

Ammar Fares Daham

Free Spins Giveaway

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

1 March 2021

Abstract

Author: Ammar Fares Daham

Title: Free Spins Giveaway

Number of Pages: 36 pages

Date: 15 March 2024

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Software Engineering

Supervisors: Janne Salonen, Director of expertise

The engineering work aims to develop a promotional service for Online casinos and

IGaming platforms to give free game rounds within a configured promotional campaign

to attract players.

The work started with discussions and planning on structuring this tool effectively,

considering it is integration with our current services to ensure compatibility. various

structures were proposed, two of those structures were to create this tool within our

game system. However, the downside if this tool requires maintains or update it will

potentially disrupt the entire system.

Finally, the decision was made to develop the tool as a separate project outside the

game system hosted on it is own server with minimal touch to the game system if

necessary.

Keywords: Online casino, IGaming, Java, Java servlet, Java web

application, Apache tomcat, Postgresql, Hibernate ORM

Tiivistelmä

Tekijä: Ammar Fares Daham

Otsikko: Insinöörityön otsikko

Sivumäärä: 36 sivua

Aika: 25.3.2024

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tietotekniikka

Ammatillinen pääaine: Ohjelmistotuotanto

Ohjaajat: Janne Salonen, Osaamisaluejohtaja

Tämän insinöörityön tavoitteena on kehittää online-kasinoille ja IGaming-

alustoille promopalvelu, joka tarjoaa ilmaisia pelikierroksia konfiguroidussa

promootiokampanjassa pelaajien houkuttelemiseksi.

Työ aloitettiin keskusteluilla ja suunnittelulla tämän työkalun tehokkaasta

jäsentämisestä ottaen huomioon, että se on integrointi nykyisten palveluidemme

kanssa yhteensopivuuden varmistamiseksi. erilaisia rakenteita ehdotettiin, kaksi

näistä rakenteista luovat tämän työkalun pelijärjestelmäämme. Kuitenkin

haittapuoli, jos tämä työkalu vaatii ylläpitoa tai päivitystä, se saattaa häiritä koko

järjestelmää.

Lopuksi päätettiin kehittää työkalu erillisenä projektina pelijärjestelmän

ulkopuolella, sillä se isännöi omaa palvelinta, jossa pelijärjestelmään on

tarvittaessa vähän kosketusta.

Avainsanat: Online kasino, IGaming, Java, Java servlet, Java web

application, Apache tomcat, Postgresql, Hibernate ORM

Contents

List of Abbreviations

1 Introduction 1

2 Efficient Marketing techniques 2

2.1 Competitive SEO techniques 2

2.2 Optimize landing page 2

2.3 Promotions and Bonuses 3

2.3.1 Enhancing customer loyalty 3

2.3.2 Encouraging Engagement 3

3 Free spins promotion tools 4

4 Planning phase 5

4.1 Promos from server 6

4.2 Promos from client 7

5 Core technologies applied in the promo server 11

5.1 Java 11

5.1.1 Java Web Application 12

5.1.2 Java EE 12

5.1.3 Servlet 12

5.2 PostgreSQL 14

5.3 Hibernate 17

5.4 Apache Tomcat 17

5.5 JGroups 18

5.6 JUnit 18

6 Results 20

7 Summary 24

References 25

Appendices

Appendix 1: Source code

List of Abbreviations

SEO: Search Engine Optimization

FSCAPI: Free Spins Campaign API

JVM: Java Virtual Machine

Java SE: Java Standard Edition

JSP: Java Server Page

HTML: Hyber Text Markup Language

DBMS: Database Management System. Software for maintaining, querying,

and updating data and metadata in a database.

ORM: Object-relational Mapping. The set of rules for mapping objects in a

programming language to records in a relational database, and vice

versa.

JDBC: Java Database Connectivity. A standard Java API for connecting to

relational databases.

SQL: Structured Query Language.

EDR: Entity Relationship Diagram. A type of flowchart to display the

relation between entities.

HTTP: HyperText Transfer Protocol.

RNG: Random Number Generator.

JUnit: Java Unit Testing.

1

1 Introduction

The main objective of this project is to create a promotional tool called the 'Free

Spins giveaway' for Airdice Oy operators. This tool is designed to offer free spin

drops to players engaged in Airdice games, with a specific focus on enhancing

the overall gaming experience for online casino players. The tool will be working

by a pre-configured campaign been configured by Airdice team for their

operatores in Malta and South America. The goal is to establish a lasting

connection between Airdice Oy and its online casino community in these regions,

ultimately leading to increased player retention, revenue growth, and improved

market competitiveness.

Our comprehensive exploration will delve into the development phases of this

promotional tool, encompassing conceptualization, design, and implementation.

Through a seamless integration of cutting-edge technology, our objective is to

create a promotional solution that will captivate and engages Airdice's customers.

Commonly employed by online casinos and iGaming platforms, promotional tools

serve as effective mechanisms to capture the attention of potential players and

enhance the overall appeal of the casino's offerings. These strategies,

encompassing a compelling blend of incentives, bonuses, and captivating

marketing campaigns, are formulated to promote enthusiasm, inspire

involvement, and cultivate a lasting bond between the player and the platform.

In summary, the successful deployment of the "Free Spins giveaway" tool is

poised to revolutionize the dynamics of player engagement, financial

performance, and market competitiveness for Airdice Oy and its operators.

Through this strategic initiative, Airdice aspires to not only retain and attract

players but also to thrive as a trailblazer in the competitive landscape of online

casinos.

2

2 Efficient Marketing techniques

In our days the business of iGaming is growing and being extremally competitive

market, simply offering a high-quality games or services is no longer sufficient to

build successful wealthy enterprise, to thrive in this industry, businesses must

leverage efficient marketing techniques, including competitive SEO techniques,

Optimize landing pages, promotions and bonuses, with these powerful marketing

techniques almost every online casino can become an attractive destination that

makes players engage permanently. (Manuela Willbold.)

2.1 Competitive SEO techniques

In the digital world, being easy to find online is super important for all businesses,

and one of those businesses is iGaming. It is all about how quickly people can

discover your platform on the internet. To show up high in google search results

we must use tools called Search Engine Optimization (SEO).

For example, if someone looks up "online casino bonuses," you want your bonus

offer to be one of the first things they see. This is even more important if your

brand isn't super well-known yet. People who are new to iGaming might start by

searching for bonuses.

So, by using specific and easy-to-find words when talking about your stuff online,

you make sure that more people can discover your website and what you offer.

That's how you make your business more visible online! (Manuela Willbold.)

2.2 Optimize landing page

To increase their online visibility, companies not only invest in premium Search

Engine Optimization (SEO) tools but also create special web pages for their

important services and products. These pages include specific keyword phrases

related to what they offer and eye-catching headlines, captions, and high-quality

images or videos. (Manuela Willbold.)

3

To reach a broader audience, companies also use social media marketing. Since

many people use social media platforms like Facebook, Twitter, and Instagram,

having accounts and running ads there can help businesses attract new

customers. Using the right keywords in their social media posts is crucial to get

noticed online. (Manuela Willbold.)

2.3 Promotions and Bonuses

Promotions and bonuses are the strategies and method that online casinos and

gaming platforms utilize to engage and reward their players, simultaneously

fostering captivating experiences for players while generating profits for the

operators.

In our daily lives, it's a common desire to receive bonuses and promotions from

businesses we patronize, whether it's a supermarket, a restaurant, or any other

service provider. These incentives often make us feel valued as customers and

can significantly influence our decisions when choosing where to shop or dine.

Similarly, in the world of online casinos, players are also on the lookout for

promotions and bonuses that enhance their gaming experience and motivate

them to keep playing. (Manuela Willbold.)

The appeal of bonuses and promotions for online casinos is undeniable:

2.3.1 Enhancing customer loyalty

online casino players are drawn to casinos that regularly offer promotions like

free spins, deposit bonuses, or cashback rewards. These incentives not only

make the gaming experience more enjoyable but also encourage players to stay

and wager more within that casino.

2.3.2 Encouraging Engagement

online casinos employ time-limited promotions to stimulate player activity. For

instance, a weekend tournament or campaign with higher prize pools or a special

4

event with extra bonuses can motivate players to participate more actively during

those specific periods.

Let's pause for a moment and shift our focus to an exciting promotional tool “free

spins”. Online casinos leverage this tool to not only promote our games but also

to reward and entice their players. Free spins are a powerful incentive that not

only enhances the gaming experience but also serves as a key driver for

increased player engagement.

Now, let's delve deeper into the significance of free spins and their pivotal role

within the dynamic of marketing promotion tool for online casinos.

3 Free spins promotion tools

Free spins serve as a dynamic marketing tool and an engaging feature for online

casinos and gaming platforms. This promotional offering involves granting

players a specific number of complimentary attempts as part of a welcome bonus,

or during promotional campaign allowing them to enjoy a game round without

having to wager their own money. Free spins come in two primary forms: no-

deposit bonuses and inclusion within deposit bonus packages, and in this

document, we will focus on the no-deposit bonus variant, where we have

identified and restricted specific type called free spins giveaway.

5

4 Planning phase

The planning phase started with drawing a diagram, describing the existing

servers along with the proposed addition the promo server. Promo server

constitutes an important role in configuring, reading free spin campaigns, and

deciding based on timestamp to award free spin drops. The process begins when

a player launches a game session, the client dispatches a request to the promo

server asking if there is an active campaign. The promo server sends back

response indicating the presence or absence of an active campaign. If a

campaign is active, the client receives detailed information about it, enabling the

player to initiate game session.

The promo server receives replicated data after each finished game round from

the central server and make a timestamp-based decision to give free spin drops

and tell the FSCAPI to officially award these promotional wins. Afterwards, the

client queries the promo server to check for promotional wins, receiving a detailed

response. This seamless interaction between the client, promo server, FSCAPI

and central server indicates the efficient management and communication of

information regarding ongoing promotional activities. Notably, the promo server

maintains its own database to store promotional campaigns and track the limited

drops intended to be distributed during each campaign.

Figure 1. Game System

6

4.1 Promos from server

The Promo server is an important part of the dynamic process, it receives

replicated data after each finished game round from the game server. When

receiving the data needed from game server, the Promo server takes on a time-

based decision-making algorithm to give free spin drops. Afterwards, it initiates a

call to the "CreateCampaign" function from FSCAPI to award these free drops.

FSCAPI, is one of the existing services in our system that, facilitates

communication between the promo server, the central server, and itself. After

successfully awarding these drops, FSCAPI sends responses to the central

server and to the promo server. These responses guarantee the success or

failure of the request. Additionally, the promo server, acknowledges the

importance of saving campaign information, persists the unique campaign Id

associated with the awarded free spin drops.

This collaborative workflow ensures the seamless execution of promotional

awards, with the promo server acting as a central hub for decision-making, while

the FSCAPI serves as a bridge, managing the flow of information between

different components of the system. This process is illustrated in the

"promos_server_pov" diagram.

Figure 2. Promo Server Side

7

4.2 Promos from client

The promo server's functionality from the client's perception, starts as the player

launches the game through the game server, then player gets redirected to the

casino index. Afterwards, the game loading, and the client sends a "getPromos"

request to the promo server.

When the client receives response, there will information about the existence or

non-existence of an active promotional campaign. If there is an active campaign,

a campaign popup appears, displaying campaign details to the player.

Thereafter, the player starts a game round, and after each collect request, which

means the game round has been finished, the client dispatches a

"pollPromoWins" request, prompting the promo server to respond by either

awarding promo wins or not.

As the promo server grants free spin drops, the client hands over information

about the awarded promotional wins and informing the player to exit the game

and start new session to access and play the free spin drops. The game is

relaunched, sending another "getPromos" request, and upon receiving the

response regarding the active campaign, the player gains authorization to play

the awarded free spin drops, note that the player prohibited to get a free spin drop

based on a free spin game round.

Through the game session, the free spins counter is dynamically updated by the

client, decreasing it after each finished free spin game round. After all free spin

game rounds are completed, the client hides the free spins counter and displays

a popup message saying, "free credits end", providing the players with a

summary of their overall winnings. The comprehensive sequence diagram

provided below illustrates the interaction between the promo server and the client,

detailing each step of the process from game start to the peak of free spin rounds

and the display of end outcomes.

8

9

Figure 3. Promo Client Side

10

In the screen-mock-up provided below we aim to display the interaction in the

client throughout the entire gaming session from initiating a game session to

awarding free spin drops, afterward playing the awarded free spin drops. This

illustration serves to showcase the user journey.

Figure 4. Promo Screen Mock-Up

In the flowchart provided, each step explained, identifying the areas where

popups are triggered. Upon launching any game if a promotional campaign going

on, the client will present a notification popup with ‘OK’ button. Afterward the

player presses the button, player start a game round, when the game round

finished the client checks there are awarded free spin drops, then prize popup

presents with ‘Exit’ button, prompting the player to reload the game and start new

session. Following that the client displays a free spins counter allowing the player

to play the free rounds. In the absence of awarded free spins the player continues

playing another game round and so on. if no campaign is active no notification

popup appears, and the player can play normally assuming there is no

promotional campaign going on.

11

Figure 5. UX flowchart

5 Core technologies applied in the promo server

The Promo Server is a Gradle web application that utilizes Java Servlet and a

variety of advanced technologies to ensure optimal performance, scalability, and

user experience. This well-thought-out integration is designed to provide a

seamless and efficient platform for users. Promo server utilizes the following

cutting-edge development technologies:

• Java 11

• PostgreSQL 14 as a DBMS.

• Hibernate 5.6

• Apache Tomcat 9 server infrastructure.

• JGroups cluster for data replication.

• JUnit.

5.1 Java

Java is an object-oriented programming language and a development platform

that runs on billions of devices worldwide, initially backed by Sun Microsystems

and currently supported by Oracle, stands out for its open-source nature. Java is

12

considered as a multiplatform, it was branded with a saying “write once, run

anywhere” or (WORA) and that explains java code can be written for one platform

and easily transferred to another platform without being completely rewritten, the

complier creates .class bytecode that can be run on any operating system that

has Java virtual machine (JVM) installed. In our software, we specifically

employed Java EE with servlet 4.0, which widely used for programming web

applications in the Java programming language to ensure seamless compatibility

with our existing services, all of which are already integrated with Java 11.

(Jaiswal Sonoo)

5.1.1 Java Web Application

Java web application is used to create a dynamic website, and Java language

provides this feature through servlet and JSPs, you might be wandering that we

can create websites using Hyper Text Markup Language (HTML) which is easier,

but that website will be a static, in case if we want our information to be dynamic

then, we use Java web application. We have used “Eclipse IDE with java EE

developers” for creating a servlet application. (Jaiswal Sonoo)

5.1.2 Java EE

Java Enterprise Edition (EE) platform is a collection of APIs and tools to create

web application. Java EE is a specification that application servers and software

development environments must follow. Java EE contains several API definitions

such as JDBC, RMI, e-mail, JMS, web services, XML, etc. In addition to these,

Java EE contains component definitions such as Enterprise JavaBeans, servlet,

portlet and JavaServer Pages. (Cheah 2019.)

5.1.3 Servlet

Java servlets are a Java program classes which extend the functionality of

servers that runs on web server or application server, it is used to handle requests

13

and send back responses vie Http servlet classes, servlet is a part of Java EE

platform. We utilize javax.servlet and javax.servlet.http packages to write the

servlet’s interfaces and classes, the httpServlet class provides methods like

“doGet” and “doPost” for handling HTTP services. Below an example of initializing

servlet. (Cheah 2019.)

public class PromoServlet extends HttpServlet {

 private PromoDao promoDao;

 private SettingServiceImpl settingService;

 private DbTransactionManager transactionManager;

 private PromoEngine promoEngine;

@Override

public void init(ServletConfig config) throws ServletException {

super.init(config);

ThreadCreator.getInstance().start();

log.info("Initializing promoserver v{}");

jsonMapper.setSerializationInclusion(Include.NON_NULL);

jsonMapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTI

ES, false);

jsonMapper.registerModule(JsonConverters.module());

settingService = new SettingServiceImpl();

settingService.startPolling();

transactionManager = new DbTransactionManager();

promoDao = new PromoDao(transactionManager);

promoEngine = new PromoEngine(promoDao, settingService);

transactionManager.startTransaction();

// The purpose of this method is to set first award times for all

// active campaigns, upon each restart of the service.

try {

 promoEngine.getAllPromos();

}

finally {

 transactionManager.endTransaction();

}

}

}

Listing 1. Promo servlet initialization

14

5.2 PostgreSQL

PostgreSQL is a free, powerful, open-source and progressive object-relational

database. It is widely noted for its popularity, scalability, extensibility, robustness,

and reliability. Significantly, Promo server utilized of postgresql 14 as it is the

default version in Ubuntu 22.4. (What is postgresql.)

The ERD diagram below, describes the promo server entities and illustrates their

relationship. There are three entities: PromoCampaign responsible for storing

information regarding configured campaigns, PromoCampaignTracker tracks the

awarded prizes, and PromoCampaignGames intended to shore the games

configured for the campaign.

PromoCampaign shares a one-to-one relation with PromoCampaignTracker,

highlighting a direct and singular association. while PromoCampaignGames

shares a one-to-many relation with PromoCampaign, implying that multiple

games can be configured under a single campaign.

Figure 6. Promo ERD

15

Table 1. PromoCampaign table’s fields in the database.

Field Description

Id hibernate sequence number defines the campaign identifier

startTime Defines the start time of the campaign

EndTime Defines the end time of the campaign

Prizes Defines the campaign prizes of the campaign

MinBet Defines the minimum bet level of the campaign

MaxBet Defines the maximum bet level of the campaign

ValidityEndTime Defines the expired time of the awarded prizes

FsBetLevet Defines optional bet level for the awarded prizes

Customer Defines the customer of the campaign

Metadata Defines name and rules of the campaign

Table 2. PromoCampaignGames table’s fields in the database.

Field Description

Campaign_id hibernate sequence number defines the campaign identifier

Game Defines the games allowed in the campaign

Table 3. PromoCampaignTracker table’s fields in the database.

Field Description

Campaign_id hibernate sequence number defines the campaign identifier

FsRemaining Defines the remaining prizes of the campaign

After the database structure have been designed, the database creation phase

started by creating the database schema, below is the schema for the Promo

Server database.

16

ALTER TABLE ONLY public.promocampaigntracker DROP CONSTRAINT

promocampaigntracker_campaign_id_fkey;

ALTER TABLE ONLY public.promocampaigntracker DROP CONSTRAINT

promocampaigntracker_pkey;

ALTER TABLE ONLY public.promocampaigngames DROP CONSTRAINT

promocampaigngames_campaign_id_fkey;

ALTER TABLE ONLY public.promocampaigngames DROP CONSTRAINT

promocampaigngames_pkey;

ALTER TABLE ONLY public.promocampaign DROP CONSTRAINT promocampaign_pkey;

ALTER TABLE public.promocampaign ALTER COLUMN id DROP DEFAULT;

DROP TABLE public.promocampaigntracker;

DROP TABLE public.promocampaigngames;

DROP TABLE public.promocampaign;

DROP SEQUENCE hibernate_sequence;

CREATE TABLE promocampaign (

 id bigint NOT NULL,

 starttime timestamp without time zone NOT NULL,

 endtime timestamp without time zone NOT NULL,

 prizes jsonb NOT NULL, minbet numeric(19,2),

 maxbet numeric(19,2),

 validityendtime timestamp without time zone NOT NULL,

 fsbetlevel numeric(19,2),

 customer character varying(255) NOT NULL, metadata jsonb NOT NULL

);

CREATE TABLE promocampaigngames (

 campaign_id bigint NOT NULL,

 game character varying(255) NOT NULL

);

CREATE TABLE promocampaigntracker (

 campaign_id bigint NOT NULL,

 fsremaining jsonb NOT NULL

);

ALTER TABLE promocampaign ADD CONSTRAINT promocampaign_pkey PRIMARY KEY (id);

ALTER TABLE promocampaigngames ADD CONSTRAINT promocampaigngames_pkey PRIMARY

KEY (campaign_id, game);

ALTER TABLE promocampaigngames ADD CONSTRAINT

promocampaigngames_campaign_id_fkey FOREIGN KEY (campaign_id) REFERENCES

promocampaign(id);

ALTER TABLE promocampaigntracker ADD CONSTRAINT promocampaigntracker_pkey

PRIMARY KEY (campaign_id);

ALTER TABLE promocampaigntracker ADD CONSTRAINT

promocampaigntracker_campaign_id_fkey FOREIGN KEY (campaign_id) REFERENCES

promocampaign(id);

CREATE SEQUENCE hibernate_sequence AS bigint START WITH 1 INCREMENT BY 1 NO

MINVALUE NO MAXVALUE CACHE 1;

Listing 2. Promo server database schema.

17

5.3 Hibernate

Is a java framework, well known for it is high performance, scalability, reliability,

extensibility, and configurability. It is used to simplify the development of java

application to interact seamlessly with the database. This open-source Object-

Relational Mapping (ORM) tool helps for data creation, manipulation, access, and

mapping java objects into database tables, in another word hibernate ORM is

concerned to achieve data persistence in java applications. Hibernate utilizing

JDBC to establishe a connection with the relational database, which is a lower

level requires to write SQL queries and handle the results manually. (Hibernate

ORM.)

5.4 Apache Tomcat

Apache tomcat is an open-source implementation of web server and servlet

container for java code, which was started in 1998 at microsystems and donated

to Apache software foundation in 1999 and it becomes a widely used and trusted

platform among java developers. Tomcat offers robust support for Java servlets

and Java server pages (JSP), making it a preferred choice for developers.

(Tomcat documentation.)

Basically, tomcat provides HTTP web server environment for java code to run as

a dynamic and interactive web application. Deploying the application to the server

is easy just copy a compressed .war file under CATALINA_BASE/webapps/.

below are some of the tomcat directories:

• /bin – startup, shutdown, and other script.

• /conf – configuration files.

• /logs – logs files.

• /webapps – this where webapps go.

 Our promo server utilizes tomcat 9 that supports servlet 4.0 to be compatible

with other existing services in our game system.

18

5.5 JGroups

Jgroups is a toolkit for trustworthy sending and receiving messages, it has been

written in Java and it is used for creating clusters and it provides a set of Java

APIs that simplify communication and coordination between nodes within a

cluster, it saves developer’s time as there is no need for implementation by the

application’s developers. (JGroups documentation.)

5.6 JUnit (Java Unit Testing)

JUnit is a free and open-source java framework, it is a unit testing tool that can

be used to compare the desired state and the received response. If they are not

match, JUnit sends an error. In the provided code source below, we examine

some of the test cases for promo server. (JUnit FAQ.)

public class PromoEngineTest {

private PromoEngine promoEngine;

private PromoDao mockPromoDao;

private SettingServiceInterface mockSettingService;

private List<PromoCampaign> mockPromoCampaigns;

private String customerId = "customer1";

private String gameId = "game1";

private List<String> games = new ArrayList<String>();

private Instant timeNow = Instant.now();

 @Before

 public void setUp() {

mockPromoDao = mock(PromoDao.class);

mockSettingService = mock(SettingServiceInterface.class);

promoEngine = new PromoEngine(mockPromoDao,

mockSettingService);

// Mock campaign data

games.add(gameId);

Timestamp startTime = Timestamp.valueOf("2024-03-11

07:00:00");

Timestamp endTime = Timestamp.valueOf("2024-03-15

18:00:00");

Prizes prizes = new Prizes();

prizes.setPrizesPerDrop(Arrays.asList(10, 20, 30));

prizes.setDropLimits(Arrays.asList(100, 200, 300));

Metadata metadata = new Metadata("wide-bet-campaign",

"http://example.com");

mockPromoCampaigns = new ArrayList<>();

mockPromoCampaigns.add(new PromoCampaign(games, startTime,

endTime, prizes, new BigDecimal("0.10"), new

BigDecimal("10.00"), customerId, metadata));

metadata = new Metadata("specific-bet-campaign",

"http://example.com");

19

mockPromoCampaigns.add(new PromoCampaign(games, startTime,

endTime, prizes, new BigDecimal("1.00"), new

BigDecimal("1.00"), customerId, metadata));

metadata = new Metadata("small-bet-campaign",

"http://example.com");

mockPromoCampaigns.add(new PromoCampaign(games, startTime,

endTime, prizes, new BigDecimal("0.10"), new

BigDecimal("1.00"), customerId, metadata));

metadata = new Metadata("too-small-bet-campaign",

"http://example.com");

mockPromoCampaigns.add(new PromoCampaign(games, startTime,

endTime, prizes, new BigDecimal("0.10"), new

BigDecimal("0.99"), customerId, metadata));

metadata = new Metadata("big-bet-campaign",

"http://example.com");

mockPromoCampaigns.add(new PromoCampaign(games, startTime,

endTime, prizes, new BigDecimal("1.00"), new

BigDecimal("100.00"), customerId, metadata));

metadata = new Metadata("too-big-bet-campaign",

"http://example.com");

mockPromoCampaigns.add(new PromoCampaign(games, startTime,

endTime, prizes, new BigDecimal("1.01"), new

BigDecimal("100.00"), customerId, metadata));

when(mockPromoDao.getActivePromos(customerId, gameId,

Timestamp.from(timeNow))).thenReturn(mockPromoCampaigns);

 }

 @Test

public void testGetActivePromosWithSmallBet() throws

JsonProcessingException {

List<PromoCampaign> activePromos =

promoEngine.getActivePromos(customerId, gameId, timeNow,

new BigDecimal("1.00"));

assertEquals(4, activePromos.size()); assertEquals("wide-

bet-campaign",

activePromos.get(0).getMetadata().getCampaignName());

assertEquals("specific-bet-campaign",

activePromos.get(1).getMetadata().getCampaignName());

assertEquals("small-bet-campaign",

activePromos.get(2).getMetadata().getCampaignName());

assertEquals("big-bet-campaign",

activePromos.get(3).getMetadata().getCampaignName());

 }

@Test

public void testGetActivePromosWithBigBet() throws

JsonProcessingException {

List<PromoCampaign> activePromos =

promoEngine.getActivePromos(customerId, gameId, timeNow,

new BigDecimal("11.00"));

assertEquals(2, activePromos.size());

assertEquals("big-bet-campaign",

activePromos.get(0).getMetadata().getCampaignName());

assertEquals("too-big-bet-campaign",

activePromos.get(1).getMetadata().getCampaignName());

}

}

Listing 3. Promo server junit test.

20

6 Results

As an outcome of promo server, we have configured a promotional campaign

for a 20-minute duration as displayed in the json object below:

{ “id”: 28, “games”: [“gameId”], “startTime”: “2024-03-07 14:40:00”,

“endTime”: “2024-03-07 15:00:00”, “prizes”: { “dropLimits”: [20, 30, 10],

“prizesPerDrop”: [2, 3, 1] }, “minBet”: 0.25, “maxBet”: 50.00,

“validityEndTime”: “2024-03-10 15:00:00”, “customer”: “customer_test”,

“metadata”: { “campaignName”: “test”, “rulesLink”: “” },

“promoCampaignTracker”: { “campaign_id”: 28, “fsRemaining”: { “dropLimits”: [

20, 30, 10], “prizesPerDrop”: [2, 3, 1] } } }

Listing 4. Configured promotional campaign object.

Running promo server on the following campaign would award the allocated

prizes and, in the table, below displaying the awarded prizes grounded in a time-

based distribution mechanism.

Table 2. Time-based award distribution

Time Seconds Prize1 Prize2 Prize3 Interval (s)

14:40:05.48

0 2

14:40:24.61

20 2 20

14:41:05.87

61 3 41

14:41:25.75

81 3 20

14:41:47.15

102 2 21

14:42:13.52

129 2 27

14:42:35.83

151 3 22

14:42:59.22

174 3 23

14:43:21.18

196 3 22

21

Time Seconds Prize1 Prize2 Prize3 Interval (s)

14:43:58.78

234 3 38

14:44:38.80 274 1 40

14:45:01.70

297 2 23

14:45:22.84

318 1 21

14:45:45.26

340 3 22

14:46:06.40

361 1 21

14:46:47.64

403 2 42

14:47:22.92

438 3 35

14:47:55.89

471 2 33

14:48:33.06

508 1 37

14:49:10.33

545 1 37

14:49:45.81

581 1 36

14:50:09.97

605 1 24

14:50:40.51

636 3 31

14:51:30.48

685 3 49

14:52:43.29

758 2 73

14:53:51.49

826 1 68

14:55:03.85

899 1 73

14:56:16.82

972 2 73

14:57:12.12

1027 2 55

22

Time Seconds Prize1 Prize2 Prize3 Interval (s)

14:58:39.67

1115 1 88

15:00:00Z

In this promotional campaign we have configured three different prizes, each

valued at 10, 20 and 30 drops distributed randomly utilizing random number

generator (RNG) java library, meaning that if the prize is the first one a single

drop is given, for the second prize two drops is given and for the third prize three

drops is given. This procedure will continue until the campaign end time has

become to it is end or all the allocated prizes have been distributed. The table

below demonstrate the amount of the prizes, minimum, maximum and average

interval of the awarded time.

Table 3. Prizes interval.

 Prize 1 Prize 2 Prize 3

Prizes amount (n) 10 20 30

Min interval (s) 20

Average interval (s) 38.45

Max interval (s) 88

The scatter diagram below explains how prizes have been distributed.

23

Figure 7. Time-based distribution

24

7 Summary

The original goal of the thesis was to develop a promo server demo to create

campaigns and in those active campaigns decide when to award free game

rounds to player based on the timestamp and the quantity of free drops that the

casino is willing to distribute.

Designing and planning the software architecture is a complex task, it must align

closely with business requirements and the technologies are updated every other

day, however the architecture must be updated constantly to keep up with the

latest technologies.

The overall success was in designing and developing a real-world project

collaborating effectively within teamwork. Moving forward, the goal is to

continually update the demo version to evolve into a fully-fledged production

project and the deadline for a prod version is at the end of April 2024.

Subsequently, we plan to develop a user interface (UI) for configuring campaigns

and providing a comprehensive campaign report.

25

References

Cheah, D. 2019. How to work with Servlet, JSP and JDBC? Available at:

https://medium.com/@tattwei46/how-to-work-with-servlet-jsp-and-jdbc-

fcc568a6a57b . Accessed: 10-02-2024.

Hibernate ORM. Online document. Available at: https://hibernate.org/orm/ .

Accessed: 07-02-2024.

Jaiswal Sonoo. Available at: https://www.javatpoint.com/hibernate-tutorial

Accessed: 07-02-2024.

Jaiswal Sonoo. Online document. Available at: https://www.javatpoint.com/java-

tutorial. Accessed: 05-02-2024.

JUnit FAQ. Online document. Available at: https://junit.org/junit4/faq.html.

Accessed: 10-03-2024.

JGroups documentation. Online document. Available at: http://www.jgroups.org/

Accessed: 20-02-2024.

Tomcat documentation. Online document. Available at:

https://tomcat.apache.org/tomcat-9.0-doc/index.html Accessed: 29-02-2024.

What is postgresql. Online decument. Available at: https://www.postgresql.org/.

Accessed: 06-02-2024

Willbold Manuela. Online document. Available at:

https://www.clickdo.co.uk/internet-marketing/marketing-techniques-for-igaming-

industry/ Accessed: 10-01-2024.

https://medium.com/@tattwei46/how-to-work-with-servlet-jsp-and-jdbc-fcc568a6a57b
https://medium.com/@tattwei46/how-to-work-with-servlet-jsp-and-jdbc-fcc568a6a57b
https://hibernate.org/orm/
https://www.javatpoint.com/hibernate-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://junit.org/junit4/faq.html
http://www.jgroups.org/
https://tomcat.apache.org/tomcat-9.0-doc/index.html
https://www.postgresql.org/
https://www.clickdo.co.uk/internet-marketing/marketing-techniques-for-igaming-industry/
https://www.clickdo.co.uk/internet-marketing/marketing-techniques-for-igaming-industry/

1

Appendices

Appendix 1: Source code

In the source code below, we are having the first hardcoded version of

PromoDao, PromoServlet, PromoEngine and PromoCampaign classes.

/**

* Entity class representing a free spin campaign. This class maps to

the

 * "promocampaign" table in the database.

 */

@TypeDef(name = "MetadataJsonbType", typeClass =

MetadataJsonbUserType.class)

@TypeDef(name = "PrizesJsonbType", typeClass =

PrizesJsonbUserType.class)

@Entity

@Table(name = "promocampaign")

public class PromoCampaign

{

 // Represents the unique identifier for the campaign.

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 @Column(name = "id")

 public Integer id;

 // Represents games that configured by campaign.

 @Column(name = "games", nullable = false)

 public String games;

 // Represents the start time of the campaign.

 @Column(name = "starttime", nullable = false)

 @JsonFormat(pattern = "yyyy-MM-dd'T'HH:mm:ssX")

 public Timestamp startTime;

 // Represents the end time of the campaign.

 @Column(name = "endtime", nullable = false)

 @JsonFormat(pattern = "yyyy-MM-dd'T'HH:mm:ssX")

 public Timestamp endTime;

// Represents the prizes associated with the campaign in JSON

format (jsonb).

@Column(name = "prizes", columnDefinition = "jsonb", nullable =

false)

@Type(type =

"com.airdice.gamesystem.promoserver.json.PrizesJsonbUserType")

 public Prizes prizes;

// Represents the minimum bet level allowed for the c campaign.

@Column(name = "minbet", precision = 19, scale = 2)

public BigDecimal minBet;

 // Represents the maximum bet level allowed for the campaign.

2

 @Column(name = "maxbet", precision = 19, scale = 2)

 public BigDecimal maxBet;

 // Represents the validity date of the campaign.

 @Column(name = "validitydate")

 @JsonFormat(pattern = "yyyy-MM-dd'T'HH:mm:ssX")

 public Timestamp validityDate;

 // Represents the bet level for free spins in the campaign.

 @Column(name = "fsbetlevel", precision = 19, scale = 2)

 public BigDecimal fsBetLevel;

 // Represents the customer, which have the campaign.

 @Column(name = "customer", nullable = false, length = 255)

 public String customer;

 /**

 * Represents additional metadata associated with the campaign

 in JSON

 * format (jsonb) like campaign name and rules link

 *

 */

@Column(name = "metadata", columnDefinition = "jsonb", nullable

= false)

@Type(type =

"com.airdice.gamesystem.promoserver.json.MetadataJsonbUserType"

)

 public Metadata metadata;

 /**

 * Get the ID of the campaign.

 *

 * @return The campaign ID.

 */

 public Integer getCampaignId()

 {

 return id;

 }

 /**

 * Set the ID of the campaign.

 *

 * @param campaignId The campaign ID to set.

 */

 public void setCampaignId(Integer campaignId)

 {

 this.id = campaignId;

 }

 /**

 * Get the games associated with the campaign.

 *

 * @return The games.

 */

 public String getGames()

 {

 return games;

 }

 /**

 * Set the games associated with the campaign.

3

 *

 * @param games The games to set.

 */

 public void setGames(String games)

 {

 this.games = games;

 }

 /**

 * Get the start time of the campaign.

 *

 * @return The start time.

 */

 public Timestamp getStartTime()

 {

 return startTime;

 }

 /**

 * Set the start time of the campaign.

 *

 * @param startTime The start time to set.

 */

 public void setStartTime(Timestamp startTime)

 {

 this.startTime = startTime;

 }

 /**

 * Get the end time of the campaign.

 *

 * @return The end time.

 */

 public Timestamp getEndTime()

 {

 return endTime;

 }

 /**

 * Set the end time of the campaign.

 *

 * @param endTime The end time to set.

 */

 public void setEndTime(Timestamp endTime)

 {

 this.endTime = endTime;

 }

 /**

 * Get the prizes associated with the campaign.

 *

 * @return The prizes.

 */

 public Prizes getPrizes()

 {

 return prizes;

 }

 /**

 * Set the prizes associated with the campaign.

4

 *

 * @param prizes The prizes to set.

 */

 public void setPrizes(Prizes prizes)

 {

 this.prizes = prizes;

 }

 /**

 * Get the minimum bet amount for the campaign.

 *

 * @return The minimum bet amount.

 */

 public BigDecimal getMinBet()

 {

 return minBet;

 }

 /**

 * Set the minimum bet amount for the campaign.

 *

 * @param minBet The minimum bet amount to set.

 */

 public void setMinBet(BigDecimal minBet)

 {

 this.minBet = minBet;

 }

 /**

 * Get the maximum bet amount for the campaign.

 *

 * @return The maximum bet amount.

 */

 public BigDecimal getMaxBet()

 {

 return maxBet;

 }

 /**

 * Set the maximum bet amount for the campaign.

 *

 * @param maxBet The maximum bet amount to set.

 */

 public void setMaxBet(BigDecimal maxBet)

 {

 this.maxBet = maxBet;

 }

 /**

 * Get the validity date of the campaign.

 *

 * @return The validity date.

 */

 public Timestamp getValidityDate()

 {

 return validityDate;

 }

 /**

 * Set the validity date of the campaign.

 *

5

 * @param validityDate The validity date to set.

 */

 public void setValidityDate(Timestamp validityDate)

 {

 this.validityDate = validityDate;

 }

 /**

 * Get the bet level associated with the campaign.

 *

 * @return The bet level.

 */

 public BigDecimal getFsBetLevel()

 {

 return fsBetLevel;

 }

 /**

 * Set the bet level associated with the campaign.

 *

 * @param fsBetLevel The bet level to set.

 */

 public void setFsBetLevel(BigDecimal fsBetLevel)

 {

 this.fsBetLevel = fsBetLevel;

 }

 /**

 * Get the customer associated with the campaign.

 *

 * @return The customer.

 */

 public String getCustomer()

 {

 return customer;

 }

 /**

 * Set the customer associated with the campaign.

 *

 * @param customer The customer to set.

 */

 public void setCustomer(String customer)

 {

 this.customer = customer;

 }

 /**

 * Get the metadata associated with the campaign.

 *

 * @return The metadata.

 */

 public Metadata getMetadata()

 {

 return metadata;

 }

 /**

 * Set the metadata associated with the campaign.

 *

 * @param metadata the metadata to set.

6

 */

 public void setMetadata(Metadata metadata)

 {

 this.metadata = metadata;

 }

}

/**

 * The PromoDAO class provides data access functionality for

handling promo

 * campaigns and associated data in the application. It utilizes

Hibernate for

 * database interaction.

 */

public class PromoDao

{

 private DbTransactionManager transactionManager;

 private SessionFactory sessionFactory;

 List<PromoCampaign> promoList = new ArrayList<>();

 public PromoDao(){}

 public PromoDao(DbTransactionManager transactionManager)

 {

 this.transactionManager = transactionManager;

 }

 public SessionFactory buildSessionFactory()

 {

 Properties dbprops = new Properties();

 // Load properties file from the classpath

 try (InputStream is = getClass().getClassLoader()

 .getResourceAsStream("hibernate.propertis"))

 {

 if (is == null)

 {

throw new IOException("Cannot find

'hibernate.properties' file in classpath");

 }

 dbprops.load(is);

 Configuration config = new Configuration();

 config.setProperties(dbprops);

 config.addAnnotatedClass(PromoCampaign.class);

StandardServiceRegistryBuilder srb = new

StandardServiceRegistryBuilder().applySettings(config.g

etProperties());

sessionFactory =

config.buildSessionFactory(srb.build());

 System.out.println("connected to db... ");

 return sessionFactory;

 }

 catch (IOException e)

 {

 throw new RuntimeException("Error while initializing

 PromoDAO", e);

7

 }

 }

 /**

 * store a configured freespins campaign to the database.

 *

 * @param campaign The FSCampaign object to be saved.

* @throws ParseException If an error occurs while parsing

date-related

 * data.

 */

public Integer savePromos(PromoCampaign campaign) throws

ParseException

 {

 transactionManager.getCurrentSession().save(campaign);

 // Flush to reveal constraint violations

 transactionManager.getCurrentSession().flush();

 return campaign.getCampaignId();

 }

 /**

* Retrieves a list of freespins giveaway campaigns from the

database.

 *

 * @return List of FSCampaign objects representing

promotional campaigns.

 * @throws JsonProcessingException

 */

public List<PromoCampaign> getPromos() throws

JsonProcessingException

 {

 String hql = "FROM PromoCampaign";

Query<PromoCampaign> query =

transactionManager.getCurrentSession().createQuery(hql,

PromoCampaign.class);

 return query.list();

 }

}

@Override

protected void doPost(HttpServletRequest req, HttpServletResponse

res) throws ServletException, IOException

 {

 try

 {

 String method = "";

 String response;

 int responseCode = HttpServletResponse.SC_OK;

 try

 {

 method = getMethod(req.getRequestURI());

 transactionManager.startTransaction();

 try

 {

 PromoCampaign promoCampaign;

 switch (method)

8

 {

 case "CreatePromo":

 StringBuilder requestBodyBuilder = new

 StringBuilder();

 BufferedReader reader = req.getReader();

 String line;

 while ((line = reader.readLine()) !=

 null)

 {

 requestBodyBuilder.append(line);

 }

String requestBody =

requestBodyBuilder.toString();

promoCampaign =

jsonMapper.readValue(requestBody,

PromoCampaign.class);

 promoDao.savePromos(promoCampaign);

 break;

 default:

throw new

IllegalArgumentException("Unknown

method" + method);

 }

response =

jsonMapper.writeValueAsString(promoCampaign);

 transactionManager.commit();

 }

 finally

 {

 transactionManager.endTransaction();

 }

 }

 catch (Exception e)

 {

 ErrorCode errorCode = ErrorCode.UNKNOWN_ERROR;

res.sendError(HttpServletResponse.SC_INTERNAL_SER

VER_ERROR, "Error while saving campaign");

 e.printStackTrace();

response =

jsonMapper.writeValueAsString(ResponseBase.ofErro

r(errorCode));

 }

 // Write response

 res.setContentType("application/json");

 res.setCharacterEncoding("utf-8");

 res.setStatus(responseCode);

 res.getWriter().write(response);

 }

 finally

 {

 }

 }

 /**

9

* @see HttpServlet#doGet(HttpServletRequest request,

HttpServletResponse

 * response)

 */

 @Override

protected void doGet(HttpServletRequest req, HttpServletResponse

res) throws ServletException, IOException

 {

 try

 {

 String method = "";

 String response = null;

 int responseCode = HttpServletResponse.SC_OK;

 List<PromoCampaign> promos = new ArrayList<>();

 PromoWinsResponse promoWins = new PromoWinsResponse();

 try

 {

 method = getMethod(req.getRequestURI());

 transactionManager.startTransaction();

 promoEngine.getPromoCampaign();

 try

 {

 // Initialize or retrieve GameRoundData here

 HttpSession session = req.getSession(true);

 GameRoundData grd = (GameRoundData)

session.getAttribute("gameRoundData");

 if (grd == null) {

grd = new GameRoundData("customer_test",

 "RandomReels", "adaham");

session.setAttribute("gameRoundData",

grd);

 }

 switch (method)

 {

 case "getPromos":

 Timestamp currentTime =

 Timestamp.from(Instant.now());

promos = promoEngine

.getActivePromos("customer_test",

"RandomReels",

currentTime, new BigDecimal(20.00));

response =

jsonMapper.writeValueAsString(promos);

 break;

 case "pollPromoWins":

Timestamp time =

Timestamp.from(Instant.now());

promoWins =

promoEngine.awardPromoWins(grd, new

BigDecimal(20.00), time);

response =

jsonMapper.writeValueAsString(promoWins)

;

 break;

 default:

10

throw new

IllegalArgumentException("Unknown method

" + method);

 }

 transactionManager.commit();

 }

 finally

 {

 transactionManager.endTransaction();

 }

 }

 catch (Exception e)

 {

 ErrorCode errorCode = ErrorCode.UNKNOWN_ERROR;

res.sendError(HttpServletResponse.SC_INTERNAL_SER

VER_ERROR,"Error while saving campaign");

 e.printStackTrace();

response =

jsonMapper.writeValueAsString(ResponseBase.ofErro

r(errorCode));

 }

 // Write response

 res.setContentType("application/json");

 res.setCharacterEncoding("utf-8");

 res.setStatus(responseCode);

 res.getWriter().write(response);

 }

 finally

 {

 }

 }

 /**

 * Returns currently active promos for the customer and game.

Active means

 * startTime <= time < endTime.

 *

 * @throws JsonProcessingException

 */

public List<PromoCampaign> getActivePromos(String customerId,

String gameId, Timestamp time) throws JsonProcessingException

 {

 List<PromoCampaign> activePromos = new ArrayList<>();

 if (promos != null && !promos.isEmpty())

 {

 for (PromoCampaign promo : promos)

 {

if (promo.getGames() != null &&

promo.getGames().contains(gameId)

&& time.compareTo(promo.getStartTime()) >= 0 &&

time.compareTo(promo.getEndTime()) < 0)

 {

 activePromos.add(promo);

 }

11

 }

 }

 return activePromos;

 }

 /**

* Returns currently active campaigns for the customer, game and

bet level.

 * Active means startTime <= time < endTime.

 *

 * @param normBetLevel.

 * @throws JsonProcessingException

 */

public List<PromoCampaign> getActivePromos(String customerId,

String gameId, Timestamp time, BigDecimal normBetLevel) throws

JsonProcessingException

{

List<PromoCampaign> activePromos = getActivePromos(customerId,

gameId, time);

 Iterator<PromoCampaign> iter = activePromos.iterator();

 PromoCampaign promo;

 while (iter.hasNext())

 {

 promo = iter.next();

 if (promo.getMinBet().compareTo(normBetLevel) > 0 ||

 promo.getMaxBet().compareTo(normBetLevel) < 0)

 iter.remove();

 }

 return activePromos;

}

// Award promos every second game round

public PromoWinsResponse awardPromoWins(GameRoundData grd,

BigDecimal betLevel, Timestamp time) throws

JsonProcessingException

{

 PromoWinsResponse promoWins = new PromoWinsResponse();

 // Retrieve active promos for the customer, game, and current

time

List<PromoCampaign> activePromos =

getActivePromos(grd.getCustomer(), grd.getGameId(), time,

betLevel);

 if (grd.isNextWin)

 {

 try

 {

 for (PromoCampaign promo : activePromos)

 {

 promoWins.setBetLevel(betLevel);

promoWins.setFreespinsAmount(promo.getPr

izes().getPrizePerDrop().get(0));

 // Toggle isNextWin to false for the next round

 grd.setNextWin(false);

12

 }

 }

 catch (Exception e)

 {

 System.out.println(

 "Error during awardCampaignWins:

customer {}, game {}" +

grd.getCustomer() + grd.getGameId());

 }

 } else {

 grd.setNextWin(true);

 return null;

 }

 return promoWins;

 }

Listing 5. Promo server demo source code.

	1 Introduction
	2 Efficient Marketing techniques
	2.1 Competitive SEO techniques
	2.2 Optimize landing page
	2.3 Promotions and Bonuses
	2.3.1 Enhancing customer loyalty
	2.3.2 Encouraging Engagement

	3 Free spins promotion tools
	4 Planning phase
	4.1 Promos from server
	4.2 Promos from client

	5 Core technologies applied in the promo server
	5.1 Java
	5.1.1 Java Web Application
	5.1.2 Java EE
	5.1.3 Servlet

	5.2 PostgreSQL
	5.3 Hibernate
	5.4 Apache Tomcat
	5.5 JGroups
	5.6 JUnit (Java Unit Testing)

	6 Results
	7 Summary
	References
	Appendices
	Appendix 1: Source code

