
Turku University of Applied Sciences Thesis | Hanna Järveläinen

Bachelor’s thesis

Information and Communications Technology

2024

Hanna Järveläinen

Creating a React Native UI

Component Library

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2024 | 39 pages

Hanna Järveläinen

Creating a React Native UI Component Library

The goal of the thesis was to create a private React Native UI component library

using the components from an already-published mobile application. The

commissioner had a need to create new applications with similar features, so it

was seen beneficial to create a library so that the existing components could

easily be reused.

The main technologies used to develop the library were already defined in the

mobile application, including TypeScript, React Native, and Expo. An important

addition was Storybook that was needed to render the components in isolation

during the development. The components were tested using Jest. After the

library was ready, it was published as a private package in GitLab.

As a result, a library with 16 components was published. The main

requirements, including controlled access to the library and customizable styles,

were achieved. Documentation was written for the users of the library as well as

for possible future developers, enabling the possibility of adding more

components in the future.

Keywords:

React Native, TypeScript, Storybook, mobile development, component library

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

2024 | 39 sivua

Hanna Järveläinen

React Native UI-komponenttikirjaston kehittäminen

Opinnäytetyön tarkoituksena oli luoda yksityinen React Native UI-

komponenttikirjasto käyttäen jo julkaistun mobiilisovelluksen komponentteja.

Toimeksiantajalla oli tarve luoda uusia mobiilisovelluksia samankaltaisilla

ominaisuuksilla, joten jo kehitettyjen komponenttien tuominen kirjastoon

uudelleen käyttöä varten nähtiin hyödylliseksi.

Kirjaston kehittämiseen käytetyt pääteknologiat oli jo määritelty julkaistussa

mobiilisovelluksessa. Näitä olivat TypeScript, React Native ja Expo. Sen lisäksi

keskeinen työkalu oli Storybook, jota tarvittiin komponenttien renderöintiin

kehityksen aikana. Komponentit testattiin käyttäen Jestiä. Kirjaston valmistuttua

se julkaistiin yksityisenä pakettina GitLabissa.

Opinnäytetyön tuloksena oli julkaistu kirjasto, jossa oli 16 komponenttia. Kaikki

tärkeimmät vaatimukset täytettiin, sisältäen kontrolloidun pääsyn kirjastoon

sekä komponenttien tyylien muokattavuuden. Dokumentaatio luotiin sekä

kirjaston käyttäjille että mahdollisille tuleville kirjaston kehittäjille, mahdollistaen

kirjaston laajentamisen uusilla komponenteilla tulevaisuudessa.

Asiasanat:

React Native, TypeScript, Storybook, mobiilikehitys, komponenttikirjasto

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Content

List of abbreviations 7

1 Introduction 8

2 Technologies 10

2.1 JavaScript 10

2.2 TypeScript 10

2.3 Node.js 11

2.4 Libraries 11

2.5 React 11

2.6 React Native 12

2.7 Expo 12

2.8 Android Emulator 12

2.9 Storybook 13

2.10 GitLab 13

3 Requirements 14

3.1 The access to use the library is controlled 15

3.2 Components’ styles can be modified 16

4 Architecture of the module library 17

4.1 Programming language 17

4.2 Rendering tool 17

4.3 Publication platform 18

5 Implementation of the library 19

5.1 Creating the base project 19

5.2 Directory structure 20

5.3 Restructuring and updating the code 21

5.4 Documentation 22

5.5 Styles 23

5.6 Questionnaire components 24

Turku University of Applied Sciences Thesis | Hanna Järveläinen

5.7 Questionnaire summary components 26

5.8 Planning components 26

5.9 Publishing 27

6 Testing 30

7 Conclusion 34

8 References 36

Turku University of Applied Sciences Thesis | Hanna Järveläinen

List of Figures

Figure 1. Component library and its components used in a mobile application. 9

Figure 2. Content of metro.config.js file. 19

Figure 3. Directory structure. 20

Figure 4. Importing the components in the consuming project. 21

Figure 5. Declaration file for images. 22

Figure 6. Example of a component's documentation. 23

Figure 7. A component with an array of style objects. 24

Figure 8. A component with default and customized styles 24

Figure 9. Part of tsconfig.json configuration. 28

Figure 10. Part of package.json configuration. 29

Figure 11. Example content of .npmrc file 29

Figure 12. SelectDays component with two days checked. 32

Figure 13. Parent component with dynamic testID property. 32

Figure 14. Querying a parent element with a dynamic testID and accessing the

child elements. 32

List of Tables

Table 1. Requirements with their priorities. 15

Table 2. Components in questionnaire screen. 25

Table 3. Components in questionnaire summary screen. 26

Table 4. Components in planning screen. 27

Turku University of Applied Sciences Thesis | Hanna Järveläinen

List of abbreviations

CLI Command Line Interface

DOM Document Object Model

OS Operating System

8

Turku University of Applied Sciences Thesis | Hanna Järveläinen

1 Introduction

The purpose of the thesis was to create a UI component library from the

components of the commissioner’s two existing mobile applications,

OmaToimari and DigiHelppari. The commissioner of the thesis is Gamy Ry that

helps social and healthcare organizations in digitalization. The commissioner

has needs to create several mobile applications for different organizations

based on the same needs as the former applications but tailored to each

organization’s specific needs. This created the idea of creating a library of the

components that had already been created, so they could be used again in

future applications. The library ensures uniformity and efficiency, resulting in

higher quality and a smaller workforce needed for the future applications.

A UI component library is a codebase that can be installed to other, consuming

projects. The wanted components can be imported and used in the code to

make the development of the application faster. The components are like

building blocks that can be taken as many times as wanted and placed in the

application to the desired position as demonstrated in Figure 1. The

components’ functionalities in the library are tested comprehensively and

individually. Consequently, the testing can be centered around the business

logic during the development of the library consuming application.

9

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Figure 1. Component library and its components used in a mobile application.

First, the main technologies used in the library are introduced. Then, the

requirements set for the project are listed and some of them are shortly

discussed. After that, the architectural decisions are justified. The

implementation of the project is covered from creating the project to the

publication. Testing methods are discussed, and some testing cases are gone

through. Finally, the outcome is evaluated, and further development possibilities

are proposed.

10

Turku University of Applied Sciences Thesis | Hanna Järveläinen

2 Technologies

In this chapter, the main technologies used in the development of the library are

discussed.

2.1 JavaScript

JavaScript is the most popular programming language, with 63.61 % of software

developers stating to use it in 2023 [1]. It was originally created to make web

pages dynamic, but nowadays it is used widely in different environments,

including server-side scripting and mobile applications [2]. JavaScript evolves

continuously, and since 2015 a new version has been published yearly.

2.2 TypeScript

TypeScript is a programming language build on JavaScript to detect the errors

in the code without running the code [3]. Every value in the code is typed either

by TypeScript or the programmer, and TypeScript checks that these values

match their types. Running JavaScript code can lead to unexpected behavior

without giving any errors, such as logic errors or having undefined as a value.

This is why TypeScript can be a valuable tool to find the errors and save time

from debugging the code. As TypeScript type checks the code before the code

is run, it is not used during the runtime. After the types are checked, the code is

compiled to JavaScript that has no information about the types. Declaration files

that contain the information about types can be created during the compiling, so

that TypeScript can be used in the library consuming projects [4]. TypeScript

was used by 38.87 % of software developers in 2023 [1], which is much less

than the use of JavaScript. Although it can make the programming faster by

preventing errors, every TypeScript user must first learn to use JavaScript,

which might explain the lower usage.

11

Turku University of Applied Sciences Thesis | Hanna Järveläinen

2.3 Node.js

Node.js is a JavaScript runtime environment [5]. A runtime environment is

always needed to be able run JavaScript code. Node.js runs the same

JavaScript engine as Google Chrome, which makes it highly performant. Before

Node.js, JavaScript could be run only in browsers. With Node.js, it is possible to

write backend applications using JavaScript, but it is also needed to be able to

use many JavaScript libraries, like React that was used in this project.

2.4 Libraries

A JavaScript library is a set of code that can be used in other projects [6]. It

usually concentrates on a certain topic. As a library can be used by other

developers than the ones who developed it, good documentation is important.

In addition, a credible library is also tested well before publication. A common

way to publish a JavaScript library is to publish it as a npm package, as was

done in this project. Packages can be published privately, so the consumers of

the library can be controlled, or publicly, so that anyone can use it in their

projects. npm is a company that supports development with JavaScript [7]. Its

main purpose is to offer tools to share packaged JavaScript code with others.

The packages can be published in npm’s own package registry or any other

compatible package registry [8]. npm also offers npm CLI; a package manager

for node projects that runs from the terminal.

2.5 React

React is a JavaScript library that lets the application to be built from reusable

components, which makes it easy to scale and maintain [9]. In addition, it

creates a virtual DOM tree that it updates the least possible, which makes it

faster to re-render. React is usually written with JSX syntax, that is a markup

that lets the JavaScript code use HTML tags and React components [10]. To

12

Turku University of Applied Sciences Thesis | Hanna Järveläinen

use JSX syntax with TypeScript, the files have to have .tsx extension [11].

Node.js is needed at least for local development [12].

2.6 React Native

React Native is a framework for building native applications for Android and iOS

with JavaScript [13]. The application is built with React and native components

that are accessed through React Native. The application is developed with

JavaScript, but it is rendered using the platform’s native APIs. With React

Native it is possible to develop an application in a single codebase that works

both on Android and iOS, and platform-specific parts can be incorporated in the

same project.

2.7 Expo

Expo is a framework for native mobile and web applications built with React

Native [14]. It offers several different developing tools and features, such as

access to camera and GPS location. For creating the library, the most essential

Expo feature was Expo CLI that provides an easy way of starting a server and

the app on a mobile emulator or a mobile device for development purposes.

2.8 Android Emulator

Android Emulator provides virtual Android devices that can be run on a

computer to test applications on a native Android platform [15]. It offers different

devices and Android API levels, so the application can be easily tested on

different screen sizes and Android versions.

13

Turku University of Applied Sciences Thesis | Hanna Järveläinen

2.9 Storybook

Storybook is a development tool that renders UI components in isolation [16]. In

addition, it has a control panel where the properties of the component can be

easily modified. This way the components can be developed and tested

individually detached from the business logic of an application.

2.10 GitLab

GitLab is a platform that provides a wide range of features for the whole

process of developing a software [17]. It concentrates around DevOps, but the

central features of GitLab related to this project were the code repository and

package registry.

14

Turku University of Applied Sciences Thesis | Hanna Järveläinen

3 Requirements

In this chapter, the requirements set by the commissioner are presented. At

first, the UI components of two different mobile applications, OmaToimari and

DigiHelppari, were planned to be brought to the library. However, considering

the amount of work and the available resources, the whole DigiHelppari

application was excluded from the project. The components of OmaToimari

application were prioritized using MoSCoW method to ensure the most

essential ones would be brought to the library, and some other features were

added to the requirements as well. In MoSCoW method, the requirements are

ordered using four different priority levels, starting from must have and ending

to won’t have priorities [18]. The requirements were listed and prioritized as

shown in Table 1.

15

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Table 1. Requirements with their priorities.

Requirements Priority

The library can be extended and has

documentation about how to do it

must have

The access to use the library is controlled must have

Questionnaire components must have

Components’ styles can be modified must have

Questionnaire summary components should have

Planning components should have

Quiz components could have

Databank components could have

Calendar components could have

Profile components could have

Components in creating a profile screen could have

Menu components could have

Plan components could have

Accessibility features won’t have

DigiHelppari app components won’t have

Some of the requirements are discussed below shortly.

3.1 The access to use the library is controlled

OmaToimari is a health-related application, so it was seen important that the

consumers of the library could be controlled to prevent any external user from

creating a similar looking application.

16

Turku University of Applied Sciences Thesis | Hanna Järveläinen

3.2 Components’ styles can be modified

The library concentrates on UI components, and it was important that the

components would look stylish by default, so the components were brought to

the library with the style from OmaToimari application. However, it was seen

crucial that the future applications could have their own, distinctive style, so the

default styles of the components should be able to be overwritten.

17

Turku University of Applied Sciences Thesis | Hanna Järveläinen

4 Architecture of the module library

The central architectural decisions of the development of the library are

discussed in this chapter. They include which programming language to use,

what tool to use to render the components, and where to publish the library.

4.1 Programming language

OmaToimari application was created using React Native and TypeScript, so

there were two options for the programming language for the library: JavaScript

and TypeScript. According to React Native’s own documentation, the default

programming language for React Native projects is TypeScript [19]. Also, Expo

supports TypeScript by default. As discussed earlier, TypeScript will be

compiled to JavaScript with declaration files before publishing, so a library

created with TypeScript can be consumed both in JavaScript and TypeScript

projects, therefore TypeScript was chosen as the programming language for the

library.

4.2 Rendering tool

When developing a UI component library, there is no application and

designated position in the application where a component will be placed.

However, the developer must see and be able to test the component while

developing it, so a tool was needed to render the components during

development. After research, two tools compatible with React Native were

found: Storybook and Bit. Both tools were created originally for web

development, and the usage was not as smooth with mobile applications with

either of them. After studying and testing both options, Bit was found to be more

complex, and it concentrated more on sharing and collaboration tools in a

bigger developments team, so Storybook was found to be more suitable and

was selected for the project.

18

Turku University of Applied Sciences Thesis | Hanna Järveläinen

4.3 Publication platform

The library had to be published as a package so that other projects could install

it and consume it. npm has the most popular JavaScript package registry with

public and private packages [20], so it was considered as the first option for the

publication platform. However, to be able to publish private packages, a Pro

account is needed. One of the most important requirements was that access to

the library must be limited, so due to the monthly cost of the Pro account, npm

was discarded and other solutions had to be investigated. Turku University of

Applied Sciences has its own GitLab domain name where the project repository

was stored as well. It was found out that GitLab has a package registry feature

with controlled access that would not incur any additional costs, and it also

works with npm CLI. The package registry was tested, and it worked well for the

needs of the project, so GitLab was chosen to be the package registry platform.

19

Turku University of Applied Sciences Thesis | Hanna Järveläinen

5 Implementation of the library

This chapter discusses the process of creating the library. General points are

discussed in their own chapters, and components brought to the library are

discussed shortly in their own chapters. Components are divided into chapters

based on the screens where they are located in the original application, as they

are listed in the requirements as well.

5.1 Creating the base project

First, a new project was created with Expo’s app template for React Native and

TypeScript. Once the sample project was running on Android Emulator,

Storybook was installed to the project. To get Storybook work with React

Native, metro.config.js file had to be modified as shown in Figure 2.

Figure 2. Content of metro.config.js file.

The entry point of an Expo project is inside the Expo’s package under

node_modules where it registers the App.tsx file as the root component. As

it is not good practice to modify the code inside an installed package, Storybook

had to be exported in App.tsx to get Expo run the components, or stories,

added to Storybook. After the Storybook’s example component was working on

Android Emulator, ESLint and Prettier were installed to the project. ESLint is a

tool that checks that code follows rules set for it [21], and Prettier is a code

20

Turku University of Applied Sciences Thesis | Hanna Järveläinen

formatter that goes through the code and rewrites it to follow a preset style [22].

Several ESLint plugins were added to support the use of TypeScript, React, and

Jest.

5.2 Directory structure

src directory was created to the root of the project to contain all the

components to be added to the library. components directory was created

under it, and for every component, a separate folder was created. That folder

would contain all the files related to it: React Native component file, type file,

Storybook file, index file, test file, and the example image of the component that

was also used in the documentation of the component. Only the images

imported to the components were placed in a separate assets folder. The

example structure of a component’s path and files related to it are shown in

Figure 3.

Figure 3. Directory structure.

In addition, an index file was added to the components folder and src folder.

On every level of the directory, the index files were used to export the

components to the higher directory. As a result, the consumer of the library can

import all the needed components simply by using the library name (Figure 4)

21

Turku University of Applied Sciences Thesis | Hanna Järveläinen

instead of having to import every component separately and to know the path of

every component.

Figure 4. Importing the components in the consuming project.

5.3 Restructuring and updating the code

The code style in the original application was not consistent; it contained class

components and function components, and the structure of the component files

varied. All the components added to the library were restructured to follow the

same coding style and structure. All components were changed to arrow

function components, types were moved to separate type files, component

specific styles were moved to the bottom of the component file, component

properties were destructured as they were passed to the component, and

repetitive code was restructured by simplifying it. In addition, some components

were combined either to simplify the structure and enhance readability or

because they were so similar that most of the code in them was identical.

All the types were checked. Many types of component properties were referring

to the data of the original application, so they had to be generalized. Types of

properties passed to React and React Native built-in components were checked

and updated to follow the types of the built-in components’ properties. Importing

images to component files gave different type and module errors, so a

declaration file had to be created for images to match React Native’s property

type of images. The declaration file content is shown in Figure 5.

22

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Figure 5. Declaration file for images.

All the third-party libraries used in the original application’s components were

checked and updated to newer versions.

Because most of the component names referred to their location in the original

application, many components were renamed to give them a more general

name that would describe their functionality better.

5.4 Documentation

All documentation of the project was written in README file. Instructions were

written for how to install and use the library in a project, and how to get a local

copy of the project repository from GitLab and how to get it running for further

development and testing. A chapter was written for every component in the

library. For every component, a short description was written, at least one

example image was added, and all the component properties were listed with

information about the input values with their types and optionality. Example

inputs were given when thought necessary. An example of a component’s

documentation is shown in Figure 6.

23

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Figure 6. Example of a component's documentation.

In addition, JSDoc comments were added for every component. The comments

included the same property descriptions as in README file, so that the

descriptions could be seen by the consumer of the library while coding.

5.5 Styles

All the components in the library were created with default style taken from the

OmaToimari application. One of the most important requirements was to be

able to modify the style so that the future applications could have their own

distinctive styles. The challenge was to create clear-to-use components without

too many properties but to keep them as versatile as possible. Therefore, all the

style properties of the components inside the library components were analyzed

to decide which ones were essential to create distinctive style. Optional style

object properties with descriptive names were created for all these styles.

These style objects were passed to the subcomponents as arrays where the

first item contained the default style object, and the second item contained the

24

Turku University of Applied Sciences Thesis | Hanna Järveläinen

customized style object as shown in Figure 7. In this way, the custom style

would overwrite the original style attributes in case they were overlapping.

Figure 7. A component with an array of style objects.

The style properties were decided to be style objects, so all the React Native’s

style attributes could be used to customize the style. As a result, the style of the

components could be customized extensively, as shown with an example

component in Figure 8.

Figure 8. A component with default and customized styles

5.6 Questionnaire components

The process of bringing the components in questionnaire screen to the library is

discussed in this chapter. There were three components to be brought to the

library: ProgressBarButton, ProgressBar, and QuestionAnswerArea.

The components with their original and new names are lister in Table 2.

25

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Table 2. Components in questionnaire screen.

Original component name Component name in the library

ProgressBarButton StyledButton

ProgressBar ProgressBar

QuestionAnswerArea AnswerSlider

ProgressBarButton component was renamed StyledButton. The original

component file contained two fairly simple components. The first one was used

only in the second component, it was not exported from the file, so the two

components were combined to make the code more readable. Customizable

style properties were added for the text, the button container, and the shadow.

ProgressBar component relied heavily on the data of the original application,

and it also contained two buttons with many hard-coded options for the text in

the buttons. To make the component more versatile, the buttons were removed,

and the properties of the components were simplified so that they only included

the total number of circles, the number of colored circles, and the color of the

circles. Most of the original code consisted of evaluating the buttons’ texts to be

shown and onPress callbacks for pressing the buttons, so the component code

simplified remarkably.

QuestionAnswerArea was renamed AnswerSlider. The original

component contained text above and under the slider referring to the original

application, so the component was simplified by removing these texts to leave

only the core slider functionality: slider with a thumb, pressable plus and minus

icons, and the chosen value. The original slider was not allowed to go to zero,

so a Boolean property was added to the library version to determine whether

zero was an allowed value or not. In addition, maximum value property was

added, so the range could be modified. Many properties came from a complex

object type including properties that were not needed anymore, so the object

was changed to two simple properties: start value and on change callback.

26

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Finally, ten different style objects and color reference properties were added

due to the complexity of the component.

5.7 Questionnaire summary components

Questionnaire summary screen included the components listed in Table 3.

Table 3. Components in questionnaire summary screen.

The similar modifications were applied to the components listed in Table 3 as

for questionnaire components as explained in chapter 5.6. The code of two

components, QuestionnaireSummaryGraph and

QuestionnairePreviewContent, was so similar that these components

were combined into one component.

5.8 Planning components

The components in planning screen are listed in Table 4.

Original component name

Component name in the library

QuestionnaireHistoryGraph HistoryGraph

QuestionnaireSingleGraph GroupGraph

SummaryButtonBar SummaryButtonBar

QuestionnaireSummaryGraph and

QuestionnairePreviewContent

ButtonBarGraph

ScrollViewWithIndicator ScrollViewWithIndicator

27

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Table 4. Components in planning screen.

Original component name Component name in the library

QuestionnaireSelectThreeToPlan SelectionList

Checkbox Checkbox

QuestionnairePlanTabContent ListContainer

QuestionnairePlanDateModal SelectDays

QuestionnaireAddPlanModal and

QuestionnaireEditPlanModal

InputModal

The similar modifications were applied to the components listed in Table 4 as

for questionnaire components as explained in chapter 5.6. The code of two

components, QuestionnaireAddPlanModal and

QuestionnaireEditPlanModal, was so similar that these components were

combined into one component.

5.9 Publishing

The process of creating a build of the project and publishing it is described in

this chapter. Modifications had to be made in tsconfig.json and

package.json files, and configuration had to be created to set the package

configuration to point to GitLab’s package registry.

Before creating the build, tsconfig.json file was updated to follow

TypeScript’s own recommendations for library projects [4]. Most notable change

was to add a setting for declaration files to be created. Declaration files are

needed to bring the types to the consuming project, since the types are

removed from the files as they are converted to JavaScript files. As TypeScript’s

tsc command was needed to create the declaration files in addition to type

28

Turku University of Applied Sciences Thesis | Hanna Järveläinen

checking, tsc was also used for creating the build. Test and Storybook files

were excluded from the build as shown in Figure 9.

Figure 9. Part of tsconfig.json configuration.

At first, tsc command did not output any files, it only checked types. Finally, the

reason was found from React Native’s base TypeScript configuration that was

extended in the project’s tsconfig.json file. React Native applications are

usually compiled with Babel, so noEmit was set to false in the base

configuration preventing tsc from compiling files. This setting could be

overwritten by setting noEmit option to true. In addition, outDir folder was set

so that the files to be published would be in a separate folder from the

development files.

Also package.json had to be modified. Dependencies were checked and

updated. Most of the dependencies were listed right, but some essential

dependencies, like React and React Native, were moved under peer

dependencies. Private setting was true by default, and it had to be changed

to false to be able to publish the library. Files configuration was added to

determine which files would be included in the published package. Only the

compiled files were added to the list.

The project was renamed @diginavi-library/diginavi-mobile-app-

library to follow GitLab’s instructions for publishing an npm package in their

package registry [23]. Main and types had to be updated to point to the build’s

29

Turku University of Applied Sciences Thesis | Hanna Järveläinen

main and type files. These modifications are shown in Figure 10.

PublishConfig was added with registry set to the project’s GitLab package

registry URL.

Figure 10. Part of package.json configuration.

To be able to publish a package in GitLab, a personal access token had to be

created with read and write package registry permissions. .nmprc file was

created to the root of the project with content following GitLab’s instructions as

shown in Figure 11 [23].

Figure 11. Example content of .npmrc file

After the configurations were done, the library was published as a package

using the command line. Semantic versioning was used, and after several test

publications, an official version 1.0.0 was published.

30

Turku University of Applied Sciences Thesis | Hanna Järveläinen

6 Testing

React Native’s testing documentation goes through component testing that is

put under unit and integration testing categories [24]. The library consists of

only UI components that don’t depend on other sources, so most of the tests

written for the library could be considered unit tests. Some components were

created using other components in the library, so testing of these components

could be seen as integration tests as well. As the library consists of only UI

elements without business logic, the above-mentioned tests were seen

sufficient.

Jest is a popular JavaScript testing framework that works with TypeScript,

Node.js, and React [25]. In addition, React Native’s own documentation guides

to use Jest for testing [24]. Furthermore, Expo has documentation and

additional packages to support testing with Jest [26], so Jest was chosen to be

the testing framework for this project. To be able to simulate user interactions in

tests, React Native Testing Library was added, too. Its API contains methods for

example to fire events like changing text input or pressing components [24].

However, native features cannot be tested with React Native Testing Library,

since the tests will not run on a mobile operating system but in Node.js

environment. In addition, screen size cannot be mocked because of the same

reason.

The original OmaToimari mobile app did not have any written tests, so all the

tests for this project had to be written from the beginning. However,

OmaToimari had been tested several times manually by the development team,

customer, as well as external testing team, so no big bugs were expected to be

found.

In total 164 tests were written. Next, different test cases will be discussed on a

general level. As suggested by Dodds [27], the tests were written to rely on the

elements the same way as a user would rely on them whenever it was possible.

This means that for example a button would be accessed by finding the text on

it instead of finding it by a class name that the user will not see. Nevertheless,

31

Turku University of Applied Sciences Thesis | Hanna Järveläinen

many elements had to be accessed using the components’ testID property.

For example, pressing a button that only has an icon on it could not be

accessed without a testID property.

Testing the components with graphs was challenging since the graphs were

rendered as images without any properties that could be found using the Jest

queries. Graphs were tested mainly visually using Android Emulator, and Jest

could be used only to check that correct number of child components are

rendered when accessing the parent element that contained the graph image.

Also, testing icons had similar challenges. Although FontAwesome5

components used in the project accepted testID property, icons were

rendered as empty Text components without any properties. Because of this,

icons were tested the same way as graphs.

Styles were tested to check that the custom styles get combined with the default

style and that custom styles are applied over default styles. In addition, it was

tested that an array of style objects could be passed to the built-in components.

React Native’s Modal component has an onRequestClose property which is

called when the user taps the hardware back button on Android. This could not

be tested using Jest since it is a native feature, so it was tested manually using

Android Emulator.

When checking that a correct item in a selection list is checked with a check

mark as demonstrated in Figure 12, dynamic testIDs were created as shown

in Figure 13 to be able to first query for the parent component that contained

both the text and the check mark.

32

Turku University of Applied Sciences Thesis | Hanna Järveläinen

Figure 12. SelectDays component with two days checked.

Figure 13. Parent component with dynamic testID property.

After that, it could be verified that the Text component with correct text and a

check mark image were both present in the parent component as shown in

Figure 14.

Figure 14. Querying a parent element with a dynamic testID and accessing the

child elements.

After the library was published, the published package was tested by installing it

to a new project, importing and using all the components in the code, and

33

Turku University of Applied Sciences Thesis | Hanna Järveläinen

checking that the components work when the project was run on Android

Emulator.

34

Turku University of Applied Sciences Thesis | Hanna Järveläinen

7 Conclusion

The goal of this thesis was to create a private UI component library from

components of already existing mobile applications. All the “must have” and

“should have” prioritized requirements were fulfilled. In total, 16 components

with customizable styles were brought to the library and tested. Documentation

was created for both the future consumers and possible developers of the

library. Furthermore, the library was published as a private package with

controlled access.

As the library relies on other JavaScript libraries and frameworks, such as

React Native and Expo, the library must be maintained and updated as these

dependencies are updated to ensure that it works with the newer versions that

will likely be used in the future consumer applications.

For future development, more components could be brought to the library from

the original applications. In addition, when new components are created for

commissioner’s new applications, they could be first created and tested in

isolation in the library, and after that be brought to the consuming application.

This way the components would be available for other applications as well with

the same workload, and the testing of the application could concentrate on

testing the business logic, as the functionality of the component has already

been tested in the library.

The process of creating a library is different from creating an application. When

creating a library, the result will be used by another developer in another

project. When the needs of the consumer are not known, the developer of the

library must take into consideration different possibilities and balance between

versatility and simplicity. Also, the configuration is different, and there are less

sources for creating and configuring a library than an application. This led to

many trials and errors especially in the publication stage, and TypeScript with

hundreds of configuration options added challenge in locating the problems.

Furthermore, the frontend development tools are mainly created for web

development, and they don’t work as seamlessly with mobile app development

35

Turku University of Applied Sciences Thesis | Hanna Järveläinen

and may lack features and make configuration and debugging more time

consuming. Despite the large number of challenges, they were all conquered

and a working library was achieved.

During this thesis, I learned about the differences between developing an app

and a library; how it affects the configuration and how in the library versatility

needs to be considered. I had not done much testing before this project, so I

gained a lot of knowledge in testing.

Looking back at the project, I would do a little test publication at an early stage,

with only one component, to have less issues to debug if the library doesn’t

work. I tested different tools before choosing the ones used in the project, so I

am confident that I chose the best ones for the needs of the project and would

not change them if I had to restart from the beginning.

36

Turku University of Applied Sciences Thesis | Hanna Järveläinen

8 References

[1] Statista, "Most used programming languages among developers

worldwide as of 2023," June 2023. [Online]. Available:

https://www.statista.com/statistics/793628/worldwide-developer-survey-

most-used-languages/. [Accessed 28 September 2023].

[2] Mozilla, "JavaScript technologies overview," [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/JavaScript_technologies_overview. [Accessed

15 January 2024].

[3] Microsoft , "TypeScript for the New Programmer," [Online]. Available:

https://www.typescriptlang.org/docs/handbook/typescript-from-

scratch.html. [Accessed 15 January 2024].

[4] Microsoft, "Modules - Choosing Compiler Options," [Online]. Available:

https://www.typescriptlang.org/docs/handbook/modules/guides/choosing-

compiler-options.html#im-writing-a-library. [Accessed 25 January 2024].

[5] OpenJS Foundation, "Introduction to Node.js," [Online]. Available:

https://nodejs.org/en/learn/getting-started/introduction-to-nodejs.

[Accessed 26 January 2024].

[6] R. Ruk, "How to start with JavaScript library development," 24 August

2020. [Online]. Available: https://dev.to/bornfightcompany/how-to-start-

with-javascript-library-development-40mb. [Accessed 29 January 2024].

[7] npm, "About npm," [Online]. Available: https://www.npmjs.com/about.

[Accessed 14 February 2024].

[8] npm Docs, "npm," 12 January 2023. [Online]. Available:

https://docs.npmjs.com/cli/v10/commands/npm. [Accessed 14 February

2024].

[9] O. Hutsulyak, "10 Key Reasons Why You Should Use React for Web

Development," TechMagic, [Online]. Available:

37

Turku University of Applied Sciences Thesis | Hanna Järveläinen

https://www.techmagic.co/blog/why-we-use-react-js-in-the-

development/#:~:text=React%27s%20component%2Dbased%20architect

ure%20allows,maintainability%2C%20scalability%2C%20and%20flexibilit

y.. [Accessed 16 January 2024].

[10] Meta Open Source, "Your First Component," [Online]. Available:

https://react.dev/learn/your-first-component. [Accessed 16 January 2024].

[11] Microsoft, "JSX," [Online]. Available:

https://www.typescriptlang.org/docs/handbook/jsx.html. [Accessed 15

January 2024].

[12] Meta Open Source, "Start a New React Project," React, [Online].

Available: https://react.dev/learn/start-a-new-react-project. [Accessed 16

January 2024].

[13] Meta Open Source, "Core Components and Native Components,"

[Online]. Available: https://reactnative.dev/docs/intro-react-native-

components. [Accessed 29 January 2024].

[14] Expo, "Core concepts," [Online]. Available: https://docs.expo.dev/core-

concepts/. [Accessed 29 January 2024].

[15] Google, "Run apps on the Android Emulator," [Online]. Available:

https://developer.android.com/studio/run/emulator. [Accessed 29 January

2024].

[16] Chroma Software, "Why Storybook?," [Online]. Available:

https://storybook.js.org/docs/get-started/why-storybook. [Accessed 30

January 2024].

[17] GitLab, "Platform," [Online]. Available: https://about.gitlab.com/platform/.

[Accessed 30 January 2024].

[18] K. Brush, "MoSCoW method," TechTarget, March 2023. [Online].

Available:

https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-

method. [Accessed 29 January 2024].

38

Turku University of Applied Sciences Thesis | Hanna Järveläinen

[19] Meta Open Source, "Using TypeScript," React Native, [Online]. Available:

https://reactnative.dev/docs/typescript#:~:text=How%20TypeScript%20an

d%20React%20Native,tsc%20for%20newly%20created%20applications..

[Accessed 16 January 2024].

[20] npm, Inc., "npm," [Online]. Available: https://www.npmjs.com/. [Accessed

30 January 2024].

[21] OpenJS Foundation, "ESLint Core Concepts," [Online]. Available:

https://eslint.org/docs/latest/use/core-concepts. [Accessed 23 February

2024].

[22] Prettier, "What is Prettier?," [Online]. Available: https://prettier.io/docs/en/.

[Accessed 23 February 2024].

[23] GtiLab, "npm packages in the package registry," [Online]. Available:

https://docs.gitlab.com/ee/user/packages/npm_registry/. [Accessed 25

January 2024].

[24] Meta Open Source, "React Native Testing," [Online]. Available:

https://reactnative.dev/docs/testing-overview. [Accessed 10 November

2023].

[25] Meta Open Source, "Jest," [Online]. Available: https://jestjs.io/. [Accessed

10 November 2023].

[26] Expo, "Expo Docs," [Online]. Available:

https://docs.expo.dev/develop/unit-testing/. [Accessed 10 November

2023].

[27] K. C. Dodds, "Making your UI tests resilient to change," 7 October 2019.

[Online]. Available: https://kentcdodds.com/blog/making-your-ui-tests-

resilient-to-change. [Accessed 25 January 2024].

[28] Callstack Open Source, "React Native Testing Library FAQ," [Online].

Available: https://callstack.github.io/react-native-testing-library/docs/faq.

[Accessed 10 November 2023].

[29] Khan Academy, "What's a JS library?," [Online]. Available:

https://www.khanacademy.org/computing/computer-programming/html-

39

Turku University of Applied Sciences Thesis | Hanna Järveläinen

css-js/using-js-libraries-in-your-webpage/a/whats-a-js-library. [Accessed

29 January 2024].

[30] npm Docs, "registry," 5 January 2023. [Online]. Available:

https://docs.npmjs.com/cli/v10/using-npm/registry. [Accessed 14 February

2024].

	List of abbreviations
	1 Introduction
	2 Technologies
	2.1 JavaScript
	2.2 TypeScript
	2.3 Node.js
	2.4 Libraries
	2.5 React
	2.6 React Native
	2.7 Expo
	2.8 Android Emulator
	2.9 Storybook
	2.10 GitLab

	3 Requirements
	3.1 The access to use the library is controlled
	3.2 Components’ styles can be modified

	4 Architecture of the module library
	4.1 Programming language
	4.2 Rendering tool
	4.3 Publication platform

	5 Implementation of the library
	5.1 Creating the base project
	5.2 Directory structure
	5.3 Restructuring and updating the code
	5.4 Documentation
	5.5 Styles
	5.6 Questionnaire components
	5.7 Questionnaire summary components
	5.8 Planning components
	5.9 Publishing

	6 Testing
	7 Conclusion
	8 References

