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A B S T R A C T   

This study explores the influence of concrete mix ingredients on the non-steady chloride migra-
tion coefficient (Dnssm) using an explainable machine learning (XML) approach that integrates 
Extreme Gradient Boosting (XGBoost) and Shapley Additive Explanations (SHAP). The dataset, 
comprising 204 observations from literature, is utilized to train the XGBoost algorithm for pre-
dicting Dnssm. The model demonstrates notable performance metrics with (MAE = 1.61 × 10− 12 

m2/s, RMSE = 2.38 × 10− 12 m2/s, and R2 = 0.95) in the training set and (MAE = 2.22 × 10− 12 

m2/s, RMSE = 3.18 × 10− 12 m2/s, and R2 = 0.87) and the test set. The SHAP method provides 
comprehensive insights into feature importance, offering valuable information about the re-
lationships and dependencies among various features. The top five features identified as signif-
icant contributors include coarse aggregate, superplasticizer, concrete age, cement, and water. 
Visualization of SHAP values through diverse plots proves essential for obtaining a thorough 
understanding of feature influence. The explainability of the model’s results contributes new 
insights, aiding in the development of optimal and sustainable concrete with enhanced resistance 
to chloride penetration. Furthermore, the model’s explainability fosters trust in its predictions, 
facilitating seamless integration into real-world applications.   

1. Introduction 

Concrete is an essential component in the field of civil engineering construction, but its durability is affected by a range of factors as 
time passes. Among these factors, chloride attack emerges as prominent threat to the durability of reinforced concrete (RC) structures, 
especially in marine environments or regions subjected to chloride-containing de-icing salts in cold climates [2]. While chloride 
penetration itself doesn’t harm concrete, once the concentration of chloride ions surpasses a certain threshold at the steel rein-
forcement bars, it triggers depassivation and subsequent corrosion [3]. The corrosion of reinforcement bars caused by chloride has a 
detrimental impact on the functionality and safety of RC structures worldwide, leading to significant economic losses stemming from 
the premature need for rehabilitation and repair. In fact, some developed countries allocate a substantial portion of their gross do-
mestic product (GDP), ranging from 3.5% to 4.5%, towards combating corrosion-related damage and implementing effective control 
measures [4]. 

Gaining a comprehensive understanding of the chloride transport process is essential for ensuring the durability and extended 
lifespan of structures exposed to chloride-rich environments. The transportation of chloride ions within concrete involves intricate 
physicochemical phenomena, encompassing multiple mechanisms such as diffusion, capillary suction, and permeation [5–7]. In order 
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to simplify the assessment of chloride penetration into concrete, diffusion is commonly regarded as the primary mechanism considered 
by service-life prediction models like Life-365 [8] and DuraCrete [9]. These models rely on the concrete chloride diffusion coefficient, 
which is typically determined through laboratory testing using procedures like ASTM C1556 [10], NT Build 443 [11], and NT Build 
492 [12]. However, these laboratory testing procedures are time-consuming and resource intensive. 

To overcome this limitation, significant efforts have been made in recent decades to develop prediction models for the chloride 
diffusion coefficient based on phenomenological and physically-based approaches [13–15]. These models take into account factors 
related to the concrete mixture components. While traditional approaches have been successful in establishing correlations between 
parameters such as cement dosage, water-to-cement ratio, and exposure time, it remains challenging to effectively consider the 
combined effects of these factors. Furthermore, conventional methods often overlook the impact of secondary factors like the dosage of 
different types of chemical admixtures and Supplementary cementitious materials (SCMs). Consequently, developing a robust and 
universally applicable model for predicting concrete strength using conventional approaches is a daunting task [1]. 

In recent years, there has been a growing interest in implementing data-driven approaches to establish the relationships between 
inputs and outputs. These approaches involve the use of machine learning (ML) techniques to construct models that can predict outputs 
based on learned features from the data to solve complex problems. This inclination has garnered widespread acceptance across 
diverse fields. Within the realm of civil engineering, ML models are applied to address complex issues in concrete science [16–19], 
geotechnics [20–23], structural engineering, and other relevant areas. The use of ML in these contexts highlights its versatility and 
effectiveness in offering innovative solutions to complex problems within the field of civil engineering. 

Regarding the prediction of concrete chloride diffusion coefficients, there are noteworthy ML-based models documented in Refs. [1, 
24–27]. These studies employ various machine learning algorithms. For example, Hoang et al. [24] utilized multivariate adaptive 
regression splines (MARS) and multi-gene genetic programming (MGGP) to predict chloride diffusion in cement mortar, achieving a 
coefficient of determination (R2) of 0.91. Yao et al. [25] harnessed the combined power of the Particle Swarm Optimization (PSO) 
algorithm and a Backpropagation (BP)-based Artificial Neural Network (ANN) to predict chloride penetration in concrete. In their 
study, they introduced various mineral admixtures into their concrete specimens and found that the PSO-BP neural network out-
performed the BP neural network, yielding a superior estimate with an R2 value of 0.967 as opposed to the BP neural network’s R2 

value of 0.957. Delgado et al. [26] employed ANN to determine the diffusion coefficient of concrete specimens subjected to 
drying-wetting cycles. They used predictors such as cement type, water-to-cement ratio, mineral additives, curing age, and the number 
of drying-wetting cycles. The developed model adequately predicted the chloride diffusion coefficient with an R2 value of 0.954. Tran 
[27] utilized a diverse array of algorithms, encompassing Support Vector Machine (SVM), Extreme Learning Machine (ELM), K-Nearest 
Neighbors (KNN), and five distinct types of decision tree-based ensemble models—amounting to eight algorithms in total. The aim was 
to predict the chloride diffusion coefficient of concrete incorporating SCMs like silica fume, ground granulated blast furnace slag, and 
fly ash. Notably, the author achieved a comparable R2 value to that reported in Ref. [26] when employing the Gradient Boosting 
ensemble model. Taffese and Espinosa-Leal [1] utilized the eXtreme Gradient Boosting (XGBoost) algorithm to predict the chloride 
diffusion coefficient, achieving higher accuracy than previous works with an R2 value of 0.963. They considered thirteen features 
describing the concrete mixture components, as well as basic fresh and hardened tests. 

While the machine learning-based predictions mentioned above have shown high accuracy in predicting the chloride diffusion 
coefficient, their lack of interpretability is a significant drawback. These models are often treated as black boxes, providing little 
understanding of the actual relationships between the different features involved. Although some previous studies have attempted to 
determine feature importance for global interpretation, such efforts fall short in instilling confidence among practitioners. In any 
engineering application, it is essential for models to be transparent, explainable, and accountable, allowing engineers and stake-
holders, even those without technical expertise, to comprehend how the algorithms predict the chloride diffusion coefficient. This level 
of understanding is crucial for building trust and effectively implementing these models in practical scenarios. Consequently, there is a 
need to seamlessly integrate a robust data interpretation algorithm with machine learning-based models for predicting the chloride 
diffusion coefficient. This integration aims to create a synergistic and interpretable ML-based predictive tool that addresses the current 
limitations. 

The objective of this study is to create an explainable machine learning-based model for predicting the chloride diffusion coeffi-
cient. This model aims to go beyond conventional approaches by not only providing a clear understanding of its overall functioning 
(global explanation) but also offering detailed explanations for individual predictions (instance-based explanations). By achieving this 
level of explainability, the model will provide insights into its decision-making process for each prediction. Based on previous research 
indicating the superior accuracy of XGBoost [1], we have chosen to employ this algorithm in our study for developing the chloride 
diffusion coefficient prediction model. However, we have made adjustments to the types of features utilized. Further details regarding 
these modifications are provided in Section 3.1. 

The structure of the paper is as follows: Section 2 provides an introduction to the concept of explainable machine learning (XML), 
with a particular emphasis on model-agnostic approaches. Section 3 outlines the data utilized for developing the chloride diffusion 
coefficient prediction models, along with the model development process. Section 4 examines the research findings. Finally, Section 5 
presents the concluding remarks. 

2. Explainable machine learning 

Explainable machine learning approaches can be categorized into two main types: model-agnostic methods and model-specific 
methods. Model-specific methods are tailored to the characteristics of specific machine learning models or families of models. 
These methods leverage the internal structure and properties of the model to generate explanations. Model-agnostic methods are 
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techniques that can be applied to any machine learning model, regardless of its architecture or underlying algorithm. These post-hoc 
techniques explain predictions of these models by treating the models as black boxes and then generating explanations without 
inspecting the internal model parameters. Since these methods are not tied to specific model architectures, they can be applied to a 
wide range of ML algorithms. 

There are various model-agnostic methods available for enhancing the interpretability of ML models, including popular techniques 
like SHAP (SHapley Additive exPlanations) [28] and LIME (Local Interpretable Model-Agnostic Explanations) [29]. They both serve 
the purpose of providing insights and understanding into the decision-making process of complex models. SHAP offers a more 
comprehensive approach, providing both global and local explanations, while LIME focuses primarily on local explanations. Thus, in 
this instance, we have employed the SHAP explainable model, which is founded on the fundamental principle outlined in Section 2.2. 
To construct a prediction model for the chloride diffusion coefficient of concrete, we employed the tree-based ensemble method known 
as XGBoost. The subsequent section provides a comprehensive explanation of its operational principles. 

2.1. XGBoost 

XGBoost, an influential ML algorithm, adheres to the fundamental principles of gradient boosting, where weak learners are 
combined to form a powerful learner. Originally developed by Tianqi Chen in 2016 [30], XGBoost has since undergone extensive 
contributions from numerous scholars. Unlike traditional gradient boosted trees that are constructed sequentially, XGBoost generates 
trees in parallel. By effectively controlling model complexity and mitigating overfitting through its inherent regulation techniques, 
XGBoost enhances prediction accuracy in each iteration. Fig. 1 presents the general architecture of XGBoost. Its remarkable speed and 
performance have established it as the premier ML algorithm for addressing regression problems in diverse construction engineering 
applications. Notably, XGBoost has been effectively employed in predicting porosity [17], prediction of pile bearing capacity [31] 
shear strength of concrete-to-concrete interfaces [32], chloride resistance of concrete [33], and forecasting the residual value of 
construction equipment [34]. 

Equation (1) defines the ultimate robust XGBoost model denoted as F(.) [30,35]. 

ŷi =F(Xi)=
∑K

k=1
fk(Xi), (1)  

where ŷi represents the predicted value for the ith sample; fk(.) denotes the kth weak learner of the robust model, which corresponds to 
the kth decision tree; K indicates the total count of weak learners in the model. 

Equation (2) presents the objective function used during the training phase. 

Obj (θ)=
∑N

i=1
l(ŷi, yi) +

∑K

k=1
Ω(fk), (2) 

Fig. 1. The general architecture of XGBoost.  
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where l( ·) denotes the loss function; yi represents the true value of the ith sample; Ω( ·) corresponds to the regularization term. 
The prediction for the ith sample at the kth iteration is given by Equation (3). 

ŷk
i = ŷk− 1

i + fk(Xi), (3)  

where ŷk− 1
i represents the prediction from the previous cumulative model after the (k − 1)th iteration. 

Thus, the objective function can be formulated as depicted in Equation (4). 

Obj=
∑N

i=1
l
(

ŷk− 1
i + fk(Xi), yi

)
+ Ω(fk). (4) 

Due to XGBoost’s utilization of a second-order Taylor approximation of the loss function, the objective function can be approxi-
mated as demonstrated in Equation (5). 

Obj≅
∑N

i=1
l
(

ŷk− 1
i , yi

)
+ gifk(Xi)+

1
2
hif 2

k (Xi) + Ω(fk), (5)  

where gi = ∂ŷi
(k− 1) l(ŷk− 1

i ,yi), and hi = ∂2
ŷi

(k− 1) l(ŷk− 1
i ,yi). 

Equation (6) serves as a representation for the decision tree used as a weak learner. 

fk(Xi)=wq(Xi), (6)  

where q represents the tree’s structure, while w corresponds to the leaf weights of the decision tree. 
The regularization term Ω(fk) can be expressed as depicted in Equation (7). 

Ω(fk)= γT +
1
2

λ
∑T

j=1
w2

j , (7)  

where T denotes the total number of leaves in the decision tree, while γ and λ represent the penalty coefficients. 
Equation (8) offers a more concise form of the objective function. 

Obj≅
∑N

i=1

[

gifk(Xi)+
1
2
hif 2

k (Xi)

]

+ γT +
1
2

λ
∑T

j=1
w2

j

=
∑T

j=1

[(
∑

iϵIj

gi

)

wj +
1
2

(
∑

iϵIj

hi + λ

)

w2
j

]

+ γT.

(8) 

Hence, the optimal weights w∗
j for the decision tree and the optimal value of the objective function can be computed using Equation 

(9) and Equation (10), respectively. 

w∗
j = −

∑

iϵIj

gi

∑

iϵIj

hi + λ
. (9)  

Obj= −
1
2
∑T

j=1

(
∑

iϵIj

gi

)2

∑

iϵIj

hi + λ
+ γT. (10)  

2.2. SHAP 

SHAP is based on cooperative game theory and utilizes Shapley values to determine the importance of features [17]. The Shapley 
value for a specific feature ∅j(val) is calculated by taking the weighted sum of its marginal contributions to the model’s output across 
all possible subsets of features. Equation (11) [36] describes this computation process. 

∅j(val)=
∑

S⊆{1,…,p}\{j}

|S|!(p − |S| − 1)!
p!

(val(S∪{j}) − val(S)), (11)  

where S represent a subset of the features utilized in the model, x denote the feature value vector of the instance to be explained, and p 
represent the number of features. The term valx(S) refers to the prediction made for the feature values within set S. This prediction is 
obtained by marginalizing over the features not included in set S, as illustrated in Equation (12): 

valx(S) =
∫

f̂
(
x1,…, xp

)
dpx∕∈S − Ex( f̂ (x)). (12) 
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By calculating the average of the absolute Shapley values across multiple instances, as described in Equation (13), a more robust 
measure of feature importance (Ij) can be derived. This aggregation method provides a comprehensive assessment of the influence each 
feature has on the model’s predictions. Features with higher absolute Shapley values are considered more significant in the model’s 
prediction process. 

Ij =
1
n
∑n

i=1

⃒
⃒
⃒φ(i)

j

⃒
⃒
⃒. (13)  

3. Dataset and modelling 

In this section, the primary focus lies on the utilization of experimental data to predict the chloride diffusion coefficient of concrete. 
It comprehensively presents the step-by-step process involved in creating the predictive model, encompassing data preprocessing, 
model training, and evaluation. The initial part of the section is dedicated to introducing and describing the experimental dataset, 
shedding light on its key characteristics and relevant information. Following that, a detailed account of the model development process 
is provided. 

3.1. Experimental dataset 

This study focuses on the chloride diffusion coefficients obtained through the NT Build 492 method, specifically referred to as the 
“non-steady-state migration coefficient” or Dnssm. Considering their comprehensiveness and appropriateness, the selected features for 
this study amount to 10 and encompass 204 observations sourced from the original dataset. This dataset was compiled from various 
research projects and internationally published journal articles [5–7,15,37–53]. While feature engineering, which involves creating 
new features to simplify the model and improve predictive performance, is a common practice, this study only utilizes features that 
describe the concrete constituents without any transformations. The primary objective is to investigate the impact of concrete con-
stituents on Dnssm. The features considered in this study are water content (in kg/m3), binder contents (cement, slag, fly ash, and silica 
fume, in kg/m3), fine and coarse aggregate amounts (in kg/m3), superplasticizer content (as a percentage of binder weight), migration 
test age (in days) when the diffusion coefficient test was conducted, and Dnssm (in units of x10− 12 m2/s). The dataset used in this study 
encompasses various types of concrete, including regular strength, lightweight, high-strength, high-performance, and 
self-consolidating concrete, without discriminating based on their strength class. Table 1 provides a summary of the features included 
in the database. 

Histogram plots with distribution fits, as illustrated in Fig. 2, visualize the distribution of input features influencing the target 
feature, Dnssm, of the raw dataset. The distribution curves clearly indicate that the features do not conform to a normal distribution and 
display distinct shapes. Notably, water, cement, fine aggregate, and coarse aggregate exhibit a discernible bimodal distribution. As 
depicted in the figure, the number of concrete samples containing slag, fly ash, and silica fume is limited. 

3.2. Data preprocessing 

Data processing stands as a pivotal phase in the development of machine learning-based models, encompassing crucial tasks such as 
handling missing data, detecting and addressing outliers, data encoding, data scaling, and data partitioning. In the context of this 
study, all of these tasks are thoroughly executed, with the exception of data encoding and scaling. Data encoding is omitted due to the 
absence of categorical features in the dataset, eliminating the need for such processing. As for data scaling, while many machine 
learning algorithms benefit from having features on the same scale for optimal performance, the chosen algorithm for model training in 
this study doesn’t necessitate data scaling. This is because the algorithm inherently incorporates scaling as an integral aspect of its 
model development process. 

3.2.1. Missing data processing 
Missing data processing refers to the techniques employed to handle and analyze datasets that contain incomplete values, which 

may arise from various causes. Addressing missing data is crucial as it can impact the reliability and validity of prediction models and 
the conclusions derived from the data. Several approaches can be utilized, including: i) excluding observations with any missing 
values, ii) relying on the learning algorithm to handle missing values during training, and iii) imputing all missing values before 

Table 1 
Explanation of features utilized in the original dataset.  

Feature category No. Feature subcategory Description Unit 

Concrete mix ingredients 1 Water content [kg/m3] 
2 Cement content [kg/m3] 
3 Mineral admixtures content Slag [kg/m3] 
4 Fly ash [kg/m3] 
5 Silica fume [kg/m3] 
6 Aggregates content Fine aggregate [kg/m3] 
7 Coarse aggregate [kg/m3] 
8 Chemical admixtures content Superplasticizer [% by binder wt.] 

Chloride migration 9 Migration properties Concrete age at migration test [Days] 
10 Migration coefficient (Dnssm) [x10− 12 m2/s]  
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training. The choice of the method for handling missing data depends on the type of missingness, the extent of missing data, and the 
specific research question. Although the selected algorithm, XGBoost, utilized to train the Dnssm prediction model incorporates 
mechanisms to handle missing data, the decision was made to eliminate observations with missing values. This decision was based on 
the fact that experimental tests for certain feature types were never conducted, rather than the missing data occurring randomly. In 
such cases, imputing missing values could introduce bias and lead to erroneous predictions and conclusions. 

3.2.2. Detecting and treating outliers 
Outliers refer to unusual observations that significantly differ from the majority of the dataset. It is crucial to identify and handle 

outliers in any data-driven model development process, as the quality of the data directly affects the performance of the model. While 
not all ML algorithms are sensitive to outliers, the chosen algorithm, XGBoost, is highly affected by them. Common approaches for 
outlier detection focus on each variable individually, identifying extreme observations based on the distribution of that specific 
variable. However, this method fails to recognize outliers that arise from relationships between multiple features. Therefore, it is 
important to adopt a multivariate outlier detection method that can identify uncommon combinations of scores across two or more 
features. There are two main types of multivariate outlier detection techniques: distance-based approaches and lower-dimensional 

Fig. 2. Distribution of the input features of the raw dataset that controls the Dnssm..  
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projection-based methods [54]. The Mahalanobis Distance (MD) is a commonly used distance measure in multivariate space, which 
considers both the mean and covariance of the data. It assigns larger distances to observations that deviate from the mean in directions 
with lower covariance. The MD between two objects, XA and XB, is defined by Equation (14) [43]. 

d =
[
(XB − XA)

T
.C− 1.(XB − XA)

]0.5
, (14)  

where C represents the covariance matrix of the sample. 
Equation (15) in Ref. [55] demonstrates how the Mahalanobis distance can be computed from each observation to the center of the 

data. 

di =
[
(Xi − X)T

.C− 1.(Xi − X)
]0.5

, (15)  

where Xi refers to an object vector, and X represents an arithmetic mean vector. 
In the process of identifying multivariate outliers using Mahalanobis Distance (MD), a comparison is made between the Mahala-

nobis distance of each instance and a threshold value derived from the chi-square distribution. In this study, any instance is categorized 
as a multivariate outlier if the probability associated with its Mahalanobis distance is 0.001 or less. Consequently, twelve instances 
meeting this criterion were identified as outliers and subsequently removed from the dataset. 

3.2.3. Data partitioning 
Data partitioning in ML involves dividing a dataset into separate subsets for training, validation, and testing, aiming to accurately 

assess the model’s performance and generalization ability. The training set is utilized to train the model and validate it using K-fold 
cross-validation. On the other hand, the test set, which remains unseen during model training and validation, is employed to evaluate 
the model’s generalization performance. 

In this study, the dataset undergoes a random division, with 80% allocated for training with validation and the remaining 20% set 
aside for testing. His strategic allocation aims to provide the model with a substantial volume of data for learning, ensuring it can 
effectively capture patterns and relationships within the dataset. Simultaneously, reserving 20% of the data for testing enables the 
evaluation of the model’s generalization capabilities on new and unseen data, offering a robust assessment of its performance during 
the training process. 

3.3. Data after preprocessing 

The preprocessed data’s descriptive statistics are presented in Table 2. It is worth noting that the total number of observations has 
decreased to 192 from the original 204 due to the removal of 12 outlier instances. The cement content ranges from 104 to 525 kg/m3. 
The SCMs, including slag, fly ash, and silica fume, have maximum values of 244 kg/m3, 216 kg/m3, and 60 kg/m3, respectively. These 
values have relatively small standard deviations (49.28, 51.98, and 14.84 kg/m3), indicating that they are observed only in a few 
instances. There are instances where the minimum amount of coarse aggregates is zero, indicating that some tests were conducted on 
mortar instead of concrete. These instances have been retained in the dataset to investigate their impact during the feature dependency 
analysis in Section 4.2. Additionally, the age of the concrete during the migration test varies from 3 to 365 days, with a standard 
deviation of 83.70 days. The Dnssm values also exhibit a wide range, spanning from 0.74 to 80.60 × 10− 12 m2/s, with a mean value of 
10.37 × 10− 12 m2/s. These observations highlight the diverse range of concrete types present in the dataset. 

Examining the dependencies among features is crucial because partial dependency analysis assumes independence between fea-
tures when evaluating the partial effect of a specific feature on the target variable. To verify the absence of dependencies, the Pearson 
correlation coefficients are calculated between all possible feature pairs. The formula for calculating the Pearson correlation coefficient 
is given in Equation (16). The Pearson correlation coefficient, denoted by " r" and ranging from − 1 to +1, measures the strength and 
direction of the linear relationship between two continuous variables. A value of +1 indicates a complete positive correlation, − 1 
represents a complete negative correlation, and 0 indicates no correlation [56]. Fig. 3 presents the Pearson correlation coefficient 

Table 2 
Descriptive statistics of the preprocessed data.  

Units Input features Target 
feature 

Water Cement Slag Fly ash Silica 
fume 

Fine 
aggregate 

Coarse 
aggregate 

Superplasticizer Concrete 
age 

Dnssm 

[kg/ 
m3] 

[kg/ 
m3] 

[kg/ 
m3] 

[kg/ 
m3] 

[kg/m3] [kg/m3] [kg/m3] [% by binder wt.] [Days] [ x10− 12 m2/ 
s] 

Count 192 192 192 192 192 192 192 192 192 192 
Mean 176.49 383.60 15.34 21.67 6.44 788.92 799.58 0.41 64.10 10.37 
Std 22.72 86.65 49.28 51.98 14.84 215.64 300.78 0.48 79.48 10.50 
Min 122.50 104.00 0.00 0.00 0.00 235.00 0.00 0.00 3 0.74 
25% 158.00 330.00 0.00 0.00 0.00 645.00 451.50 0.00 28 5.11 
50% 178.20 391.00 0.00 0.00 0.00 760.50 915.53 0.20 28 7.50 
75% 191.25 450.00 0.00 0.00 0.00 959.00 1061.00 0.70 90 10.50 
Max 222.00 525.00 244.00 216.00 60.00 1574.10 1240.00 2.27 365 80.60  
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values depicting the relationships between the considered features in the dataset. It is apparent that most features display minimal 
correlation. However, certain features, such as fine and coarse aggregate with r = − 0.43, exhibit a moderate negative correlation. 
This coefficient suggests that the variables tend to move in opposite directions in a linear manner, although the relationship may not be 
very strong. In other words, an increase in the content of fine aggregate is associated with a decrease in the content of coarse aggregate, 
and vice versa, but not necessarily in a perfectly proportional manner. It is important to note that the moderate correlation between 
these two features is due to specific concrete design specifications rather than an inherent relationship between the aggregates 
themselves, as both are distinct components used in concrete to achieve desired properties. The same holds true for other features that 
show moderate correlation, such as silica fume and slag, as well as cement and slag. 

r=
∑

(xi − x) ∗ (yi − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − x)2∑
(yi − y)2

√ , (16)  

where xi and yi represent the values of the two variables being analyzed, and x and y represent the means of the respective variables. 

3.4. Model training and evaluation 

The Dnssm prediction model was implemented by training the XGBoost algorithm using Python’s scikit-learn library. This 
achievement was realized by leveraging input and target attributes from preprocessed data. The training dataset, which accounted for 
80% of the data, was employed to train the model. To enhance the model’s performance, a combination of random search and K-fold 
cross-validation was utilized to tune the hyperparameters. In this method, the dataset was divided into K equally-sized subsets or folds, 
and the hyperparameters were randomly sampled from a predefined range. For each set of hyperparameters, the model was trained on 
K − 1 folds and evaluated on the remaining fold. This process was repeated K times, with each fold serving as the validation set once. 
The results were then averaged to estimate the model’s performance, reducing variance and providing a more reliable evaluation of its 
generalization capability. The adopted value of K in this study is 10, which is a standard practice in machine learning [57]. Table 3 
presents an overview of all the hyperparameters considered during the training process, along with their respective ranges. For a 
comprehensive understanding of each hyperparameter, detailed information is available in the Python scikit-learn library’s docu-
mentation [58]. 

After the algorithm is trained, its ability to predict Dnssm using a test dataset, which was not previously seen during the training 
phase, needs to be assessed using statistical metrics. The commonly used metrics for evaluating the accuracy of regression models 
include mean-square error (MSE), root-mean-square error (RMSE), mean-absolute error (MAE), and coefficient of determination (R2) 
[59]. 

The MSE computes the average of the squared disparities between predicted and actual values, as shown in Equation (17). This 
metric quantifies the overall variability or dispersion of errors, with smaller values indicating superior predictive performance. 

MSE=
1
n

∑n

i=1
(yi − ŷi)

2
, (17) 

Fig. 3. The Pearson correlation coefficients of all the features.  
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The RMSE is the square root of the mean of the squared disparities between predicted and actual values, as described in Equation 
(18). The RMSE has the advantage of being expressed in the same unit as the dependent variable, which facilitates interpretation. Like 
the mean square error (MSE), lower RMSE values indicate superior predictive performance. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

=
̅̅̅̅̅̅̅̅̅̅
MSE

√
, (18) 

The MAE computes the average of the absolute disparities between predicted and actual values, as stated in Equation (19). The 
MAE offers an assessment of the average magnitude of errors, regardless of their direction. Lower MAE values indicate superior 
predictive performance. Unlike other error metrics that involve squaring the differences (e.g., MSE), MAE treats all errors equally, 
assigning equal importance to both overestimation and underestimation. 

MAE=
1
n
∑n

i=1
|yi − ŷi|, (19) 

The R2 value signifies the proportion of variance in the response feature that can be explained by the regression model. It is 
regarded as a standardized version of MSE, providing enhanced interpretability regarding the model’s performance. Ranging from 0 to 
1, a value of 0 indicates no explanatory power, while a value of 1 represents a perfect fit. The R2 value is computed using Equation (20). 

R2 = 1 −

1
n

∑n

i=1
(yi − ŷi)

2

1
n

∑n

i=1
(yi − y)2

= 1 −
MSE

Var (y)
, (20) 

In these equations, n represents the number of observations. The variable yi denotes the actual target value, while ŷi represents the 
predicted output value. y represents the mean value of the actual target, and Var represents the variance. 

4. Results and discussion 

In this section, the emphasis is on presenting and analyzing the performance of the Dnssm prediction model. A comprehensive grasp 
of the prediction process for the algorithms is attained through the application of SHAP, a Python library that utilizes Shapley values to 
clarify the results of any machine learning model. This interpretation encompasses two main aspects: the global explanation, which 
offers an understanding of the model’s overall behavior, and the instance-based explanations, which explore specific and detailed 

Table 3 
The hyperparameters taken into account in the XGBoost algorithm.  

Hyperparameters Search space Description 

n_estimators [10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 
800, 900, 1000] 

Number of gradient boosted trees 

max_depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 

18, 19, 20] 

Maximum tree depth for base learners 

min_split_loss [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 20] 

Minimum loss reduction required to make a further partition on a 
leaf node of the tree. 

learning_rate [1e-05, 0.0001, 0.001, 0.01, 0.1, 1.0] Boosting learning rate. 
booster [’gbtree’,’gblinear’,’dart’] Booster types.  

Fig. 4. Regression plots of the Dnssm prediction model (a)training phase, and (b) test phase.  
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reasons for individual predictions. Additionally, the evaluation involves assessing the partial effect of specific features on the target 
variable, thereby enhancing the understanding of the model’s predictive capabilities. 

4.1. Model performance evaluation 

Fig. 4 illustrates the training and test performance of the model using a regression plot, which showcases the linear relationship 
between the actual and predicted Dnssm values. The plot reveals that the predicted values closely align with the regression line, which 
represents the best-fit line through the data points during the training phase. This indicates that the model successfully captured the 
patterns in the data during training. During the test phase, the model continues to perform well, although not as well as during training. 
The R-square value, a measure of the model’s goodness of fit, is 0.95 during training and 0.87 during the test phase. These values 
indicate a strong correlation between the predicted and actual Dnssm values, affirming the model’s effectiveness in both phases. 

The model’s performance on both the training and test datasets is evaluated using statistical measures, including MSE, RMSE, and 
MAE. In the training phase, the model achieved an MAE of 1.62, MSE of 6.65, and RMSE of 2.38. In the test phase, the corresponding 
values were MAE = 2.22, MSE = 10.12, and RMSE = 3.18. These metrics provide insights into the accuracy and performance of the 
model on both training and test data. To attain this level of accuracy, optimal hyperparameters were identified from the hyper-
parameter search space presented in Table 3. The identified optimal hyperparameters are as follows: n_estimators = 600, max_depth =
4, min_split_loss = 20, learning_rate = 0.01, and booster = dart. 

Fig. 5 provides a comparison of the performance between the current model and an earlier model developed by the authors using 
the same algorithm and dataset. The primary differences lie in the choice of input features and the hyperparameters, as well as the 
hyperoptimization method employed. The current work utilized only the constituents used to produce the dataset without trans-
forming them into new features, aiming to eliminate feature interdependence. The prior work utilized grid search with K-fold cross- 
validation, while this work employed random search with K-fold cross-validation techniques. Grid search systematically explores all 
possible combinations of predefined hyperparameter values within a specified search space, ensuring a thorough examination but 
potentially becoming computationally expensive, especially for larger search spaces. On the other hand, random search takes a more 
flexible approach by randomly sampling a specified number of hyperparameter combinations from the search space. This randomness 
can be more efficient, particularly when only a subset of hyperparameters significantly influences model performance, and compu-
tational resources are limited. The shift to random search seeks to strike a balance between exploration and efficiency. The figure 
clearly depicts that the MSE, RMSE, and MAE of the earlier work that closely correspond to the considered feature types are slightly 
lower than those of this work. However, the R2 of this work is considerably higher than the previous work. These results affirm that the 
model developed in this study performs favorably despite employing fewer features and abstaining from feature engineering. Notably, 
the adoption of random search for hyperparameter optimization, in lieu of the exhaustive grid search, attests to the model’s robustness 
and efficiency in achieving competitive performance. 

4.2. Model explainability 

Fig. 6 illustrates the visualization of the mean absolute SHAP values for the input features. The significance of a feature in pre-
dicting the Dnssm can be determined by its corresponding mean absolute SHAP value, with higher values indicating greater importance. 
Upon examining the figure, it becomes evident that the amount of coarse aggregate feature holds the highest importance, followed by 
superplasticizer, and concrete age. The mean absolute SHAP value for coarse aggregate is 2.34, which accounts for about 25% of the 
cumulative mean absolute SHAP value for all features. Following the top three, the features cement and water are ranked fourth and 

Fig. 5. A performance comparison between the developed Dnssm prediction model with another model.  
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fifth in importance, respectively. The influence of cement on concrete properties is typically interdependent on the amount of water 
used, and thus, considering them individually may not be fully indicative. Indeed, the cumulative mean absolute SHAP resulting from 
their collective contributions represents a noteworthy portion, approximately 23%, of the total mean absolute SHAP values. When 
considering the five key features - coarse aggregate, superplasticizer, concrete age, cement, and water - together, they account for 
approximately 83% of the total mean absolute SHAP values. This cumulative importance underscores their substantial role in 
explaining the model’s output and capturing the intricate relationships between these features and the predicted outcome. On the 
other hand, the features slag and fly ash exhibit the least influence in predicting the Dnssm. By excluding these two features, the 
remaining features account for 98% of the total mean absolute SHAP values, indicating that the model can make accurate predictions 
even without considering them. However, it is important to acknowledge that the insignificant mean absolute SHAP values of slag and 
fly ash do not necessarily imply their complete uselessness in predicting Dnssm. This assertion holds true only for this particular dataset, 
in which the number of concrete instances containing slag and fly ash is limited, as discussed in Section 3.3. To gain a more 
comprehensive understanding of their influence, it is crucial to analyze the explainability of the model’s predictions through diverse 
plots. 

To gain insights into the Dnssm model’s predictions on an individual basis, a summary plot, depicted in Fig. 7, is created. This plot 
combines feature importance with feature effects for each instance. Each point on the plot represents a SHAP value associated with a 
feature and an instance. The y-axis denotes the feature, while the x-axis represents the SHAP value. The color of the points represents 
the corresponding feature value, ranging from low to high. To present the distribution of SHAP values per feature, overlapping points 
are slightly adjusted in the y-axis direction, ensuring better visibility and clarity. 

Similar to Fig. 6, the arrangement of features in Fig. 7 is based on their importance. However, Fig. 7 offers additional insights that 
are not readily apparent in Fig. 6’s feature importance plot. For example, concrete age, at lower ages, the SHAP value is high and 
positive. However, as the age increases beyond a certain point, the SHAP value becomes negative, indicating a gradual increase in Dnssm 
that is not as significant as observed at earlier ages. Regarding coarse aggregate, there are three instances with exceptionally high 
SHAP values at around 27, 30, and 32. The average of these three values is four times higher than the maximum SHAP value of the next 
lower value in this group. Consequently, it becomes evident that these three extreme SHAP values contribute significantly, making the 
mean absolute SHAP value of the coarse aggregate feature higher compared to all other features. These observations are derived from a 
study [37]. Examining the mix ingredients reported in their study reveals no unusual ingredients or proportions. However, the ex-
istence of such extreme values prompts further scrutiny to validate the accuracy of these specific observations, as there may be errors in 
the experiment or in reporting the Dnssm values. If these values are omitted, the feature “coarse aggregate” no longer maintains the 
highest importance. Therefore, the utilization of the summary plot underscores that depending solely on the feature importance plot is 
inadequate. Hence, such a summary plot is vital for obtaining a more thorough understanding of the influence of features. 

The SHAP value analysis reveals that water has a positive impact on Dnssm when its magnitude is high and a negative impact when 
its magnitude is low. On the other hand, the opposite pattern can be observed with cement, where a medium to lower amount of 
cement leads to a higher SHAP value and a reduction in Dnssm. These trends are as anticipated since higher cement content and lower 
water content reduce porosity and enhance impermeability, resulting in a decrease in Dnssm. Conversely, when examining the fine 
aggregate, there is no distinct pattern observed in many cases. However, in several instances, a higher magnitude of fine aggregate 
corresponds to negative SHAP values, indicating a reduction in Dnssm. This phenomenon might arise due to the increase in fine 
aggregate, which in turn reduces the amount of used coarse aggregate and affects the interfacial zone. Nevertheless, it is important to 
note that this feature is typically not the primary factor controlling chloride ingress. 

It is also important to note that the use of silica fume, slag, and superplasticizer results in negative SHAP values, impacting the Dnssm 

Fig. 6. Feature importance plot of the best performing model.  
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of concrete to decrease. This aligns with expectations since these admixtures increase the density of the concrete matrix, reduce its 
permeability, and improve resistance to Dnssm. Although the influence of fly ash and slag may appear insignificant in impacting the 
Dnssm of concrete according to Fig. 7, it is clear that the impact of slag is significantly higher than that of fly ash. The reason why slag 
and fly ash appear negligible in Fig. 6 could be attributed to the limited number of concrete mixtures employing them compared to 
other SCMs, resulting in a lower mean absolute SHAP value and potentially downplaying its importance. 

The SHAP waterfall plots, presented in Fig. 8, offer a detailed examination of how individual Dnssm predictions are derived by the 
model. On the Y-axis, features are encoded, showcasing the values observed for a particular observation. Meanwhile, the X-axis 
represents the range of Dnssm in × 10− 12m/s2. The baseline of the waterfall plot commences with the expected value of the model 
output E[f(x)] = 11.014× 10− 12m/s2, representing the global predicted average Dnssm. Each row in the waterfall plot illustrates how 

Fig. 7. SHAP summary plot of the best performing model.  

Fig. 8. SHAP waterfall plot of selected instances.  
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the positive contributions (depicted in red) or negative contributions (depicted in blue) of each feature influence the value, tran-
sitioning from the expected model output over the background dataset to the model output for the specific prediction under 
consideration. The top of the charts displays the model prediction, f(x), for the observed values in the particular instances being 
analyzed. 

The selected observations in Fig. 8(a) and (b) are aimed at enhancing our understanding of the influence of SCMs and super-
plasticizers, respectively, on Dnssm predictions, since their impact were not adequately observed in other plots. In Fig. 8(a), the chosen 
observation utilizes slag as an SCM, and its impact on Dnssm prediction stands out significantly compared to intermediate values 
observed for other features. The impact is notably negative, indicating a substantial contribution to reducing the Dnssm of concrete. 
Since this instance exclusively employs only slag as the SCM, the impact of other SCMs (silica fume and fly ash) appears insignificant. 
Similarly, in Fig. 8(b), where the considered concrete employs superplasticizers, the impact on Dnssm prediction is notably high, 
exceeding intermediate values observed for other features. Again, the impact is negative, signifying a significant contribution to 
reducing the Dnssm of concrete. This visual representation offers a clear and insightful portrayal of how each feature contributes to the 
model’s predictions. It highlights the limitation of relying solely on global-level explanations and underscores the importance of 

Fig. 9. ICE plots of all the input features utilized in the Dnssm prediction model.  
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Fig. 10. SHAP dependence plots for the input features.  
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conducting local-level analyses to gain more nuanced and insightful results. 

4.3. Partial dependency of features 

Fig. 9 displays the individual conditional expectation (ICE) plots, offering a visual representation of the output variation of the Dnssm 
prediction model concerning all nine input features. These plots demonstrate the model’s prediction dependency on the features for 
each sample individually, with each sample depicted by a separate line. In each ICE plot, the values of the remaining input features are 
held constant, while the variation of one input feature is depicted. Moreover, all the subplots incorporate the corresponding partial 
dependence line, which overlays the average effect of the input feature on the ICE lines. 

Upon examining the graphs, it becomes evident that the partial dependencies (averages of the ICE lines) for the features “cement” 
and “superplasticizers” exhibit a decrease within specific ranges of their values. The impact of these features appears to be insignificant 
when their values fall below a certain threshold (350 kg/m3 for “cement” and 0.1% by binder wt. for “superplasticizers”) or exceed 
certain values (450 kg/m3 for “cement” and 0.6% by binder wt. for “superplasticizers”) in predicting Dnssm. Additionally, the study 
reveals that the age of the concrete significantly influences Dnssm, particularly during its early stages. However, as the concrete ages, 
this impact gradually diminishes, stabilizing after reaching 90 days. In the case of the features “water” and “coarse aggregate” exhibit a 
similar trend. Beyond certain threshold values, the partial dependencies increase, indicating that higher magnitudes of these features 
correspond to higher Dnssm values in the concrete. However, the feature “slag” exhibits a nearly horizontal trend around a partial 
dependency values of zero. This can be attributed to many cases in the dataset having a value of zero for slag. As a result, the overall 
influence of “slag” on the model’s output is considered insignificant, despite its significant contribution to decreasing the Dnssm of 
concrete as demonstrated in Fig. 8(a). All these analysis highlights the varying impacts of different features on Dnssm prediction, with 
certain features showing clear trends while others have limited influence or only apply within specific value ranges. Understanding 
these relationships is crucial for optimizing concrete mixtures for desired performance. 

4.4. SHAP dependency with feature interaction 

Fig. 10 depicts the SHAP dependence plots for the input features across the entire dataset. These plots resemble partial dependence 
plots but consider the presence of interaction effects within the features. The vertical spread of SHAP values at a specific feature value 
is influenced by interaction effects, and another feature is selected for coloring to emphasize potential interactions. 

Fig. 10(a) provides clear evidence that the SHAP value for concrete ages between 2 and 28 days is negative, whereas for ages above 
28 days, it becomes positive. Additionally, the SHAP value experiences a sharp decrease from 3 days until about 90 days, followed by a 
more gradual decline until reaching a negative value at 28 days. This phenomenon supports the notion that the Dnssm of concrete is 
initially high at early ages but decreases with time, regardless of the concrete’s composition, throughout the considered period of 365 
days. This could be due to the fact that, at early age concrete is still in the initial stages of hydration, and the microstructure may 
contain more interconnected and larger pores. This increased porosity allows chloride ions to move more freely through the concrete, 
resulting in higher migration coefficients. As the concrete matures and continues to hydrate over time, the pore structure becomes 
more refined and the cementitious matrix denser. This reduction in pore connectivity and size leads to a decrease in the Dnssm. 

As shown in Fig. 10(b), when the superplasticizer’s quantity exceeds about 0.45% of the binder weight till the max amount 
considered in the training dataset (about 2.3% of the binder weight till), it leads to negative SHAP values. Nonetheless, incorporation 
of small amounts of superplasticizer (less than about 0.45% of the binder weight) in a concrete mix with a medium proportion of coarse 
aggregate increase the Dnssm. The effect of superplasticizer on the Dnssm is not always straightforward and can depend on its dosage and 
the specific circumstances of each concrete mixture. 

As demonstrated in Fig. 10(c), the amount of coarse aggregate has a significant impact on the Dnssm of concrete. Specifically, within 
the range of 1080 kg/m3 to 1240 kg/m3, positive SHAP values for coarse aggregate indicate that a higher quantity of coarse aggregate 
is associated with a higher Dnssm. This phenomenon arises because a greater proportion of coarse aggregate leads to increased porosity 
within the concrete, creating more interconnected voids or pathways for chloride ions to migrate through. Furthermore, the interface 
between the coarse aggregate and the cement paste can serve as potential paths for chloride penetration. These factors collectively 
contribute to a higher Dnssm in concrete with a higher proportion of coarse aggregate. This discovery regarding the significance of 
coarse aggregate content aligns with the findings of [60,61]. However, it is worth noting that the degree of importance of aggregate 
content may diminish with prolonged concrete age, as demonstrated by Refs. [62,63]. Regarding the fine aggregate, the SHAP values 
predominantly cluster around zero, but there are a few exceptions. Notably, Fig. 10(d) shows instances with SHAP values higher than 
three, which stand out significantly compared to the rest of the data. The reason behind these elevated SHAP values is not immediately 
evident. However, as presented in Section 4.2, upon conducting further investigation, it was discovered that all these observations are 
derived from a single source [37]. Despite this finding, a clear explanation for these observations still remains elusive and requires 
more in-depth analysis. 

As depicted in Fig. 10(e), when the cement content is higher (400 kg/m3), the SHAP values become negative. This outcome is as 
expected since higher cement content in concrete leads to lower porosity and reduced permeability. Consequently, the movement of 
chloride ions through the concrete is impeded, resulting in a lower chloride migration coefficient. Interestingly, there are instances 
where the cement content is lower than 400 kg/m3, yet negative SHAP values with small magnitude were observed. In contrast to the 
previous case (cement content above 400 kg/m3), many of these instances involve the SCMs like slag, fly ash, or silica fume in the 
concrete mix. The probable explanation for this observation is that the combination of cement with these SCMs contributes to the 
formation of additional calcium silicate hydrate (C–S–H) gel and reduces the calcium hydroxide content. This results in a denser 
microstructure with reduced pore size and improved interconnectivity, leading to lower Dnssm. The interaction effect between cement 
and coarse aggregate fluctuates at different content levels. Notably, when the coarse aggregate content is around 730 kg/m3, the SHAP 
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values exhibit a pattern of being small yet consistently positive within the cement range of 300–370 kg/m3, as illustrated in Fig. 10(f). 
Though SCMs generally have a positive effect on the Dnssm, the exact impact may vary depending on the specific mix proportions. 

For instance, all the SHAP value of silica fume values are negative, indicating their dosage in the concrete mix considered in the dataset 
reduces the Dnssm values as shown in Fig. 10(g). Nevertheless, the SHAP value for fly ash is negative when its quantity is less than 100 
kg/m3, but it becomes positive when this value exceeds 100 kg/m3 as revealed in Fig. 10(h). It can also be seen that fly ash containing 
concrete is also impacted with the amount of the employed superplasticizer amount particularly when its dosage become above ex-
ceeds 100 kg/m3. 

The employed XML technique (XGBoost coupled with SHAP) offers comprehensive explanations regarding the influence of indi-
vidual concrete mix ingredients on Dnssm, both at a global and local level. Moreover, it reveals valuable insights into the relationships 
and dependencies between different features. The dataset used in this research comprises various concrete types, such as lightweight, 
normal-weight, high-strength, high-performance, and self-compacting concretes. Despite this diversity, the adopted method enables 
the identification of common patterns, enhancing the robustness of the insights compared to those derived from experimental data, 
which are typically limited by a small number of experiments. It’s worth noting that the dataset includes experiments investigating 
Dnssm only up to a one-year period and is specific to certain concrete types, which means that all the reported findings are constrained 
by the considered age and concrete varieties. 

The inherent explainability of the XML allows for the acquisition of novel insights when supplemented with extensive data 
encompassing diverse concrete types and long-term Dnssm performance. While a large dataset is valuable, a more comprehensive 
understanding could be achieved by considering the detailed chemical composition of both cement and SCMs types. In this study, 
cement and SCMs were considered based on their general types, recognizing that even within the same types, the chemical composition 
may vary depending on their sources. The next phase of exploration should prioritize incorporating more specific chemical details. 
Despite numerous experimental studies, there remains a scarcity of open-access data repositories focused on concrete science. To 
leverage the benefits of rapidly evolving AI technologies in the concrete industry, there is a suggestion to develop an open data ex-
change platform. Such a platform would enable the scientific and concrete communities to share data in a standardized format. 
Looking ahead, initiatives on an international scale, such as those led by technical committees like ACI [64] and RILEM [65], may pave 
the way for the establishment of repositories dedicated to this purpose. Such repositories would significantly enhance the availability 
of broader and more diverse datasets, ultimately fostering the development of more robust and accurate models for generalized 
knowledge inference. This, in turn, could facilitate the creation of optimal and sustainable concrete with improved resistance to 
chloride penetration and other crucial characteristics. The potential impact of this data-sharing initiative extends beyond chloride 
resistance, potentially leading to advancements in various aspects of concrete research and development. 

The proposed method possesses the capability to dynamically improve its performance by assimilating new relevant data. This 
adaptability ensures that the model remains current and can make accurate and precise predictions as new information becomes 
accessible. Additionally, the model’s explainability empowers engineers and other stakeholders by offering a transparent view of the 
underlying algorithm and the reasoning behind its predictions. This transparency fosters trust in the model’s predictions and facilitates 
its seamless integration into real-world applications. Additionally, there are economic implications as it allows for the determination of 
Dnssm of various concrete materials without the need for labor and resource-intensive advanced laboratory testing. In fact, this 
approach can be extended to develop XML based models for predicting the chloride diffusivity of concrete performed by different 
procedures and other time-consuming and resource-intensive tests. 

5. Conclusions 

The impact of concrete mix ingredients on the non-steady chloride migration coefficient was performed using explainable machine 
learning method that integrated XGBoost and SHAP. The conclusions are as follows:  

• Performance: The XGBoost model utilized in training exhibited excellent accuracy in predicting the Dnssm of concrete. In the training 
phase, the performance metrics showed an R2 score of 0.95, MAE of 1.61 × 10− 12 m2/s, and RMSE of 2.38 × 10− 12 m2/s. In the test 
phase, the model achieved an R2 score of 0.87, MAE of 2.22 × 10− 12 m2/s, and RMSE of 3.18 × 10− 12 m2/s.  

• Impacts of features: The SHAP analyses underscore the varied impacts of different features on Dnssm prediction, with some features 
showing clear trends and others having limited influence or applying only within specific value ranges. For example, within the 
range of 1080 kg/m3 to 1240 kg/m3, Dnssm remains consistently high. Higher cement quantities (above 400 kg/m3) result in 
negative SHAP values, but even below 400 kg/m3, negative SHAP values are evident due to the impact of SCMs in reducing Dnssm. 
The age of the concrete also significantly affects Dnssm, with a sharp decrease from 3 days to approximately 90 days, followed by a 
more gradual decline until reaching a negative value at 28 days. Fly ash’s SHAP value becomes negative when used below 100 kg/ 
m3, with the effect magnitude influenced by the amount of superplasticizers employed.  

• Explanaibility: The visualization of SHAP values via diverse plots is crucial for gaining a comprehensive understanding of the 
overall feature importance in the model’s predictions. Additionally, it enables a detailed breakdown of how each feature con-
tributes to specific predictions for individual samples, providing transparency and insight into the model’s decision-making 
process.  

• Limitation: The data utilized to train the XGBoost algorithm for predicting Dnssm of concrete is limited to a duration of one year. 
Additionally, there are only a few observations that involved SCMs. As a result, all the reported findings are applicable solely to the 
concrete age and the range of concrete mix ingredients considered in this study, and they cannot be generalized to other scenario. 
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