

Roshan Upreti

Secure Sharing of Files

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

19th March 2024

Abstract

Author(s): Roshan Upreti

Title: Secure Sharing of Files

Number of Pages: 38 pages

Date: 19 March 2024

Degree: Master of Engineering

Degree Programme: Information Technology

Specialisation option: Networking and Services

Instructor(s): Ville Jääskeläinen, Principal Lecturer

The thesis explores the development and analysis of a secure file-sharing system

within Enterprise Resource Planning (ERP) systems, focusing on Two-Factor

authentication (2FA) to enhance security. It addresses the need for secure data

exchange in business environments, especially in sensitive Business to Business

(B2B) contexts.

A proof of concept was designed, implemented and evaluated. The created system

demonstrated that it effectively ensures data integrity and confidentiality. The research

highlights the balance between security measures and user accessibility and provides

some useful insights regarding information technology, cybersecurity, and data

protection.

Keywords: Secure File Sharing, ERP Systems, Two-Factor Authentication, Data

Security, Information Technology, Cybersecurity, Data Protection.

The originality of this thesis has been checked using Turnitin Originality Check
service.

Contents

List of Abbreviations

1 Introduction 1

2 Project Specifications 4

2.1 Current State Analysis 4

2.2 Functional Requirements 5

2.3 Non-Functional Requirements 6

3 Technical Background 8

3.1 Two-Factor Authentication(2FA) 9

3.2 Mobile ID 10

3.3 Bank ID 11

3.4 Suomi.fi 12

3.5 Proposed Secure File Sharing System 14

4 Design and Implementation 16

4.1 PoC Design 17

4.2 Implementation 19

4.2.1 Structure 20

4.2.2 Entry Point 20

4.2.3 Controller Layer 21

4.2.4 Service Layer 22

4.2.5 Dependency Injection 22

4.3 Database Design 23

4.4 Containerized Local Deployment with Docker Compose 24

5 Analysis 28

5.1 Secure Link Sharing Overview 28

5.2 Validity Checks and Response Mechanism 32

6 Conclusion 35

References 37

List of Abbreviations

2FA Two-factor authentication.

API Application Programming Interface.

B2B Business-to-Business.

CCPA California Consumer Privacy Act of 2018.

CRUD Create, Read, Update and Delete.

DC2.0 DomaCare 2.0.

eID Electronic Identification.

eIDAS Electronic Identification and Trust Services.

email Electronic Mail.

ERP Enterprise Resource Planning.

EU European Union.

FINEID Finnish Electronic Identity Card.

FTN Finnish Trust Network.

GDPR General Data Protection Regulation.

HTTP Hypertext Transfer Protocol.

ID Identification.

JAR Java ARchive.

jOOQ Java Object Oriented Querying.

JPA Jakarta Persistence API.

JWT JSON Web Token.

LAN Local Area Network.

MFA Multi-factor Authentication.

ORM Object-relational mapping.

PIN Personal Identification Number.

PoC Proof of Concept.

RAI Resident Assessment Instrument.

REST Representational state transfer.

SMS Short Message Service.

SQL Structured Query Language.

SSN Social Security Number.

TRAFICOM Liikenne-ja Viestintävirasto.

TUPAS Tunnistuspalvelu Standardi.

UI User Interface.

USB Universal Serial Bus.

1

1 Introduction

Enterprise Resource Planning (ERP) systems, in the simplest of terms, can be

defined as business process management software used to manage various

aspects of a company’s day-to-day operations, including finances, supply chain,

human resources, logistics, manufacturing, and customer relationship

management. An ERP system comprises an integrated set of various software

applications and tools that bring together information from all the business units

into a single platform, thus rendering a centralized source of information for a

business or an enterprise. ERP systems, through their data-driven operations,

produce quantifiable data, which is crucial for a business. For example, they

enable running financial analyses and predicting future stock levels to maintain a

healthy inventory.

ERP systems are now considered the price of entry for running a business and

offer a variety of deployment options, such as cloud-based, on-premises or

hybrid. Despite having the word ‘Enterprise’ in its name, ERP systems serve

companies of all sizes: startups, small, mid-sized and large. ERP systems, by

unifying several units of a business, promote a free flow of information sharing

which can be beneficial to a business in terms of cost-saving, planning,

productivity, internal communications, and customer service. Examples of

popular ERP systems include Oracle ERP cloud, SAP, and BizAutomation.

Invian Oy is a leading provider of ERP solutions in Finland in the social and care

sector. The company commenced operations in 2005 in Oulu and is based in its

Helsinki and Oulu offices. DomaCare is a popular ERP system used by many

companies associated with the social and care services in the Business-to-

Business (B2B) context. Services include secure customer data management,

booking and billing services, RAI performance assessments as part of the

system, a range of useful statistics, and reports among many others, and are

available as desktop, web and mobile applications. Figure 1 shows DomaCare

as a web app and a desktop app, side by side.

2

Figure 1: DomaCare web and desktop app.

As the clients of DomaCare are other B2B providers, management of their

customer data is one of its core features, and one of the recurring scenarios in

this context is the need to share this sensitive customer data with outside

agencies and entities (both public and private) for various reasons, including

adherence with existing laws. For example, in the event of a death, a nursing

home may be required to send the deceased’s paperwork to local municipalities

or other government agencies. The current practices of sharing this highly

sensitive information include using mail, e-mail attachments, physically carrying

it to the recipient in a memory stick and more. To make this sharing process

seamless, secure and most importantly centralized, Invian wants to implement

secure file sharing as a feature in the existing ERP system, as a solution to the

business challenge.

The objective here is to ensure that the information is promptly delivered to the

right person in the right organization by validating the recipient's identification

through some sort of authorization process—2FA, authorizing via bank

credentials, for example. Various processes and stages involved in the design

and implementation of this so-called feature will be discussed in detail, as the

thesis progresses.

This thesis aims to serve as a research paper focused on the design and

implementation of a software solution that enables users to securely share files

with third-party entities using a secure link. This implementation is intended to

3

serve as one of many functionalities in an existing ERP system, DomaCare, a

product of Invian Oy.

The thesis comprises six chapters: Chapter One provides a brief introduction to

the context and the company. Chapter Two focuses on project specifications.

Chapter Three delves into the technical background, covering research

methodologies and existing mechanisms. Chapter Four explains the solution in

terms of Proof of Concept (PoC) design and implementation. Chapter Five

provides an overview of the solution's analysis, whereas the final chapter,

Chapter Six, comprises the conclusion.

4

2 Project Specifications

File sharing is an integral part of modern business endeavours, with no

exceptions in the context of ERP systems dealing with a huge number of various

kinds of data daily. These files can range from simple invoices to employees and

customers information, necessitating treatment based on the sensitivity of the

contained information. Therefore, file sharing should be handled with caution,

based on the sensitivity of the information they carry. For instance, it might be

acceptable to share low-sensitivity files, such as general business invoices and

simple presentations, over Local Area Network (LAN), e-mail, or Universal Serial

Bus (USB) storage devices. However, this may not be the case for files containing

highly sensitive information intended for specific recipients outside the

organization. This section outlines the requirements for a secure file sharing

system which should enable users to securely upload, store and share files with

other authorized users, while ensuring the confidentiality and integrity of the files.

A brief overview of the current state analysis, along with a synopsis of the

requirements in terms of functional and non-functional types, will be discussed

as follows.

2.1 Current State Analysis

Figure 2 represents a simplified version of the system diagram for 'DomaCare,'

divided into four sections that encompass components and usability. The first

section depicts various clients accessing the software systems via different

platforms: Mobile, Desktop, and Web, as illustrated in the second section. A

dedicated mobile server handles all requests sent by mobile clients. The legacy

Java desktop application, still widely and actively used by many customers, and

the web client requests are managed by the REST server, with the frontend

implemented as a React App running on an app server. All these platforms utilize

common database servers for persisting and retrieving data, as seen in the third

section. Google Cloud Storage, used for the storage of files and other objects, is

shown in the fourth section.

5

Figure 2: DomaCare System Overview.

2.2 Functional Requirements

The functional requirements can be discussed under the following four topics.

• User Authentication and Authorization: As with any web-based

software system, user authentication and authorization are key

requirements. The system must authenticate and authorize users before

granting access to the system. Users should be able to sign up for an

account and create their own credentials, and the system should allow for

Multi-factor Authentication (MFA) to improve security. Administrators

should be able to manage user accounts, including assigning roles and

managing permissions.

6

• File Upload and Storage: The system should allow users to upload files

to the system and store them in a secure and encrypted manner. The

system should also have the capability to scan the uploaded files for

possible viruses and malware, and support a wide range of file types and

sizes.

• File Sharing: Users should be able to share files with other authorized

users. The system should allow users to set access controls and

permissions for each file they share, along with a mechanism for sharing

them securely, such as through password-protected links or encrypted

Electronic Mail (email) notifications, while tracking all the file sharing

activities such as the sender, recipient and the date.

• File Access and Retrieval: Authorized users should be able to access

and download the files shared with them, along with features like

previewing the file, version control for files, which allows access to

previous versions if needed. The system should have a mechanism for

notifying users when the shared files are accessed or downloaded.

2.3 Non-Functional Requirements

The Non-Functional Requirements can be discussed under the following three

topics.

• Security: The system should employ industry-standard encryption

protocols to protect the confidentiality and integrity of the files, with the

provision of robust security controls and measures to prevent

unauthorized access and ensure data privacy. The system should also

comply with relevant data privacy and protection regulations such as

General Data Protection Regulation (GDPR) and/or California Consumer

Privacy Act of 2018 (CCPA).

7

• Scalability and Performance: The system should be able to handle many

users and files without compromising performance, with high availability

and fault tolerance to ensure that it is always accessible.

• User Experience: The system should have an intuitive and user-friendly

interface with easy navigation. The system should have a fast response

time and minimal latency to ensure a smooth user experience, in addition

to a good support and assistance via a help desk or knowledge base.

In the context of Invian, majority of the requirements are implemented in its

product, DomaCare 2.0 (DC2.0), a browser based modern web-application that

provides various features, examples include booking, payroll systems, Resident

Assessment Instrument (RAI), calendar system etc., as a part of an ERP system,

via an intuitive User Interface (UI). These features vary upon the nature of

services they offer, and are available as Representational state transfer (REST)

Application Programming Interface (API). RESTful API is a popular architectural

style that uses Hypertext Transfer Protocol (HTTP) requests to access and use

data. It was defined by Roy Fielding in his 2000 doctoral dissertation, and has

almost become the de-facto industry standard in the present times. DC2.0 utilizes

JSON Web Token (JWT), a token based stateless authentication mechanism to

authenticate its users. The term stateless signifies the fact that the REST server

doesn’t have to rely on or store any client related information, and all the required

information must be sent to the server on every request. JWTs can be encrypted,

encoded, signed and set to expire after a certain period.

8

3 Technical Background

This chapter provides a comprehensive overview of the existing technologies in

Finland for authenticating identity online. The bedrock of digital security,

especially in the context of a technologically advanced society like Finland, is

reliable online authentication. The act of confirming one’s identity online is

foundational to maintaining the integrity and confidentiality of digital interactions,

whether for accessing financial services, government portals, or personal

communication. Finland’s digital landscape has been profoundly shaped by its

approach to Electronic Identification (eID) verification. The Finnish government

introduced the Finnish Electronic Identity Card (FINEID) in 1999, marking the

country’s initial steps towards a digital identification system. The FINEID card was

a multi-functional smart card that provided a physical identity document with

digital authentication and signing capabilities. It was designed to be a secure and

versatile tool for citizens to access various e-services offered by the government.

In parallel with the government’s efforts, Finnish banks developed the

Tunnistuspalvelu Standardi (TUPAS) protocol, a bank-based identification

system that quickly became the standard for online services. TUPAS allowed

individuals to use their bank credentials to authenticate their identity across

various platforms, from government services to private sector transactions. Its

widespread adoption was driven by the existing trust in the banking system and

the convenience it offered to users (1). TUPAS was instrumental in the

digitalization of Finnish society, providing a unified standard for strong customer

authentication. However, as the digital landscape evolved, so did the regulatory

environment. The introduction of the European Union (EU)’s Electronic

Identification and Trust Services (eIDAS) regulation brought new requirements

for interoperability and security, which TUPAS, in its original form, was not

designed to meet. These regulatory changes necessitated a revaluation of the

TUPAS protocol and its compliance with the new standards (1). This is where

Liikenne- ja Viestintävirasto (TRAFICOM), the Finnish Transport and

Communications Agency, played a crucial role. As the regulatory authority

overseeing electronic communications in Finland, TRAFICOM was instrumental

9

in ensuring that the national digital identification systems adapted to meet the

new EU standards. Their responsibilities included setting and enforcing

standards for electronic identification and digital security, certifying and approving

eID technologies, and promoting secure eID practices.

Moreover, TRAFICOM’s role extended beyond regulatory compliance. The

agency actively collaborated with other government bodies and private sector

entities to develop and implement eID systems. This included supporting

innovation and development in the field of electronic identification and ensuring

data privacy and security in eID systems. TRAFICOM also played a key role in

consumer protection and education, informing the public about the safe use of

electronic identification and protecting consumer rights in the digital domain. In

response to the eIDAS regulation, TRAFICOM guided the establishment of the

Finnish Trust Network (FTN), a framework designed to standardize and secure

eID services in Finland. This initiative marked a transition from TUPAS to a more

regulated and advanced digital identification system. TRAFICOM’s involvement

was critical in ensuring compliance with both national and EU regulations, thereby

maintaining the security and reliability of digital services in Finland (2).

3.1 Two-Factor Authentication(2FA)

2FA is a critical security process in which users are required to provide two

distinct authentication factors to verify their identity. This approach is a key

element in layered defence strategies, significantly increasing the difficulty for

unauthorized entities to access targets such as physical locations, computing

devices, networks, or databases. Essentially, 2FA introduces an additional layer

of security to the authentication process, bolstering its defence against a variety

of cyber threats (3). The two factors in 2FA typically involve:

1. Something the User Knows (Knowledge Factor): This could be a

password, a Personal Identification Number (PIN), or answers to secret

questions. It represents a unique piece of information known to the user.

10

2. Something the User Has (Possession Factor): This factor usually

involves an object the user physically possesses, such as a mobile phone

or a security token.

By integrating these two factors, 2FA significantly reduces the likelihood of

unauthorized access to files. Even if the knowledge factor is compromised, the

absence of the possession factor ensures the continued security of the data (4).

Following are some popular methods of electronic identity verification in Finland.

3.2 Mobile ID

Mobile Identification (ID) in Finland is a sophisticated eID solution that utilizes a

secure application on a PKI-enabled SIM card. This application stores the user’s

digital credentials, which are used for authentication purposes. When a user

attempts to access a service, they are prompted to enter a PIN code on their

mobile device. This action, combined with the possession of the device itself,

constitutes a two-factor authentication process, ensuring a high level of security.

The system’s design prioritizes user privacy by allowing for attribute queries

without revealing unnecessary personal information (5). Figure 3 represents the

interface for verifying identity using the mobile certificate, via suomi.fi.

11

Figure 3: Suomi.fi mobile certificate verification interface (mobile certificate
option selected)

3.3 Bank ID

Bank ID is an integral part of the Finnish eID ecosystem, particularly for financial

services and government portals. It uses online banking credentials to verify

identity, capitalizing on the inherent trust in the banking system. Despite its

widespread adoption, the process of obtaining Bank ID credentials has been

criticized for potential barriers to access and concerns over data privacy (6). To

use a mobile bank ID, one must first have a bank account and a mobile bank ID

with a Finnish bank. A code can then be used to activate the mobile bank ID on

the user’s smartphone. Mobile bank IDs are very secure. They use strong

encryption to protect personal data, and they are regularly audited by

independent security experts. Figure 4 represents the interface for verifying

identity using the bank credentials, via suomi.fi.

12

Figure 4: suomi.fi bank id verification interface (s-pankki selected for reference)

3.4 Suomi.fi

Suomi.fi is the official digital service platform for citizens, providing a gateway to

various government services. It acts as an eID broker, allowing users to

authenticate their identity using various methods, including Mobile ID and Bank

ID. Suomi.fi is part of the Finnish Trust Network and is compliant with eIDAS

regulations, ensuring interoperability across EU member states. The platform

streamlines the process of accessing government services, tax information, and

more, by providing a single digital access point for citizens and residents in

Finland (7). Figure 5 represents the identification interface on suomi.fi,

showcasing various authentication methods.

13

Figure 5: suomi.fi identification interface.

In today’s digital landscape, the security of data transmission and file sharing

stands as a crucial concern. Traditional identity verification methods, such as

Bank ID or mobile certification, often entail complex prerequisites and involve the

handling of sensitive personal information. For example, sending a secure email

might require the sender to know the recipient’s Social Security Number (SSN),

a highly sensitive piece of information typically accessible only through specific

government permissions and bureaucratic processes (8). To address these

challenges, this thesis proposes a secure file sharing system that leverages two-

factor authentication (2FA) for enhanced security, particularly suitable for

scenarios where a user needs to send a download link via email to a third party.

14

3.5 Proposed Secure File Sharing System

Figure 6 represents the proposed system, in terms of workflow.

Figure 6: Proposed workflow.

The workflow involves the following steps:

1. A user sends an email with a download link.

2. The recipient opens the link.

3. The recipient is prompted to enter a PIN code.

4. A PIN code is sent to the recipient via SMS.

5. The recipient enters the PIN.

15

6. If the correct PIN is entered, access to the download link is granted, and

the resource is downloaded.

7. If an incorrect PIN is entered, access is denied, and the process loops

back to the PIN prompt, providing a maximum of three attempts, and

invalidating the link given an incorrect PIN is provided in the last attempt.

In the proposed secure file sharing system, the process begins when a user

sends an email containing a download link, initiating the first phase of the

authentication process where the email and link serve as the initial access point

(8). Upon clicking the download link in the received email, the recipient triggers

the second phase of authentication. At this point, the system prompts the

recipient to enter a PIN code, marking a critical step that introduces the second

factor in the 2FA process and thereby enhances the security of the transaction

(3). Concurrently, a one-time PIN code is generated and sent to the recipient’s

mobile phone via SMS, adhering to the 'something the user has' principle of 2FA,

and effectively using the recipient’s mobile phone as a physical token of

authentication (4). The recipient then enters this PIN into the system. If the PIN

is correct, access to the download link is granted, allowing the recipient to

download the resource and ensuring that the file is accessed solely by the

intended recipient. Conversely, if an incorrect PIN is entered, the system denies

access and re-prompts for the PIN, a vital security measure to prevent

unauthorized access. This ensures that only an individual with access to both the

link (knowledge factor) and the correct PIN (possession factor) can access the

file (4).

In conclusion, the implementation of 2FA in the proposed secure file sharing

system offers a robust solution to digital data security challenges. Although it

introduces an additional step to the file sharing process, the enhanced security it

provides justifies its consideration in light of increasing cyber threats.

16

4 Design and Implementation

Transitioning from the theoretical underpinnings and design principles delineated

in the initial chapters, this chapter delineates the crucial phase of translating these

concepts into a tangible reality through the implementation of a PoC for secure

file sharing. This chapter represents a pivotal shift from abstract ideas to their

practical execution, highlighting the process of bringing to life a standalone

secure file sharing system. The focus here diverges from integrating with specific

ERP products like DomaCare to evaluating the PoC as an independent entity,

capable of demonstrating the effectiveness and robustness of the security

measures, especially the 2FA, in a controlled environment.

The journey undertaken in this chapter is essential for substantiating the

theoretical models and security protocols elaborated upon in Chapter 3 through

a real-world application, albeit in a standalone manner. This approach allows for

a focused evaluation of the PoC’s design, development, and security features

without the complexities of integration into existing systems. It is a strategic

decision aimed at isolating the PoC’s performance and security attributes,

ensuring a thorough assessment of its capabilities and limitations.

In this narrative shift, the chapter transitions from discussing “what” needs to be

accomplished to “how” it is achieved, emphasizing the step-by-step process of

developing, deploying, and critically evaluating the PoC. This standalone

assessment strategy is not only pivotal for validating the proposed secure file

sharing model but also serves as a crucial step towards understanding the

practical challenges and opportunities in enhancing data security. Through a

detailed exploration of implementation challenges, innovative solutions, and the

PoC’s adherence to security best practices, this chapter aims to contribute

significant insights into the field of secure file sharing, independent of specific

ERP integrations.

17

4.1 PoC Design

This PoC for secure file sharing leverages the strengths of Spring Boot,

Hibernate, and Java Object Oriented Querying (jOOQ) to create a robust and

efficient application. Spring Boot facilitates rapid application development with its

convention-over-configuration approach, while Hibernate and jOOQ work in

tandem to manage data access and manipulation, combining the ease of Object-

relational mapping (ORM) with the precision and control of Structured Query

Language (SQL).

Spring Boot is a powerful framework for building Java applications quickly and

easily. It simplifies the development process by providing default configurations

for building Spring-powered applications. With Spring Boot, developers can

create stand-alone, production-grade applications smoothly, without the need for

extensive configuration. It supports a range of Spring projects with features that

include embedded servers, security, metrics, and health checks, making it easier

to develop web applications, microservices, and more. Spring Boot’s philosophy

of convention over configuration and its ability to automatically configure Spring

and third-party libraries make it an ideal choice for developers looking to

efficiently develop and deploy applications. What follows is a set of key

components of the proposed web application.

• Application Layer: Powered by Spring Boot, this layer establishes the

application infrastructure, including embedded web servers and RESTful

endpoints for file sharing functionalities. Spring Boot’s auto-configuration

capabilities streamline the setup and development of the application.

• Model Layer: Utilizing Hibernate for Object-Relational Mapping (ORM),

this layer defines the entities involved in file sharing, such as users and

files. jOOQ complements Hibernate by enabling type-safe SQL operations

for executing complex queries, thereby enhancing data access and

manipulation capabilities.

18

• Repository Layer: Integrating Spring Data Jakarta Persistence API (JPA)

and jOOQ, this layer offers a comprehensive data access strategy. Spring

Data JPA facilitates basic Create, Read, Update, and Delete (CRUD)

operations through repositories, simplifying the implementation of the data

access layer. For more complex database interactions and queries, jOOQ

provides detailed control and efficiency, ensuring robust data handling.

Figure 7: Architectural Diagram visualizing the flow and structure of the
application.

Figure 7 represents a simplified architectural depiction of general Spring Boot

applications (9), followed by a brief outline of the components:

• Client: Represents the users interacting with the system through various

front-end interfaces.

19

• Controller: Manages HTTP requests, directing the flow of data between

the client and service layer, and ensuring the appropriate response is

returned to the user.

• Service Layer: Encapsulates the business logic of the application,

handling the orchestration of data transfer between the controller and

repository layers.

• Model: Defines the domain model, which directly maps to the database

entities, ensuring data integrity and providing a structured data model for

the application.

• Repository (JPA Repositories): Interfaces with the database,

abstracting the underlying data persistence mechanism and providing a

clean separation of concerns.

• Database: The underlying storage mechanism for the system.

Adhering to the architectural paradigm, in the context of the Proof of Concept

(PoC), the application module implements the controller and service layers,

whereas the model and repository reside in their own respective modules. The

database layer, in the context of the PoC, is managed by Hibernate and jOOQ to

facilitate Object-Relational Mapping (ORM).

4.2 Implementation

In the implementation of the PoC, the Spring Boot framework is leveraged to

streamline the creation and management of web applications. Offering an

extensive infrastructure, Spring Boot supports both development and deployment

phases, ensuring a seamless workflow. This section aims to delve deeper into

the specific implementation facets of the application, focusing on the entry point,

controller layer, and service layer functionalities. These components are

elucidated under the following topics.

20

4.2.1 Structure

The application adopts a multi-module Spring Boot architecture, with each

component implemented as a distinct module. The core structure of the

application, named 'secure-file-sharing', is depicted below.

Figure 8: Tree structure representing the project core.

Figure 8 illustrates the organized separation of the application into modules,

facilitating modular development and maintenance. The application module

houses the controller and service components, while the model and repository

modules contain the entities and the data access layers, respectively.

4.2.2 Entry Point

The entry point of the application is facilitated by Spring Boot’s

@SpringBootApplication annotation, which encapsulates component

scanning, auto-configuration, and the setup of an embedded server. This

streamlined approach to initiating a Spring Boot application is exemplified in the

main class.

21

Figure 9: Application entry point.

4.2.3 Controller Layer

The controller layer plays a pivotal role in processing HTTP requests and steering

the application’s flow. Key controllers such as HomeController and

SharedLinkController are designed to fulfil specific functions:

• HomeController: This controller facilitates navigation to the application’s

home page, providing a user-friendly interface for accessing the primary

features of the application.

Figure 10: Home controller renders the link request form.

• SharedLinkController: Dedicated to the creation and management of

shared links, this controller is integral to enabling secure file sharing

amongst users.

22

Figure 11: SharedLinkController is responsible for the shared-link
management, via calls to service layer.

4.2.4 Service Layer

The service layer, as represented by SharedLinkService, encapsulates the

business logic essential for the management of shared links. Using Spring’s

@Service annotation and the @RequiredArgsConstructor annotation from

Project Lombok, this layer ensures a clear delineation of responsibilities, thereby

enhancing the application’s scalability and maintainability.

Figure 12: Interface service responsible for shared link related operations.

4.2.5 Dependency Injection

The Spring Framework’s dependency injection mechanism, particularly through

constructor injection enabled by Project Lombok’s @RequiredArgsConstructor,

is instrumental in interlinking the application’s layers. This method improves code

readability, simplifies testing procedures, and aligns with clean architecture

23

principles. Project Lombok is a Java library that automatically plugs into editors

and build tools, spicing up the Java language with a series of annotations to

reduce boilerplate code, such as getters, setters, and constructors, thereby

streamlining the development process. Constructor injection is a technique where

the required dependencies are provided to a class at the time of its construction,

eliminating the need for setter methods or property injection, and fostering

immutable object creation, which is conducive to cleaner and more robust code.

Through this formal exposition, the section provides a comprehensive overview

of the application’s design and the interplay between its various components,

shedding light on the underlying technologies and methodologies that contribute

to its efficiency and security.

4.3 Database Design

The application’s database is structured to support the core features of secure

file sharing, encompassing share logs, pin logs, and access logs. This design

aims to ensure data integrity, facilitate efficient data retrieval, and support the

application’s security requirements:

• share_log: Central to the application, this table records details of each

shared file, including recipient information, hashed links, sender details,

and the share’s validity. It acts as the primary entity, linking to other tables

through relational integrity.

• pin_log: Tied to the share log through a foreign key, this table stores

hashed pins and client fingerprints, along with pin expiration timestamps.

This design enforces access control, ensuring that shared files are

accessed securely and within designated time frames.

• access_log: Logs each successful access, capturing the timestamp and

client fingerprint. This table is crucial for monitoring and auditing file

access, thereby enhancing the application’s security posture.

24

An entity-relationship diagram visually representing these relationships aids in

understanding the database’s structure, focusing on the one-to-many relations

from share log to pin log and access log, delineated by foreign key constraints,

as seen in the figure below.

Figure 13: Diagram visualizing entity relationship among the tables used.

4.4 Containerized Local Deployment with Docker Compose

Upon a successful build, running the secure file-sharing application can be as

straightforward as executing the compiled Java ARchive (JAR) file, provided an

accessible database with the required schema and other essential prerequisites

are in place. The management of these prerequisites is greatly simplified through

Docker, which packages applications and their dependencies into containers.

These lightweight, executable packages include everything needed to run an

application: code, runtime, system tools, system libraries, and settings. By

isolating the application from its surroundings, containerized software ensures

consistent operation across various environments. This addresses the common

challenge of applications working in one environment but failing in another, such

as moving from development to production, thereby enabling predictable and

scalable deployments.

25

Provided below is the project’s Docker compose configuration snippet.

Figure 14: YAML file containing docker configuration for local deployment.

The docker-compose.yaml for the project specifies a multi-container setup

that includes the application and a MariaDB database, simplifying the deployment

process. This configuration ensures that both the application and the database

are deployed together, with their dependencies correctly resolved, facilitating a

seamless local setup.

26

• app: Configured to use the openjdk:17-jdk-slim image, ensuring the

application runs in an optimized Java environment. The service maps port

8080 of the container to port 8080 of the host, making the application

accessible through http://localhost:8080. The application’s

executable, a JAR file, is placed in a volume mounted from the host,

allowing for easy updates without rebuilding the container.

• mariadb: Utilizes the mariadb:10.11 image to set up a relational database,

with environment variables specifying the time-zone, database name,

user, and password. Initialization scripts placed in ./config/mariadb-

init are executed to configure the database schema, ensuring the

application’s data storage requirements are met. Persistent data is stored

in a named volume, mariadb-data, safeguarding against data loss

between container restarts.

Deploying the secure file sharing application is accomplished by navigating to the

directory containing the docker-compose.yaml file and executing docker-

compose up. This command starts up both the application and the database

services, with Docker Compose managing their lifecycle and ensuring that the

database is ready before the application starts.

Comprehensive API documentation has been implemented using Swagger,

offering a detailed overview of all available endpoints, request parameters, and

responses. This documentation can be accessed at http://localhost:8080/swagger-

ui.html.

http://localhost:8080/swagger-ui.html
http://localhost:8080/swagger-ui.html

27

Figure 15: Swagger documentation.

The source code for the PoC, implemented as part of this thesis can be accessed

at GitHub (10).

28

5 Analysis

This chapter embarks on a critical examination of the outcomes derived from the

design and implementation of the PoC for secure file sharing. It aims to bridge

theoretical frameworks with practical application, scrutinizing the system’s

effectiveness, efficiency, and security enhancements. A particular focus is placed

on the implementation of two-factor authentication (2FA) as a cornerstone for

data integrity and confidentiality.

The analysis begins with an exploration of the application’s core functionality,

highlighting the secure sharing mechanism enabled by the integration of two-

factor authentication (2FA). The focus then shifts to the conditions governing

access to shared links, including an assessment of the security protocols that

determine link availability. This encompasses time-based access restrictions,

user authentication status, and the impact of these protocols on the user

experience.

5.1 Secure Link Sharing Overview

In the current system setup, file sharing is achieved through the generation of

temporary links, like the expirable links provided by services such as Google

Cloud Storage. This design decision was made to enhance security by ensuring

that access to shared content does not necessitate database interactions,

thereby minimizing potential vulnerabilities. The shared links are encrypted and

stored in the shared_link table, ensuring that access is both secure and

temporary. This approach highlights the project’s commitment to maintaining high

security standards while offering a user-friendly file sharing solution.

• Creating and Sharing New Links: This section focuses on the process

of creating and sharing new links, a fundamental aspect of the system’s

functionality. When a user decides to share a file, the system generates a

unique, temporary link. This process involves encrypting the link

information to ensure its security before storing the encrypted link within

29

the shared_link table. The temporary nature of these links is crucial; they

expire after a set period, rendering the shared file inaccessible through

that specific URL. This feature is designed to prevent unauthorized access

and ensure that sensitive information remains protected over time.

Figure 16: Landing page.

Figure 17: Creation of new shared link.

Figure 17 shows a successful creation of shared link, with response, as seen in

the developer tool view. This response is what’s sent to the recipient.

30

• PIN Request: When a recipient receives a shared link, accessing the file

requires an additional layer of security: a PIN, which is sent via Short

Message Service (SMS). This step ensures that even if the link falls into

the wrong hands, unauthorized users cannot access the shared file

without also having access to the recipient’s mobile device. This process

underscores the system’s commitment to dual-layer security by leveraging

something the user has (the link) and something the user knows (the PIN).

This mechanism significantly enhances the security posture of the file-

sharing process, aligning with best practices in data protection and access

control.

Figure 18: Shared link.

Figure 19: PIN request view.

31

Figure 18 depicts an email message containing the shared link sent to the

recipient, and Figure 19 illustrates the view to request the pin, followed by clicking

the email link.

• PIN Validation and Access: Upon entering the PIN received via SMS, the

system initiates a validation process to verify the correctness of the PIN

against the one stored for the shared link. This step is critical for ensuring

that access granted is legitimate. Successful validation grants the recipient

access to the file, showcasing the system's efficient use of two-factor

authentication to safeguard against unauthorized access.

Figure 20: The view to enter the PIN.

Figure 21: Successful redirection, followed by a correct PIN.

32

Figure 21 shows a successful redirection, rendering the shared resource,

followed by entering a correct PIN in the view, as depicted in Figure 20.

5.2 Validity Checks and Response Mechanism

This section examines the system’s approach to verifying shared link

accessibility, focusing on scenarios that render the shared link invalid, for

example, expired links and incorrect PIN inputs. Through detailed exploration of

the system’s validation processes and its immediate responses to these

conditions, we illuminate the mechanisms in place to ensure secure and intended

access, demonstrating the system’s commitment to maintaining robust security

protocols and user trust.

• One-time pin distribution: For all shared links, the PIN code for their

accessibility is only sent out once. The server will respond with an error

message for subsequent attempts made to request the PIN, as depicted

in Figure 22.

Figure 22: PIN for a resource is only sent out once.

• Expirable link: Once a link is shared, it maintains validity for a period of

one hour. If an attempt is made to access the link after the expiry period,

the system will respond accordingly, as evident in Figure 23.

Figure 23: A link, once expired, cannot be accessed.

33

• Invalid pin: A correct PIN is a mandatory requirement for accessing the

shared resource. Failure to provide the correct PIN three consecutive

times results in the automatic invalidation of the resource.

Figure 24: Link invalidated due to too many incorrect PIN.

Figure 25: A link, once invalidated, cannot be accessed despite correct PIN.

• Incorrect Device Fingerprint: The preparation and sending of the PIN via

SMS are subject to a unique device fingerprint, representing the device ID

from which the recipient follows the email link. When validating the entered

PIN, the validation must occur on the same device used to request the

PIN.

Figure 26: Correct device fingerprint is imperative for accessing the link.

34

The analysis conducted in this chapter is instrumental in evaluating the

effectiveness of the designed secure file sharing system. By focusing solely on

the solution’s operational aspects, it lays the groundwork for a comprehensive

understanding of its strengths and areas for improvement. This analytical

approach ensures a focused discussion, paving the way for a concluding chapter

that revisits the research objectives and encapsulates the overall findings.

35

6 Conclusion

The thesis embarked on a journey that went beyond meeting a practical business

requirement, delving into contributions to the academic and professional realms

of information technology and networking services through the comprehensive

study and development of a secure file-sharing solution.

The objective of this thesis was to engineer a system facilitating secure file

sharing, adhering to the stringent restrictions and regulatory standards faced by

modern businesses. Motivated by the pressing need for organizations to share

confidential information with external parties while maintaining the highest levels

of confidentiality and integrity, this endeavour aimed to ensure compliance with

strict data protection laws such as the GDPR. The research led to the design and

implementation of a system employing two-factor authentication (2FA), aimed at

significantly reducing the likelihood of unauthorized access. The development

leveraged contemporary technologies, including Spring Boot, Hibernate, jOOQ,

and Docker, to produce a system that is both reliable and secure.

The evaluation of the developed system validated its effectiveness in enhancing

file-sharing security within an ERP system. Utilizing temporary encrypted links for

file sharing and PIN verification via SMS ensures that files are accessible only to

their intended recipients within a designated timeframe. This methodology

embodies secure file-sharing principles from both practical and regulatory

perspectives, thus meeting legal requirements. Furthermore, this thesis lays the

groundwork for future research and development in the domain of secure file

sharing. The proposed system’s architecture and technology stack are well-

positioned for scalability and adaptability to meet the evolving needs and dynamic

challenges of cybersecurity threats.

The design and successful implementation of the secure file-sharing system mark

a significant advancement towards secure data exchange in ERP systems. This

thesis contributes insightful and practical solutions to the persistent challenge of

protecting sensitive information in an increasingly digital business environment.

36

As businesses navigate the complexities of data protection and cybersecurity, the

insights and developments presented in this thesis highlight a promising path

toward more secure and efficient file-sharing practices. This work addresses a

real-world challenge through detailed technical research and practical

application, paving the way for a transformative approach to how businesses

manage and share sensitive data in this ever-changing realm of technology,

where industries must continue to evolve and adapt for future advancements.

37

References

1. Rissanen T. Electronic identity in Finland: ID cards vs. bank IDs. Identity

in the Information Society. 2010 July 1; 3(1): 175-194. Available from:

https://doi.org/10.1007/s12394-010-0049-8.

2. Traficom. Traficom. [Online]. [cited 2023 November. Available from:

https://www.kyberturvallisuuskeskus.fi/en/our-activities/regulation-and-

supervision/electronic-identification.

3. Eminagaoglu M, Cini E, Sert G, Zor D. A Two-Factor Authentication

System with QR Codes for Web and Mobile Applications. In 2014 Fifth

International Conference on Emerging Security Technologies; 2014;

Alcala de Henares: IEEE. p. 105-112. Available from: https://ieeexplore-

ieee-org.ezproxy.metropolia.fi/document/6982784.

4. Iyanda AR, Fasasi ME. Development of Two-factor Authentication Login

System Using Dynamic Password with SMS Verification. International

Journal of Education and Management Engineering (IJEME). 2022 June;

12(3): 13-21. Available from: https://www.mecs-press.org/ijeme/ijeme-

v12-n3/v12n3-2.html.

5. Hölzl M, Roland M, Mayrhofer R. Real-World Identification: Towards a

Privacy-Aware Mobile eID for Physical and Offline Verification. In

Proceedings of the 14th International Conference on Advances in Mobile

Computing and Multimedia (MoMM 2016); 2016; Singapore. p. 280-283.

Available from:

https://www.researchgate.net/publication/313108198_Real-

World_Identification_Towards_a_Privacy-

Aware_Mobile_eID_for_Physical_and_Offline_Verification.

https://doi.org/10.1007/s12394-010-0049-8
https://www.kyberturvallisuuskeskus.fi/en/our-activities/regulation-and-supervision/electronic-identification
https://www.kyberturvallisuuskeskus.fi/en/our-activities/regulation-and-supervision/electronic-identification
https://ieeexplore-ieee-org.ezproxy.metropolia.fi/document/6982784
https://ieeexplore-ieee-org.ezproxy.metropolia.fi/document/6982784
https://www.mecs-press.org/ijeme/ijeme-v12-n3/v12n3-2.html
https://www.mecs-press.org/ijeme/ijeme-v12-n3/v12n3-2.html
https://www.researchgate.net/publication/313108198_Real-World_Identification_Towards_a_Privacy-Aware_Mobile_eID_for_Physical_and_Offline_Verification
https://www.researchgate.net/publication/313108198_Real-World_Identification_Towards_a_Privacy-Aware_Mobile_eID_for_Physical_and_Offline_Verification
https://www.researchgate.net/publication/313108198_Real-World_Identification_Towards_a_Privacy-Aware_Mobile_eID_for_Physical_and_Offline_Verification

38

6. Krupa W, Parkkonen M, Stempel K, Baglan N, Kontopoulou V. A Critical

Assessment of the Strong Authentication System Using Bank

Credentials: The Case Study of Finland.; 2022 [cited 2023 November 17.

Available from: https://www.helsinki.fi/assets/drupal/2022-

05/A%20critical%20assessment%20of%20the%20strong%20authenticat

ion%20system%20using%20bank%20credentials.pdf.

7. Suomi.fi. https://www.suomi.fi/instructions-and-support. [Online]. [cited

2023. Available from: https://www.suomi.fi/instructions-and-support.

8. Bruzgiene R, Jurgilas K. Securing Remote Access to Information

Systems of Critical Infrastructure Using Two-Factor Authentication.

Electronics. 2021; 10(15). Available from:

https://doi.org/10.3390/electronics10151819.

9. Rao R, Swamy SR. Review on Spring Boot and Spring Webflux for

Reactive Web Development. International Research Journal of

Engineering and Technology (IRJET). 2020 April; 7(4): 3834-3837.

Available from:

https://www.researchgate.net/publication/341151097_Review_on_Spring

_Boot_and_Spring_Webflux_for_Reactive_Web_Development.

10. Upreti R. GitHub. [Online].; 2023 [cited 2024. Available from:

https://github.com/roshanupreti/secure-file-sharing.

https://www.helsinki.fi/assets/drupal/2022-05/A%20critical%20assessment%20of%20the%20strong%20authentication%20system%20using%20bank%20credentials.pdf
https://www.helsinki.fi/assets/drupal/2022-05/A%20critical%20assessment%20of%20the%20strong%20authentication%20system%20using%20bank%20credentials.pdf
https://www.helsinki.fi/assets/drupal/2022-05/A%20critical%20assessment%20of%20the%20strong%20authentication%20system%20using%20bank%20credentials.pdf
https://www.suomi.fi/instructions-and-support
https://doi.org/10.3390/electronics10151819
https://www.researchgate.net/publication/341151097_Review_on_Spring_Boot_and_Spring_Webflux_for_Reactive_Web_Development
https://www.researchgate.net/publication/341151097_Review_on_Spring_Boot_and_Spring_Webflux_for_Reactive_Web_Development
https://github.com/roshanupreti/secure-file-sharing

