey-based research or temporal
measurement activities that have major shortcomings in all things digital. It is
increasingly important to access hard data that provides analytics of the state of
today’s digital ecosystem across hardware and software.

Project Verto Monitor is targeted towards customers or companies which want to
measure how many smart devices there are in the market place, what is being
downloaded on those devices, how much money is spent in the ecosystem by different
parties, and finally, how the devices, services and content are being used by the
customers.

Recognizing that a vital aspect of measuring Internet devices and usage is to provide
customers or companies a comprehensive measurement service that captures all
devices usage throughout the day, this project results a measurement framework to
achieve main objectives and allows: tracking of consumer engagement with different
smart devices, measuring a long tail of properties and services and tracking both sales
and the number of smart devices being used.

Receiving two secure fundings after one year is quite success. The ultimate goal of
this project is providing internet media measurement services around smart digital
devices. The final version of Verto Monitor can establish a strong track record in the
digital measurement field and help customers to do tactical and strategic decisions,
providing insights though hard measurement of data visualizations in the multi-screen
digital industry.

Keywords SPA, AngularJS, Javascript, web development, web

application, HighchartJS

Contents

 
1 Introduction 6  
2 Single Page Web Application 7
 2.1 Structure of SPA 7
 2.2 Model View Controller 8
3 SPA with AngularJS 9
 3.1 Introduction of AngularJS 9
 3.2 Architecture 9
 3.3 Basics of AngularJS 11
 3.3.1 Data Binding 11
 3.3.2 Module 11
 3.3.3 Scope 12
 3.3.4 Controllers 13
 3.3.5 Services 15
 3.3.6 Directives 17
 3.3.7 Events 18
 3.4 Communicating with server 20
 3.4.1 REST API 20
 3.4.2 $http Service 22
4 Case Project Verto Dashboard 23
 4.1 About Verto Analytics 23
 4.2 Digital Measurement Challenge 24
 4.3 Data Deliverables 25
 4.3.1 Conceptual overview 25
 4.3.2 Verto Monitor 26
 4.3.3 Data API 27
5 Apply SPA to Verto Dashboard 28
 5.1 Key Design and Development 28
 5.2 Dashboard Architecture 28
 5.3 Basic Layout and Primary Navigation 30
 5.3.1 Basic Layout 30
 5.3.2 Primary Navigation 31
 5.4 Configuration Component 32
 5.4.1 Time Period 32
 5.4.2 Day Filter 33
 5.4.3 Daypart Filter 34
 5.4.4 Resolution 34
 5.4.5 Target Group Filter 35
 5.4.6 Subject Selector 35
 5.4.7 Metrics 36
 5.5 Display Component 37
 5.5.1 Data Chart 37
 5.5.2 Data Table 38

 5.6 Report 39
 5.6.1 Ranking Report 39
 5.6.2 Share Report 40
 5.6.3 Usage Trend Report 42
6 Conclusion 45
References 46
Appendix 48

Abbreviations and Terms

SPA Single Page Application

MVC Model-View-Controller

REST Representational State Transfer

CRUD Create - Read - Update - Delete

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

JS Javascript Language

JSON Javascript Object Notation

API Application Programming Interface

DOM Domain Object Model

R&D Research and Development

PNG Portable Network Graphics

JPG Photographic Experts Group

BMP Bitmap Image  

!6

1 Introduction

The digital landscape is changing every day. New platforms, new devices, new content,

new products, and new ways of monetizing their intersections mean that the industry

must track new metrics, across new ecosystems by using new methods.

In order to compete in today's converged and accelerating environment, comprehensive

measurement across devices, platforms, and ecosystems is the only way to understand

the evolving marketplace, assess performance, identify market opportunities, and make

informed decisions. Passive measurement of consumer behaviors, emerging trends, and

daily usage patterns, is the key in producing quantified data and information for

decision making, also it provides superior means to do consumer research on these

topics, versus traditional survey or interview based research.

Verto Analytics is operating in a multi-screen digital media measurement service and

providing business critical information for strategic (market insights, competitive

analysis, consumer behavioural and purchasing trends) and tactical (media buy and

sales, financial investments and product development) decision making to a global

clients, being based in New York (USA) and Helsinki (Finland).

Verto reports on consumer behavior with digital content, performance of properties and

publishers, platform and device diffusion, and digital device usage, across a multi-

screen digital world, including smartphones, tablets, desktop and laptop computers,

smart TVs etc.

Verto Monitor is described as a good example of a single page web application in this

thesis. The main objective of company is a combination of background technical

knowledge and data processing both in theory and in practice. First three chapters

explain about how to work with popular open-source framework AngularJS; the

following chapters presents how to apply to an example enterprise product. The first

successful steps are also presented in the conclusion part of the thesis.

!7

2 Single Page Web Application

2.1 Structure of SPA

A Single Page Application (SPA) is a web application fitted on a single page and does

not reload the page during use to provide better user experience and performance.  

When the web application moves to the browsers, the requirements for performance in

server are quite important. The following figure illustrates how SPAs solve a

performance problem with the business logic and HTML templates migrate from the

server and the client.

!

Figure 1: Responsibilities of database, server and client between traditional application

and single page application. [1, 8]

As can see from figure, with SPA all business logics from database and server

(traditional) are now moved to client side (SPA) in order to improve performance of the

database and server. In comparison to a traditional method, each time a request goes to

server, it receives the request, renders the response and sends it back to requester. This

cycle would repeat for every request and take a lot of time for loading. [1, 9]

!8

2.2 Model View Controller

The Model-View-Controller (MVC) is a popular design pattern used in developing web

applications. In simple terms, it separates the user interface of the application from the

underlying application business logic. The three parts of the pattern are illustrated as

follows:

!

Figure 2: The Model-View-Controller architecture [2]

The Model manages the state of application. It can respond to data request or even

notify the observer in application events when information changes. The model is just

object data or some structure of objects and it enforces all the business rules to apply to

that object data.

The View provides a use interface of application and know how to respond to user

actions, normally based on data in the model.

Controllers act as an intermediary of the application. They receive events from the

user’s interactions (normally user input), make calls to the model and display an

appropriate view to the user.

!9

3 SPA with AngularJS

3.1 Introduction of AngularJS

AngularJS is a well-known open source JavaScript MV* (Model – View – Controller or

Model - View - ViewModel) framework developed and maintained by Google. It is the

next generation framework designed to give JavaScript developers a highly structured

approach to developing cutting-edge web application.

Below are some reasons for AngularJS’s considerable growth [3.]

Extendable: AngularJS simplify a complex AngularJS app works by splitting.

application into MVC component and easily enhance applications with customised

module.

Maintainable: AngularJS is supported by active open-source community

Testable: AngularJS supports unit and end-to-end testing that beats the traditional way

of testing web apps by creating individual test pages.

Standardized: AngularJS helps to create standard web applications that use the latest

features (such as HTML5 APIs) and popular tools and frameworks.

3.2 Architecture

AngularJS exists in the browser, which leads to a twist on the MVC pattern, as

illustrated in the following figure

!

Figure 3: The flows of client-side MVC pattern [4. 48]

As can be seen from above figure, the MVC client-side implementation gets data from

server-side API, usually via a RESTful web service. The goal of the controller and the

view is to process data in the model in order to perform DOM manipulation so as to

create and manage HTML elements that the user can interact with. [4, 51] Those

!10

interactions are brought back to the controller, closing the loop to form an interactive

application.

Although AngularJS web applications use the MVC pattern, the underlying components

rely on a wider range of building blocks. There are the headline components including

the model, the views and the controllers. However, there are lots of other important

parts in an AngularJS app as well, comprising of modules, directives, filters, factories,

and services.

Those different types of AngularJS component are tightly integrated and illustrated in

following summary table:

Table 3. Different components in AngularJS application

AngularJS component Description

angular.module method Method to create an AngularJS module

ng-app attribute Set the scope of a module

Module.controller method Method to define a controller

ng-controller attribute Apply a controller to a view

$scope service Pass data from a controller to a view

Module.directive method Method to define a directive

Module.filter method Method to define a filter

$filter service Use a filter programmatically

Module.service / Module.factory /
Module.provider method

Method to define a service

Module.value Define a service from an existing object
or value

Module.config and Module.run methods Register functions that are called when
modules are loaded

!11

3.3 Basics of AngularJS

3.3.1 Data Binding

AngularJS takes a different approach for combining data from models and deliver to

view. Instead of using traditional way to merge data into a template and then replace a

DOM element, AngularJS creates a view by using live HTML templates. Each

component of the views is interpolated dynamically. This feature is one of the most

important features in AngularJS and can be seen clearly in figure 4. [5.]

Figure 4: AngularJS two-way data binding model [6.]

As seen from figure 4, because AngularJS supports bi-directional or two-way data

binding, there are two approaches happening at the same time: when the view changes

or modifies the value data, the model observes changes by using its dirty checkin and

when the model changes the values or states, the view also update with the change.

3.3.2 Module

In AngularJS, a module is the first step to define an AngularJS application. The app’s

module contains all application logic code. An AngularJS application can have one or

many modules, each of them can manage specific functionality.

In addition, module also gives a lot of advantages which are keeping our global

namespace clear, making tests easier to write and keep them clean, making it easy to

!12

share code between application and allowing our app to load different parts of code in

any order [7.]

AngularJS uses method angular.module() to declare a module. There are two parameters

in this method. The first one is the name of the module and the second one is the list of

dependencies. For example: angular.module(‘myApp’, [])

Function angular.module returns an instance of a newly created module. By providing a

value to the ng-app attribute to view, AngularJS application is activated as follows:

<body ng-app=”myApp”>

3.3.3 Scope

Scopes are the core element of Angular application. The application model refers to the

scopes. In addition, the $scope object is used to express the business logic of the

application, the methods in controllers, and the properties in views. [8.]

Scopes serve as the middle layer between application controller and view. The view

template connects to the scope before the application renders the view to the user. In

addition, the application creates the DOM to notify Angular for changes in properties.

Figure 5 is an example of using $scope as a glue between controller and view:

Figure 5: How scopes work as middle layer [9.]

!13

Scopes are the primary elements for the application state. Because of this live binding,

$scope can update value immediately when the view has been changed. In addition, the

view can be updated when the $scope changes. It is a so-called two-way data binding.

In addition, scopes have some basic functions that are providing observers to watch for

changes in model, creating the way to propagate model changes inside and outside

applications to other components, being nested in order to split functionality and model

properties easily and providing an execution environment in which expressions are

evaluated.

3.3.4 Controllers

In AngularJS, controllers exist to the view of an AngularJS application. The controller is

a function that creates business logic functionality to the scope of the view. When

creating a new controller on a page, AngularJS initializes a new $scope. This new

$scope is the state of the scope on controller. Listing 1 is an example of using controller

in application. [10.]

Module

!

Controllers

!

!14

View

!

Listing 1. Example code of using controller in simple AngularJS application

From the code of listing 1, when the button is pressed, both the button and the link are

bound to an action on the containing $scope. Add or subtract functions that are defined

on the “FirstController” scope or parent $scope will be called and then they return

counter result.

Controller Hierarchy (Scopes within Scopes)

AngularJS application has a default $rootScope and many parent scopes when the

context is rendered. By default, if AngularJS cannot find current properties on a local

scope, it will go to upper level in the parent scope and look for the properties or

methods there.

In case AngularJS cannot find the properties in current scope, it will walk to that parent

scope and upper levels until it reaches the $rootScope. If it does not find it on the

$rootScope, it will stop updating the view.

The following listing 2 creates a ParentController that contains the user object and a

ChildController that wants a reference of that object.

!15

!

!

Listing 2. An example of using controller hierarchy in AngularJS application.

Because of the prototypal behavior, data can be referenced from the code on the

ParentController in which contains $scope on the child scope. Once link “Say Hello” is

clicked, $scope.person value in the ChildController is referenced as a person object

defined in the ChildController’s $scope object.

3.3.5 Services

Services are functions or singleton objects instantiated when an application component

depends on it by using the $injector and lazy-loaded when needed. Services also

provide an interface to keep methods related to a specific function or task. [11.]

As default, AngularJS comes with several built-in services. It is also useful to make

customized services for any complex applications. In addition, AngularJS helps to

create customized service in a easy way.

The following illustration shows an example of how to register and define a service:

!16

!

Listing 3: How to define a simple service.

To use a service, one only needs to embed a dependency for the component where using

it. It can be a controller, a directive, a filter or another service. At run time, Angular will

carry on instantiating it and resolving dependencies shown in the following listing.

!

Listing 4: How to inject service into controller.

There are five different methods for creating services including: [12]

factory(): the factory() method is a popular way to create and configure service. It takes

two arguments: the name of service and function runs when Angular creates the service.

service(): In order to register an instance of a service using a constructor function, using

service() enables the app to register a constructor function for service object. It also

takes two arguments: the name of service and constructor function that needs to be

called to instantiate the instance. The service() function will instantiate the instance

using the new keyword when creating the instance

constant(): In order to register an existing value as a service that can inject into other

parts of application as a service. The constant() function takes two arguments: the name

of service and the value to register as the constant.

!17

value(): If the return value of the $get method in service is a constant, defining a full

service with more complex methods is unnecessary. The major difference between the

value() method and the constant() method is that constant() method injects a constant

into a config function where as values() cannot do the same. The value() method accepts

two arguments: name of registered service and value as injectable instance.

3.3.6 Directives

Directives are Angular’s method on DOM elements which attach their own custom

functionality or special behaviour to it. For instance, the following video tag is

customized and works across all browsers:

!

Listing 5. An example of using directive in AngularJS application.

As seen from listing 5, this custom element has custom open and closing tags, my-

better-video, and a custom attribute my-href.

Built-in directives

AngularJS comes with serveral built-in directives. Some directives override built-in

HTML elements, such as the <form> and <a> tags. In addition, there are some basic ng

attribute directives. For example ng-href, ng-src, ng-disabled, ng-checked, ng-readonly,

ng-selected, ng-class, ng-style and more.

Custom directives

A custom directive is simply a function that runs on a particular DOM element to

provide supplemental functionality. It is defined by using the .directive() method, one of

the many methods available on application’s Angular module seen in listing 6.

!18

!

Listing 6. A simple definition of custom directive.

As seen from listing 6, the directive() method takes two arguments: name (string) and a

function returns an object that defines how the directive operates. In order to use in

template, just put it as an attribute or element with snake-case name such as listing 7:

!

Listing 7. How to use that custom directive in practice.

3.3.7 Events

Events are information propagated across an application that generally contain

information about what is happening inside of that application. [13.]

Event Propagation

Because scopes are in hierarchical structure, events can be transferred up or down the

scope chain. There are two types of notification: for an entire event system using

broadcast downwards and for a global module with passing an event upwards.

Bubbling an event up with $emit

$emit() function is used to dispatch an event to the scope chain from child scopes to

parent scopes. $emit() is used to communicate the changes of state from within the

application to the rest of the application as seen in listing 8:

!

Listing 8. An example of using emit to dispatch event.

!19

In listing 8, when scope.$emit() event function call, the event travels up from the child

scope to the parent scope. All the parent scopes of the current scope will listen to the

event’s notification. $emit() method takes two arguments: name (string) and args (a list

of arguments are passed into the event listeners played as objects).

Sending an event down with $broadcast

$broadcast() is used to pass an event downwards from parent scopes to child scopes.

$broadcast() method takes two parameters: name (string) and a list of arguments played

as objects passed into the event listeners. Listing 9 is a good example to illustrate this:

!

Listing 9. An example of using broadcast to send event.

By using $broadcast() method, all child scopes that registers a listener will receive this

message. Then, this event is notified to all directives, current scope and calls every

listener all the way down.

Events Listening

$on() method is used to listen for an event and call a listener for the event used with a

particular name. The event name is just the event type fired in Angular same as listing

10:

!

Listing 10. An example of using on method to listen for event

!20

3.4 Communicating with server

3.4.1 Representational State Transfer (REST) API

Representational State Transfer (REST) is the stateless architecture based on HTTP

protocol to represent the model of how the modern Web should work. REST uses

existing technology and protocols of web to access and manipulate resources using

verbs (HTTP request methods). [14.]

Table 1. How HTTP actions are relevant to database operation

There is a set of verbs for RESTful approach such as GET, POST, PUT and DELETE to

manipulate data in database. Those verbs correspond to traditional CRUD (Create,

Read, Update, Delete) operations in a database or object-relational management (ORM)

system. In addition, REST also has 5 categories of responses: general information, a

successful request, redirect, error on the client side and error on the server side. The

response depends on the HTTP request type, as indicated in following table:

Table 2. REST responses’ common errors [15.]

HTTP Verb Action to take on resource Database operation

POST Create Insert

GET Retrieve Select

PUT Update Update

DELETE Delete Delete

First Digit Meaning

1xx Information

2xx Success

3xx Redirection

4xx Client Error

5xx Server Error

!21

GET: GET request is used by web client in order to ask for a representation of a

resource, identified by a URL. For example, the client asks for a list of metric branches,

the server then returns it in application as JSON format as shown in the following

picture:

Figure 6: Example of success GET request and response from server

POST: The web client send a POST to request for creating a new resource based on a

given representation. The most common response codes to a POST request are 200

(OK) or 201 (Created) and 202 (Accepted). The first two ones let the client know that a

new resource was created and the latter means that the server intends to create a new

resource based on the given representation, but has not actually created it yet. This is

demonstrated in figure 7:

Figure 7: Example of success POST request and response from server

PUT: A PUT request is a request to modify resource data or information. If the server

decides to accept a PUT request and then modified data in the server, it will change the

!22

resource state to match what the client says in data representation, and often return 200

(OK) or 204 (No Content) response code.

Figure 8: Example of success PUT request and response from server.

DELETE: When client wants a resource to go away, it sends a DELETE request. Server

will destroy resource and never refer to it again. If a DELETE request succeeds, the

possible status code are 204 (No content) or 200 (OK) or 202 (Accepted).

Figure 9: Example of success DELETE request and response from server

3.4.2 $http service

The $http service is a more Angular service wrapping around the browser’s

XMLHttpRequest object to communicate with remote servers. $http service function

takes only a single argument: a configuration object used to create a HTTP request. The

function returns a promise that has two helper methods: success and error. Listing 11 is

a simple code to show how to use $http service:

!23

Listing 11. An example of using $http service.

Since $http method returns a promise object, then() method or success() and error() can

be used to handle the callback when the response is ready. If the response status code

has a number value which ranges from 200 and 299, the response is considered

successful, and the success callback will be called. Otherwise, the error callback will be

invoked.

Listing 12: Two ways of handling the callback when the response is ready.

4 Case Project with Verto Dashboard

4.1 About Verto Analytics

Verto Analytics (Verto is Latin, and means interpretation and change) is a global leader

in providing Internet media measurement services around smart digital devices. Verto’s

management team includes senior executives from the market research industry, and a

strong track record in creating high quality media research services and products, which

are based on the industry best practices. They acknowledge the ever increasing need to

account for new shifts in consumer engagement with both traditional and new forms of

digital media, thereby designing, building and maintaining measurement technologies.

!24

Verto Analytics works with the clients and provides its online measurement services to a

global clientele in technology, finance, media, and entertainment industries.

Verto Pulse digital measurement services track the quickly evolving trends in digital

usage and Internet media consumption, and the consumers’ use of multiple devices and

potentially simultaneous and interrelated behaviors across devices. Services and content

are increasingly delivered to these devices in a variety of ways, ranging from native

apps to web sites, and widgets to multimedia streaming. Furthermore, measurement of

the related revenues is vital, in addition to mere engagement and other media related

metrics. The increasing demand for insights poses a need for a next-generation media

measurement provider that cracks the online measurements of the next decade.

Verto’s core team has been building and providing its services in digital media

measurements over the past 12 years to a number of customers in Europe, Asia and the

US, and is open for mutually beneficial projects and commercial relationships based on

its core competencies. Verto Analytics is based in New York, USA, with research and

development and operational centers in Europe.

4.2 Digital Measurement Challenge

Nowadays, mobile usage data is characterised by three significant and accelerating

trends:

Device Fragmentation: The environment used to be simple: radios, telephones,

televisions – each device had limited functionality, and a short list of brands in an

easily-defined category. Today's world is very different: devices support multiple

functions, consumers own and use many devices, often for overlapping purposes.

Understanding any one – or even any two or three – categories or brands is no longer

enough for a complete picture.  

Function Convergence: In the past, devices were function-specific: One could watch

video content on a television, listen to audio content on a radio, run software on a

!25

desktop computer, and make phone calls with a telephone. Today, any one of these

devices (and others) can perform any of these functions. Understanding how consumers

use any one device type is no longer enough: Consumers' real experiences and content/

software-producers' audiences are shaped across multiple devices, device types, and

networks.

Audience Fragmentation: The digital revolution has seen an explosion in content,

software, and services. This leads the audience to become fragmented in the

marketplace. Understanding who these competitors are, and collecting data from large

enough samples to report about their usage, are essential to understanding today's

diverse ecosystem.  

4.3 Data Deliverables

4.3.1 Conceptual overview

The Verto’s Data Deliverables makes data available though two different forms

Table 4. Two basic components of Verto Deliverables  

Component Explanation

Verto Monitor The Verto Monitor is a web-based tool that allows clients to
visually and dynamically interact with the data collected
through the Verto Smart Measurement Platform. Clients can
analyze data across all measured devices, panelists, web
sites, apps, categories, platforms, etc. The Verto Monitor
makes available 100+ different metrics, each analyzable by
target group, and over time.

Data API The Data API is a RESTful API which accepts requests for
particular analyses, extracts relevant data from the Session-
level DB, and calculates the metrics indicated in the original
request. It represents a programmatic way to gain access to
the 100+ metrics that the Verto Smart Measurement Platform
can calculate.

!26

4.3.2 Verto Monitor

The Verto Monitor and Data API supports the calculation of 100+ metrics calculated

based on data collected through the Smart Meters. These metrics can be calculated at

hourly, daily, weekly, or monthly resolutions and filtered based on Time period, and/or;

Day(s) of the week, and/or; Hour(s) of the day, and/or; Particular web sites, and/or;

Particular apps, and/or; Particular demographic characteristics.

The following list contains the metrics that are calculated / available to clients through

either the Verto Monitor or Data API:

Table 5. List of metrics used in Verto Monitor (Dashboard)

Basic Metrics Engagement Metrics

+ Reach/Penetration (%)  
+ Users (#) 
+ Devices (#)  
+ Devices per User (#)  
+ Time Spent (hh:mm:ss)
+ Time Spent per User
(hh:mm:ss)  
+ Time Spent per Device
(hh:mm:ss)

+ Sessions (#) 
+ Sessions per User (#) 
+ Sessions per Device (#)
+ Avg Session Duration

(hh:mm:ss)
+ Avg Session Interval

(hh:mm:ss)
+ Multi-screen Sessions (#)
+ Multi-screen Usage Rate

(#)
+ Multi-screen Sessions per

user (#)
+ Devices per Multi-screen

Session (#)

+ Interactions (#)
+ Interactions per User (#)
+ Interactions per Device (#)
+ Interactions per Session (#)
+ Interactions per Minute of

Use (#)
+ Avg Interaction Duraction

(hh:mm:ss)
+ Bounces (#)
+ Bounce Rate (#)
+ Focus-Outs (#)
+ Foucs-Outs per User (#)
+ Foucs-Outs per Minute of

Use (#)

Device/Telecom Metrics

+ Telephone Calls (#)
+ Inbound Telephone Calls

(#)
+ Outbound Telephone Calls

(#)
+ Missed Telephone Calls (#)
+ Avg Calls per User (#)
+ Avg Inbound Calls per

User (#)
+ Avg Outbound Calls per

User (#)
+ Avg Missed Calls per User

(#)
…..

+ Avg Inbound Call Time per
Device (hh:mm:ss)

+ Avg Outbound Call Time
per Device (hh:mm:ss)

+ Avg Call Duration
(hh:mm:ss)

+ Avg Inbound Call Duration
(hh:mm:ss)

+ Avg Outbound Call
Duration (hh:mm:ss)

+ Total Data Transfer (kB)
+ Inbound Data Transfer

(kB)
+ Outbound Data Transfer

(kB)

+ Wifi Connectivity Uptime
(%)

+ Wifi Connectivity Uptime
per User (hh:mm:ss)

+ Wifi Connectivity Uptime
per User (%)

+ Wifi Connectivity Uptime
per Device (hh:mm:ss)

+ Wifi Connectivity Uptime
per Device (%)

+ Total Time Roaring
(hh:mm:ss)

!27

4.3.3 Data API

The Data API accepts either a singleton or a batch of JSON objects, each of which

represents a data request being asked. One can think of a data request as the "question"

being asked, and the resulting data response as the "answer" being given. Data requests

can specifically request any of the metrics provided in the Verto Monitor.

Data Request: While a detailed set of documentation will be provided, the following

represents a complete data request in JSON format

Data Response: The following snippet of code represents a complete represents a

complete data response in JSON format

Listing 13. An example of data response used in Verto Dashboard

!28

5 Apply SPA to Verto Dashboard

5.1 Key Requirements for Design and Development

The Verto Dashboard will be a single page web-based application using HTML5, CSS3

and Javascript. Aaccessing to the Verto Dashboard’s functionality will be strictly limited

to authenticated users. User authentication will occur based on email address and

password.

Dashboard is also be designed with a responsive layout using CSS3 media queries to be

functional across devices with varying screen resolutions. Despite its responsive layout,

the Verto Dashboard should be optimised for a screen resolution of 1280x800 with

graceful transformation down to 1024x768 and up to 1920x1080.

In order to address 96% of the potential user base, the Verto Dashboard should support

Microsoft Internet Explorer 8+, Google Chrome 25+, Firefox 5+, Safari 5.1+, Safari for

iPad, Android 4+, Opera 12.1+. In addition, data displayed in charts and data tables

should be refreshed or populated using AJAX so as to not refresh the entire page

5.2 Dashboard Architecture

The Verto Dashboard must simultaneously provide users with a passive

(“consumption”) model for interacting with the data and a active (“exploration”) model

for interacting with the data.

As seen from figure 10, Verto Monitor creates a significant development challenge, in

that user experience (the view) and system logic (controllers) for each of these two

models are very different by nature. Rather than support two complex and contradictory

models simultaneously, it makes more sense to create an abstraction layer which both

models can leverage:  

!29

Figure 10: Basic Verto Monitor architecture

As the diagram above suggests, both the data consumption and data exploration process

with create Data Requests and consume (display) Data Responses. From the controllers’

perspective, Data Request will be identically structured. The only difference will exist

in the view.

Data Requests produced by the “data consumption” approach will be embedded into the

view as widgets. The user will be able to either turn their display on or turn their display

off, but the configuration of these Data Request will not be possible.

Data Request produced by the “data exploration” approach will be dynamically created

and configurable by the user. In other words, they may apply certain default values, but

they are dynamically created and interpreted on the fly.

!30

5.3 Basic Layout and Primary Navigation

5.3.1 Basic Layout

Once the user has been logged in, they should be presented in the standard layout of the

Verto Dashboard. In general, this layout should have two main content areas:

Figure 11: Basic 2-column layout of dashboard

The Primary Navigation area allows user to navigate throughout the Verto Dashboard.

In particular, it should enable user to

• Select the Dashboard

• Browse available Report Templates

• Select the Report Template user wishes to work with

• Navigate to Account Management functionality

The Primary Content area displays functional content to the user, arranged into a two-

column wide layout with visual elements either 1-column wide or 2-columns wide. The

content displayed may be one of three types:

!31

Dashboard (default upon login): If the Dashboard has been selected, then the user

should be shown those Data Responses which have been pinned to his dashboard. These

Data Responses cannot be configured by the user, but they should be contained in

“widget-like” components that can be repositioned (clicked and dragged), minimised

and “unpinned” (deleted from the Dashboard). Each widget also has “Detail” link which

brings the user to a user-configurable version of the originating Report Template

Report Template: If a Report Template has either a) been selected in the Primary

Navigation area, or b) clicked through from the Dashboard, then the content displayed

in the Primary Content area should be that report. Each such Report Template should

present the user with user-configurable Configuration Components and the resulting

Display Components

Account Management: If one of the Account Management views has been selected in

the Primary Navigation area, the content displayed should be that Account Management

screen.

5.3.2 Primary Navigation

The primary Navigation area can be considered the “table of contents” to the Verto

Dashboard. It should provide the user with a collapsible tree with textual links to access

different Report Templates.

Figure 12: Primary Navigation of Dashboard

!32

The table below provides a detailed list of the nodes that should be present in the

Primary Navigation area, along with their relevant context-sensitive documentation and

the report/functionality which they link to:

Table 6. Detailed list of nodes used in primary navigation

5.4 Configuration Components

5.4.1 Time Period

The Time Period component is used to get the range of time for which data is reported

to the user. It features two configurable positions: Start Date and End Date

Both of these positions should be expressed as dates formatted as MM dd, YYYY.

Node Label Contextual Help

Dashboard Quick view the most recent data about marketplace

Market Explore how the industry is performing in the marketplace

+ Ranking Sort competitors according to their performance

+ Trends Explore trends in usage/behavior across competitors

+ Shares Explore competitors market share

Competitor Explore an individual competitor’s performance

+ Overview Wide-ranging analysis of an individual competitor’s
performance

+ Audience Breakdown of a competitor’s audience

+ Peer Comparison Compare one competitor against a peer-group

Clickstream

+ Usage Context Explore what users do simultaneously to using this
competitor

+ Usage Sequence Explore how users interact with a competitor

My Account Change user password and other account settings

+ Account Settings Change user password and other preferences

+ Manage Users Manage the users authorized to use account

!33

In order to converse screen real estate, the Time Period is generally displayed as textual

information for the user. However, when the user clicks on either the Start Date or the

End Date, a small calendar control should appear below the clicked position. This

calendar control should allow the user to select the value for the position.

Figure 13: Layout of Time Period selection

Note that above the time period is a series of several “quick selection” links. When

clicked, these links automatically adjust the Start Date and End Date positions based on

the current date. These “quick selection” position should be as follows: Last Year, Last

Month, This Month, Last Week, This Week and Yesterday.

5.4.2 Day Filter

The Day Filter component is used to select which days of the week should be included

in the Report. This component should be a “toggle” control, meaning that when user

clicks on a give day of the week that day should either be togged “ON” or “OFF”

according to its state:

Figure 14: Layout of Day Filter

!34

5.4.3 Daypart Filter

The Daypart Filter component is used to select which dayparts (range of hours) should

be included in the Report. This component should combine both a “toggle” control

(when the user clicks on a give hour, it should either be toggled “ON” or “OFF”

according to its state)

Figure 15: Daypart Filter component

5.4.4 Resolution

The Resolution component is used to determine at what level of granularity (over time)

data should be displayed. While Resolution is a Configuration Component, it should

more visually represent a navigation element, a “tab” displayed above the Display

Components.

Figure 16: Resolution Component

!35

The Resolution component can receive any one of the following values: Hours, Days,

Weeks, Months, Quarters and Annuals.

5.4.5 Target Group Filter

The Target Group Filter component is used to select what demographic or behavioural

criteria should be applied to the Report. When the user clicks on the target group name,

a box containing a list of the user’s defined target groups should be opened.

Figure 17: Target Group Filter

This Target Group Filter box contains “Create New Group” link which when clicked

opens a modal dialog box containing the Edit Target Group view and “List of Target

Groups” which are a list of the user’s defined target groups, starting with the default

“United States Population 18+” (no target group filter). With the exception of the first

(default) target group, each group in this list have “Edit” link in which clicked opens a

dialog box containing Edit Target Group view and allowing the user to edit the selected

target group.

5.4.6 Subject Selector

The Subject Selector component is used to indicate which entities the user wishes to

include in their analysis. The Subject Selector is a relatively complicated component, in

that it receives its values from the Meta-data Platform, should be organised in a tree-like

hierarchy and organized into several different hierarchies.

!36

Figure 18: Subject Selector

Note that the Subject Selector diagrammed above features some distinct elements Quick

Search and Subject Tree. The former is a search box which when the user types a value

into it, filters the Subject Tree to display those subjects which match the user’s search

string. The latter is the hierarchical tree list of subjects. The structure of the subject tree

is determined based on the organization schema selected by the user and the contents

and structure are themselves defined in the Meta-data Platform.

5.4.7 Metrics

The Metrics component is actually composed of other components which are closely

related and displayed alongside of each other. The contents of each of these components

are highly dependent on the Report Template currently active and the metric(s) selected

in the Metric Selector.

In general, the Metrics component (including all of its sub-components) can be

visualized as follows:

Figure 19: Metrics Component

!37

The sub-components which may be included in the Metrics component are:

Metric Selector: This is the component used to actually select which metric(s) the user

wishes to include in their Data Response.

Metric Parameters: This component is used to configure specialised parameters

(particular to the metrics selected in the Metric Selector) to further narrow the data

included in the Data Response.

Breakdown Criteria: This component is used to select the criteria by which the data

should be broken out or organised in the Data Response. For example “Gender”,

“Geography”, “Device Type”.

Benchmarks: This component is used to toggle whether a category benchmark for the

metric(s) selected in the Metric Selector in returned in the Data Response.

5.5 Display Components

5.5.1 Data Chart

The Data Chart component is used to visually display a chart of the Data Response back

to the user. The logic underlying each view should be able to take the data received in

the Data Response and appropriately parse it to provide relevant instruction to the Data

Chart component.

The basic functionality requirements of the Data Chart component should be as follows:

• Support Stacked Column Charts, Single-Column Charts, Line Charts, and Pie

Charts

• Support up to 20 individual Data Series on a single chart

• Display dynamic ToolTips for individual data points communicating: metric

name, series name, y-axis value and x-axis point

• Support the dynamic display of a legend alongside the chart

• Support export of the chart as the image (PNG, JPG, BMP)

!38

HighchartsJS is used as as main approach for basic 2D charts. It offers very appealing

and professional looking charts in the markets. Although HighchartsJS is built with the

Javascript framework library, it is implemented in each a way that it does not totally on

on particular framework. HighchartsJS is packaged with adapters, to make its interfaces

to framework pluggable.

In general, this approach also has different advantages and disadvantages:

Table 7. Advantages and disadvantages of using HighchartsJS

5.5.2 Data Table

The Data Table component is really only a logical component of the Verto Monitor. It

relies on parsing the contents of the Data Response and rendering a tabular form of the

resulting data. The Data Table component must adopt certain basic styling rules that will

be applied throughout the design.

Figure 20: Basic Data Table

Advantages Disadvantages

+ Ability to fully customize the look and
feel of data visualization tools
+ Because library is provided as JS
source code, it can be customised as
necessary
+ Because query logic is separate, query
performance can be optimised
independently of the rendering tool

- Implementation requires actual
development work, rather than
configuration

!39

5.6 Report

5.6.1 Ranking Report

Overview

The purpose of the Ranking Report is to provide the user with a sorted list of Subjects,

sorted according to the metric that the user selected.

Configuration Components

The Ranking Report should have the following Configuration Components:

Table 8. Ranking report’s default configuration component

Display Components

The Ranking Report should only feature a Data Table as its display component. This

Data Table should be sortable in ascending / descending order by any of its columns.

Figure 21: Ranking Data Table with up and down arrow

Configuration Component Default Value

Time Period Last month

Day Filter All Days

Daypart Filter All Dayparts

Target Group Filter US Population 18+

Subject Selector

Metric Selector Users (#)

Metric Parameter

Benchmarks TRUE

Add Comparison

!40

Layout

Figure 22: Basic layout of ranking report

Ranking report is a special report without any data chart, but only data table. It also

includes some basic components for configurations.

5.6.2 Share Report

Overview

The purpose of the Share Report is to show the performance of various Subjects in

comparison to their competitors

Configuration Components

The Share Report should have the following Configuration Components:

Configuration Component Default Value

Time Period Last month

Day Filter All Days

Daypart Filter All Dayparts

!41

Table 9. Share report’s default configuration component

Display Components

The Share Report should display two Data Charts and Data Tables as its display

components.

The Data Chart to display will depend on the Resolution and Time Period selected in

the Configuration Components. In addition, two Data Tables should display be

displayed, each listing Subjects in rows and time along columns.

Two Data Tables should display each listing Subjects in rows and time along columns.

It should resemble the following:

Figure 23: An example of two table in share report

Target Group Filter US Population 18+

Subject Selector

Metric Selector Users (#)

Breakdown Criteria None

Metric Parameter

Benchmarks Unchecked

Add Comparison

Resolution Weekly

!42

Layout

Figure 24: Basic layout of share report

 

Layout in Share Report comprises of some basic components and two data charts and

two tables. Stacked column and column chart are used mainly in Usage Trend Report.

5.6.3 Usage Trend Report

Overview

The Usage Trend Report is used to show nominal usage statistics over time for selected

Subjects and populations

Configuration Components

Configuration Component Default Value

Time Period Last month

Day Filter All Days

Daypart Filter All Dayparts

!43

Table 10. Usage Trend report’s default configuration component

Display Components

The Usage Trend Report should display the resulting data in both a single Data Chart

and a single Data Table. Data Chart should either be displayed as column chart, a

stacked column chart, or a line chart. The decision between these chart types should be

made based on following logic in table 11:

Table 11. Conditions to display appropriate Data Chart

Target Group Filter US Population 18+

Subject Selector

Metric Selector Users (#)

Metric Parameter

Benchmarks TRUE

Add Comparison

Resolution Monthly

Condition Display

The Resolution >= Time Period and
Breakdown Criteria == None

Column Chart with Subjects on X-Axis

The Resolution >= Time Period and
Breakdown Criteria <> None

Stacked Column Chart with Subjects on
X-Axis and Breakdown Criteria as
grouping

The Resolution < Time Period and
Breakdown Criteria <> None

Stacked Column Chart with Subjects on
X-Axis and Subjects as grouping

The Resolution < Time Period And
Breakdown Criteria == None And
Number of Subjects Selected == 1

Column Chart with Time on X-Axis

The Resolution < Time Period And
Breakdown Criteria == None And
Number of Subjects Selected > 1

Line Chart with Time on X-Axis with
Subject as grouping

In each case, if Benchmarks are enabled, the Benchmark data series should be

visualised as a line chart.

!44

Data Table

The Data Table should display the Subjects in rows with a breakdown according to the

Breakdown Criteria (if specified), with the individual data points in columns grouped

according to Date/Time

If Benchmarks are enabled, then the first and last rows of the Data Table should display

a subtotal row as the benchmark:

Figure 25: An example of data table in Usage Trend report

Layout

Layout in Usage Trend Report has some basic components and only one data chart and

one table. Column chart is used mainly in Usage Trend Report.

Figure 26: Basic layout of Usage Trend Report

!45

6 Conclusion

The web is now far different from some years ago since single-page web application has

become a new trend for enterprise applications. As more and more people use web

applications, a need for an interactive experience and realtime, experience is needed

from a technical perspective, a single-page web application has emerged and to meet

those requirements. Digital media measurement services are part of this trend. Verto

Dashboard is the main product of Verto Analytics and it offers cross platform digital

media measurement and audience usage research. It received secure funding $5.4M on

April 2014 [16] and $2.5M on September 2014 [17.]

Dashboard project was started on June 2013 and it continued in development stage.

Receiving two secure fundings after one year is quite success. The ultimate goal of this

project is providing internet media measurement services around smart digital devices.

Verto Monitor is the first product to publish a digital media measurement service that is

designed, and built, to be multi-screen by nature, reporting on the significant subjects of

both the platform (devices, carries, operating systems) and media domains (apps, sites,

publishers, properties), on both the distribution and engagement layer, through one

integrated methodology and service.

The final version of Verto Monitor can establish a strong track record in the digital

measurement field and help customers to do tactical and strategic decisions, providing

insights though hard measurement of data visualizations in the multi-screen digital

industry comprising of audience acquisition, media sales and audience research, product

development and consumer insights, competitive insights, market trend analyses, app

store analytics, conversion modeling and Investment decisions.

All background knowledge and experience will play a vital role in the future and

challenges of the project.  

!46

References

[1] Mikowski M, Powell J. Single Page Web Applications. NY, USA: Manning
Publications; 2013. p.8-9

[2] Ruby S, Thomas D, Hansson D. Agile Web Development with Rails. 4th ed. USA:
Pragmatic Programmers, LLC; 2012. p.30

[3] Why AngularJS for Web Apps? Why Now? [online]. Alex Castillo; 2014
URL: http://www.business2community.com/tech-gadgets/angularjs-web-apps-
now-0932000. Accessed 25 October 2014

[4] Freeman A. Pro AngularJS: Learn to harness the power of modern web browsers
from within your application’s code. In: Putting AngularJS in Context.USA: Apress
Publisher; 2014. p.45-54

[5] Lerner A. ng-book: The complete book on AngularJS. In: Introducing Data Binding
in AngularJS. USA; 2013. p11-12

[6] AngularJS Developer Guide on Data Binding [online]
URL: https://docs.angularjs.org/guide/databinding. Accessed 25 October 2014.

[7] Lerner A. ng-book: The complete book on AngularJS. In: Modules. USA; 2013.
p18-19

[8] Lerner A. ng-book: The complete book on AngularJS. In: Scopes. USA; 2013.
p20-24

[9] AngularJS Developer Guide on Conceptual Overview[online]
URL: https://docs.angularjs.org/guide/concepts. Accessed 25 October 2014.

[10] Understanding Controllers [online]
URL: https://docs.angularjs.org/guide/controller. Accessed 25 October 2014.

[11] Services [online]
URL: https://docs.angularjs.org/guide/services. Accessed 25 October 2014.

[12] Lerner A. ng-book: The complete book on AngularJS. In: Services. USA; 2013.
p157-172

[13] Lerner A. ng-book: The complete book on AngularJS. In: Events. USA; 2013.
p373-378

[14] “Representational state transfer” Wikipedia, The Free Encyclopedia. Wikimedia
Foundation, Inc; 25 October 2014.

!47

URL: http://en.wikipedia.org/wiki/Representational_state_transfer. Accessed 25
October 2014.

[15] W3Schools. HTTP status messages [online].
URL: http://www.w3schools.com/tags/ref_httpmessages.asp. Accessed 25 October
2014.

[16] Verto Analytics raises $5.4M to launch comprehensive syndicated digital
measurement service [online]
URL: http://vertoanalytics.com/news-april-24-1.html. Accessed 26 October 2014

[17] Mysql investor backs Verto Analytics to revolutionize the digital media
measurement industry with $2.4M funding [online]
URL: http://vertoanalytics.com/news-september-16-1.html. Accessed 26 October 2014  

!48

Appendix

Appendix 1: Login Page

Appendix 2: Dashboard

!49

Appendix 3: Ranking Report

Appendix 4: Usage Trend Report

!50

Appendix 5: Share Report

