
Mobile App & Backend Integration for

Streamlined Library Operations:

Approach with Cutting-Edge

Technology

Richard Zilahi

2023 Laurea

Laurea University of Applied Sciences

Mobile App & Backend Integration for Streamlined Library

Operations: Approach with Cutting-Edge Technology

Richard Zilahi

Business Information Technology

Thesis

November 2023

Laurea University of Applied Sciences Abstract

Business Information Technology

Web and Mobile Application Development

Richard Zilahi

Mobile App & Backend Integration for Streamlined Library Operations: Approach with

Cutting-Edge Technology

Year 2023 Number of Pages 88

This thesis details the development and implementation of a cutting-edge mobile application

using TypeScript and cloud technologies. Employing an agile development methodology

complemented by user-centered design principles, the study aimed to create an intuitive and

user-friendly mobile app. The research journey encompassed several stages, including

requirements gathering, UX research, UI design, back-end development, and cross-platform

app implementation, all dedicated to delivering a seamless user experience.

The initial phase involved conducting user research to gather insights, learn about the target

user groups, and establishing comprehensive user needs and preferences. These insights were

instrumental in crafting a robust UX design plan that aligned the app’s interface with user

expectations. Iterative design and prototyping identified and addressed usability and

interaction challenges, refining the user experience.

Leveraging React Native and Expo’s latest SDK, the app’s implementation ensured robustness

and scalability, enhancing performance, security, and extensibility. Employing Test Driven

Development facilitated iterative development cycles, allowing continuous improvement and

flexibility in adapting to evolving requirements. Regular feedback loops with stakeholders and

users further refined the app’s functionality.

Contents

1 Introduction . 8

1.1 Choosing the case . 8

1.2 Defining of the problem . 8

1.3 Thesis structure . 8

2 User Experience Research . 10

2.1 Design Thinking . 10

2.2 Empathize . 10

2.2.1 Understanding User Context 10

2.2.2 User Persona Creation . 11

2.2.3 User Interviews and Surveys 13

2.2.4 Empathy Maps . 14

2.2.5 Defining the Research Objectives 17

2.2.6 Summary of Empathize Phase 18

2.3 Defining the Problem . 19

2.3.1 Problem Definition . 19

2.3.2 Brainstorming . 20

2.4 Prototype: Design and Development . 21

2.4.1 Wireframe . 21

2.4.2 Prototype . 26

2.4.3 UI Design . 28

3 Development . 32

3.1 Development Environment . 32

3.1.1 Project Structure . 32

3.1.2 Monorepo . 32

3.1.3 nx . 33

3.1.4 Workspaces . 33

3.1.5 Git Repository . 33

3.1.6 ESLint . 38

3.2 Deployment . 40

3.2.1 Github Actions . 40

3.2.2 Release strategy . 42

4 Technologies . 44

4.1 TypeScript . 44

4.2 React Native . 44

4.2.1 Expo . 45

4.3 NestJS . 46

4.4 Database . 48

4.5 AWS & CDK . 49

5 Implementation . 51

5.1 AWS Stack . 51

5.1.1 Backend Stack . 52

5.1.2 Static stack . 54

5.2 Mobile Application . 56

5.2.1 Application structure . 57

5.2.2 Design & UI . 57

5.2.3 Navigation . 59

5.2.4 Data Fetching Abstraction . 64

5.2.5 User & Auhtentication . 67

5.3 Backend . 69

5.3.1 Localization . 69

6 Database . 71

6.1 Database Schemas . 71

6.2 Book Schema . 71

6.3 User Schema . 72

6.4 Borrow Schema . 73

7 Testing . 74

7.1 Test-Driven Development . 74

7.2 Backend testing . 74

7.2.1 Test coverage . 76

7.3 App testing . 77

7.3.1 Test coverage . 79

8 Documentation . 80

8.1 Types of Documentation . 80

8.2 Documentation Best Practices . 80

8.3 Utilized Documentation Tools . 80

8.3.1 Server Side . 81

8.3.2 Mobile Application . 81

9 Next Steps . 84

9.0.1 Generalizing the idea . 84

10 Conclusions . 85

8

1 Introduction

In today’s rapidly evolving digital landscape, mobile applications have become an integral part

of our daily lives, providing convenience, connectivity, and entertainment. The development

of mobile apps requires a detailed approach, utilizing the latest technologies and

methodologies to ensure a seamless user experience. This thesis explores the creation of a

mobile application for a free, community driven library in Satakunta, Finland, employing the

most modern JavaScript and TypeScript technologies, coupled with an agile development

methodology and a user-centered design framework. By leveraging these modern tools and

techniques, the study aims to demonstrate the effectiveness of this approach in delivering a

highly functional and user-friendly mobile application. Through the integration of interviews,

agile development methods, UX design principles, and cutting-edge technologies, this thesis

project provides valuable insights into the development process of modern mobile apps, and a

working usable cross-platform mobile application.

1.1 Choosing the case

The subject of my thesis work is an operating community driven library, which is located in

Satakunta, Finland. I have been participating in the creation of this library. The library is a

free library, which is open to everyone. While the library is still in its infancy, it has already

gained a lot of popularity in the local community. Since the library is basically a charity

project, it has no funding, therefore it soon became clear that the library maintenance work

will require some kind of automation, and as well as a log or registry of the books that are

being borrowed. While the main focus was on helping the staff personnel of the library, the

idea of helping at the same time for the users of the library was also considered. The idea of a

mobile application, together with a set of administrative featured was born.

1.2 Defining of the problem

The problem that this thesis work aims to solve it to provide a comprehensive end-to-end

solution for a free-to-use community library. The day-to-day operations of the library are

currently not automated, there’s no log or registry of the books that are being borrowed, and

the administrative personnel of the library has no way to keep track of the books.

Additionally, there is no framework provided for the visitors of the library to donate their own

books, due to the lack of database of what books are available in the library. This is a complex

problem, which requires a comprehensive solution, which satisfies the needs of both the

administrative personnel of the library, and as well as the visitors of the library. Apart from

the technical challenges of the implementation, the whole architecture stack must be easy to

maintain, develop further, and do to the free community drive nature of this library, the

entire application stack must be very cheap to run.

1.3 Thesis structure

The thesis has two main focus idea: UX / UI related work, and the technical implementation of

the mobile application and the backend.

The UX and UI work is discussed in the first part of the thesis. The UX work conducts

hypothesis analyses, interviews, user research by personas, and user stories. Providing

solutions to the related problems, and creating prototypes throughout multiple iteration of the

9

mobile application.

The technical implementation of the mobile application and the backend is discussed in the

second part of the thesis. This part of the thesis will discuss in great details the development

process, the architectural decisions, and codebase and the implementation in general.

The closing part of the thesis will discuss the results of the thesis work, and the potential

enhancements that can be done in order to improve the application stack, and the user

experience.

10

2 User Experience Research

The primary objective of this UX research is to gain a comprehensive understanding of the

needs, preferences, and challenges faced by users when using the community-driven library.

My aim is to ensure that the application aligns with the expectations of the target audience,

which primarily comprises community members seeking easy access to information about

available books, new books, and their borrowing history. By assessing user information needs, I

intend to identify the specific types of content and functionalities that are most valuable to

the users of the library. Furthermore, I aim to gauge user satisfaction with the app’s existing

features and pinpoint any usability issues they may encounter during their interactions. This

research will not only enhance the overall user experience but also guide us in prioritizing

future feature development.

The purpose of this chapter is to describe the user experience research process, which was

conducted to gain a better understanding of the library’s target audience and their needs.

This chapter will discuss the research methodology, the research process, and the results of

the research, which was used to inform the design and development of the mobile application.

For the User Experience research, I utilized the Design Thinking process.

2.1 Design Thinking

Design thinking is a non-linear, iterative process that teams use to understand users, challenge

assumptions, redefine problems and create innovative solutions to prototype and test.

Involving five phases—Empathize, Define, Ideate, Prototype and Test—it is most useful to

tackle problems that are ill-defined or unknown.

2.2 Empathize

In this chapter, I will discuss how I gathered insights about the target users, their motivations,

frustrations, and unique circumstances. This chapter should focus on conducting, surveys, and

usability testing to empathize with the user personas.

2.2.1 Understanding User Context

In this chapter, I explore the foundational understanding of the unique context that defines

the lives of retirees in remote areas of Finland. Through extensive research and direct

interaction with the target users, I’ve gained profound insights into their daily challenges and

opportunities.

The users reside in small, communities nestled in the vast Finnish wilderness, where physical

distance poses a considerable barrier to accessing essential resources like a local library.

Geographical isolation and long travel times to the nearest library can be frustrating and

physically demanding, particularly for older individuals. This geographical context underscores

the critical need for a digital solution that bridges these physical gaps, making it easier and

more convenient for retirees to access a vast collection of books and educational materials.

These insights also reveal the significance of preserving local culture and fostering community

engagement. The users have a deep sense of pride in their remote communities and wish to

11

share their local culture and knowledge. They value social connections and desire a platform

that allows them to be able to comfortably browser the resources of the community driven

library.

The ”Empathize” phase has been instrumental in understanding the unique circumstances of

the target users, emphasizing the importance of not only convenient access to library

resources but also the facilitation of community connections and the preservation of local

culture. These insights serve as the cornerstone of the empathetic design approach, ensuring

that the subsequent phases of the project align closely with the needs and desires of

individuals in remote Finland.

2.2.2 User Persona Creation

As part of my UX research for the community library mobile app, I have delved into the critical

phase of User Persona Development. This process has enabled me to craft detailed and

empathetic user personas, each representing a distinct archetype among my target audience.

These personas serve as the embodiment of user characteristics, needs, and preferences,

allowing me to better empathize with and design for the real people who will ultimately use

my app.

The creation of user personas has proven to be a pivotal step in my UX research for the

community library mobile app. These personas, representing distinct archetypes within the

target audience, have provided invaluable insights and empathy into the diverse needs,

preferences, and motivations of potential users. Each persona brings to the forefront a unique

set of goals, frustrations, and aspirations.

Through persona research, I’ve gained a deeper understanding of the challenges these

individuals face in accessing library resources and the opportunities to enhance their library

experience through a mobile app. It’s evident that convenience, user-friendliness, and

community engagement hold paramount importance across all personas. The personas have

highlighted the varying skills and experiences of technological proficiency among the target

audience, emphasizing the need for a user interface that is not only intuitive but also

accessible to users of different skill levels.

In the process of identifying the target audience, I have meticulously crafted user personas

that serve as the compass in understanding and catering the needs of the primary users. The

target audience especially comprises retired individuals, facing the challenges of isolation.

These retirees, ranging in age from 40 to 70, represent a segment of the population that may

encounter limited access to conventional library services. Therefore, the primary goal is to

bridge this gap by developing a community-driven library mobile app that brings the library to

their fingertips, offering a sense of connection and access to a world of literature and

community engagement.

The group of my target audience, was guided by the unique challenges they face. Living in

remote locations, these individuals may find it challenging to access libraries nearby them,

making them an ideal demographic for a digital library solution. By addressing their specific

needs and preferences, I aspire to empower them with a user-friendly app that facilitates

book browsing, access to personal borrowing history, and seamless community

engagement—all without the need for complex sign-up or login procedures. The research and

12

design efforts are tightly aligned with these user personas, ensuring that every aspect of the

mobile app is tailored to enhance the library experience for this distinct audience.

The persona research results have not only provided a user-centered foundation for design and

development but have also sparked inspiration for feature prioritization. For instance, the

desire for advanced search functionality and efficient book tracking, as expressed by personas

like Seppo, suggests the importance of focusing on robust search and user library management

features. Simultaneously, personas like Aino underscore the significance of simplicity in the

usage of the app, to make it as simple as possible. By aligning my development efforts with the

personas’ goals and addressing their frustrations, I aim to create a mobile app that not only

meets but exceeds the expectations of the users, ultimately enriching their library experience.

Figure 1: Persona - Aino

13

Figure 2: Persona - Sanna

Figure 3: Persona Seppo

2.2.3 User Interviews and Surveys

This chapter explores the methodologies employed to gain a comprehensive understanding of

user needs and preferences. User surveys played a central role in empathizing with the

retirees’ unique circumstances. Through qualitative surveys1I gained insights into their

14

motivations, frustrations, and the experiences they seek in a community library mobile app.

These surveys provided a qualitative depth to my understanding. Simultaneously, quantitative

data from surveys helped validate trends and preferences identified through the personas,

ensuring the understanding was well-rounded and representative of the broader user base.

The chapter details the process of conducting surveys, the questions asked, and the insights

gleaned from these interactions.

My user survey was designed to be conversational and open-ended, allowing participants to

freely express their thoughts and experiences. I aimed to explore how Aino, Seppo, and Sanna

typically accessed books and engaged in cultural and intellectual activities in their

communities.

The insights I gathered through the surveys were invaluable. Aino, ”The Enthusiastic Reader,”

expressed her passion for reading and her goal of ensuring that the app is accessible and

user-friendly for individuals of all ages, especially older neighbors who may not be tech-savvy.

Aino’s frustration lies in complex technology; she would be dissatisfied with an app that is

overly complex or requires extensive technical knowledge.

Seppo, ”The Tech-Savvy Explorer,” shared his aspiration to stay mentally active in retirement

through reading and learning. He emphasized the importance of a simple and intuitive

interface in the app. Seppo’s frustration stems from a complex user interface, and he seeks a

design that is straightforward and clutter-free.

Sanna, ”The Lifelong Learner,” highlighted her desire for convenient access to a library’s vast

resources, without the need to travel to a physical location, just to browse books, she might or

might not like. Her goal is accessibility, especially for those with limited physical mobility.

Sanna’s frustration centers on the physical limitations of traveling to the library, which can be

challenging in her remote location.

Complementing these surveys provided quantitative data to validate trends and preferences

identified through the user personas and surveys. Participants were asked about their reading

habits, technological proficiency, and expectations from a digital library app. This quantitative

data allowed me to confirm my hypothesis and gain a broader understanding of the user base.

The results of the surveys were synthesized to identify common patterns, preferences, and

challenges. For instance, the desire for user-friendliness, advanced search capabilities, and

convenient access were universally desired. The app’s design needed to be simple and

intuitive, avoiding complexity, to meet the preferences of users like Aino and Seppo. Sanna’s

emphasis on convenience and accessibility was a recurring theme.

The ”User Interviews and Surveys” phase served as a vital bridge between understanding the

user context and creating user personas. It allowed me to empathize deeply with the lives and

aspirations of Aino, Seppo, and Sanna and ensured that my design approach was rooted in their

real needs and desires. These insights form the foundation upon which I define the problem

statement and set user-centered goals in the subsequent phases of the project.

2.2.4 Empathy Maps

In the pursuit of creating a user-centered digital library app the integration of empathy maps

played a pivotal role in guiding the design process. These empathy maps served as a tangible

15

representation of the deep understanding I had gained about the target users, Aino, Seppo,

and Sanna. With a focus on the ”Says,” ”Does,” ”Thinks,” and ”Feels” categories, the

empathy maps provided a multidimensional view of the personas, allowing to effectively

empathize with their unique perspectives and needs.

The empathy maps played a critical role during the ”Empathize” phase of the design thinking

process. By visualizing the thoughts, emotions, and actions of the personas, I gained valuable

insights into their daily lives and aspirations. These visual representations of Aino’s, Seppo’s,

and Sanna’s experiences helped to align the design decisions with their specific preferences

and frustrations.

For Aino I could see her passion for reading, her inclination towards inclusivity, and her

apprehension regarding complex technology. This insight informed the decisions to prioritize

user-friendliness and accessibility in the app’s design, ensuring that it could be comfortably

used by individuals of all ages.

Figure 4: Aino Empathy Map

Seppo demonstrated a thirst for learning and an appreciation for intuitive interfaces. With this

understanding, I aimed to simplify the app’s user interface and provide advanced search

16

capabilities, ensuring a seamless experience for users like Seppo.

Figure 5: Seppo Empathy Map

Sanna emphasized the importance of convenient access and inclusivity, particularly for

individuals with limited physical mobility. Her empathy map underscored the significance of

designing an app that allows users to access a wealth of educational materials from the

comfort of their homes.

17

Figure 6: Seppo Empathy Map

Incorporating these empathy maps into the design process allowed us to make informed,

user-centered decisions at every stage. They served as a constant reminder of the real people

who would be using the digital library app, ensuring that the design choices aligned with their

goals and values. Ultimately, the empathy maps were a powerful tool in creating a digital

library app that genuinely caters to the needs and desires of the target users.

2.2.5 Defining the Research Objectives

The ”Empathize” phase, as a vital component of the design thinking process, served as the

bridge to understanding the users deeply. However, to channel the explorations effectively, it

was compulsory to define clear research objectives. These objectives acted as compass,

guiding the investigations and ensuring that the ultimate target has remained aligned with the

project’s goals.

First and foremost, the research objectives were centered on unraveling the unmet needs and

desires of the target users, Aino, Seppo, and Sanna. The outstanding objective was to identify

the primary challenges they faced in accessing books and participating in intellectual pursuits.

18

Understanding these challenges would pave the way for the mobile app to become a

meaningful solution.

A secondary objective was to unearth any preconceived notions or misconceptions the users

might have about digital library apps. By identifying any barriers that could be stemming from

misconceptions, I could develop strategies to overcome resistance to adopting new technology.

Moreover, the research objectives extended to recognizing the expectations of the users. I

aimed to uncover what Aino, Seppo, and Sanna anticipated from a digital library app. This

involved exploring their ideas about user-friendliness, accessibility, content availability, and

community engagement. The goal was to bridge the gap between user expectations and app

functionality.

Additionally, I aimed to delve into the potential emotional and social factors at play in their

lives. This involved understanding how reading and learning enriched their lives and provided

opportunities for personal growth and community connection. This objective would help us

design an app that not only satisfied functional needs but also resonated with the emotional

aspects of their experiences.

Defining the research objectives was an essential step in the ”Empathize” phase. These

objectives focused the research efforts and ensured that every exploration and insight

gathering activity was purpose-driven. By addressing these objectives, I aimed to create a

digital library app that truly responded to the unmet needs and aspirations of the users,

enabling them to embrace a world of knowledge and community engagement from the comfort

of their homes.

2.2.6 Summary of Empathize Phase

In the ”Empathize Phase” of the design thinking journey, I ventured into the world of potential

users, retirees living in the remote corners of Finland. This phase was the gateway to

comprehending their unique needs and desires, ensuring that the subsequent stages of the

project would be deeply rooted in their realities. To accomplish this, I employed a

multifaceted approach, including user interviews, surveys, observations, and the creation of

empathy maps.

User surveys became the cornerstones of the research during this phase. Engaging in

one-on-one conversations with potential users allowed me to glean profound insights. Through

these interactions, Aino, vividly conveyed her fervent desire for inclusivity and

user-friendliness in the app. Her insistence on clear, understandable instructions highlighted

the importance of making the app accessible to individuals of all ages, especially older users

like herself. Meanwhile, Seppo consistently reiterated his preference for simplicity and

intuitiveness in the app’s interface. Advanced search capabilities were a top priority for him.

Sanna emphasized the significance of convenient, digital access to the library, eliminating the

need for physically traveling to a distant library location.

Observation and the creation of empathy maps provided an additional layer of insight. I

witnessed the daily routines, struggles, and moments of joy experienced by retirees in remote

regions. This immersive experience allowed me to better appreciate their challenges and

triumphs. The empathy maps, in particular, were instrumental in visualizing the personas’

thoughts, actions, emotions, and expressions. These visual representations of the personas

19

served as constant reminders of the real people who would be engaging with the app.

In summary, the ”Empathize Phase” laid a robust foundation for the design thinking process. It

unearthed profound insights into the users’ lives, ensuring that the design choices remained

user-centered throughout the project. The firsthand perspectives of Aino, Seppo, and Sanna,

brought to life through interviews, surveys, observations, and empathy maps, were

instrumental in guiding the approach and fostering a deep sense of empathy for the target

users. This phase was instrumental in creating a digital library app that truly caters to the

needs and aspirations of it’s users.

2.3 Defining the Problem

In the journey to create a user-centered library app, I have traversed the foundational

”Empathize” phase, gaining profound insights into the lives, aspirations, and unique

circumstances of the target users. With a clear understanding of their needs and desires, I now

embark on the ”Defining the Problem” phase, a pivotal stage in the design thinking process.

This chapter marks our transition from empathizing with the users to crafting a precise

problem statement that encapsulates the core challenges I aim to address. Here, I delve into

the intricacies of articulating a problem that resonates with the experiences and frustrations

of the users, setting the stage for the ideation and solution development to come.

The essence of ”Defining the Problem” lies in narrowing down our focus from a broad

understanding of user needs to a specific issue that can be resolved through the library app. As

I proceed, I will explore the intricacies of problem definition and the methodologies employed

to ensure its clarity and relevance. The problem definition sets the direction for the design

and development phases, guiding our efforts toward creating an app that genuinely serves the

the community. In this chapter, I will explore the process of problem articulation, user story

development, and the crafting of a problem statement that describes the central challenge

the app seeks to overcome.

2.3.1 Problem Definition

The problem comes from the lack of accessible and user-friendly digital platform, which offers

browsing the library’s resources, tailored to the unique needs of the target users. Aino, seeks

an app that is inclusive and accommodating for individuals of all ages, including her older

neighbors who may not possess advanced technological skills. Seppo, values simplicity in an

app’s user interface and desires advanced search capabilities, which are currently beyond his

reach. Sanna, yearns for the convenience of accessing a vast digital library without the need

for arduous journeys to physical locations. Her frustration arises from the physical limitations

of traveling to a library.

The problem definition revolves around crafting an app that effectively addresses these user

needs and frustrations. It’s the challenge of creating a platform that not only provides easy

access to a rich repository of books but also ensures that the app’s user interface is intuitive,

even for those who are not having deep technical knowledge. Moreover, it’s about developing

a solution that mitigates the need for physical mobility, ensuring that Sanna and others like

her can engage with the app from the comfort of their homes. The problem statement is,

therefore, rooted in the goal of creating a bridge to connect these users with the world of

knowledge and with the joy of reading, fostering a sense of community, and eliminating the

20

digital divergence they currently face.

2.3.2 Brainstorming

The next phase of the UX research process is to brainstorm ideas for the library app. This

phase is critical to the design thinking process, as it allows me to explore a wide range of

potential solutions to the problem statement. The brainstorming process is a creative exercise

that encourages me to think outside the box and consider all possible solutions, no matter how

unconventional they may seem. This phase is also an opportunity to collaborate with others

and gain new perspectives on the problem statement.

I used this phase to brainstorm potential features, functionalities, and design elements for the

library app. I explored ideas for the app’s user interface, including the layout, color scheme,

and typography. I also considered the app’s functionality, including the search capabilities,

book tracking, and community engagement features. The brainstorming process allowed me to

think creatively and explore a wide range of ideas, ultimately leading to the development of a

robust feature set for the app.

Figure 7: Brainstorming Map

The brainstorming process focused on the outcome of the User Persona research phase, which

pinpointing the main pinpoints of the users. This includes the simple user interface, the

advanced search capabilities, and the overall convenient access to the library.

To keep the application simple, there is no signup or login process. The user can start using

the application right away, without any hassle. This way the registration, the need of

remembering their account, and password, the user confirmation, and the email verification is

eliminated.

The next main thing is the search capabilities. The user can search for books by title, author,

or ISBN. The search results are displayed in a list, where the user can see the book’s title,

author, and the cover image. The user can also see the book’s availability. The user can also

filter the results by the book’s availability.

Some features are derived from the maintainability of the library. The admin personnel of the

library should be aware at all times, which books are currently borrowed, and which books are

available. In order to make this happen, I needed to design a process, which is easy to use for

the users, but also gives the needed information for the people who are running the book.

This process is done via QR codes. Every book is given a QR code. The users need to read this

QR code within the app when they are borrowing. When they are returning the book, they just

need to press a simple button in the app, to set the book as returned.

21

The application needs to be localized, so it’s available in both Finnish and English language.

It also needs to be cross-platform, so it’s easy to maintain, and it’s available for both Android

and iOS users.

2.4 Prototype: Design and Development

In this chapter of ”Developing Prototypes”, the ideas generated during the ideation and

brainstorming sessions begin to take shape. Here, I will explore the methodologies and

strategies employed to bring these creative concepts to life, paving the way for an interactive

and tangible representation of the app’s future.

The process of developing prototypes is essentially a process of iterative design. It involves

creating low-fidelity prototypes that offer a basic representation of the app’s key

functionalities. These early-stage prototypes are crucial for testing the feasibility of ideas and

ensuring that the envisioned features align with our problem definition and user personas.

The goal is to identify any usability issues or challenges early in the process, ensuring that the

final product is intuitive and user-friendly. User testing plays a pivotal role in this phase, as

we seek feedback from individuals who represent the target users. Their input is invaluable in

fine-tuning the prototypes.

As I develop and refine these prototypes, I maintain the user-centered perspective. Each

feature and functionality is scrutinized against the user personas and their goals. Aino’s need

for accessibility, Seppo’s preference for simplicity, and Sanna’s desire for convenience are all

taken into account. This ensures that our prototypes evolve in a manner that directly

addresses the users’ unique needs and frustrations.

The ”Developing Prototypes” phase is not merely about creating a blueprint for the app; it’s

about crafting a dynamic and interactive representation of the digital library experience I aim

to provide. In this chapter, I will delve into the methods employed to breathe life into our

ideas, the collaborative approach adopted, and the role of continuous user testing in shaping

the final product. As we move from prototypes to the final design, this phase ensures that the

target users are at the forefront of the design decisions made.

2.4.1 Wireframe

Firstly, I created a paper based wireframe, to start crafting the ideas based on the conducted

researches.

Paper-based wireframes are a form of low-fidelity prototyping in the field of UX design. They

are physical representations of a user interface or a product’s design, created using paper,

sketches, or other easily modifiable materials. Paper-based wireframes are often used in the

early stages of product development to quickly and cost-effectively test and refine design

concepts before moving on to more high-fidelity digital wireframes or final development. They

are not meant to replicate the final product’s visual design or functionality but rather to

capture the basic structure, layout, and user flow. This simplicity makes them ideal for

early-stage testing and ideation.

After drawing the wireframe first on paper, I’ve digitalized them using an online tool called

22

excalidraw2.

The wireframe showcases the layout, and the main user flow of the application.

Figure 8: Prototype

23

Figure 9: Prototype

24

Figure 10: Prototype

25

Figure 11: Prototype

It demonstrates the main screens of the application, the navigation, and the relation between

screens, and gives an overall idea of the direction the UI interface should take.

The main focus I had in mind when designing the prototypes and wireframes was simplicity,

and user-friendliness, as this was the main pinpoint of the users. The user interactions are

kept to the minimal, and the main features of the application is highlighted the most the

users. Therefore, the search, and the book borrow features.

The home screen should offer a few featured books, but also an intuitive way for the user to

be able to quickly browse through recommended books.

The profile screen lists the borrow history of the user, but at the same time it also clearly

highlights which are the books that are currently borrowed by them.

In the middle of the bottom tab bar, there is a floating button, which clearly outstands from

the rest of the buttons in the Tabbar navigator. The book borrow screen, which is accessibly

by this floating button, is where the borrowing flow takes place. Users can use their device’s

camera to scan the barcode of a book they want to borrow. The screen provides real-time

feedback and confirmation, making the borrowing process seamless and user-friendly.

After running the wireframes through a few user tests, I’ve decided to make some changes to

the wireframe, to make it more user-friendly. I’ve come to a realization, that placing an extra

user interaction between the QR code scanning, and the book borrowing is confusing.

Therefore, I decided, to iterate this idea, and making the borrowing process happen

26

immediately after the QR code had been scanned successfully. This way, the user doesn’t

need to press an extra button to confirm the borrowing, and made the entire process way

more user-friendly.

2.4.2 Prototype

After, the wireframe was finalized, I’ve started to work on the high fidelity prototype. The

high fidelity prototype is a more detailed version of the wireframe. It’s a more detailed

representation of the application, which is closer to the final product.

The first version of the prototype contains a more detailed mockup, and draws clear visual

representation of the hierarchy of the screens in the application. This already carries the first

idea of the layout and the arrangements of the UI elements across screens.

The other main purpose of the prototype was, to carefully design the navigation between the

screens. This was a challenging part, because it had to be kept minimal, intuitive, easy to

follow. Designing and implementing navigation stack in mobile application are always

challenging, to avoid deep nesting the screens, but still keep the navigation as simple as

possible.

During the prototyping session, the target, in the context of the navigation was to every main

feature of the application has to be one navigation away. The secondary features could be

available maximum two navigation away.

27

Figure 12: Wireframe

The above prototype is a blueprint representation of the application. It demonstrates the

ideal navigation, of keeping all the main features only one level deep in the navigation stack.

These main screens (and their features) are:

• Home Screen

• Search Screen

• Profile Screen

28

• Borrow Screen

• Single Book Screen

The second level screens, containing secondary features, are:

• User’s active borrowed book list

• User’s borrowing history

2.4.3 UI Design

Following the wireframe and prototype, the next step was to design the User Interface of the

application.

One of the key principles driving the UI design was user-centeredness. I continuously referred

back to the user personas, to ensure that the design aligned with their goals and preferences.

The UI was carefully crafted to be clean, intuitive, and easy to use, meeting the unique needs

of the target audience. Elements like font sizes, color schemes, and button placements were

chosen with the intention of enhancing accessibility for individuals of all ages.

Establishing a clear visual hierarchy was crucial for guiding users through the app effortlessly.

I employed various design elements, such as contrasting colors, typography, and layout, to

emphasize important features and content. This not only enhances the app’s aesthetics but

also aids in making it easy to navigate, as suggested by the user personas. The design ensures

that users can quickly identify and access key functionalities like book searches, profile

settings, and borrowing history.

The UI design incorporated interactive elements that mimic real-world interactions, making

the app more engaging and user-friendly. Features like swipe gestures for book browsing,

interactive buttons for borrowing, and smooth transitions between screens create an

enjoyable user experience. These interactive elements were designed with convenience in

mind, aiming to provide an efficient and enjoyable experience for all users.

Selecting the right color scheme is an important aspect of UI design, as it has a profound

impact on user perception and experience. In the library app, the light color scheme with

orange as the dominant color plays a pivotal role in setting the tone and creating a visually

appealing interface. The choice of colors goes beyond aesthetics; it influences user emotions,

usability, and brand identity. Orange, often associated with enthusiasm, warmth, and

creativity, aligns with the app’s goal of fostering a welcoming and engaging environment for

the users.

Figure 13: Color Scheme

29

The light color scheme with its use of orange is carefully selected to invoke specific emotions

and interactions. Orange, known for its energetic and uplifting qualities, encourages users to

feel positive and motivated. It enhances the readability of text, making it easy for users to

engage with content, which is crucial for an app primarily focused on reading and learning.

Additionally, the contrast between light backgrounds and orange accents aids in guiding users

through the app’s functionalities and creating a visually coherent and user-friendly

experience. The color scheme ensures that the app aligns with the goals of inclusivity,

simplicity, and convenience, catering to the needs and preferences of your target audience,

and reinforcing a memorable and engaging user experience.

After defining the color scheme, I’ve started to design the UI elements of the application.

The UI design of the app is the embodiment of a user-centered approach, carefully crafted to

cater to the specific needs and expectations of the target audience. The design exudes

simplicity and intuitiveness, with a clean, uncluttered interface that encourages effortless

navigation. As users like Aino, Seppo, and Sanna engage with the app, they’ll find that every

element and interaction is thoughtfully designed to align with their goals, whether it’s

convenient book browsing, easy-to-use search features, or accessible profile settings.

Figure 14: UI Design

Establishing a clear visual hierarchy is fundamental to guiding users seamlessly through the

app. Typography is chosen with legibility in mind, ensuring that content is easily readable for

users of all ages. Essential features are highlighted with contrasting colors, emphasizing their

importance and aiding users in quickly identifying and accessing them. The result is a visually

coherent design that supports efficient navigation and readability, contributing to an

enjoyable and frustration-free experience.

30

Figure 15: UI Design

Throughout the UI design process, an iterative approach was embraced, with continuous

feedback loops from user testing and evaluations. This methodology helped to refine the

design iteratively, ensuring that any usability issues were addressed proactively. The UI design

reflects a commitment to aligning with user goals and preferences, providing a seamless

transition from frustration to fulfillment.

31

Figure 16: UI Design

In summary, the UI design for app is a testament to a user-centered, visually appealing, and

accessible approach. The design’s visual hierarchy, interactive elements, mobile

responsiveness, and iterative refinement are all part of a strategy that ensures the app’s

usability and user experience exceed the expectations of the users.

1excalidraw.com
2en.wikipedia.org/wiki/Qualitative_research

32

3 Development

In this section I am going to describe in detail the end-to-end development environment, for

both the server side and the mobile application, including the chosen technologies,

architectural decisions deployment processes, and the related services I used during the

engineering work.

3.1 Development Environment

The development environment is a crucial part of the development process. It is the place

where the application is built, tested, and deployed.

In my thesis work, I have utilized a monorepo3, using pnpm4, and nx5.

3.1.1 Project Structure

The project and the repository structure follows the monorepository approach.

There are two main folders in the repository, apps and packages. The apps folder contains

standalone applications, and the packages folder contains the shared modules and pluggable

configs (such as ESLint), and other utils, like common types, and interfaces.

apps monorepo entry point for every application

mobile-client the React Native application

src source code of the React Native application

test test files of the React Native application

server the NestJJ application

documentation NestJS documentation
src source code of the NestJS application

test test files of the NestJS application

packages monorepo entry point for packages

eslint-config pluggable ESLint configs

pikkukirjasto-types Shared types for the application

3.1.2 Monorepo

A monorepo is a single repository that contains multiple projects. In my thesis work, I have

used a monorepo to contain the mobile application, the backend, the documentation, and

other modules which are shared between components and modules of the entire application

stack. This approach has several advantages, such as:

The entire application stack can be

• developed together.

• documented together.

• tested together.

• linted together.

33

• built together.

• deployed together.

• versioned together

• maintained together.

The repository where the entire application stack and source code is located is available at

https://github.com/pikkukirjasto/halkeinkiven-pikkukirjasto.

3.1.3 nx

Nx is a set of extensible dev tools for monorepos, which help with the development, testing,

and building of the applications within the monorepo. Using nx makes it possible to create

hierarchies of applications and libraries, which can be used to create a modular application

stack. To decrease cost of having to rebuild and retest the entire application stack, nx uses a

computation cache, which caches the results of the computations.

3.1.4 Workspaces

pnpm is a package manager for JavaScript. It is a drop-in replacement for npm6, and yarn.
pnpm is a fast, disk space efficient package manager, which uses a single folder for all the

projects in the monorepo. This means that the node_modules folder is not duplicated for each

project, which saves a lot of disk space. pnpm has a very fast install time, since it uses hard

links to link the dependencies to the node modules folder. Besides the fast install time, update

time is also fast since it uses a single node modules folder for all the projects in the monorepo.

pnpm comes with both cold and hot cache, which means that the dependencies are cached

between installations. It also uses way less disk space, because the package are reused if they

are already installed in the monorepo, for any other package.

The other important feature of pnpm is that it supports workspaces. Workspaces are a way to

setup a monorepo, which this repository is using.

3.1.5 Git Repository

The entire monorepo is hosted on GitHub, under the pikkukirjasto organization. The repository

is available at github.com/pikkukirjasto/halkeinkiven-pikkukirjasto. The repository has a main

branch named master, which is the main branch of the repository. The master branch is

protected, and it is not possible to push directly to it.

I’ve utilized GitHubś built-in issue tracking system to break down the entire engineering work

into smaller tasks, which can be tracked easily. When using the issue tracker system in GitHub,
it is possible to link the issues to the commits, and pull requests, which makes it easier to track

down the changes in the repository. It also comes with a labeling feature, which I connected to

my commitlint setup, to make sure that the commit messages are following the conventional

commit specification, and it gives additional sorting feature when listing tickets for releases.

In the repository I’ve used the following labels:

34

Description Name

Something isn’t working 🐛 bug

Improvements or additions to documentation 📖 book

This issue or pull request already exists 👻 ghost

New feature or request 💎 enhancement

Good for newcomers 👶 good first issue

Extra attention is needed 🔍 help wanted

This doesn’t seem right ⛔ Invalid

Further information is requested ❓ question

This will not be worked on ⛔ won’t fix

App’s UI systems related tickets 💅 UI System

Server related tickets 🔌 backend

React Native application related tickets 📱 client app

Repository related tickets 📌 repository

Tickets that won’t be done 🚫 won’t do

Standalone Desktop App related tickets for

Admin personnel

💻 admin-app

Thesis related tickets 📕 thesis

Continuous Integration related tickets arrows-clockwise CI/CD

Testing, or testing system related tickets ♻️ test

Release commit or Pull Request 🎉 release on @master

AWS CDK Related Tickets 🚧 CDK

Table 1: GitHub Labels

35

When a commit is made, using the commitizen7CLI tool, it is possible to select the label which

is related to the commit, so the commit message can be easily identified by its corresponding

label. For example, this is a list of commits, which were specifically targeted different bugs:

Commit Message Commit Hash

fix(mobile-client): 🐛 eslint c137be3

fix(server): 🐛 book search API b814360

fix(typescript): 🐛 bottomtabnavigator type 866cc6b

fix(layout): 🐛 safe area hoc 54ed5e9

fix(tab-bar): 🐛 wip on animation on bottom-

tab

873f29a

fix(eslint): 🐛 module resolver d4465c5

fix(typescript): 🐛 navigation prop 5d5b9c5

fix(eslint): 🐛 nested-components ee643b0

fix(typescript): 🐛 navigation 08937d2

Table 2: Bugfix commits

Similarly for feature commits:

Commit Message Commit Hash

feat(mobile-client): ✨ usebooks query 7e52fa7

feat(mobile-client): ✨ dotenv 9063958

feat(server): ✨ book 4a202ec

feat(server): ✨ database 59fb876

feat(localization): ✨ i18n support 938f0a8

feat(typescript): ✨ lower-level types ccd3629

feat(server): ✨ borrow adb7eeb

Table 3: Feature commits

36

For the development workflow, I have chosen GitHub Flow8as the branching strategy. The

GitHub Flow is a lightweight branching strategy. The main purpose of this workflow is to keep

the main branch deployable at all times, therefore to keep the mainline clean. To do that,

every development work is done in a separate branch, which is branched off from the main

branch. When the work is done, a pull request is created, and the changes are reviewed. In

this repository, I have decided to use rebase9merge strategy. This means that the pull request

is rebased on top of the main branch, and then merged into the main branch.

git merge and git rebase do the same thing, they bring the contents of two branches

together. However, both of these commands execute this change, in entirely different ways.

The main benefit of using rebase is to keep the commit history clean, and linear. This makes it

easier to track down bugs, and to revert changes if necessary. By using rebase strategy it will

be much easier to follow the tip of feature all the way to the beginning of the project without

any forks. This makes it easier to navigate the git history of the project.

Figure 17: Before Git Rebase

Figure 18: After Git Rebase

The commit messages that are being pushed into the git repository has to follow a specific set

of rules, in order for the semantic release to be able to determine the next version of the

application. The commit messages have to follow the conventional commits10specification.
In this repository, I have used commitlint11to enforce the commit message format. Whenever

a new commit is created, to prepare commit message git hook is being called, which prompts

the user a CLI tool, to help format the commit message.

37

Figure 19: Committizen CLI in action

Commitlint is a command line interface tool, which provides an interactive was of crafting

commit messages, and it makes sure the result satisfies the conventional commit specification.

A good commit message is made up of four parts, the type, the scope, a subject (or a very

short description) and a longer description. The type describes the kind of change that the

commit is providing. The scope describes the part of the application that is being affected by

the change. The subject describes the change itself, and it should be written in the imperative

mood. The commit message should also be written in the present tense, and it should not end

with a period.

Figure 20: Commit message tempalte

Figure 21: Commit message example

38

I have created an own set of scopes which suites the nature of this application, containing all

the scopes which can determine a specific set of changes in the repository.

module.exports = {
prompt: {

scopes: [
"repository",
"mobile-client",
"typescript",
"server",
"chore",
"thesis",

],
},

};

Listing 1: Commit Message Format

3.1.6 ESLint

ESLint is a static code analysis tool for JavaScript and TypeScript. It is a tool that helps

developers to find problems in their code, and to enforce a specific coding style. This

repository, both the frontend and the backend applications are using a custom ESLint
configuration, which is placed under the packages/eslint-config folder. This configuration

is behaved as an npm package, it has exported files defined in it package.json file.

"files:": [
"plugins",
"rules",
"react.js",
"nestjs.js"

],

Listing 2: Files exported from eslint-config package.json file

These are te files, which can be later on used to extend the ESLint configuration.

{
"extends": "pikkukirjasto/react",

}

Listing 3: Configuring ESLint for the frontend application

Similarly, for the backend application:

{
"extends": "pikkukirjasto/nestjs",

}

Listing 4: Configuring ESLint for the backend application

While both the frontend and the backend applications are written in TypeScript, they are

running on different runtimes, therefore they require different ESLint configurations.

39

As the frontend application is written in React, the ESLint configuration is defined

eslintconfig/react. The backend application is using the NestJS framework, so it requires a

slightly different ESLint configuration, which is defined in eslint-config/nestjs.

These are pluggable ESLint configurations, so they can share some specific set of rules and

plugins, which can be applied on both applications. The shared configurations are placed

under the eslint-config/rules/base.js file, while the plugins which are shared between

the configurations are placed under the eslint-config/plugins/common.ts file.

3en.wikipedia.org/wiki/Monorepo
4pnpm.io
5nx.dev
6github.com/npm
7docs.github.com/en/get-started/quickstart/github-flow
8git-scm.com/docs/git-rebase
9conventionalcommits.org
10commitlint.js.org/

40

3.2 Deployment

The application deployment is a crucial part of delivering every software to it’s end users. In

modern application development, the deployment process is automated, and it is part of the

development process.

In this section I will introduce the deployment strategies I applied to release and deliver the

application to the users.

3.2.1 Github Actions

The entire application, and it’s related stacks and services are deployed using Github actions.

Github actions are workflows that are triggered by events, and they are defined in a YAML file

within the repository. The main purpose of the Github actions is to automate the deployment

process, and to make sure that the application is always in a deployable state.

In the Pikkukirjasto repository there are multiple features of Github actions utilized. It also

runs tests, deploys static websites (documentation, codecov, etc.), and it also deploys the

application to the production and staging environments.

The main workflow implemented in Github action is the deployment workflow. The

deployment workflow is a reusable workflow, which has two different triggers, based on the

environment being deployed.

• Pull request merge to the staging branch

• Pull request merge to the release branch

Reusable workflow is a strategy that is used to create a workflow that can be reused in

multiple workflows. Utilizing reusable workflows helps to avoid code duplication in the

workflow declaration, and it also makes it easier to maintain the workflows, and create new

workflows.

The diagram below demonstrates the in-progress workflow that uses a reusable workflow in

Pikkukirjasto repository.

Figure 22: Github Actions

• After each of two build jobs on the left of the diagram completes successfully, a

dependent job called run tests is run.

• The deploy job calls a reusable workflow that contains two jobs:

41

– building codecov static site

– building documentation static site

• The deploy staging job only runs after the previous static site deployment jobs has

completed successfully, and it contains a reusable workflow.

• The deploy production job only runs after the previous deploy staging job has

completed successfully, and the release target is production.

• The last two jobs are handling releases, and release related actions, for example

creating a new version using semantic release, and creating a new release in Github,
writing into the changelog, etc.

• Using a reusable workflow to run deployment jobs allows you to run those jobs for each

build without duplicating code in workflows.

In this repository, there are dependent jobs utilized in the deployment pipeline, to make sure

the subprocesses of the jobs are only running, if their parent job has completed successfully.

One job can have multiple jobs which it depends on.

Figure 23: Github Deployment Workflow

The deployment pipeline is made up of multiple jobs, which are running in parallel, and they

are dependent on each other. To make it more robust and easy to maintain, they are

implemented by different GitHub Actions. Every action is responsible for a small part of the

pipeline, which can be reused across workflows and jobs. I have utilized an action alongside

the workflows, which handles every necessary steps a workflow needs to have, for example

checking out the repository, setting up the environment, installing the pnpm dependencies, etc.

The Github Workflows are located in the .github/workflows, while the reusable actions are

located in the .github/actions directory.

42

3.2.2 Release strategy

The release strategy of the application is connected to the nature of the monorepo, and the

chosen branching strategy, therefore the chosen release strategy for this application is

semantic release12.

Semantic release is a tool that automates the versioning and publishing of the application. It

uses the commit messages to determine the next version of the application. It also generates a

changelog based on the commit messages. Semantic release also creates a git tag for the

release, so the versions are easy to follow, and the releases are easy to revert if necessary.

The changelog of a specific release contains the commit messages of the commits that are

included in the release.

Figure 24: Semantic Release

In this application there are two different dedicated release channels. One for production

release, and for staging release. Ultimately, the staging release is also a production

candidate, so the semantic release job will tag the release accordingly. The release channels

have their own branches.

Release branch for production releases, and staging branch for staging releases. The

semantic release job is configured to run only on these branches. Whenever a new commit

(merge or rebase commit) is pushed to the staging branch, semantic release will attempt to

create a new staging release. The release branch is configured in a way, that it only accepts

merge commits from the staging branch. This means that the staging branch is always ahead

of the release branch, and the release branch is always behind of the master branch. This is

the reason why the staging branch is always a production candidate.

Both the production, and the staging release creates different versions, where the release

channel is visible on the release tag. For the production release, the release tag will be the

new version number, for example 1.0.0. For the staging release, the release tag will be the

new version number, with the release channel, for example 1.0.0-staging.0.

43

Whenever a commit is pushed to any of the release branches (on either channels), the

dedicated GitHub action will create a new release, and it will deploy the application to the

production environment, and as well creates a new changelog, which contains the changes the

release contains, and the commit messages of the commits that are included in the release.

Semantic Release besides creating a CHANGELOG file, it also creates a release within the

repository of the application. This release also contains the changelog, and the release tag.

Figure 25: Release in Github

11github.com/semantic-release/semantic-release

44

4 Technologies

This application utilizes the most cutting-edge technologies available at the time of writing

this thesis. Both the frontend and backend application is written in TypeScript, following the

ECMAScript 2020 standard. Both of codebase is strictly typed using TypeScript, which means

that the code is checked for type errors during the build process, making sure to avoid runtime

errors as much as possible.

4.1 TypeScript

TypeScript13 is a statically typed superset of JavaScript, designed to enhance the

development experience by providing strong typing and additional features for large-scale

applications. By introducing static types, TypeScript enables developers to catch type-related

errors during compile-time, reducing the risk of runtime errors and enhancing code reliability.

One of the main features of TypeScript is its support for static type checking. With type

annotations and inference, developers can explicitly define the types of variables, function

parameters, and return values. This not only improves code clarity but also provides

intelligent auto-completion and type-aware refactorings in modern IDEs.

TypeScript also facilitates the use of modern ECMAScript features by allowing developers to

target specific ECMAScript versions, ensuring compatibility across different environments.

This feature is particularly useful when dealing with legacy codebases or targeting specific

browser versions.

Furthermore, TypeScript offers powerful object-oriented programming capabilities, such as

classes, interfaces, and inheritance, enabling developers to build scalable and maintainable

codebases. The support for generics allows the creation of reusable and type-safe data

structures and algorithms.

To ensure seamless integration with popular JavaScript libraries and frameworks, TypeScript

supports declaration files (.d.ts), which provide type information for existing JavaScript
code. This feature enables developers to leverage the rich ecosystem of JavaScript libraries

while still enjoying the benefits of static typing.

In summary, TypeScript empowers developers to write more reliable and maintainable code

by bringing static typing and advanced language features to the JavaScript ecosystem. Its

ability to catch errors early, support modern ECMAScript, and foster robust object-oriented

programming makes it a valuable tool for building large-scale applications and enhancing

overall development productivity.

4.2 React Native

React Native14 is a cutting-edge framework for building cross-platform mobile applications

using JavaScript and React. At the core of React Native’s architecture lies the concept of the

UI thread and the JS thread, which play vital roles in rendering and handling the user interface.

In React Native, the UI thread is the main execution thread responsible for rendering the user

interface components and responding to user interactions. This thread is separate from the

45

JavaScript thread to ensure that the app’s UI remains responsive and doesn’t freeze during

intensive JavaScript computations. By offloading UI rendering to a separate thread, React

Native achieves smooth performance and a delightful user experience.

The JavaScript thread, on the other hand, is responsible for executing the application’s

JavaScript code. This thread runs the React Native application logic, processes state

changes, and handles data manipulation.

It communicates with the UI thread through a bridge, passing instructions and updates to be

rendered on the screen. As JavaScript execution can sometimes be computationally

intensive, React Native allows developers to optimize the performance by moving certain

tasks to native modules written in Java (or Kotlin) for Android and Objective-C (or Swift)
for iOS.

The renderer is a crucial part of React Native’s architecture. It acts as a bridge between the

JavaScript thread and the native components. The renderer interprets the React components

and translates them into native views for iOS and Android platforms. This process enables

React Native to provide a truly native user interface experience while allowing developers to

write code in JavaScript.

One of the key advantages of React Native is its ability to use a single codebase to target

both iOS and Android platforms, thanks to its cross-platform nature. Developers can write the

UI components and business logic once in JavaScript and then rely on the React Native
renderer to handle the translation into native UI elements. This drastically reduces

development time and effort, allowing for rapid iteration and code sharing across platforms.

Additionally, React Native embraces the concept of native modules, enabling developers to

access native APIs and functionalities that may not be available out of the box in React
Native’s core components. By creating native modules, developers can bridge the gap

between the JavaScript and native environments, making it possible to leverage

platform-specific features and third-party libraries seamlessly.

In conclusion, React Native is a groundbreaking framework that leverages the power of the UI

thread and the JavaScript thread to deliver high-performance cross-platform mobile

applications. The separation of concerns between these threads, along with the renderer and

native modules, empowers developers to create engaging and responsive user interfaces while

maximizing code reuse and productivity.

With its ever-growing community and continuous updates, React Native remains a top choice

for mobile app development, enabling developers to build innovative, feature-rich, and

performant applications on both iOS and Android platforms.

4.2.1 Expo

Expo15 can be considered as a superset of React Native. It provides an SDK of many useful

tools and libraries, which are not available in the bare React Native framework. Using Expo
simplifies a lot of the development process, and makes it easier to build and deploy

cross-platform mobile applications.

The Expo EAS (Expo Application Services) is a comprehensive set of tools and services

46

designed to streamline the development and deployment of mobile applications. It offers a

unified platform for creating cross-platform apps using JavaScript, React Native, and other

popular web technologies. EAS extends Expo’s capabilities by providing advanced features for

building, testing, and publishing apps, making the development process more efficient and

accessible. With EAS, developers can seamlessly manage the entire app lifecycle, from coding

and testing to building and distribution, while also benefiting from enhanced performance

optimizations, real-time updates, and simplified maintenance. This integrated approach

simplifies the complexities of mobile app development, allowing developers to focus on

creating exceptional user experiences without getting bogged down by intricate technical

details.

Figure 26: Expo EAS

4.3 NestJS

NestJS16 is a powerful and modern Node.js17 framework that has gained significant traction in

the development community due to its robustness and support for building scalable,

maintainable, and performant server-side applications. At the core of NestJS lies its extensive

use of decorators, which play a crucial role in defining and structuring the application.

Decorators in NestJS are used to mark classes, methods, and properties, enabling the

framework to identify and treat them as special entities. One of the fundamental decorators

in NestJS is the @Module, which defines a module and serves as the building block of the

application’s architecture. Modules encapsulate related functionalities, allowing for a highly

modular and organized codebase. Through the @Module, developers can import and export

other modules, facilitate dependency injection, and manage the overall application flow.

In addition to modules, NestJS leverages the power of decorators to define controllers, the

heart of handling incoming requests and generating responses. Controllers are adorned with

the @Controller decorator, and individual routes within a controller are defined using the

@Get, @Post, @Put, and other HTTP method decorators. By leveraging these decorators,

developers can easily create API endpoints and manage different data interactions.

Moreover, NestJS promotes the use of @Injectable decorators to define services, the

backbone of business logic and data manipulation within the application. Services are

singleton instances that can be injected into controllers, allowing for efficient separation of

concerns and facilitating code reusability. These decorators, along with the dependency

injection system provided by NestJS, create a smooth workflow for handling complex data

operations and maintaining a clean and testable codebase. NestJS also introduces custom

decorators, which empower developers to create their own reusable and specific annotations.

For instance, @AuthGuard, a custom decorator, can be implemented to enforce authentication

and authorization on specific routes or controllers. By leveraging custom decorators,

developers can tailor the application to their specific business needs and improve code

47

readability, and maintainability.

Beyond decorators, NestJS embraces the concept of models, also known as entities or DTOs
(Data Transfer Objects). These models define the structure of data being transferred between

various components of the application. By using models, developers can ensure strong typing

and validation of incoming and outgoing data, minimizing runtime errors and enhancing the

overall application’s reliability.

In conclusion, NestJS stands out as a modern and technically advanced Node.js framework,

primarily due to its clever use of decorators, which provide a structured and intuitive

approach to building server-side applications. With its focus on modularity, dependency

injection, and powerful custom decorators, NestJS empowers developers to create scalable

and maintainable codebases, making it an excellent choice for building complex applications

in the ever-evolving world of JavaScript and TypeScript development.

Figure 27: NestJS Routing

48

In NestJS, the handling of requests and responses follows a structured and modular approach,

utilizing various key components such as middlewares, guards, interceptors, pipes, and

controllers.

Middlewares are utilized to intercept and process incoming requests before they reach the

controller, enabling tasks like logging, authentication, and data transformation.

Guards focus on route protection, allowing or denying access based on specific conditions.

Interceptors operate on both incoming requests and outgoing responses, enabling global

transformations and validations.

Pipes are responsible for data validation, transformation, and sanitization, ensuring that the

data received and sent is accurate and safe.

Lastly, controllers define the endpoints and route handlers, where the actual request

processing takes place. They receive input from the incoming request, which has been

pre-processed by the aforementioned components, and formulate the appropriate response.

By strategically combining these components, NestJS offers a highly organized and extensible

framework for managing the flow of data through an application, promoting code reusability,

maintainability, and overall system robustness.

4.4 Database

The heart of this application lies in its robust database architecture, leveraging the power of

MongoDB as the database engine and Mongoose as the Object Document Mapper (ODM). This
combination provides a flexible and scalable solution to handle data storage and retrieval.

MongoDB, being a document-oriented database, offers a schema-less data model, where

information is stored in documents composed of flexible and dynamic JSON-like structures.

Unlike traditional relational databases, MongoDB make it possible to store varying and evolving

data structures without the constraints of fixed schemas, which can be especially

advantageous for applications dealing with constantly changing data.

With Mongoose as the ODM, creates the ability to define schemas for the application data,

providing a structured and organized way to model the documents. These schemas help

maintain consistency, data integrity, and validation rules for the data stored in the database.

By leveraging TypeScript support, Mongoose empowers it with strong typing and code

completion, enhancing code quality and reducing the likelihood of runtime errors.

To ensure optimal performance and data access, the schema and indexes of MongoDB

collections designed carefully, based on the queries and use cases. By utilizing the aggregation

framework and other powerful features of MongoDB, makes it possible to efficiently retrieve,

process, and analyze large datasets, enabling complex data operations to be performed with

ease.

As the application scales, MongoDB provides built-in horizontal scaling through sharding,

distributing data across multiple nodes to handle increased traffic and data volume. This

sharding capability allows maintaining high availability, fault tolerance, and performance

while handling the demands of a growing user base. Data security is of paramount importance,

and to safeguard our database, authentication and access control mechanisms are also

49

implemented. By enforcing role-based access control (RBAC), to ensure that only authorized

users can access specific data resources, protecting sensitive information and mitigating

security risks.

4.5 AWS & CDK

The backend application, and a couple of other miscellaneous services and applications are

deployed on AWS using CDK.

AWS CDK18 (Cloud Development Kit) is a powerful infrastructure-as-code framework that

allows developers to define and provision AWS resources using familiar programming languages,

such as TypeScript, which this application stack also uses. With CDK, developers can model

their cloud infrastructure as code, leveraging the full power of their chosen programming

language to create, manage, and update AWS resources programmatically.

One of the key features of AWS CDK is its rich library of constructs, which represent AWS
resources and services as objects in code. These constructs provide a high-level, typed

abstraction over AWS CloudFormation, allowing developers to express their infrastructure in a

concise and intuitive manner. CDK constructs are organized in a hierarchical structure,

promoting modularity, reusability, and best practices for resource composition. CDK leverages

the strength of modern programming languages, enabling developers to use loops,

conditionals, and other control structures to define complex cloud environments

programmatically. This declarative approach allows developers to express their infrastructure

requirements in a familiar coding paradigm, making it easier to reason about, test, and

maintain the codebase.

Another notable feature of AWS CDK is its support for multi-account and multi-region

deployments. Developers can define cross-account and cross-region resource references and

policies directly in code, simplifying the process of setting up secure and scalable distributed

architectures.

Additionally, CDK provides a comprehensive set of AWS constructs for commonly used patterns,

such as VPCs, load balancers, Lambda functions, and more. This rich set of abstractions

reduces the boilerplate code and accelerates the development of cloud-native applications.

In summary, AWS CDK is a game-changer for cloud infrastructure development, as it enables

developers to utilize their existing programming skills to define, deploy, and manage AWS
resources efficiently. With its powerful constructs, multi-account support, and extensive

library, CDK streamlines the process of building scalable and resilient cloud architectures while

promoting code reusability and maintainability. As a result, CDK empowers developers to

adopt infrastructure-as-code best practices and optimize their AWS deployments for greater

productivity and faster development.

Defining underlying infrastructure using AWS CDK (or other tools, such us Terraform) is now the

industrial standard method. It is a lot more reliable, and easier to maintain than manually

creating resources on the AWS console. The engineering community is moving towards this

direction, and it is important to keep up with the latest trends and best practices. The era of

50

manual deployment, and VPS servers are over, and it is time to move on.

12typescriptlang.org
13reactnative.dev
14expo.io
15nestjs.com
16nodejs.org/en
17aws.amazon.com/cdk

51

5 Implementation

In this section I am going to throughly describe the implementatinon of the application. The

section is divided into two parts, the mobile application, and the backend implementation.

5.1 AWS Stack

As mentioned in the previous section, the entire application stack is deployed on AWS. The
stack definition is written in code, using AWS CDK. There are two different CDK stacks

implemented:

• BackendStack - contains all the backend resources, including the DynamoDB tables,

Lambda functions, API Gateway endpoints, and MongoDB, to store application data.

• StatickStack - contains the S3 bucket for hosting static sites, and the CloudFront
distribution for serving the application.

Figure 28: AWS CDK Stack

The semantics above describes the basic way the Pikkukirjasto application’s stack.

In an AWS Cloud Development Kit (CDK) stack, stateful and stateless services play distinct

roles in the architecture, offering different characteristics to cater to various application

requirements. Stateful services, such as Amazon RDS (Relational Database Service) and

Amazon ElastiCache, maintain persistent data across requests and maintain their internal

state. These services are suitable for applications that require data durability, consistency,

and complex querying capabilities.

On the other hand, stateless services, like Amazon EC2 (Elastic Compute Cloud) instances and
Amazon API Gateway, do not store session-specific data and treat each request independently.

They are ideal for horizontally scalable architectures, enabling seamless deployment,

auto-scaling, and high availability. By strategically combining stateful and stateless services

within a CDK stack, developers can design robust and flexible systems that meet specific

application demands, while leveraging the benefits of both state persistence and agility.

52

5.1.1 Backend Stack

The backend stack is the main stack of the application, and it contains all the resources needed

to run the server side application. The application runs on AWS Lambda, and it is exposed

through AWS API Gateway. The Lambda function has a direct access to the MongoDB database.

The CDK stack is orchestrated by AWS CodePipeline, which is triggered by a GitHub webhook,

whenever a new commit is pushed to the main branch. There are multiple staged introduce in

the stack, to make it possible to have different stages for different environments, like

staging, and production, which is the corresponds to the release channels of the application.

type PikkuKirjastoEnvironment = "dev" | "prod";

Listing 5: CDK Stack Environment

const appConfig: PikkurKirjastoAppConfig = {
dev: {

name: `${PIKKURKIRJASTO}-Dev`,
},
prod: {

name: `${PIKKURKIRJASTO}-Prod`,
},

};

Listing 6: CDK App Config

Using the PikkuKirjastoEnvironment type, it is now possible to define the different

environments, and the CDK stack will create the resources accordingly.

Both the dev and the production stacks can be initialized from the main stack configuration,

using the CDK context.

new PikkuKirjastoStack(pikkurKirjastoApp, appConfig["dev"].name, "dev", {
stackName: appConfig["dev"].name,
env: {

region: "eu-west-1",
},

});

Listing 7: Stack initialization

The following semantics shows the different AWS resources being created in the CDK stack

definitions for the server application, and also showcases the relation between them.

When a user uses the mobile application, HTTP requests are made to the API Gateway
endpoint, which is connected to the Lambda function. If a request is required to fetch data

from the application’s database, the Lambda function will query the MongoDB database, and

return the result to the user.

53

Figure 29: Backend Stack

The semantics above represents an AWS CDK stack for the serverless application

"Pikkukirjasto" which includes Lambda functions and API Gateway.

The PikkuKirjastoStack class extends the Stack class, which is a fundamental construct in

AWS CDK representing an CDK CloudFormation stack. This class will be responsible for creating

and managing the AWS resources needed for the serverless application.

In the constructor of the PikkuKirjastoStack class, there are four parameters: scope, id,
env, and props. The scope defines the scope of the stack, and here it’s set to the entire

stack. The id is a unique identifier for the stack. The env parameter is of type

PikkuKirjastoEnvironment, which represents the environment (either "dev" or "prod") for
the application. The props parameter contains optional properties for the stack, which are

passed down from the parent class.

The code then creates a backend Lambda function named BackendLambda using the

LambdaḞunction class. The function is written in Nodej̇s 18ẋ and has a handler named

main.handler. The code for the Lambda function is sourced from an asset in the

appsserverbuild/dist directory, excluding the node_modules folder. The function has a

timeout of 15 seconds.

Next, an API Gateway is created using the LambdaRestApi class. The API Gateway serves as

the front-end for the serverless application, forwarding requests to the backend Lambda
function. The API Gateway is configured with CORS (Cross-Origin Resource Sharing)
options to allow requests from all origins with specific headers. The endpoint configuration is

set to REGIONAL type. The API Gateway is configured to not use a proxy and not create a

CloudWatch role.

The code then defines an integration between the API Gateway and the backend "proxy+"
function using the LambdaIntegration class. The content handling is set to

CONVERT_TO_BINARY.

A resource is added to the API Gateway, mapped to the "proxy+" path, and configured to use

the backend Lambda integration for handling requests. The authorization type is set to NONE,
meaning no authentication is required for accessing the API Gateway.

54

Finally, the stack defines a CloudFormation output named backendLambdaArn, which provides

the ARN (Amazon Resource Name) of the backend Lambda function. The output is exported with

the name props?.stackName ?? id:backendLambdaArn.

In summary, this AWS CDK stack sets up the infrastructure for the "Pikkukirjasto" serverless

application, including a backend Lambda function and an API Gateway to handle and route

requests. The application is designed to be deployed in either a "dev" or "prod" environment,

as specified by the env parameter.

5.1.2 Static stack

The Static stack is used to host the static sites of the application. The stack contains an S3
bucket, which is used to store the static files, and a CloudFront distribution, which is used to

serve these static files. This stack is used to host different miscellaneous applications, such us

codecov reports, documentations, etc.

The static stack is rather different from the backend stack. It does not contain Lambda
functions, nor API Gateway endpoints, because it does not need to serve any HTTP requests.

The most important part of the static stack is the root and the subdomains where the static

sites are going to be deployed.

export class StaticStack extends Stack {
constructor(

scope: Construct,
id: string,
domains: string[],
props: StackProps

) {
super(scope, id, props);

Listing 8: Stack initialization

As the constructor shows, the domain parameter is an array of strings, which will be used to

build up the final domain name.

For example, if the array passed to the StaticStack is ["codecov", "app"], the final domain

name will be backendcov.app.thesis.richardzilahi.hu.

55

Figure 30: Static Stack

The semantics above represents an AWS CDK stack for creating static sites. It leverages various

AWS services to set up the necessary infrastructure.

The StaticStack class extends the Stack class, which is a fundamental construct in AWS CDK

representing an AWS CloudFormation stack. This class will be responsible for creating and

managing the AWS resources needed for the static site.

In the constructor of the StaticStack class, there are four parameters: scope, id, domains,
and props. The scope defines the scope of the stack, and here it’s set to the entire stack. The

id is a unique identifier for the stack. The domains parameter is an array of domain names for

the static site, and multiple domain names can be provided and joined with dots. The props
parameter contains optional properties for the stack, which are passed down from the parent

class.

The code first creates an S3 bucket to store the static site content. The bucket is configured

with S3.BlockPublicAccess.BLOCK_ALL, which ensures that the bucket is not publicly

accessible. Additionally, versioned:false is set to disable versioning for the bucket. Next,

the code sets up a CloudFront distribution, which serves as the front-end for the static site.

CloudFront is a content delivery network (CDN) that helps improve the performance and speed

of delivering content to end-users. The distribution is associated with a SSL certificate

obtained from AWS Certificate Manager (ACM) using the provided ARN, enabling HTTPS

support for the site.

The CloudFront distribution is configured with a default behavior, forwarding all requests to

the S3 bucket created earlier. The viewer protocol policy is set to REDIRECT_TO_HTTPS,
ensuring that all requests are redirected to the HTTPS version of the site for improved security.

To handle errors gracefully, the code sets up error responses for the CloudFront distribution.

If a user encounters a 403 or 404 error (forbidden or not found), the distribution will return

56

the index.html page instead of the default error page.

For secure access to the S3 bucket from the CloudFront distribution, a CloudFront Origin
Access Identity (OAI) is created. This identity helps control access and prevents

unauthorized direct access to the bucket.

An IAM policy is also defined, specifying the permissions allowed for the CloudFront OAI. It
allows the OAI to list objects and get objects from the S3 bucket.

The code performs a lookup for the Route53 hosted zone associated with the domain name

thesis.richardzilahi.hu.

Finally, the code creates a Route53 A record in the hosted zone, mapping the provided

domain names to the CloudFront distribution. This enables users to access the static site

using the custom domain.

Figure 31: AWS Route 53

The stack defines two CloudFormation outputs: static-url-id and static-bucket-id. The
former provides the CloudFront domain name that users can use to access the static site,

while the latter provides the ARN of the S3 bucket where the static site content is stored.

In summary, this AWS CDK stack sets up the infrastructure for hosting a static site, utilizing S3
for storage, CloudFront for content delivery, Route53 for custom domain mapping, and IAM
for secure access control.

5.2 Mobile Application

The mobile application is written in React Native, and it is using Expo to build and deploy the

application. Both technologies had been introduced and discussed in the previous section. In

this section I am going to introduce the implementation details of the mobile application.

57

5.2.1 Application structure

There are multiple different ways to structure a React Native (or React) application. This is
generally a subjective topic among developers, but there are certainly good and bad practices

when it comes to deciding how to structure the source code of an application.

Choosing, and maintaining a good structure for the source code is crucial for the success of the

application. A good structure can help developers to understand the codebase better, and it

can also help to maintain the application in the long run. The better the structure is, the

easier it for it’s developers to have an overall understanding of the application, and it has a

significant impact on the productivity.

My approach can be best described as both modular and component based structure.

In this mobile application, the structure of the source code looks as the follows:

-
assets folder containing assets

dist the folder where the application artifacts are created
src

LocalizationProvider
api API related functions
components

ApiClientProvider
[...]
common shared React components

hooks custom React hooks
useBook
[...]

i18n localization related functions

layouts application layouts
MainLayout

navigation navigation and type interfaces

utils helper functions for navigation

queries React-Query functions
book

screens folder for different screens the application implements
BookScreen
[...]

theme theme declaration using restyle19

utils App level helper functions

5.2.2 Design & UI

While React Native provides a powerful framework for building cross-platform mobile

applications, it does not include any built-in UI components. Developers must either create

their own components or use third-party libraries to implement the UI of their apps.

When building mobile applications, the consistency and quality of the UI are crucial for

delivering a great user experience. However, designing and implementing UI components from

scratch can be a time-consuming and challenging task, especially for complex applications

58

with multiple screens and navigation flows.

In the Pikkukirjasto application I have decided to implement my own UI system, using the

restyle library.

The Restyle library is maintained by Shopify, which provides a powerful, type-enforced

system for building UI system in React Native with Typescript.

Restyle needs a theme as a base, which will then be propagated into reusable components,

derived from Restyle itself.

The theme Restyle implements the fundamental building blocks of the application’s UI, such

as colors, spacing, typography, and layout. It also provides a set of reusable components that

can be used to build screens and layouts.

const theme = createTheme({
colors: {},
spacing: {},
breakpoints: {},
textVariants: {},
cardVariants: {},
...

})

Listing 9: Theme declaration

Besides the theme declaration, Restyle also provides a set of primitives, which can be used on

top of the theme, to define the basic components of the application.

import {createBox} from '@shopify/restyle';
import {Theme} from './theme';

const Box = createBox<Theme>();

export default Box;

Listing 10: Restyle primitives

Every component which is declared by Restyle is type safe, and it can be extended with

additional props, which are also type safe.

Using Restyle and the theme makes it possible to create variants of components.

import {createText, createTheme, createVariant} from '@shopify/restyle';

const theme = createTheme({
textVariants: {

bookTitle: { fontSize: 20 }
}

})

const Text = createText<Theme>();

export default Text;

Listing 11: Text component

Then the variants of the Text component can be used as follows:

59

<Text variant="bookTitle">Book Title</Text>

Listing 12: Text variant

5.2.3 Navigation

React Native Navigation provides a powerful solution for creating complex and efficient

navigation structures in React Native apps through the use of nested navigators. The nested

navigators system allows developers to compose different types of navigators (such as Stack,

Tab, Drawer) within one another, enabling more granular control over the navigation flow and

user experience.

At the core of React Native Navigation, there is a ”NavigationContainer” component,

serving as the root of the navigation hierarchy. Inside this container, developers can nest

various navigators, creating a tree-like structure where each navigator manages its own set of

screens. This design allows for easy organization and separation of concerns in large-scale

applications.

One of the key advantages of nested navigators is the ability to customize navigation for

different sections of the app independently. For instance, a StackNavigator can be used to

manage a linear flow of screens, while a TabNavigator can handle a set of screens with tabs.

By combining these within a DrawerNavigator, you can implement a fully featured app with

multiple navigation paradigms.

Furthermore, nested navigators allow for better performance and memory management.

When a screen is not in the active stack, it gets unmounted, freeing up resources. This makes

React Native Navigation more efficient for handling complex navigation structures

compared to a single, monolithic navigator.

To achieve this seamless nested navigation experience, React Native Navigation utilizes

native navigation components provided by the platform (e.g., UINavigationController for

iOS and Fragment for Android). This enables developers to leverage the native capabilities

and gestures, resulting in a smoother user experience and faster transitions between screens.

Another significant advantage of React Native Navigation is its support for deep linking and

universal links, making it easier to handle deep navigation directly from external sources like

URLs or push notifications.

React Native Navigation’s nested navigators system empowers developers to build

sophisticated navigation flows with optimal performance and a native-like experience. The

ability to nest different types of navigators enables flexibility in handling various UI paradigms

and helps maintain a clean and modular codebase, making it an excellent choice for complex

React Native applications.

In addition to its navigational power, React Native Navigation also offers strong type safety

and support for generics, enhancing the developer experience and reducing potential runtime

errors. With TypeScript integration, developers can define strict types for their navigation

props, ensuring that only valid routes and parameters can be accessed within the app. This

helps catch errors during development and provides better autocompletion and documentation

for navigation-related code.

60

React Native Navigation also introduces the concept of composite screen types, which

allows developers to define screens that accept different sets of navigation props based on

their position within the navigator hierarchy. For example, a screen nested within a

TabNavigator may receive different navigation props compared to a screen within a

StackNavigator. This dynamic typing ensures that screens receive the appropriate props,

making the codebase more robust and easier to maintain.

Moreover, React Native Navigation supports generics, enabling developers to create

reusable navigation components and hooks that work with different types of navigators and

route configurations. This encourages code consistency and abstraction, reducing duplication

and improving overall code quality.

By embracing type safety, generics, and composite screen types, React Native Navigation
promotes better coding practices and streamlines the development process. Developers can

have confidence in their navigation-related code, reduce the chances of bugs, and enjoy the

benefits of improved productivity and maintainability in their React Native projects.

In the Pikkukirjasto application, the navigation uses this React Native Navigation library,

and it implements three different navigators.

• BottomTabNavigator - the tab navigator, which is presented at the bottom of the

screen, and it contains the screens related to the application’s main functionality.

• ProfileNavigator - a stack navigator which implements the screens related to the user,

and the user profile.

• RootNavigator - the main navigator which contains both the BottomTabNavigator and

the ProfileNavigator.

Stack navigator is a type of navigator that provides a way for your app to transition between

screens where each new screen is placed on top of a stack.

Figure 32: React Navigation - Navigate Forward

Navigating to a screen will push it onto the stack, the topmost screen on the stack is visible to

the user.

61

Figure 33: React Navigation - Navigate Back

Navigating back will pop the topmost screen off the stack and navigate to the screen below it.

In the Pikkukirjasto application the RootNavigator implements 3 different screens, where

every screen implements another navigator. This is a common pattern in React Native
applications, and it’s called nested navigators.

const Stack = createStackNavigator();
<Stack.Screen

name="Root"
component={BottomTabNavigator} // this is a tab navigator

/>
<Stack.Screen

name="Profile"
component={ProfileNavigator} // this is another stack navigator

/>

Listing 13: React Native Root Stacknavigator

This structure of the navigators make sure that the navigation is consistent throughout the

application, only certain screens are available in certain navigators.

To exploit the biggest advantage of React Native Navigation, the type safety, it’s important

to properly define the types for each navigator, and the screens they implement.

To make a navigator type safe, the only thing required is to pass an Type when creating a

navigator, with the screens.

const BottomTab = createBottomTabNavigator <BottomTabParamList >();

Listing 14: Type safe navigator

where BottomTabParamList is a type, which defines the screens the navigator implements:

type BottomTabParamList = {

62

Search: undefined;
Library: undefined;
Profile: undefined;
Trending: undefined;

};

Listing 15: BottomTabParamList type

As the Type defines above, the BottomTabNavigator implements four screens:

• Search

• Library

• Profile

• Trending

Since the BottomTabNavigator is technically a screen on the RootNavigator, it also needs to

be defined in the RootStackParamList:

type RootStackParamList = {
Root: undefined;
Book: { book: Book };
BorrowBook: { book: Book };

};

Listing 16: RootStackParamList type

To make the entire navigation type safe, a CombinedStackParamList type is needed, which

merges the two types into a single type:

type CombinedStackParamList = RootStackParamList & BottomTabParamList;

Listing 17: CombinedStackParamList type

In React Native, every screen receives a navigation prop, which contains the navigation
functions, and the route prop, which contains the params passed to the screen. It’s crucia to

make these type safe also, so the navigation prop knows exactly which screens exists on that

specific navigator.

To achieve this, the following Type needed to be defined:

type RootTabScreenProps <Screen extends keyof CombinedStackParamList > =
CompositeScreenProps <

BottomTabScreenProps <CombinedStackParamList , Screen>,
NativeStackScreenProps <RootStackParamList >

>;

Listing 18: CombinedStackParamList type

The snipped above utilizes a few Typescript features.

• keyof - returns the keys of an object as a union type.

• CompositeScreenProps - merges the props of two different screens.

63

• BottomTabScreenProps - the props of the BottomTabNavigator.

• NativeStackScreenProps - the props of the RootStackParamList.

Then, in the implementation of a screen, the function’s arguments can be typed with this

Type:

function Book({ route, navigation }: RootTabScreenProps <"Book">): ReactElement {
// ...

}

Listing 19: Typing arguments on a Screen

Figure 34: Pikkukirjasto navigation

The books of the library is cached in react-query, therefore to avoid unnecessary network

requests, the Book object for the target screen, can be passed as a param in the navigation

state.

While the screen is being transitioned to the target screen, the Book object is passed as a

param in the navigation state, and the target screen can access this param from the route prop.

64

Figure 35: Navigation State

5.2.4 Data Fetching Abstraction

The Pikkukirjasto application uses React-Query to interact with the Server, and retrieve

data from the database.

React Query20 is a powerful and flexible data-fetching library for React applications. It is

designed to simplify the management of remote data by providing a declarative and

hook-based API, seamlessly handling caching, background data refetching, and pagination.

React Query utilizes the ”queryKey” as a unique identifier for each data query, allowing for

efficient cache management and data invalidation.

The core feature of React Query is its caching mechanism. When a query is executed, the

library automatically stores the fetched data in an internal cache. Subsequent requests with

the same queryKey will utilize the cached data, reducing unnecessary network requests and

improving application performance. Developers can also configure cache expiration policies to

ensure data stays up to date.

Queries in React Query can have dependencies, and the library automatically takes care of

updating dependent queries when their underlying data changes. This feature is especially

useful when dealing with derived data or complex relationships between different data

queries.

For mutations, React Query provides a ”useMutation” hook that handles asynchronous data

mutations and their optimistic updates. Developers can perform data mutations while the

library optimistically updates the UI to provide a smoother user experience. In case of failure,

65

the optimistic update is rolled back.

React Query plays nicely with TypeScript, offering full type safety and intelligent

autocompletion for queries and mutations. Developers can define specific types for query

response data and mutation variables, ensuring type correctness throughout the application.

The library also supports pagination, making it easy to fetch and manage large sets of data. By

using the built-in pagination features, developers can fetch data in batches, efficiently

handling large datasets without compromising performance.

React Query embraces a flexible and extensible plugin system that enables developers to add

custom logic and modify default behavior. This allows for tailored data-fetching solutions

based on specific project requirements.

Overall, React Query’s combination of caching, query keys, mutations, TypeScript support,

and pagination make it an invaluable tool for handling remote data in React applications. It

simplifies data management, improves performance, and reduces the complexity associated

with handling asynchronous data-fetching tasks.

In the application, React Query is mostly abstracted into separate custom hooks, to be able to

reuse the same queries in different parts of the application. These custom hooks are, for

example:

• useBook

• useBookData

• useUser

• useDeviceId

• useBorrowedBooks

The implementation of a reusable custom React Hook which implements a React Query
instance:

function useBook() {
const query = useQuery<Book[]>(

queryKey: [bookQueryKeys.getAllBooks],
queryFn: async () => {

const { data } = await Api.get(apiEndpoints.getAllBooks);
return data;

},
{

refetchOnWindowFocus: false,
}

);
return query

}

Listing 20: CombinedStackParamList type

In the example above, there are multiple abstractions.

The queryKey is a unique identifier for the query, and it’s used to identify the query in the

cache. The queryKey is an array of strings, and it identifies the data in the cache.

66

import type { QueryKey } from '@tanstack/react-query';
const bookQueryKeys = {

all: ['books'] as QueryKey,
bookById: (id: string): QueryKey => [

...bookQueryKeys.all,
id,

],
bookByAuthor: (author: string): QueryKey => [

...bookQueryKeys.all,
author

],
bookByIsbn: (isbn: string): QueryKey => [

...bookQueryKeys.all,
isbn,

],
};

Listing 21: CombinedStackParamList type

The above example shows an implementation of a QueryKeyFactory. This factory is used to

create QueryKeys for the React Query instance. The cache invalidation in React Query also

works by the QueryKey, so having such implementation in place makes it easy to interact with

the React Query cache.

These keys play a vital role in ensuring accurate internal data caching by the library. When a

query’s dependencies change, these keys enable automatic refetching, maintaining data

integrity. Moreover, they provide the capability to manually engage with the Query Cache
when specific situations arise. For instance, after performing a mutation, or when deliberate

invalidation of certain queries becomes necessary. Before delving into how I optimize the

organization of Query Keys for enhanced efficiency in achieving these objectives.

The flowchart below represents how React Query works under the hood. The staleTime and

cacheTime play a crucial role in deciding the state of the query.

• staleTime: the duration until a query transitions from fresh to stale.

• cacheTime: the duration until inactive queries will be removed from the cache.

67

Figure 36: React Query

5.2.5 User & Auhtentication

To use the library, customer’s do not need to create any type of subscriptions, nor provide any

personal information. Therefore, the application is not collecting any personal data, user’s do

not need to create any account and go through any login, or authentication flow when using

the Pikkukirjasto application.

However, it’s important to have a way to identify users, and to be able to store user specific

data, like the books they borrowed. Apart from that, it’s also important to protect the

backend, and the database from unauthorized access.

In an ordinary application, where there is an actual user, and the users are stored in a

database, a basic authentication flow would work for example with JWT tokens, where the

token is issued by the server after a successful login. The idea is similar here as well, but

instead of having an account, the identifier of a user is the mobile device they are using.

68

Figure 37: JWT Token Based Authentication

In the diagram above, a most generic authentication flow is shown. The user sends a request

to the server, with the credentials, and the server responds with a JWT token. Then the JWT
token will be sent in the header of every request the client initiated towards the server, and

the server will attempt to validate the token, if it’s valid, responds with the requested data.

In the Pikkukirjasto application the authentication flow is similar, but instead of having an

account, the user’s device will be identified by a unique identifier, which is generated by the

application, and stored in the AsyncStorage.

There is an extra layer of authentication in addition to the Token exchange. The

authentication with the API Gateway on the server happens through the biometric

authentication of the user’s device. This is a very secure way of authentication, because the

user’s device is the only device which can access the API Gateway.

Therefore, the update semantics of the authentication model is the following:

69

Figure 38: PikkuKirjasto Authentication Flow

Whenever there’s a request towards the API the app will ask the user to authenticate with

their biometric data, and if the authentication is succesful, the request will be sent to the

server.

5.3 Backend

5.3.1 Localization

Considering the fact, that the initial release of the application is only focusing to a single group

of users, and considering the outcome of the UX research, especially the personas, it became

clear that the application’s User Interface will require localization, so the users are given

the option to choose their preferred language, and to switch between English and Finnish.

In React, (and therefore React Native) the language change happens during runtime, which

also means that the localized elements (such as text, CTA Buttons, helper text, and so on)

holds translation for every language that the application offers.

In this application I’ve utilized i18n, which is the industrial standard localization provider for

React applications.

In order to use i18n in a React application, the root entry point of the app needs to be

wrapped with I18nextProvider, which is part of the i18n library. To keep the entry point as

clean and possible, I tend to handle the local props of different third-party wrappers in

self-managed Higher Order Functions. The same applies for the I18nextProvider as well,

which is implemented inside a custom wrapper component named LocalizationProvider

const LocalizationProvider = ({
children,

}: ILocalizationProvider): ReactElement => (
<I18nextProvider i18n={i18n}>{children}</I18nextProvider>

);

Listing 22: LocalizationProvider

In the code snippet above also shows, how the config for the i18n handled.

70

import i18n from "../i18n";

use(initReactI18next).init({
resources,
lng: "en",
compatibilityJSON: "v3",
debug: true,

});

Listing 23: i18n configuration

The use function is provided by the i18n library, and it takes a config object as a parameter,

which sets the languages, and the actual translations, on an object key called resources.

export type Language = "en" | "fi";
const resources: Racord<Language, Object> = {

en: {
login: "Login",

},
fi: {

login: "Kirjaudu"
},

}

Listing 24: i18n translations

The language config object above demonstrates, how the i18n works. For every language the

application offers, needs to have the same key: string: string value combination available

for every text the application should localize.

Then, on the component level, it’s fairly simple to use the localized texts:

const { t } = useTranslation();

const SomeComponent(): ReactElement => (
<View>

<Text>
{t("hello.world")}

</Text>
</View>

)

Listing 25: Localization Example

The t() function takes a string as an argument, which represents the path the function will

make to a specified text in the object being passed to the resourced config of the i18n.

18github.com/Shopify/restyle
19github.com/tanstack/react-query

71

6 Database

The database is a MongoDB database, and it’s deployment via AWS, using the AWS DocumentDB
service.

The cluster used by DocumentDB is also created in the Pikkukirjasto CDK stack definition, just

like the other parts of the infrastructure.

The schemas of the database are defined in the implementation of the backend, and the

database is seeded with the initial data in the CDK stack definition.

6.1 Database Schemas

There are three different schemas used in this application.

• Book

• User

• Borrow

The schemas are defined using Mongoose, which is a MongoDB object modeling tool designed to

work in an asynchronous environment. It also utilizes the Typescript type system, so the

schemas can be defined using Typescript types, together with NestJS decorators.

6.2 Book Schema

The following schema definition illustrates the structure and attributes of a Book entity within

a MongoDB database, defined using the Mongoose library in a TypeScript environment. The

@Schema decorator specifies that this schema is associated with a collection named books in

the database.

The Book class represents the blueprint for the documents in the Books collection. Each

document will have several properties defined using the @Prop decorator.

@Schema({ collection: 'books' })
export class Book {

@Prop({ required: true })
isbn: string;

@Prop({ required: true, index: true })
title: string;

@Prop({ required: true })
author: string;

@Prop({ required: true })
cover: string;

@Prop({
required: false,
default: [],
type: [MongooseSchema.Types.ObjectId],
ref: 'Borrow',

72

unique: true,
})
borrows: Types.ObjectId[];

}

Listing 26: Book Schema definition

• The ISBN property represents the ISBN code of the book and is marked as required.

• The title property holds the title of the book and is both required and indexed for

efficient querying.

• The author property specifies the author’s name of the book and is marked as required.

• The cover property contains a URL or path to the cover image of the book and is required.

• The borrows property represents an array of references to Borrow documents. It is not

required and has a default empty array. It is of type Types.ObjectId[] (imported from

Mongoose) and is linked to the Borrow schema using the ref field. This establishes a

relationship between books and their associated borrow records. Additionally, the

unique attribute ensures that each book’s borrows array contains unique references.

Overall, this schema definition outlines the essential attributes of a Book document, along

with its relationships to the Borrow documents, within the context of a MongoDB database

using Mongoose.

6.3 User Schema

The following schema definition delineates the structure and characteristics of a User entity in

a MongoDB database, constructed using the Mongoose library in a TypeScript setting. The

UserDocument type is a hydrated version of the document of type User, enhancing its

functionality.

The User class defines the blueprint for documents within the users collection. The @Schema
decorator signifies that this schema corresponds to the users collection in the database. The

timestamps: true option indicates that MongoDB should automatically generate createdAt and

updatedAt timestamps for each document.

The User class features a single property:

The userId property signifies a unique identifier for each user and is marked as required and

unique. This ensures that each user has a distinct identifier and prevents duplication. The

UserSchema constant, generated using SchemaFactory.createForClass(User), encapsulates
the schema and provides a means to interact with it. This arrangement delineates the

structure of User documents within the MongoDB database and employs Mongoose’s
functionalities for improved data management.

@Schema({ collection: 'users', timestamps: true })
export class User {

@Prop({ required: true, unique: true })
userId: string;

}

Listing 27: Book Schema definition

73

6.4 Borrow Schema

The following schema definition delineates the structure and characteristics of a Borrow entity

in a MongoDB database, constructed using the Mongoose library in a TypeScript setting. The

BorrowDocument type is a hydrated version of the document of type Borrow, enhancing its

functionality.

The Borrow class defines the blueprint for documents within the borrows collection. The

@Schema decorator signifies that this schema corresponds to the borrows collection in the

database. The timestamps: true option indicates that MongoDB should automatically generate

createdAt and updatedAt timestamps for each document.

@Schema({ collection: 'borrows', timestamps: true })
export class Borrow {

@Prop({
required: true,
unique: false,
type: MongooseSchema.Types.ObjectId,
ref: 'User',

})
user: MongooseSchema.Types.ObjectId;

@Prop({ type: MongooseSchema.Types.ObjectId, ref: 'Book', required: true })
book: Types.ObjectId;

@Prop({ required: true, unique: false })
isbn: string;

@Prop({ required: true, unique: false, default: false })
isBorrowed: boolean;

}

Listing 28: Book Schema definition

The Borrow schema connects the borrowed Book with it’s own ObjectId, and the User who

borrowed it. By making this, it’s possible to query the database for all the books borrowed by

a specific user, and all the users who borrowed a specific book. Having the

MongooseSchema.Types.ObjectId as type of specific property, makes it possible to populate

the data of that property, when querying the database.

Figure 39: Pikkukirjasto DB Schema

74

7 Testing

Both of the application are heavily tested. The test results, and the coverage reports are

available in a hosted standalone application.

7.1 Test-Driven Development

Test-Driven Development21 (TDD) is a software development methodology that emphasizes

writing tests before writing the actual code. It follows a cyclic process consisting of three

main steps: writing a failing test, writing the minimum code required to make the test pass,

and then refactoring the code while ensuring that the test still passes.

TDD starts with writing a test case that describes the desired behavior of the code. This test

initially fails since there is no implementation yet. Then, developers proceed to write the

simplest code that fulfills the requirements of the test. This approach ensures that the code is

written to satisfy specific functional expectations.

TDD promotes a strong feedback loop as tests are run frequently during development. This not

only helps to catch bugs early but also aids in designing modular and loosely coupled code,

leading to better maintainability and extensibility. Additionally, TDD encourages developers to

focus on writing code that is tightly aligned with the requirements, which can lead to more

reliable and predictable software.

By writing tests before the code, TDD also acts as a form of documentation, providing clear

examples of how the code is intended to be used. This can be especially helpful for other

developers who might work on the codebase in the future.

While TDD can lead to improved code quality and faster bug detection, it can also demand a

mindset shift for some developers. Writing tests before writing code requires careful planning

and consideration of the software’s architecture. However, this initial investment often pays

off in terms of reduced debugging time and increased confidence in the correctness of the

codebase.

Since both the Backend and the Mobile Application are written in TypeScript, I have used a

JavaScript testing framework called Jest.

While both application in written in TypeScript, due to their different nature, their testing

approach is also rather different.

7.2 Backend testing

The backend is a Node.js application, therefore it is tested with Jest. There are two

different types of tests in the backend. Unit tests, and integration tests. The unit tests are

testing the individual functions, and the integration tests are testing the endpoints of the

application, along with the database abstraction.

In the context of a REST API developed using NestJS, effective unit testing involves the

comprehensive validation of individual components and functions within the application.

Utilizing NestJS’s built-in testing utilities and libraries like Jest, unit tests should cover

various aspects of the API, such as endpoints, services, controllers, and data manipulation.

75

For instance, when testing a controller method, the unit test would ideally mock dependencies

and simulate HTTP requests, ensuring that the controller’s response and behavior align with

expectations. Similarly, unit tests for services would assess business logic, database

interactions, and error handling, all while isolating the service from external factors. By

meticulously crafting unit tests in this manner, developers can swiftly identify regressions and

bugs within the API, leading to a robust and reliable RESTful service that adheres to the

principles of maintainability and testability.

The test files are placed close to the actual implementation, and it follows the .spec.ts
naming convention.

In unit testing, the goal is to isolate each part of the program and show that the individual

parts are correct. By isolating the parts of the program, unexpected interactions are avoided,

so unit tests make it easier to test the program’s correctness. When writing unit tests in Jest,
the describe and it methods are used to define the test suite and test cases, respectively.

The expect method is then used to define the expected output of the test case. The expect
method takes a value called the actual and compares it against the expected value. If the

actual value matches the expected value, then the test case is passed. Otherwise, it is failed.

Mocking in Jest is a powerful technique used to simulate the behavior of external

dependencies, functions, or modules during unit testing. By creating mock implementations,

developers can control the responses and interactions of these dependencies, allowing for

isolated testing of specific code components. This is particularly valuable when testing

interactions with databases, APIs, or other complex systems that should be decoupled from

the unit under test. Jest provides built-in mocking utilities that enable the creation of mock

functions and objects, making it easier to simulate real-world scenarios without actually

invoking external resources. Overall, mocking in Jest enhances the precision and efficiency of

unit tests by providing a controlled environment to assess the behavior of individual code units

in isolation.

getAllBooks: jest.fn().mockResolvedValue([...demoBook]),

Listing 29: Example mocking in Jest

The example above mocks a simple function in the book.constroller.spec.ts, which is the

getAllBooks function. The jest.fn() creates a mock function, and the mockResolvedValue
sets the return value of the mock function. This way, the function can be tested without the

need of a database connection.

When a specific implementation needs chained mocking, that can be achieved also, utilizing

the mockImplementation method.

jest.spyOn(model, 'findOne').mockReturnValue(
createMock<Query<BookDocument, BookDocument >>({

populate: jest.fn().mockImplementationOnce(() => ({
exec: jest.fn().mockResolvedValueOnce(thisBook),
})),

}),
);

Listing 30: Chained mocking example in Jest

The tests can be executed using the CLI provided by Jest.

76

pnpm run text

Figure 40: Backend Jest output

The test cases are executed in a CI environment as well, and the test results are available in

the CI pipeline.

Figure 41: Backend Jest output Github CLI

7.2.1 Test coverage

Test coverage is a metric that measures the percentage of code that is covered by automated

tests. It is an indicator of the quality of the tests, and it can be used to assess the risk of

undetected bugs in the codebase. A higher test coverage indicates that there is a lower risk of

bugs in the codebase, while a lower test coverage indicates that there is a higher risk of bugs

in the codebase. The test coverage of the backend is measured by Jest, and the results are

generated in the CI pipeline, during either staging or production release.

Figure 42: Generating Test Coverage Report

77

Figure 43: Backend Codecov report

The report generated by Jest is public avaliable at backendcov.thesis.richardzilahi.hu.

Figure 44: Public Codecov Report for Backend

7.3 App testing

The testing of the React Native mobile application also uses Jest as its test runner, however

the testing approaches and methods are differs from the server side.

78

When writing unit tests for a React application, usually there are three main aspects that

every test case should consider:

• ensure the component renders without any errors

• ensure their props are handled correctly

When it comes to writing good unit tests, there are a several best practices to follow:

• Always test components in isolation: React components should be tested in isolation

from the rest of the application, to avoid unexpected side-effects from other parts of the

application affecting the test results.

• Test the render output: You should test the output of a component to make sure that it

is rendering correctly.

• Test edge cases: Make sure to test the component with a variety of different props and

state values, including edge cases like empty or invalid data, to make sure that it works

correctly in all scenarios.

import React from ”react”; import render, fireEvent from ”@testing-library/react”; import

DummyComponent from ”./DummyComponent”;

describe("DummyComponent", () => {
it("renders correctly", () => {

const { container } = render(<DummyComponent />);
expect(container).toMatchSnapshot();

});

it("updates its state when a button is clicked", () => {
const { getByText } = render(<DummyComponent />);
const button = getByText("Click me");
fireEvent.click(button);
expect(button).toHaveTextContent("Clicked 1 times");

});
});

Listing 31: Jest React Test Example

In this example, the render method from @testing-library/react is used to render the

DummyComponent component into a test environment. The getByText method is then used to

find a specific element within the component, and the fireEvent.click method is used to

simulate a user interaction with the button. Finally, the expect function is used to assert that

the component’s text content has been updated correctly.

When it comes to unit-testing custom react-hooks there are a few aspects to keep in mind to

ensure that the tests are effecntive enough:

• Testing the hook behavior: It’s important to test the behavior of the hook to ensure that

it works as expected. This may include testing the initial state, updating the state, and

any side effects that the hook might produce.

79

• Testing different use cases: The hook may be used in different ways throughout the

frontend application, so it’s important to test it in a variety of use cases to ensure that it

works correctly in all situations.

• Testing edge cases: It’s important to test edge cases and error conditions to ensure that

the hook behaves as expected in these scenarios. This may include testing with invalid

input, empty values, or null values.

• Mocking dependencies: If the hook relies on external dependencies, such as APIs or other

hooks, it may be necessary to mock these dependencies in the tests to ensure that the

hook behaves consistently and predictably.

• Ensuring proper cleanup: If the hook performs any cleanup operations, such as

unsubscribing from event listeners, it’s important to ensure that these operations are

performed correctly and that any resources are properly released.

7.3.1 Test coverage

The test coverage of the mobile application is measured by Jest, and the results are

generated in the CI pipeline, during either staging or production release.

Similar to the Backend testing, the test coverage is almost 109% for the React Native
application as well.

Figure 45: Public Codecov Report for Mobile Application

Complete, 100% coverage unfortunately was not possible to reach here, because the

Application implements a feature on the native camera, to scan the bard codes of the books,

and the native camera can not be mocked any meaningful way which would help Jest to

discover the coverage of that specific code.

The code coverage report of the React Native application is available publicly behind the

following URL: appcov.thesis.richardzilahi.hu

20en.wikipedia.org/wiki/Test-driven_development

80

8 Documentation

Documentation is a fundamental aspect of software development, playing a critical role in

ensuring the clarity, maintainability, and longevity of a codebase. In this chapter I will be

discussing the importance of documentation, its best practices, and its integral role in

software projects.

Documentation is the written record of every software project’s design, functionality, and

usage. It serves as a critical source of information for developers, maintainers, and

stakeholders. Comprehensive documentation is essential for various reasons, including

onboarding new team members, troubleshooting issues, enhancing code maintainability, and

ensuring project durability. It offers a structured way to communicate vital details about the

software, reducing dependencies on individual knowledge and promoting collaboration.

8.1 Types of Documentation

Effective documentation encompasses various types, including code documentation,

architectural documentation, user documentation, and API documentation. Code

documentation, often in the form of comments, provides insights into the codebase’s structure

and function, helping developers understand how different parts of the code work.

Architectural documentation outlines the system’s overall design, the relationships between

its components, and its dependencies. User documentation is vital for guiding end-users

through an application, ensuring they can utilize it efficiently. API documentation defines how

external components or services interact with the software, fostering integration and

interoperability.

8.2 Documentation Best Practices

To create valuable documentation, it should be clear, concise, up to date, and easily

accessible. It’s important to use descriptive names for classes, functions, and variables.

Employing meaningful comments to explain the purpose of code segments and any associated

constraints or edge cases. Documentation should be consistent and follow a structured format

to enhance readability. It’s essential to keep documentation up to date as code evolves,

ensuring that it remains relevant. Include examples, usage scenarios, and practical

information to facilitate understanding. Keeping the documentation in version control systems

(like Git) can also be used to maintain documentation alongside the codebase, ensuring

alignment with code changes. Therefore, documentations should be considered an integral

part of the codebase. Embedding it within the code repository makes it easily accessible to

developers, fostering a seamless transition when different team members collaborate or when

new contributors join the project. Developers can maintain documentation files alongside

code files, ensuring they stay in sync with code changes. This practice reinforces the concept

that documentation is not a separate task but an ongoing and parallel process within software

development.

8.3 Utilized Documentation Tools

In this project, I’ve utilized multiple tools to create and maintain documentation across the

codebase, keeping in mind the nature of the React Native application, and the server side

Node.js application.

81

8.3.1 Server Side

As mentioned in the previous sections, the server side application uses NestJS framework,

which implements a RestAPI interface. Documenting APIs are the most crucial part of every

server side application, as it contains the methods and endpoints that are used to

communicate with the application.

The NestJS framework provides a built-in tool to generate API documentation, based on the

API endpoints, and the DTOs used in the application. This specific tool is called 22Swagger, and
it is a tool that can be used to generate API documentation, and it also provides a user

interface to interact with the API endpoints.

Figure 46: Swagger API Documentation

Similar to the Codecoverage reports for both the backend and app applications, the Swagger
documentation is also deployed to a dedicated StaticStack on AWS, and it’s publicly

accessible, at apidoc.richardzilahi.thesis.hu

8.3.2 Mobile Application

To document the mobile application, I’ve utilized the JSDoc tool, which is a markup language

used to annotate JavaScript source code files. While JavaScript is primarily used to

document JavaScript application, it can also be used to document TypeScript files, using

TypeScript specific annotations.

When using properly configured JSDoc setup for a TypeScript project, the JSDoc tool can

generate documentation for the entire codebase.

82

The example blow is a generic JSDoc comment, in a JavaScript file:

/**
* ActionRequest
* @memberof Action
* @alias ActionRequest
*/

export type ActionRequest = {
/**
* parameters passed in an URL
*/

params: {
/**
* Id of current resource
*/

resourceId: string;
/**
* Id of current record
*/

recordId?: string;
/**
* Name of an action
*/

action: string;

[key: string]: any;
};

}

Listing 32: Javascript Documentation Command

Using a specific configuration for JSDoc will turn the example above into the following

documentation:

/**
* ActionRequest'
* @memberof Action'
* @alias ActionRequest'
* @typedef {object} ActionRequest'
* @property {object} params parameters passed in an URL'
* @property {string} params.resourceId Id of current resource'
* @property {string} [params.recordId] Id of current record'
* @property {string} params.action Name of an action'
* @property {any} params.{...}'
*/

Listing 33: TypeScript Documentation Comment

The JSDoc documentation is also deployed to a dedicated StaticStack on AWS, and it’s

publicly available at jsdocs.thesis.richardzilahi.hu.

83

Figure 47: JSDoc on Mobile Application

Similarly to all the other documentation, the JSDoc documentation is also deployed

automatically, using the Deployment GitHub Action.

Figure 48: JSDoc Deployment

21swagger.io

84

9 Next Steps

The development in this application won’t stop by the context of this thesis. It will be actively

continued and expanded in the future. There are various different angles and already existing

ideas where this application could evolve in the future.

In this chapter of my thesis I am going to introduce these ideas, and potentions where this

application could go, and what it still could achieve.

9.0.1 Generalizing the idea

Since the very beginning of the development process, what’s more, already during the

architecture planning, I have kept in mind, that potentially this application won’t be stopping

on its initial target, which is to supply a digitalized set of services for the Halkeinkiven
Pikkukirjasto library only. In Finland, luckily there are many other small, community driven

libraries, and I am sure most of them lacking such services and solution that I have attempted

to solve in this thesis work. Therefore, one future idea would be to open source the

architecture, and by making the database more robust and scalable, in the future it will be

fairly simply and straightforward to pull in other libraries, and this library’s books to the

application, and to provide the same features, solutions for other libraries across the country

as well.

85

10 Conclusions

In the realm of user experience, the journey began with a deep understanding of the unique

needs and expectations of the target users. Through comprehensive user research and persona

development, I crafted a holistic picture of the users, which included Aino, Seppo, Sanna, and

the contemporary reader, Lauri. This in-depth understanding laid the foundation for the

creation of a digital library app that truly resonated with their goals, frustrations, and

preferences.

The ”empathize” phase was instrumental in ensuring that the app design was not only

aesthetically pleasing but also highly functional. I listened to the desires and pain points of the

personas, and this knowledge guided the design decisions. The implementation of a light color

scheme, where orange plays a central role, was a testament to the care we took in addressing

the psychology of color and the significance of visual elements. This, coupled with an intuitive

user interface, makes the app easily accessible for users of all ages and backgrounds.

The continuous commitment to iterative refinement and usability testing assured that the app

aligns seamlessly with user goals and expectations. This user-centered approach guarantees

that users have an engaging and frustration-free experience, thus fulfilling our primary

objective in the UX domain.

On the engineering side, the app was constructed using cutting-edge technologies and best

practices. The integration of AWS and CDK allowed for scalable and cost-efficient cloud

infrastructure, while the use of React Native ensured cross-platform compatibility, enabling

access for a wide range of users, including those on iOS and Android devices.

The backend, built using NestJS and TypeScript, provided a robust and well-structured

foundation for the server side. The use of MongoDB as the database of choice facilitated

efficient data management and storage.

Additionally, I embraced the principles of semantic release, ensuring that the app’s versioning

and release process flow adhered to industry standards, offering reliability and transparency

to users.

In conclusion, the engineering work were guided by a commitment to providing a seamless and

performant cross-platform mobile application. The harmonious fusion of the UX and

engineering aspects resulted in an app that caters to users’ goals and expectations while

delivering a technically sound and dependable platform. This convergence of user experience

and engineering excellence represents the essence of our thesis and underscores our

dedication to creating a user-friendly and technologically robust solution for the diverse set of

users.

86

References

Brown, Tim (2023). Design Thinking. Accessed 2023-6-15

https://www.interaction-design.org/literature/article/what-is-design-thinking-
and-why-is-it-so-popular.

Gibbons, Sarah (2023). Design Thinking 101. Accessed 2023-7-1

https://www.nngroup.com/articles/design-thinking.

Kalik, Anton (2023). Implementing Semantic Release for Public Non-Scoped Packages.

Accessed 2023-9-12

https://betterprogramming.pub/implementing-semantic-release-for-public-non-
scoped-packages-4593ff81f39f.

Khorrami, Najma (2023). How to Understand Customer Needs. Accessed 2023-7-1

https://www.entrepreneur.com/growing-a-business/how-to-understand-customer-
needs/429343.

Onuta, Anca (2023). How to Get Started with Test Driven Development — A Step by Step

Guide. Accessed 2023-6-16

https://medium.com/geekculture/how-to-get-started-with-test-driven-development-a-
step-by-step-guide-bfdd831fae71.

Stevens, Emily (2023). How To Conduct UX Research For Maximum Value. Accessed 2023-6-29

https://usabilitygeek.com/how-to-conduct-ux-research.

Veal, Raven (2023). How to Define a User Persona. Accessed 2023-7-2

https://www.nngroup.com/articles/design-thinking.

87

Figures

Figure 1 Persona - Aino . 12

Figure 2 Persona - Sanna . 13

Figure 3 Persona Seppo . 13

Figure 4 Aino Empathy Map . 15

Figure 5 Seppo Empathy Map . 16

Figure 6 Seppo Empathy Map . 17

Figure 7 Brainstorming Map . 20

Figure 8 Prototype . 22

Figure 9 Prototype . 23

Figure 10 Prototype . 24

Figure 11 Prototype . 25

Figure 12 Wireframe . 27

Figure 13 Color Scheme . 28

Figure 14 UI Design . 29

Figure 15 UI Design . 30

Figure 16 UI Design . 31

Figure 17 Before Git Rebase . 36

Figure 18 After Git Rebase . 36

Figure 19 Committizen CLI in action . 37

Figure 20 Commit message tempalte . 37

Figure 21 Commit message example . 37

Figure 22 Github Actions . 40

Figure 23 Github Deployment Workflow . 41

Figure 24 Semantic Release . 42

Figure 25 Release in Github . 43

Figure 26 Expo EAS . 46

Figure 27 NestJS Routing . 47

Figure 28 AWS CDK Stack . 51

Figure 29 Backend Stack . 53

Figure 30 Static Stack . 55

Figure 31 AWS Route 53 . 56

Figure 32 React Navigation - Navigate Forward . 60

Figure 33 React Navigation - Navigate Back . 61

Figure 34 Pikkukirjasto navigation . 63

Figure 35 Navigation State . 64

Figure 36 React Query . 67

Figure 37 JWT Token Based Authentication . 68

Figure 38 PikkuKirjasto Authentication Flow . 69

Figure 39 Pikkukirjasto DB Schema . 73

Figure 40 Backend Jest output . 76

Figure 41 Backend Jest output Github CLI . 76

Figure 42 Generating Test Coverage Report . 76

Figure 43 Backend Codecov report . 77

Figure 44 Public Codecov Report for Backend . 77

Figure 45 Public Codecov Report for Mobile Application 79

Figure 46 Swagger API Documentation . 81

88

Figure 47 JSDoc on Mobile Application . 83

Figure 48 JSDoc Deployment . 83

Tables

Table 1 GitHub Labels . 34

Table 2 Bugfix commits . 35

Table 3 Feature commits . 35

