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This thesis focused on comparing A-star algorithm and some of its variants against Q-learning 
and Proximal Policy Optimization algorithms in terms of path finding and in game development 
perspective. Both Q-learning and proximal policy algorithm are reinforcement learning algorithms 
which is a subsection of machine learning. The goal of the thesis was to analyse the viability of 
using reinforcement learning in path finding in game development instead of traditional algorithms 
and discover the strengths and weaknesses of each method and possible future developments. 
The thesis subject was a personal topic of interest of the writer. At first the thesis introduced 
different kinds of path finding techniques in game development like navigation mesh and way-
points  based  navigation.  It  described  the  A-star  algorithm  in  detail  using  pseudocode  and 
compared the standard algorithm to different A-star variants, for example D-star lite. Next, the 
author described the basics of machine learning, neural networks and reinforcement learning 
using Markov Decision process before going deeper into Q-learning algorithm and proximal policy 
algorithm. After this the thesis described experiments done using a Minigrid library in order to 
gather knowledge and data regarding the differences of the algorithms. During the thesis a simple 
simulation game was developed where a deep reinforcement learning agent needs to navigate 
though a simple maze from start to end position. The simulation game was used in experiments 
to  gather  knowledge  and  performance  data  of  the  algorithms.  The  chapters  described  the 
different types of scenarios developed and the results for each algorithm. At the end of the thesis 
the author had conclusions of the results and ideas for future development. The main conclusion 
was that using reinforcement learning for path finding is not viable because of the complexity and 
cost of the training. A-Star was also significantly more performant finding the path. However, 
author suggested studying alternative deep reinforcement learning algorithms which might yield 
better results. Author also explained that it might make sense to use reinforcement learning in 
other areas of the game development.
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1 INTRODUCTION

AI and Machine learning have been on the news in 2023 and with the introduction of different AI  

tools to generate text, images, and process data we are in a verge of change in our personal and 

working lives. The different kinds of AI tools will be replacing and changing jobs in the future and 

causing disruption, both good and bad, in work life, organizations, governments, and businesses. 

New jobs will  be created and some types of jobs will  disappear. Things that were extremely 

difficult to develop a couple of years ago are now possible and achievable with the help of AI 

related  tools.  Programmer’s  productivity  can  be  increased  by  tools  like  ChatGPT  for  code 

generation, searching for information and learning new concepts. Large language models which 

are developed to generate and process text can understand complex structures and extract data 

by providing instructions. It is important to gain knowledge, understand and learn about the AI 

and machine learning.

By providing details of your skills, job history and education with a job application text to a large 

language model AI, it could generate you a tailor made CV and a cover letter written specifically  

for  a certain job description.  The AI  tool  to  generate this  could even search the internet  for 

additional information of the company to make the letter even more specific for the job, thus 

saving you time and effort.

On the other  hand,  criminals  or  scammers may use AI  tools  to  generate  specific  scams or 

phishing attempts with good written language and in an automated way. You initiate a chat with 

an AI tailored to chat with you and trying to get your personal information for criminal purposes 

which previously needed a real person.

If you are a real-estate agent you may take photos of empty houses and flats for sale. You could 

feed the photos to an AI which modifies the photos by adding furniture and other decoration. AI  

could also generate sales pitch based on different details like location, amount of rooms and 

price. In the future it could even “look” at the photos you took and make a sales pitch based on 

that.
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Self-driving cars have developed a lot in the past 10 years. Starting from basic warning systems 

like lane-departure alarm we are now almost in a state were a human driver does not need to pay 

attention to the road and traffic. An AI receives constant input from different sensors of the car 

and makes decisions based on those. In the future AI probably replaces delivery services, taxis, 

public transportation, and we will have fully automated order delivery from e-commerce website to 

your front door.

Software developer could take raw data from a database and feed it into a large language model 

asking to generate code for a user interface component which visualizes the data. Testing the 

code could be done by AI analysing different code paths and functions and writing automated unit 

tests.  Old code could be refactored into a better  code base by asking AI  to rewrite it  using 

different libraries or even programming languages.

In game development game prototypes could be developed faster by generating game assets 

and graphics using generative AI. Games could be more interesting when some parts of the 

gameplay are generated dynamically by AI, new story-lines are AI generated for each playtime 

and dialog with game characters could be more realistic and human like. Instead of scripting all 

dialog game designers could describe characteristics, mood, and relationship to other characters. 

AI could then generate dialog dynamically and respond to players input. AI could be also used to 

provide feedback to the player. Aimlabs is a company which develops a training software for 

players who like to play first-person shooter type of games. The software includes an AI feature 

called Discovery. “Discovery is aware of your game-play at all  times, and is able to give you 

immediate feedback after tasks, in addition to generating personalized training tasks to help you 

with specific aspects of training.” (Aimlabs 2023).
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Gameplay  could  be  also  improved by  reinforcement  learning.  The algorithm could  learn  the 

moves of the player and adjust the gameplay difficulty dynamically. Reinforcement learning is a 

type of machine learning where an algorithm learns from feedback and rewards and by taking 

actions based on the different states of  the environment.  This could provide challenging and 

enjoyable gameplay when the game AI adapts its strategy and difficulty dynamically instead of 

pre-defined logic introduced by the programmer. One part of this could be path-finding in which 

this thesis focuses on. Traditional path finding algorithms like A-star are good and efficient at 

finding paths. The main assumption is that at best machine learning model would get similar 

results  than  traditional  algorithms.  However,  machine  learning  model  might  adapt  better  to 

dynamically changing environments and have a possibility to learn to perform additional tasks like 

opening doors in a maze or exploring unknown environments.
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Figure 1: Game asset generated using ChatGPT with 

following prompt: Could you create me an illustration of 

a fantasy world for a computer game? The game is an 

adventure game where player controls group of human 

like characters. The characters could make spells, use 

bow and arrow and use swords and axes.



The goal of the thesis is to study differences of reinforcement learning in path finding against 

traditional A-star algorithm. It compares the performance, implementation details and evaluates 

the viability of implementing reinforcement learning in games for path-finding purposes based on 

the results.
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2 ARTIFICIAL INTELLIGENCE IN GAMES

Navigation in a game world is an important part of gameplay and design. Game objects need to 

be able to move around in the game world efficiently. The world might have obstacles, different  

kinds of terrains or paths in which the game objects need to interact with. Performant algorithms 

are often needed to achieve desired features of the game. A single frame in the game loop might 

perform numerous calculations to update different states of the game. For example calculating 

collisions  and  physics,  updating  object  positions  based  on  players  input,  network  request 

handling, and constructing vertices and other data to be sent to the graphics card in order to draw 

image to the screen. In order to have smooth playable experience the frame calculation time 

should not exceed 16.6 milliseconds which equals to roughly 60 frames per second. Lower than 

60 frames per second may cause stuttering and increased latency between player input and what 

happens on the screen which may lead to decrease experience when playing the game. A study 

published in 2014 investigated a relationship between frame time and latency when a test subject 

tried  to  click  moving  targets  on  a  screen.  The  study  concluded  that  low  frame  rates  have 

significant performance cost (Benjamin F. Janzen, Robert J. Teather 2014, 5.). There are also 

games where the frame rate does not impact much of the experience. For example in the game 

of chess the board needs to be re-drawn only after a player has made his move. In this case the 

frame-rate is irrelevant.

“Artificial intelligence, the main field of computer science into which reinforcement learning falls, is 

a  discipline  concerned with  creating computer  programs that  display  human-like  intelligence” 

(Miguel Morales 2020, 1.).  In games artificial intelligence usually means the behaviour of the 

objects in the game which are not player controlled. For example in a game of chess AI would be 

the opponent when played against computer.

Reinforcement learning is a section in AI field where an agent is “taught” to choose suitable 

actions in an environment based on rewards or feedback. The agent tries to select an action 

which would produce the maximum reward over time. In a game of chess the environment would 

be the board, pieces and the rules, agent would be either white or black player and actions would 

be the moves player takes during the game. Reward could be the determined by how good the 
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move was. After each move the agent would receive feedback reward from the environment and 

update the internal mechanism to select the next action. The figure 2 below shows this basic 

function of an agent AI.

The purpose of path-finding is to find a route from a starting position to a desired location, and it’s  

a fundamental problem in various applications. In robotics a vacuum robot needs to find a path 

across a  room or  a  taxi  driver  who needs to  find a  way to  customer’s  location  when using 

navigation application. There are different aspects related to path finding. Finding the shortest 

path might not always be the goal. For example deciding the selection between shortest and 

fastest path. Selecting the shortest path in a traffic jam might not be the fastest one. A path might 

need  to  be  recalculated  in  dynamic  changing  environment.  There  might  be  multiple  goals, 

unknown areas or weighted locations in the graph. For example navigation application might build 

a path based on weights which selects a more scenic route through nature even when it is not the 

shortest one. Air traffic might control might build a path based on safety considerations and avoid 

flying planes inside certain airspace.

Path-finding is closely related to graphs. It involves finding the optimal or efficient path between 

two points within a network of interconnected nodes and edges. The network may be represented 

as a mathematical abstraction called a graph.
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Figure 2: Basic reinforcement learning



The image 3 above represents a simple graph. Each letter  represents a node and lines are 

connections  between  the  nodes.  The  connections  are  also  called  as  edges  and  nodes  as 

vertices. The number in the image represents a distance between nodes. The distances are often 

also called as weights and a graph displayed in the picture 3 would be called a weighted graph. 

The weight or distance could be considered as a cost for moving from one node to another. In the 

example A node is the starting position and F the ending position. Shortest path from A to F in 

this case would be A → C → E → D → F and the distance would be 6.5 units. Another example 

path could be A → B → D → F which has fewer nodes visited but is longer path of 7 units. It is 

also possible for weights to be negative. The edges could also have a direction, in which case 

they are called arcs. For example, you could go from A to C but not from C to A. Graphs with  

directed edges are called directed graph and the opposite is undirected graph. In the figure 3 

above nodes could be considered to  be cities  and weights  kilometres between them, as an 

example. The figure 3 could also represent an Ethernet network graph where the nodes are 

computers and edges are network connections between them. A path finding algorithm would 

have to find optimal route for the network packages.
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Figure 3: A graph of connected nodes and 

distances between them.



2.1 Common path finding algorithms

According to a 2020 study “The A* algorithm is the most popular technique applied to path-finding 

in game development.” (Abdul Rafiq 2020, 8.).

The figure 4 above displays most common algorithms in game development based on Abdul 

Rafig’s study of  10 different  game development related published papers between 2007 and 

2018. The figure 4 shows that A-star was researched in 7 different papers. The following chapter 

introduces a couple of common path finding algorithms.

Greedy algorithms make the most optimal decision at each step considering the current situation. 

Djikstra’s algorithm is a greedy search algorithm which works in weighted directed graph G = (V, 

E)  where  all  weights  are  positive.  It  incrementally  builds  the  shortest  path.  Heuristics  is  a 

problem-solving technique finding approximate solutions which might not always be the perfect 

but  is  good enough to  solve the problem. Heuristic  techniques are often used when classic 

methods are not performant enough. In case of a path finding algorithms, the heuristic functions 

usually  estimate the cost  of  the cheapest  path.  Heuristic  methods may be admissible  which 
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2020, 8.)



means that it  never overestimates the cost.  In the context  of  graph search heuristic function 

approximates the distance between two nodes. Djikstra’s algorithm is not heuristic and always 

guarantees to find the shortest path.

Genetic algorithm is a heuristic algorithm inspired by the natural selection in evolution. It is used 

to find  solutions to optimization and search problems. The idea is to build multiple potential paths 

and  evolve  them  in  to  the  optimal  one.  It  uses  techniques  such  as  inheritance,  mutation, 

selection, and crossover. For example in crossover technique two paths could be combined to 

explore new potential paths. In mutation technique random changes are introduced to the path 

which might lead to new discoveries of previously unseen paths or optimizations to existing ones. 

Genetic algorithm is not the fastest method to find a path. However, it  is flexible in dynamic 

environments and adapts by its nature.

Another nature inspired algorithm is called Ant colony algorithm. It is based on the way ants find a 

path in nature using pheromones. In the first stage multiple potential paths are constructed but 

iteratively over time the optimal path is followed the most often which reinforces the pheromones 

and ends up having the strongest pheromone trail. The pheromones evaporate on less optimal 

paths.

A-star is a best-first search path finding algorithm which uses admissible heuristic methods. Being 

best-first type of algorithm it searches the graph and selects the most promising node. It does that 

by using a heuristic function which gives priority to some nodes compared to others, and it guides 

the algorithm forward towards the goal. A-star is very similar to Djikstra’s algorithm but differs by 

the use of the heuristic function.

2.2 Grid-based navigation

Grid-based environments are based on a simple 2D-grid where the positions on the grid may be 

distinctly represented using x and y coordinate system. Grid-based navigation is often called also 

as tile map. Each tile is typically same size and shape. Tile map usually consists of squares but 

could be also built using hexagons or other shapes. Each node in a square based grid could be 

connected to either by four or eight other nodes depending on diagonal movement.
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In the picture 5 above a circle is located in the top left corner and its coordinates are (0x, 0y). A  

star is located at coordinates (5x, 3y). In 4-way connected grid the movement from the circle to 

the star would take eight steps and on the 8-way only six steps. The grey tiles are obstacles.

Grids are an efficient and a simple way to navigate because the space is limited to the grid and 

not continuous and therefore the number of possible locations are finite. The distance between 

each adjacent tile is typically also equal making distance calculations easier.

2.3 Way-points

Way-points are a set of predefined points or coordinates on the map which help the game AI to 

navigate. This enables the player or the game developer to manually choose the desired path 

through the map and a path-finding algorithm might not be necessarily needed. Way-points may 

be also used to guide the path-finding algorithm to produce a designed path or optimize scenarios 

where there are multiple nodes and calculations to find paths would be too costly. They could be 

considered as intermediary goals guiding the agent to the final destination.
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In the image 6 above there are two equal length paths. Agent may be directed to select the upper 

path using a way-point.

2.4 Non-grid navigation

If fine-grained movement is needed in the map a continuous navigation may be implemented. In 

this kind of environment agent is not confined into a grid or specific way-points but can navigate 

freely  in  the  environment.  This  enabled  fluid  movement  in  the  environment  but  increases 

complexity because of the continuous set of points.
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The image 7 above displays a continuous navigation space. A fluid path is drawn from start to 

finish, and it’s not constrained inside a grid. In the next chapter a navigation mesh is introduced 

which can be used to reduce the complexity of continuous navigation spaces. Complexity could 

be  further  increase  by  introducing  a  third  dimension  and  z-axis.  The  movement  would  then 

happen in a 3D-space.

2.5 Navigation mesh

Navigation mesh is often used in a complex environment to reduce the amount of nodes that the 

path-finding algorithm needs to process in order to find the optimal path. It defines traversable 

areas for the agent using 2-dimensional polygons which in the end can be represented as a 

graph. When the navigable areas are per-defined the environment may avoid doing expensive 

calculations for example collision detection with walls or physic simulations. It also simplifies the 

navigation space in 3D environments because calculations may be done in 2D space.

Navigation mesh may be also applied to a tile map which reduces the amount of possible nodes 

and thus, helps to reduce memory usage of A-star algorithm.
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Figure 7: Continuous navigation space



Picture 8 above displays a 2D navigation mesh in 3D environment generated in Godot game 

engine.

2.6 Effect of navigation system to graph based search algorithm

All of these navigation systems described above can all  be abstracted and represented as a 

graph. A-star is a graph traversal algorithm and therefore navigation system does not affect the 

functionality of the algorithm as long as it can be represented as a graph.

Figure 9 above demonstrates that a simple grid may be also represented as a graph. Diagonal 
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Figure 8: 3D navigation mesh (Godotengine 2023)

Figure 9: Grid based environment as a graph



movement is prohibited, and each node is 4-way connected. Each square in the grid mirrors a 

node in the graph and distance between neighbouring nodes are uniform.

2.7 A-star algorithm

The following chapter explains how the A-star algorithm works, different ways to estimate the 

distance to the goal using heuristic function and some different variants of A-star.

The frame above presents a pseudo code of basic A-star algorithm and the following chapter will  

explain the fundamental logic and steps. On line 2 a priority queue is initialized which is a primary 

component of A-star. Priority queue is a data structure which has a priority associated which each 

data point stored in the queue. When fetching data points from the queue either the one with the 

lowest or highest data point is returned depending on the implementation. In the A-star algorithm 
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AStar(start, goal)
frontier = priority queue
came_from = Map
cost_so_far = Map
add start to frontier, 0 cost
came_from[start] = start
cost_so_far[start] = 0

loop while frontier has items
current = get lowest cost from frontier
remove current from frontier
if current equals goal

break from loop

neighbours = get neighbouring nodes from current
loop each n in neighbours

movement_cost = get cost from n to current
new_cost = cost_so_far[current] + movement_cost
if cost_so_far[n] or new_cost < cost_so_far[n]

heuristic = estimate from n to goal
cost_so_far[n] = new_cost + heuristic
add n to frontier with calculated cost

path = []
current = goal
loop while start does not equal current

add current to path
current = came_from[current]

add start to path
return reversed path
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nodes are stored to the priority queue using movement cost serving as the priority. On line 10 the 

algorithm fetches a node from the priority queue and the lowest cost is returned. The returned 

node is also removed from the queue. The design of the priority queue ensures that this operation 

is efficient and optimized.

On line 3 to 7 the algorithm initializes variables needed for the algorithm. Came_from map is used 

to construct the path at the end of the algorithm after the search iterations are finished. It keeps 

track of the visited nodes and which was the node the algorithm came from. Cost_so_far map 

tracks the cost calculation on each node. A map is a data-structure of key-value pairs where each 

unique key points to a specific value. Map structure allows for a quick data access by using a key 

to retrieve its corresponding value. In the pseudo code implementation a node is used as a key.

On line 9 the algorithm starts the loop which continues until  the priority queue is empty. The 

algorithm checks if the loop could be terminated early on line 12. If the current location is the goal  

node the loop may stop and the algorithm can continue building the actual path. On line 15 the 

algorithm  fetches  the  neighbouring  nodes  which  are  linked  the  current  node.  In  grid-based 

navigation system there are either 4 or 8 adjacent nodes depending on diagonal movement as 

explained in chapter 2.2. Each neighbouring node is then looped through and, movement cost or 

weight is calculated on line 17. In grid based navigation the movement cost or weight from current 

node to the neighbour is always 1 but in other types of graphs it would be the weight of the graph 

edge. On line 18 the algorithm calculates the tentative cost which is the distance from starting 

position to the neighbour. If the tentative cost is less than the current cost so far the algorithm 

updates the cost_so_far  map variable  and adds the current  neighbour  to  the frontier  priority 

queue. On the line 21 the algorithm calculates the cost of the node. Heuristic function is used to  

estimate the distance between the current neighbour to the goal.

A-star  algorithm could  be  summarized  using  a  following  formula:  f (n)=g(n)+h(n).  A-star 

selects the node which minimized the f(n) value where n is the current node. The f(n) value is 

calculated  on  line  21.  In  the  pseudocode  g(n)  is  the  calculation  on  line  18.  The  heuristic 

calculation h(n) happens on line 20.
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Heuristic  function  should  never  overestimate  the  distance  in  order  to  keep  the  algorithm 

admissible.  One  example  to  calculate  the  heuristic  function  in  4-way  grid  system is  to  use 

Manhattan distance. “The distance between two points measured along axes at right angles. In a 

plane with p1 at (x1, y1) and p2 at (x2, y2), it is |x1 - x2| + |y1 – y2|.” (Paul E. Black, 2019). On the 

other hand, in 8-way grid heuristic could be calculated using Chebyshev distance.

After  the  algorithm  finishes  the  main  loop  it  constructs  the  path  backwards  by  using  the 

came_from map. On line 26 a new loop is started which compares the starting node to the current 

node from the map. The loop finishes when the two nodes are equal. The current node is added 

to a path array defined on line 24 and on the next line the variable which holds the current node is 

updated to the next node from the map. On line 30 the starting node is added to the path as first  

step in the path and finally the full path returns in reversed order. Including the starting node and  

reversing the path are optional steps at the end of the algorithm.

Heuristic function can be used to affect the behaviour of the algorithm. For example there might 

be multiple equal paths to the goal.  Adjusting the heuristic function and, it’s return value the 

algorithm could be guided to select a desired path. Multiple variants of A-star algorithm exists. 

Iterative deepening A-star is a variation of the algorithm which has lower memory consumption 

than the standard algorithm. “It works by always generating a descendant of the most recently 

expanded node,  until  some depth cutoff is  reached,  and then backtracking to the next  most 

recently expanded node and generating one of its descendants. Therefore, only the path of nodes 

from the initial  node to  the current  node must  be stored in  order  to  execute the algorithm.” 

(Richard E. Korf, 1985). However, a downside of Iterative deepening A-star is that it might visit  

nodes multiple  times during the execution of  the algorithm.  The algorithm uses heuristics  to 

calculate a threshold value which is an estimated cost from the start to the goal. It runs depth-first  

search by exploring paths using the threshold value. However, if goal is not found the threshold is 

increased and search is done again which might cause some of the previously explored nodes to 

be revisited.

Another variant of A-star is Lifelong Planning A-star. “The first search of Lifelong Planning A* is 

the same as that of A* but all subsequent searches are much faster because it reuses those parts 

of  the  previous  search  tree  that  are  identical  to  the  new  search  tree”  (S.  Koenig  and  M. 
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Likhachev, 2001). The LPA* algorithm does not need to recalculate the entire graph in cases of 

changes to the nodes which should lead better performance than standard A* (S. Koenig and M. 

Likhachev, 2001).

D*  Lite  is  an algorithm which is  based on Lifelong Planning A-star.  D*  Lite  is  optimized for 

unknown environments and can reach goals using much fewer calculations than A-star (Sven 

Koenig, Maxim Likhachev, 2002). It is able to calculate the path while following the path towards 

the goal.
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3 DEEP REINFORCED LEARNING

This chapter gives overview and theoretical background of machine learning and a specialized 

area  ML  called  Deep  Reinforcement  Learning.  Machine  learning  has  multiple  kinds  of 

applications  from  image  to  speech  recognition,  image  categorization,  fraud  detection,  stock 

trading, statistics and spam filtering. It  has also been used to teach computers to play video 

games successfully and often play better than humans.

Machine learning is a field in computer science which studies methods to enable computers to 

learn  to  perform different  kind of  tasks.  In  traditional  imperative  programming a  programmer 

writes step-by-step instructions known as algorithms in code for  computer to execute and to 

perform tasks. In machine learning the computer learns the steps to achieve the desired outcome 

during a process called training. The training process involves adjusting internal weights and 

parameters to reduce the difference between the predicted output and the actual target values. 

Using different  kinds of  machine learning algorithms a developer  builds  a  model  which is  a 

representation of the system. The model is then trained by training algorithms and by inputting 

data to the model. There are three main branches in machine learning: supervised, unsupervised 

and reinforcement learning (Miguel Morales 2020, 1.).

In supervised learning the training data consist both input features and their corresponding output 

labels. The input features represent different properties of the data. For example stock price at a 

certain time or x and y position of the player. The labels provide guidance to the training algorithm 

in  which direction to  adjust  the model.  For  example in  training dataset  call  MNIST the data 

consists of 60000 grayscale images of handwritten digits and their corresponding labels (Keras 

2023). The goal of supervised learning is to generalize and to develop a model which could make 

accurate predictions or classifications on new, unseen data. A model trained using MNIST data 

should be then able to accurately predict new handwritten digits which are not in the training data.

In  unsupervised  learning  the  training  data  consists  only  input  data  without  output  labels 

classifying the data. A model tries to find different kinds of patterns, structures, relationships, and 

clusters  in  the  data.  For  example  unsupervised  learning  could  be  used  to  detect  different 
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customer segments in a database of an e-commerce website. For example if a customer often 

spends more than 100 euros on electronics there is also 25% chance that he also buys extended 

warranty.  It  can  be  also  used  to  detect  anomalies  and  produce  product,  film  or  music 

recommendations.

Reinforcement  learning is  learning by trial  and error  by taking different  kinds of  actions and 

receiving feedback known as rewards from the environment. There are no previously collected 

datasets in reinforcement learning. Instead, the algorithm learns its environment based on the 

rewards which it receives by performing different kinds of actions.
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3.1 Deep learning and Neural networks

Francois Chollet explains deep learning well  in his book Deep Learning with Python, Second 

edition: “Deep learning is one of many branches of machine learning, where the models are long 

chains of geometric transformations, applied one after the other. These operations are structured 

into  modules  called  layers:  deep  learning  models  are  typically  stacks  of  layers—or,  more 

generally,  graphs  of  layers.  These  layers  are  parameterized  by  weights,  which  are  the 

parameters learned during training. The knowledge of a model is stored in its weights” (Francois 

Chollet 2021, 14.1.1)

Neural  networks  consist  of  connected  nodes  which  are  called  neurons.  These  neurons  are 

organized into multiple layers sometimes multiple levels deep, hence the name deep learning. 

Each neuron takes input from the previous layer, applies a mathematical transformation, and 

produces an output which is then sent to the next layer. The input layer receives the initial input  

data and features for processing. Hidden layers process the data and output layer produces the 

final prediction or classification as shown in the figure 9. Neural networks are inspired by human 

brain structure although having much fewer connections.

The learning in neural  network occurs by adjusting weights in connections between neurons 

based on the difference of the model’s predictions and actual target values. If a model is trying to 

predict handwritten digits a prediction could be a number that the model outputs and target value 

the actual handwritten number. The weights are adjusted until the model produces predictions at 

satisfactory accuracy.

A Loss function calculates the difference between the prediction and target values, and it can be 

used to evaluate how well the algorithm is performing. Loss function is used during the learning or 

training process and when verifying the model results against test data. Optimization algorithms 

adjust the weights of the model trying to minimize the output of the loss function. For example 

gradient descent is an optimization method which adjusts the weights to a direction that reduces 

the loss.
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One example of a loss function is the mean-squared error (MSE) which computes the average of 

the squared differences between the true and predicted values.  It's  often used in regression 

problems which involve producing predictions based on input features. The goal of a model is to 

minimize the MSE during training.

The image 11 above illustrates a simple neural network with 11 nodes. The input layer has 2 

nodes and therefore is expecting two feature inputs. For example location of a house and size in 

square meters. The first two hidden layers have two nodes each and the third layer two. The last 

output layer has one node which means that the network produces one prediction, for example 

the predicted price of a house based on the location of the house and size in square meters. 

Each node in a layer is connected to each node in the second layer.

There are multiple types of neural networks of which couple are listed before.

• Convolutional  Neural  Networks  (CNN)  which  are  usually  used  for  image  and  video 

processing.  The  network  consists  a  convolutional  layer  which  is  effective  detecting 

edges, features and, corners in image data.
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Figure 11: Neural network



• Recurrent Neural Networks (RNN) is used to analyse sequential data or time series data 

and is used in fields like speech processing.

• Generative Adversarial Networks (GAN) is a neural network which is used to generate 

new data which matches the training data.

3.2 Deep reinforcement learning

As mentioned in  the  previous  chapters  deep reinforcement  learning  is  a  subset  of  machine 

learning which utilizes neural networks and deep learning models. The purpose of reinforcement 

learning  is  to  learn  how to  act  and  not  just  classify  or  predict.  For  example  driving  a  car,  

controlling a hand of a robot or optimizing energy consumption of an office building.

One difference in reinforcement learning compared to supervised or unsupervised learning is the 

element of time. The algorithm is influenced by previous time steps in the data. Time step could 

be any discrete point or step when the reinforcement learning algorithm is interacting with the 

environment. For example one turn in the game of chess.

Deep reinforcement learning algorithms interact with data continuously in order to decide which 

action to take. Every action it takes modifies the data. Deep learning agent could get positions 

and angles of different parts of a robot as an input features. It takes an action to move to a certain 
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direction and receive feedback based on that action. The action has modified the positions and 

agent receives the update angles and positions in the next time step.

In deep reinforcement learning the goal is known but the steps to achieve the goal are unknown. 

The agent does not know what is the right  action to take in every time step. Therefore,  the 

algorithm receives rewards or penalties based on the actions. When the algorithm moves the 

robot to the right direction towards the goal it  receives positive reward. On the other hand, if 

algorithm takes an action which causes the robot to collide with a wall it receives negative reward. 

Note that in reinforcement learning term reward could mean positive or negative. The reward 

reinforces the learning process and hence is called reinforcement learning. During training the 

algorithm cumulatively adds all the rewards together and tries to maximize the overall reward.

3.3 Markov decision process

Following  chapters  explain  the  core  terminology  of  the  reinforcement  learning  using  a 

mathematical framework called Markov decision process.

Reinforcement  learning  problems  may  be  described  using  a  mathematical  framework  called 

Markov  decision  process.  It  models  the  decision-making  process  of  an  agent  in  a  different 

situations or states when the decision outcomes are party random. The next chapters explain the 

key components related to Markov decision processes.

Agent

Agent  is  the  decision  maker  in  the  MPD.  In  reinforcement  learning  the  agent  would  be  the 

algorithm  which  takes  actions  and  makes  decisions  based  on  the  observations  of  the 

environment.

Environment

The environment defines the task and the goal that the reinforcement agent aims to achieve. The 

environment is any dynamic process that produces data that is relevant to achieving our objective 

(Alexander Zai, Brandon Brown, 2020). The environment also defines to set of possible actions 

28



that agent may take. The possible actions in the environment is called the action space. The 

agent operates in the boundaries of the environment.

Action

The agent takes an action which modifies the environment and data. The algorithm analyses the 

current state and attempts to take the best possible action in order to maximize the reward. 

Discrete actions have a finite number of possible choices. For example move a chess piece 

forward or select other possible move in the game. Other example would be a classic “frozen 

lake” environment.  Frozen lake is  a usually  4×4 grid based environment where the agent  is 

placed to the top left corner of the grid. Bottom right corner is the target where agent must try to 

move to. There are 4 holes in the lake which the agent must avoid. The actions in the discrete 

environment would be moving up, down, left or right.

Continuous actions on the other hand have a continuous range of possible values for the agent to 

take. For example apply X amount of force to a break pedal. Classical example of a continuous 

environment would be a “mountain car” environment in two-dimensional world. A car is placed at 

the bottom of a mountain and the agent’s goal is to move it to the top. Agent may apply force to  

the car to accelerate to either direction left or right. In mountain car environment the force that  

can be applied is limited between -1 and 1.

In mathematical notations action is indicated using letter A, At means action at a given time step 

and As  is available set of actions in state s. For example on state s As could be “move left” or 

“move right”.
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Figure 13: Mountain car environment



State

The state represents the current condition or configuration of the environment at a particular time. 

The agent observers the state and takes actions based on that. Environment transitions to a new 

state after each action agent takes. In the previous mountain car example state would consist the 

velocity of the car and position of the car along the x-axis. State is indicated using letter S and S t 

in a give time step and initial state s0∈S.

An MDP needs to satisfy the Markov property. This means that the future state needs to be only  

dependent on the current state and action, and not on the sequence of states and actions that 

preceded it. In other words, the history of actions and states do not affect the next state and 

action. Each state is independent. 

Reward

A reward is the term for the feedback which the environment provides to the agent based on the 

action.  The  reward  is  usually  a  numerical  value  which  could  be  either  positive  or  negative. 

Agent’s performance is evaluated based on the cumulative reward. In the mountain car example 

the agent receives reward of value 100 if it reaches to the top of the mountain. Each time step a 

negative reward is also calculated which is -0.1 * action2. Action in this case would be a value 

between -1 to 1 and would indicate the applied force to the car. R or Rt is used to indicate reward.

Discount

Discount factor is a parameter which discounts the future rewards. The parameter may be used 

for agent to prefer immediate rewards from actions or consider longer term rewards, and it can be 

used to adjust  the agent’s  decision-making process.  Discount  is  indicated using Greek letter 

gamma  and in MPD it must be a value between 0 and 1.ɣ

Policy

Policy defines the agent’s behaviour. Its function is to tell agent which action is the best action in 

any given state. Deterministic policies mean that each state in the environment is mapped to an 

action. For example in frozen lake example policy could specify that selecting action “down” is the 

best action on the first tile.
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Stochastic policy on the other hand does not tell which specific action is the best to take. Instead, 

it  specifies a probability distribution and agent may use these probabilities to select the best 

action. Policy is indicated using pi π, deterministic policy using notation π : S→A and stochastic 

policy using  π : S×A→R. The best action at a give state in deterministic policy is  π (S ) and 

π (S ,a) indicates the probability for an action on a state in stochastic policy.

Image  14  displays  the  difference  between  deterministic  (left)  and  stochastic  (right)  policies. 

Deterministic tells the best action to take at any give state. Stochastic on the other hand the 

probability of an action.

Observation

Each time step agent “observes” data encapsulated to state from the environment. The state may 

be fully observable where agent has all data from the state available or partially observable where 

agent has only limited information of the environment. Agent selects the next action based on the 

observations.
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In a game of chess the board, rules, pieces, and the chess engine analysis would represent the 

environment. White or black player would be the agent. Agent would be able to take discrete 

actions defined by chess rules. Continuous actions would not make sense in this environment. 

You would not move pieces by millimetres. Instead, you select the best move based on strict 

rules. For example in the picture 15 above white player would be the agent and has just taken 

action to move knight from the tile f3 to g5. After this a new state is calculated where black has 

moved pawn to d5. Reward +0.1 is analysed by Stockfish which is an open source chess engine. 

Stockfish is  a  strong chess engine that  analyses chess positions  and computes the optimal 

moves (Stockfish 2023). Agent would then observe the new chess position and reward and select 

the best action based on the new state.
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Figure 15: Chess example



The figure 16 above displays the basic reinforcement learning flow.

1. An agent receives observation from the environment.

2. The agent stores the observation to the replay memory.

3. A sample is fetched from the memory and using an optimizer algorithm the weights in the 

model are updated.

4. The observation is inputted to the model and passed through the network which updates 

the Q-values.

5. Agent’s policy reads the Q-values and calculates the best action based on the policy’s 

algorithms.

6. Policy selects and action which is sent to the environment.

7. The environment processes the action and updates its state.
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Markov decision process is a mathematical tuple:  (S , A ,Pa ,Ra) which consist states, actions, 

probability  that  the  action  leads  to  state  Pa(s ' , s) and  immediate  reward  received  after 

transitioning to a new state Ra(s ' , s). In discounted MPDs a discount factor is also included in 

the tuple: (S , A ,Pa ,Ra , γ).

A state value function V(s) represents the expected cumulative reward agent is  expecting to 

receive when following a specific policy. The main goal of the Markov decision process is to find 

an optimal policy which produces maximum discounted cumulative reward. The value function of 

this optimal policy is called optimal value function V*. The optimal policy maximizes the value 

function on all states.

A Q-function estimates the expected total reward received by taking an action in a state and then 

following policy afterwards. The Q-function could be considered to be the quality indicator of a 

given action on a particular state. A Q-value could be calculated for each action on each state 

and the next action could be selected based on that.

The MPD may be solved using multiple methods. The next chapter describes Q-learning which is 

one way to find the optimal policy.

3.4 Deep Q-learning

Q-learning is a model-free reinforcement learning algorithm which provides a way for an agent to 

learn the optimal policy in Markovian type of environment described in chapter 3.2.1. Model-

based algorithms learn the model of the environment and is therefore able to predict the states 

and rewards. Agent may plan ahead because it  knows the possible choices and what is the 

expected outcome of choosing a specific action. Often the full model of the environment is not 

available to the agent and the agent has to discover and explore the environment. Model-free 

algorithms do not know the environment beforehand and explore it during the training.

Q-learning uses a q-table similar than represented in figure 12 earlier. It initializes the q-table with 

q-values and selects the best action based on that. After each action the reward is measured and 
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the  q-table  is  updated accordingly.  In  large environments  the q-table  would  also  grow large 

causing  higher  requirements  for  computing  and  memory.  In  deep  q-learning  the  q-table  is 

replaced with neural network which is used to predict the best actions.

3.4.1 Exploration and exploitation

One of the challenges of agent’s decision-making process is exploration-exploitation. Agent must 

make decisions between of exploring something new and possibly discovering a more optimal 

solution or exploiting already learnt information to select the best action. Selecting the balance 

between exploration and exploitation is important. Too little exploration could lead to non-optimal 

solution. However, too much exploration could also lead the agent to select non-optimal actions.

One strategy to mitigate the problem is called an epsilon-greedy strategy where the agent takes 

an exploration action based on probability which could reduce overtime. This allows the agent to 

increase exploitation gradually (Baeldung 2023).

3.4.2 Double Q-learning

Q-learning has a tendency to overestimate the q-values because it always tends to select the 

highest estimated Q-value. However, because of noise, stochastic nature or other factors of the 

environment it often leads to overestimation which may compound over time and leading non-

optimal learning. Double Q-learning tries to solve this decoupling the selection and evaluation of 

the action (Hado van Hasselt, Arthur Guez, David Silver 2015). It does this by having two update 

functions for the Q-value which are randomly updating each other.

3.4.3 Prioritized replay method

As shown in the figure 14 the agent stores history of the actions, rewards, and states to replay 

memory which could be considered as the experience of the agent. Later the values from the 

replay memory could be fetched to adjust the agent’s policy and value function towards more 

optimal solution. One important question in replay methods is which experiences to replay during 

learning. In simple implementation the agent replays the memory in a same order than they were 
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originally  discovered.  However,  more advanced methods have been developed which one of 

them is prioritized replay.

Prioritized replay method fetches experiences from the memory based on the importance or 

significance of the experience. “The key idea is that an RL agent can learn more effectively from 

some transitions than from others. Transitions may be more or less surprising, redundant, or task-

relevant. Some transitions may not be immediately useful to the agent, but might become so 

when the agent competence increases (Schmidhuber, 1991).” (Tom Schaul, John Quan, Ioannis 

Antonoglou and David Silver, 2016, 1.).

One way to prioritize the transitions which are in the replay memory is to use temporal difference 

error which represents the difference between predicted Q-value and the target Q-value. Those 

transitions which have high errors would be higher priority in the replay memory (Tom Schaul, 

John Quan, Ioannis Antonoglou and David Silver, 2016, 3.). However, sampling in a way that 

each transition at least a small chance of being selected, is needed in order to prevent the agent  

learning only from experiences with high temporal difference error. Noise can also cause sudden 

errors to the replay memory which may be selected too often without sampling (Tom Schaul, 

John Quan,  Ioannis  Antonoglou and David  Silver,  2016,  3.).  The replay  memory  is  updated 

periodically to reflect the agent’s learning.

Prioritized replay may lead to more efficient  learning because agent learns from experiences 

which  are  considered  informative.  However,  computing  requirements  during  training  are 

increased because the need to update the temporal difference errors and keep track of them. 

This could be worth the increase because it could increase the learning speed by a factor of 2 

when training agent to play Atari games (Tom Schaul, John Quan, Ioannis Antonoglou and David 

Silver, 2016, 7.).

3.5 Proximal Policy Optimization algorithm (PPO)

Another  popular  deep  reinforcement  learning  algorithm  is  the  Proximal  Policy  Optimization 

algorithm PPO which is developed by OpenAI. Like Q-learning it is also a model-free algorithm. 

However, it is a policy gradient algorithm which means that it is trying to optimize the policy of the 
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agent in order to maximize the cumulative reward. It does not need a value function or Q-table 

like Q-learning, and instead it optimizes the policy directly. PPO uses neural network to output the 

action directly while deep Q-learning uses neural network to first to update the values in the Q-

table.

Adjusting different parameters of the algorithms has big impact on the agent’s learning process 

and final performance of the model. Finding the right parameters is often tedious trial-and-error 

process (Mariam Kiran, Melis Ozyildirim 2020). PPO algorithm tries to make the parameter tuning 

simpler and more stable by ensuring only small updates to the policy on each iteration by clipping 

the possible policy update values to a small range. Therefore, it avoids updates which might be 

irreversible by being too large and causing dramatic changes to the agent’s policy (Hyun-Kyo 

Lim, Ju-Bong Kim, Joo-Seong Heo and Youn-Hee Han, 2020, 3.). It does this by keeping track of 

the new and old policy and comparing them on each iteration making sure that the difference is  

not great.

PPO is an actor-critic algorithm. Actor is a neural network component which is responsible for 

predicting the best action and maximizing the reward. Critic component is also a neural network 

which evaluates the chosen action and tries to minimize the error between prediction and result. 

The networks may even share some hidden layers for selecting actions. The actor model learns 

which  action  is  optimal  in  each  state  by  following  the  observation-action-reward  process 

explained earlier. The critic model on the other hand learns to evaluate if the selected action 

resulted the agent being in a better state in the environment. It provides feedback which is used 

to optimize the actor model. (Hyun-Kyo Lim, Ju-Bong Kim, Joo-Seong Heo and Youn-Hee Han, 

2020, 4.)

PPO also needs a memory buffer where it keeps samples of experiences that the agent has 

learnt. During training PPO samples small continuous batches from the memory at a random 

starting point. This helps the algorithm to learn efficiently because it allows the algorithm to take 

multiple optimization steps in a single epoch. It also reduces memory usage.
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Figure 17 shows the basic flow of PPO agent. Compared to the Q-learning agent it  has two 

neural networks.
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Figure 17: PPO algorithm



4 MINIGRID EXPERIMENTS

In purpose of gathering data, gaining knowledge and investigating the implementation details of 

Q-learning,  PPO  algorithm  and  A-star  algorithms  a  straightforward  simulation  game  was 

implemented as a part of this thesis. The simulation game was used to measure the speed and 

correctness of the Q-learning agent and A-star algorithm. When evaluating the results the impact 

of the frame time was taken into account because it's an important aspect of a smooth gameplay.

The next  chapters will  introduce experiments done using the Minigrid  library.  The goal  is  to 

evaluate  the difference of  training a  deep reinforcement  agent  and implementation  of  A-star 

algorithm in different kinds of environments. For example in some cases A-star could be used 

directly to solve Minigrid scenario. However, in other cases some modification might be needed, 

or it might not be possible at all to solve using a-star alone. On the other hand, reinforcement 

learning might be able to learn to solve the problem without any help.

Following Minigrid scenarios were examined:

• Environment with dynamic changing obstacles

• Environment with a task – Pick up a key and open a door in order to reach the goal.

• Environment where agent or algorithm must avoid certain paths

4.1 The Minigrid library

Minigrid  library  contains  simple  and  easily  configurable  grid  world  environments  to  conduct 

reinforcement learning research (Farama foundation,  2023).  Farama foundation provides also 

tools to train and test models which work in Minigrid type of environment. The Minigrid library and 

associated tools are written using Python programming language and uses PyGame multimedia 

library to visualize agent’s behaviour in the environment.
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RL Starter Files project was used to help with training the agents. It contains tools and scripts to 

train agents in the Minigrid environment using PPO and A2C algorithms. It also has useful scripts 

to visualize the training process, and save and evaluate the trained models.

The Minigrid library provides multiple different kinds of scenarios for experiments. As an example, 

One scenario is a “Locked Room” environment. “The environment has six rooms, one of which is 

locked. The agent receives a textual mission string as input, telling it which room to go to in order 

to get the key that opens the locked room. It then has to go into the locked room in order to reach  

the final goal. This environment is extremely difficult to solve with vanilla reinforcement learning 

alone.” (Locked Room, Farama Foundation 2023).

Picture 18 above is an example environment provided by the Minigrid library. In order to solve the 

environment the agent which is represented by a triangle must move to the yellow square. In 

order to do that the agent must first go to pick up the red key which opens the red door. The 

agent  also has a limited field  of  view which are displayed as lighter  coloured squares.  This  

requires the agent to first explore the environment before being able to solve it.
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Figure 18: Locked room environment by 

Farama foundation



The image 19 above shows the default model used by the RL Starter Files project. The default  

model was not modified in the experiments. The model has two inputs. The first input is the 

environment or state of the Minigrid which is inputted to the model as images in raw pixel format 

in  256×256  resolution.  The  second  optional  input  is  a  set  of  text  instructions  to  the  agent 

describing the goal. The model has a long short term memory LSTM which is disabled by default.  

LSTM helps the model to remember dependencies of inputs and helps agent make decisions 

based on current and historical inputs. The memory is controlled using a numeric recurrence 

parameter. Adjusting the parameter allows the network to back-propagate through multiple time 

steps which enables the agent to learn patterns over sequences of inputs. Back propagation is a 

process  where  the  model  weights  are  adjusted  based  on  previous  errors.  Larger  value  for 

recurrence will make the agent consider longer sequences of input.
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Figure 19: RL Starter Files default model (rl-starter-files 2023)



The  model  has  three  convolution  layers  for  processing  the  input  image.  After  these  layers, 

optional memory layer is applied. The memory is needed in some Minigrid scenarios for example 

in “RedBlueDoors” where the agent has to open a red door first and then blue door. Memory is 

needed in order to agent to remember the sequence. The text instructions input is first converted 

into  a  dictionary  for  retrieving  words  using  indices  before  it’s  passed  to  GRU layer.  Gated 

recurrent unit (GRU) is a mechanism to process sequential data and is useful in natural language 

processing. Like LSTM, it is disabled by default. Both inputs are concatenated and then passed to 

actor and critic model. By default, actor model has two linear layers and uses tanh activation 

function. The critic model has the same network structure as the actor model. The hyperbolic 

tangent function (tanh) outputs values between -1 and 1.

The environments in video games are often much more complex, and extracting a raw pixel data 

for reinforcement learning agent would yield noisy data. Therefore, training the agent to play an 

actual  computer  game  would  be  more  challenging  than  very  limited  and  simplified  Minigrid 

environment.  The action spaces in  video games are usually  much wider  and the pixel  input 

greater than 256×256 at least in modern games and requiring lots of computing power to train. 

For example OpenAI trained an agent called Five to play a game called Dota 2 which is a team 

versus team real time strategy game with multiple heroes and items. It requires complex tactics 
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Figure 20: Screenshot of the Dota 2 game



and team coordination in order to win. The observation space of the OpenAI Five was around 

16000 inputs (OpenAI 2021, 45.). Some of these inputs are presented in a figure 19. In order to 

play the game the agent needed much more inputs than just raw pixel data. “Instead of using the 

pixels on the screen, we approximate the information available to a human player in a set of data 

arrays”  (OpenAI  2021,  39.).  The  following  quote  summarizes  the  underlying  computing 

requirements well: “OpenAI Five is a single training run that ran from June 30th, 2018 to April 

22nd, 2019. After ten months of training using 770±50 PFlops/s·days of compute, it defeated the 

Dota 2 world champions in a best-of-three match and 99.4% of human players during a multi-day 

online showcase.” (OpenAI 2021, 8.). The OpenAI Five neural network consists of 158,502,815 

parameters (OpenAI 2021, 45.).
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Figure 21: Dota 2 observation space of OpenAI Five (OpenAI 2021. 38.)



Based  on  results  from  Minigrid  experiments  and  the  previous  research  by  OpenAI,  using 

traditional algorithms like A-star or D*-lite would be better in path finding in game development 

because of the required computing power and development time. Using machine learning to other 

parts of a game could be feasible. For example in strategy games where the player plays against 

a programmed AI machine learning could be used to build the strategy of the computer controlled 

opponent players. The model could be even tuned during the game to adapt itself  to human 

player’s behaviour (Toni Lääveri 2017, 74.). In games with lots of different options, parameters 

and strategies this could be challenging to program using dynamic programming.

4.2 Dynamic obstacles environment

Dynamic obstacles environment is an empty Minigrid room with moving obstacles. In a computer 

game the obstacles could represent enemies trying to catch the player.

Agent  must  reach the goal  without  colliding any of  the moving obstacles,  and it  will  receive 

maximum penalty if collision with an obstacle happens. Reward for successfully reaching the goal 

is calculated using formula 1 – 0.9 * (how many steps / maximum steps for the environment). The 

environment has an action space of left, right, and forward. Left and right actions rotate the agent 

and forward moves it one step. The environment was studied in order to gain knowledge how 

machine  learning  algorithms  learn  in  dynamically  changing  environments  and  how  A-star 

algorithm could be implemented to solve it.
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Figure  22:  Dynamic 

obstacles 

environment



Two  models  were  trained.  The  first  agent  was  trained  using  PPO  algorithm  in  6×6  sized 

environment for period of one million frames. Discount value was set to 0.99, learning rate to 

0.001 and batch size to 256. No memory was used during training. The second agent was trained 

in 8×8 sized environment using same parameters. However, the model did not converge until 

memory was included to the model using a recurrence value of 4.

Figure 23 shows the training plot for 6×6 environment. The model converged after around 500000 

frames.

45

Figure 23: Mean return for 6×6 dynamic obstacles environment

Figure 24: Mean return for 8×8 dynamic obstacles environment



Figure 24 plots the 8x8 environment training and the model converged after 900000 frames. Even 

though there are only 28 more tiles in the grid on 8x8 than in 6x6 environment the training was 

harder,  required  more  episodes  and LSTM memory.  One more  experiment  was  done using 

recurrence with value of 8. The model converged dramatically faster after this as shown on the 

figure 25 below.

In a small 8x8 environment A-star algorithm could recalculate the path after every step in case 

the environment has changed which might not scale to larger environments with numerous nodes 

especially because the reordering of the priority queue (Sven Koenig, Maxim Likhachev 2002, 5.). 

However, D*-lite algorithm could be more suitable in this case because by its nature only updated 

parts which affect  the calculated path are recalculated,  thus reducing processing needs. The 

algorithm first calculates the path without the dynamic obstacles and then start traversing towards 

the goal. This solves navigation problems in unknown terrain (Sven Koenig, Maxim Likhachev 

2002). If obstacle is found on the original path the algorithm would then compute the updated 

path.  It  has a method to  detect  the edge cost  changes of  the graph,  but  it  does not  make 

assumptions how they change (Sven Koenig, Maxim Likhachev 2002, 5.). In case of appearing 

obstacles like in the Minigrid environment the edge cost would be changed to infinity. D*-lite uses 

priority queue like A-star but also uses heuristic methods avoiding the need to reorder the priority 

queue.
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Figure 25: 8×8 environment trained with more memory



4.3 Door key environment

Door key environment has a key which unlocks a door. The agent must first pick up a key and 

unlock the door before it can reach the goal. 

The reward  is  calculated  using  the  same formula  as  in  the  Dynamic  obstacles  environment 

except there is no penalty. No reward is received if agent fails to reach the goal before maximum 

amount  of  steps  is  reached.  In  addition  to  left,  right,  and  forward  actions  the  door  key 

environment also has “pick up” and “toggle” actions. Pick up takes the key and toggle opens or 

closes the door.

The agent was trained using PPO algorithm with one million frames. As shown in the image 27 

the agent learnt the environment after around 80000 frames.
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Figure 26: Minigrid's 

door key environment



The environment was chosen to study challenges different tasks presents to A-star algorithm. A-

star alone would not be able to solve the environment. Instead, dynamic programming principles 

would need to be used to break the problem into multiple smaller components. Go to the key, 

then go to the door, then unlock the door, and finally go to the goal position. First A-star algorithm 

would be used to find path from start to the key. After reaching the key a “pick up” action would 

be triggered in order to hold the key. After this a path would have to be recalculated from the 

current position to the door, and after reaching to the door toggle action needs to be triggered.  

Final path calculation is from the open door to the goal. The environment can be solved in a  

straightforward manner using dynamic programming and standard A-star algorithm.

However,  one advantage that  the  machine learning algorithm has compared to  the dynamic 

programming is that the agent may explore the steps in order to reach the goal by itself without 

being explicitly  specified what needs to be done. The agent knows the actions and receives 

rewards based on its actions which will help the agent to learn the way to reach the goal.
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Figure 27: Training result of Door key environment



4.4 Lava gap environment

Lava gap environment has some tiles filled with lava which the agent must avoid. Touching the 

lava immediately terminates the episode and returns maximum penalty.  Reward is calculated 

using the same formula as in environments above. It  has same action and observation than 

dynamic obstacles environment.

Lavagap  environment  is  trivial  to  solve  using  A-star  by  simply  considering  lava  tiles  as 

impassable nodes by adjusting the weight in the graph to infinity. After this A-star may calculate 

the path without any adjustments. As seen in figure 29 the PPO algorithm also managed to train 

the agent in around 120000 frames.
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Figure 28: Lavagap 

environment

Figure 29: Training result of Lava gap environment



5 SIMULATION GAME EXPERIMENTS

During this thesis a simple simulation game was developed in order to study Deep Q-Learning 

machine learning algorithm and A-star path finding. A 4-way connected grid-based navigation 

system was selected for this thesis because of ease and straightforwardness of implementation 

and  simple  and  clear  way  of  visualization  of  the  algorithms  in  the  environment.  Diagonal 

movement was prohibited in the environments. Different scenarios were developed as a plain 

numeric CSV files as its easy to edit them using basic spreadsheet tool. The grid size depends on 

the rows and columns of the scenario CSV-file. Grids used in this thesis were also be relatively 

small and therefore benefit of implementing a navigation mesh is insignificant.

C++ programming language and a machine learning library called Mlpack was chosen to develop 

the simulation. It contains wide variety of different machine learning algorithms (Mlpack, 2023). 

Deep Q-learning was implemented to the simulation game using Mlpack library. Other relevant 

libraries used were Armadillo and Ensmallen.

“Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming 

towards  a  good  balance  between  speed  and  ease  of  use”  (Armadillo,  2023).  Armadillo 

implements different  kinds of  matrix  calculations and data structures which were used when 

developing the Markov compatible environment to the simulation game.

“ensmallen is a high-quality C++ library for non-linear numerical optimization” (Ensmallen, 2023). 

Ensmallen  implements  different  optimizers  used  during  the  training  of  the  machine  learning 

model. Both Armadillo and Ensmallen are dependencies of Mlpack.

A-star  algorithm was  implemented  using  the  logic  explained  in  the  theory  chapter  2.7.  The 

implementation was adapted to work in the environment developed in the simulation game. Both 

Q-learning and A-star work in the same environment using the same CSV based scenarios in 

order  not  to  give  any  advantage  to  other  implementation. Manhattan  distance  was  used  to 

calculate the heuristic value in A-star. Unordered map and priority queue data structures were 
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used from the C++ standard library. The code was compiled using GCC compiler version 13.2.1 

with O3 flag turned on during compliation which optimizes the code for performance.

Armadillo library is optimized to use multithreading when doing matrix calculations. Mlpack library 

takes advantage of this feature which might give some advantage in speed to the Q-learning 

reinforcement learning agent compared to the A-star algorithm. A-star was implemented being a 

single-threaded process. This difference is taken into account in evaluation.

The simulation tracks how many milliseconds it takes to build a path from start to goal and how 

many steps are required. The tracking is done by doing 10000 test runs in a row and calculating 

the mean average time in milliseconds. All tests were done on the same computer. CPU usage 

was measured using a perf tool and memory using a tool called memusage. Note that the time to 

build the path differs from perf tool timing because the simulation game tracks only the time to 

build the actual path. Perf tool measures the whole program execution which includes parts which 

are not relevant to build the path like parsing command line parameter or reading the scenario 

CSV file.

5.1 Training the model

Following image 30 displays the network graph of the model. The model was kept simple, and the 

thesis does not focus optimizing it.
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Figure 30: Standard neural network graph used during tests



The input layer of the neural network was dynamically calculated by multiplying the amount of 

rows and columns in the grid. The amount of nodes on the hidden layer was configurable and the 

nodes on the output layer matches the amount of possible different actions agent may take.

The Environment has an action space of left, right, up and down. The environment terminates in 

two cases: the goal is reached, or maximum steps is reached. There are multiple configuration 

options:

• Success reward is a reward which the agent receives when successfully achieving the 

goal.

• Maximum steps reward is received when maximum number of steps is reached and the 

environment is terminated. Reward may also be a negative number, so penalties are also 

supported.

• Bonus reward is added to the observation when agent hits an obstacle. This may also be 

negative in order to guide the agent to avoid obstacles.

• Maximum steps is a value which indicates the amount of steps agent is allowed to take 

before the environment terminates and returns reward for maximum steps.

The observation space of the agent is the whole grid in numeric format where each tile has a 

number representing the type of the tile, for example the position of the agent is number 4. The 

input is passed to the network in a matrix form with a single row and dynamically changing 

amount of  columns. The original  scenario matrix of  8x8 for example,  is  reshaped in to 1x16 

matrix. This was done to follow similar pattern than OpenAI used in their Dota 2 research. “The 

complex multi-array observation space is processed into a single vector” (OpenAI 2019, 4.). The 

input was also normalized before sending it to the agent.

The training algorithm implements following parameters:

• Number of episodes to train. An episode represents a sequence of actions which agent 

performs in the environment starting from initial state to the terminal state. For example 

starting at the first position and moving until reaching the goal or until the environment 

terminates because the agent has taken too many steps. Usually the agent requires 

many episodes in order to converge.
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• Optimizer algorithm – Adam optimizer from Ensmallen library was used. The purpose of 

the optimizer is to update the weights of the model.

• Policy – Epsilon greedy policy was used for Q-learning in the simulation game. Greedy 

policy  always  selects  the  highest  estimated  Q-value  and  is  used  to  balance  the 

exploration-exploitation selection. Policy supports configuring epsilon, minimum epsilon, 

decay rate and anneal interval. Epsilon may be used to control the exploration rate of the 

agent. For example value 1 would mean that the agent explores almost all the time and 

value close to 0 would cause the agent to select actions greedily based on Q-values. 

Decay  rate  decreases  the  epsilon  over  time  and  causes  shift  from  exploration  to 

exploitation. Anneal interval controls how often epsilon is decayed, and it’s measured in 

episodes. For example the training algorithm could be configured to trigger the decay of 

epsilon every 50 episodes.

• Replay method or  memory – Prioritized replay was used.  It  supports  parameters  for 

alpha, capacity, and batch size. Replay method was described in chapter 3.4.3.

• Step size or learning rate – The learning rate controls the magnitude how much the 

weights are being adjusted. Finding the correct value for learning rate is a process of trial 

and error. Having a too small value will cause the model to learn very slowly but having it  

too large might cause the agent to fail to converge or produce and optimal solution.

• Discount – This is the discount factor or gamma described in Markov decision process 

chapter 3.2.1.

• Exploration steps – Agent can be configured to explore the environment in order to gain 

knowledge of it before starting to update the weights of the model.

• Double Q-learning – The implementation supports turning double q-learning on or off. It is 

described in chapter 3.3.2.

• Step limit – This configures the maximum amount of steps agent will take in order to 

reach the goal. If the limit is reached agent aborts the episode.

The main training loop is presented in the following pseudocode. On the line 1 the scenario is  

loaded from a CSV file and the environment is generated based on that on the line 2. Q-learning 

agent is created on line 3 and average return of the agent is tracked using a variable defined on 

line 4. The main training loop starts on the line 6, and it loops until the agent has completed the  

configured amount of episodes. On the line 7 the agent performs a single episode and returns the 
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total return of the episode. At the end of the loop the environment is reset back to the initial state. 

Finally, the average return is reported after the main loop.

The following pseudocode demonstrates the agent’s episode function and at which point agent 

updates the weight and learns. It references to the line 7 in the pseudocode above.

On  the  line  1  the  initial  state  is  received  from  the  environment.  The  received  state  is  1 

dimensional array of numbers and could be considered to be the first observation. On the lines 2 

and 3 the total return and the amount of steps the agent has taken during the episode is tracked. 

The loop of the episode starts at the line 5 and continues until the environment has reached a 

terminal state. On the line 6 the agent’s network predicts the probabilities for each action and on 

the line 7 the best  action is  selected based on the policy which the agent  is  following.  The 

selected action and current state is then passed to the environment which returns the reward for 

that action and the next state on the line 8.
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CSVFile = loadScenarioFromCSV(filePath)
Environment = initializeEnvironment(CSVFile)
Agent = QlearningAgent(Environment, trainingParameters)
averageReturn = runningStatisticsOfScalars

loop trainingParameters.amountOfEpisodes
totalReturn = agent.Episode()
averageReturn.add(totalReturn)
Environment.Reset()

print "Average return " + averageReturn.calculateMean()

state = Environment.InitialSample()
totalReturn = 0
steps = 0

while not Environment.isTerminal(state)
actionValues = Agent.Network.Predict(state)
action = Agent.Policy.Sample(state, actionValues)
reward, nextState = Environment.Sample(action, state)
totalReturn = totalReturn + reward
steps = steps + 1
Agent.replayMethod.Store(state, action, reward, 

nextState, isTerminal)
state = nextState
if steps > trainingConfig.explorationSteps

Agent.UpdateWeights()

return totalReturn
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The sample method of the environment translates the selected action into a movement on the 

grid, checks for collisions with walls, and then updates the agent position on the grid. After this 

the environment checks if the agent has reached the goal position and if the environment is in a  

terminal state. After this the environment returns the reward and the next updated state.

On the line 11 the agent stores the states, action and the received reward to the replay memory 

which could be later used when updating the weights. The replay memory could be considered as 

an experience of the agent, and it does not reset between episodes. Decay rate parameter may 

be used to adjust the rate at which old experiences are discarded in favour of new experiences. 

On the line 14 the code checks if the agent has performed more steps than configured amount of  

exploration steps. If  the agent is done exploring the “UpdateWeights” method is called which 

updates the network and the agent learns. At the end total return of the episode is returned.

5.2 Scenarios

The experiments were done using three different scenarios with different grid sizes: 8x8, 10x10 

and 12×12. Each scenario has basic maze, starting point for the agent and a goal. Training time 

and  difficulty  dramatically  increases  on  larger  grid  sizes  and  because  of  limited  time  and 

resources larger  grids were scoped out  from the thesis.  As seen with Minigrid environments 

multiple episodes are needed even in a small grid. However, with A-star algorithm one larger 

scenario of 50×50 grid was also tested because the algorithm is able to produce a path in a 

reasonable time and does not require time for training.

For example, it took 56 minutes to train 12×12 scenario with 2000 episodes using 230 nodes and 

double Q-learning. The training was done using CPU with 12 cores and 24 threads running at 

3.7GHz  and  32  GB  of  system  memory.  The  cores  were  fully  utilized  during  training  in 

multithreaded training process. The training could have been faster using a supported GPU, but 

the author did not have such hardware available.
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Figure 31 above displays example of the 12×12 environment. Number 1 represents wall, number 

4 is the starting position of the agent and number 3 is the goal. The empty areas are represented 

with number 0 in the raw CSV file. The simulation program loads the CSV file and converts it into 

a matrix and handles it in memory.

5.2.1 Scenario 8x8

Following table below indicates the parameters used to train the agent for the scenario with 8 tiles 

width and height.

Reward on success 100

Maximum steps per episode 100

Episodes 200

Gamma 0.9

Exploration steps 3000
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Figure 31: Simple 12x12 scenario



Step size 0.001

Hidden network layers 12

Epsilon 1

Anneal interval 1000

Minimum epsilon 0.1

Decay rate 0.99

Batch size 600

Capacity of replay memory 8000

Alpha 0.3

Double Q-learning enabled

Figure  32 shows the scenario  used for  8x8 tests.  The path  is  relatively  simple  and straight 

forward.
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Figure 32: 8x8  scenario



The table below shows the performance results taken from perf tool.

Metric A-Star Q-Learning

Task Clock 91.51 msec 22,154.91 msec

CPUs Utilized 1 23.71

Context Switches 0 0

CPU Migrations 0 0

Page Faults 285 1934

Cycles 461162625 112409556671

Stalled Cycles Frontend 326596 177896052

Stalled Cycles Backend 174762 180411714

Instructions 2232980352 17144859465

Branches 366868076 3606252130

Branch Misses 69102 11097782

Time Elapsed 0.091951832 sec 0.934264056 sec

User Time 0.091762 sec 21.970696 sec

System Time 0.000000000 sec 0.112634 sec

The table below shoes the memory usage report from memusage program.

Metric A-Star Value Q-Learning Value

Heap Total 134318088 61456647

Heap Peak 173403 1251230

Stack Peak 5504 34432

Malloc Calls 3404615 54506

Malloc Total Memory 134313944 61442799

58



Realloc Calls 0 1

Realloc Total Memory 0 200

Calloc Calls 9 33

Calloc Total Memory 4144 13648

Free Calls 3404644 54535

Free Total Memory 134237788 61367436

The agent was able to find a path in 0.09756 milliseconds. A-star algorithm resolved the path in 

0.0094 milliseconds. This is 164% difference. Both methods produced equal and correct path. 

Only 12 hidden nodes were needed for the neural network and 200 training episodes.

5.2.2 Scenario 10×10

In 10x10 grid the parameters to train the agent model were same than in 8x8 grid. 

Reward on success 100

Maximum steps per episode 100

Episodes 200

Gamma 0.9

Exploration steps 3000

Step size 0.001

Hidden network layers 12

Epsilon 1

Anneal interval 1000

Minimum epsilon 0.1

Decay rate 0.99

Batch size 1000

Capacity of replay memory 10000
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Alpha 0.3

Double Q-learning enabled

The picture 33 above shows the scenario for 10x10 grid and the table below displays the results 

from perf tool.

Metric A-Star Q-Learning

Task Clock 129.15 msec 45,574.12 msec

CPUs Utilized 1 23.79

Context Switches 0 0

CPU Migrations 0 0

Page Faults 283 1737

Cycles 646978546 231033978869

Stalled Cycles Frontend 830430 255149289
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Figure 33: 10x10 scenario



Stalled Cycles Backend 437637 467571695

Instructions 3074571144 37008271578

Branches 507766718 7431999777

Branch Misses 179095 27175035

Time Elapsed 0.13 sec 1.92 sec

User Time 0.13 sec 45.24 sec

System Time 0 0.16 sec

The table below shows the memusage program report.

Metric A-Star Q-Learning

Heap Total 207460975 63069097

Heap Peak 175331 2332867

Stack Peak 5504 36320

Malloc Calls 4534913 54581

Malloc Total Memory 207456831 63055249

Realloc Calls 0 1

Realloc Total Memory 0 200

Calloc Calls 9 33

Calloc Total Memory 4144 13648

Free Calls 4534976 54644

Free Total Memory 207380675 62979886

Failed Calls 0 0

A-Star was able to solve the path in 0.0122 milliseconds and Q-learning agent in 0.20918. The 

difference between the algorithms is 177%. The difference was very small compared to 8x8 grid.
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5.2.3 Scenario 12x12

Training the agent in 12x12 scenario took around 24 minutes. The table below shows the training 

parameters. The scenario seemed to be much more complex to solve for Q-learning agent and 

much more capacity was needed for replay memory. Agent was also trained for 1000 episodes 

and with 32 hidden layers in the neural network. Lots of exploration steps were also needed in  

order the agent to find the goal and gather data of the environment.

Reward on success 100

Maximum steps per episode 200

Episodes 1000

Gamma 0.9

Exploration steps 100000

Step size 0.001

Hidden network layers 32

Epsilon 1

Anneal interval 80

Minimum epsilon 0.1

Decay rate 0.99

Batch size 10000

Capacity of replay memory 30000

Alpha 0.3

Double Q-learning enabled
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The image 34 above shows the grid of the 12x12 scenario. This scenario was more complicated 

than the previous ones. Direct path to the goal is blocked and there are two possible ways to 

reach to goal. The table below shows the perf tool results.

Metric A-Star Q-Learning

Task Clock 615.02 msec 90,701.98 msec

CPUs Utilized 1 23.69

Context Switches 0 0

CPU Migrations 0 0

Page Faults 283 2539

Cycles 3116252089 456035836119

Stalled Cycles Frontend 5730643 650481894

Stalled Cycles Backend 1259980 745496899
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Figure 34: 12x12 scenario



Instructions 15281440166 80939267017

Branches 2438871954 15994840553

Branch Misses 775664 44179810

Time Elapsed 0.615339501 sec 3.828502132 sec

User Time 0.613536 sec 90.203932 sec

System Time 0 sec 0.242531 sec

The table below shows the memusage report.

Metric A-Star Q-Learning

Heap Total 774619878 127329944

Heap Peak 176459 4100667

Stack Peak 5504 37472

Malloc Calls 18577774 64637

Malloc Total Memory 774615734 127316096

Realloc Calls 0 1

Realloc Total Memory 0 200

Calloc Calls 9 33

Calloc Total Memory 4144 13648

Free Calls 18577862 64725

Free Total Memory 774539578 127240733

Failed Calls 0 0

A-star  was able to solve the path correctly  in  0.0604 ms and Q-learning in 0.2829 ms.  The 

difference  between  the  algorithms  was  129%.  The  assumption  is  that  the  large  amount  of 

obstacles in a maze like environment caused the agent to reach the goal much slower pace, and 

it often got stuck in corners or dead ends. Q-learning utilized almost all 24 CPU threads with 

456,035,836,119 CPU cycles and 80,939,267,017 instructions which indicates how much work 
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was done. On the other hand A-star utilized only 1 CPU thread as expected from single threaded 

algorithm.  CPU has  performed  fewer  cycles  3,062,096,586  and  15,267,370,665  instructions. 

Memory usage for A-star was higher. Totally it used 738 MB heap memory during the execution. 

However, during the execution the peak allocation of heap memory was 3.91 MB. This indicates 

the maximum amount of memory that was allocated at any point during the process. Q-learning 

allocated totally 121 MB heap memory, and it peaked at 0.168 MB. A-star memory usage could 

be improved by more efficient data structure.

5.2.4 A-star at 50x50 scenario

A-star algorithm was able to solve the 50x50 grid scenario in 0.7418 milliseconds on average of 

10000 test runs and the solved shortest path was 119 steps. The figure 35 below shoes the 

calculated path using green colour on 50x50 grid.

The calculation is still fast even though the processor has to do numerous operatios and explore 

multiple nodes in order to find the correct path. Q-learning was not attempted for 50x50 scenario 

because of the lack of resources and possible long training time required. However, would be 

interesting to get results in a future development.
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Figure 35: A-star path calculation on 50x50 grid



5.3 Analysis

As expected and indicated by the results, A-star algorithm was significantly faster than Q-learning 

agent even though A-star was running in a single-threaded process compared to multithreaded 

Q-learning process.  The neural  network within the deep reinforcement learning agent  has to 

process the state information to predict the Q-values on every step. This is done using matrix 

calculations  which  are  computationally  intensive.  A-star  performs  only  relatively  simple 

calculations. Manhattan distance was used for calculation of the heuristic function. It  involves 

straight forward arithmetic operations which do not require as much computing power. The use of 

a priority queue data structure allows the A-star algorithm access and remove the node with the 

highest priority efficiently because it can avoid going through the entire list of nodes. The nodes 

are already stored to the queue based on the priority.

In order to keep game play smooth the CPU calculations on each frame should not take too much 

time. As mentioned in the chapter two, each frame in the game should not take longer than 16.6  

milliseconds in order to achieve 60 frames per second game-play. As seen in all the perf tool 

measurements, Q-learning fully utilized the CPU while predicting the optimal path. This might not 

leave any room for adding additional threads for other types of processing. A-star on the other 

hand utilized only once CPU and was still faster than Q-learning. Based on the test scenarios the 

processor will have plenty of time to do any additional calculations before it affects frame time. 

For example, it took only 0.7418 milliseconds in 50x50 grid to calculate the path using A-star.

The performance of the path finding could be further improved by dividing the game world graph 

into smaller hierarchical graphs in case there are lots of nodes. For example the world could be 

divided into larger areas and the algorithm would first calculate the path to the area where the 

final destination is located. A player needs to navigate from a building to another building in a 

game. First graph would represent the rooms and areas in the current location. After player has 

navigated out the building a new graph would be calculated representing the streets of the area 

and path would be calculated from the building to the destination building. Final graph would be 

calculated when player reaches the destination building and goes inside. Using this graph player 

would then navigate to the final destination. This could yield significant computational advantage 
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(Harri Antikainen, 2013). However, the complexity of the implementation increases because the 

transition points of the graphs would need to be defined.

In  a  simple  example  and using  the  A-star  results  from the  scenarios,  if  an  agent  needs  to 

navigate through 8x8 graph and then 12×12 sub-graph in order to enter the final 50×50 graph. 

This would take 0.8116 milliseconds based on calculation 0.0094 + 0.0604 + 0.7418. If we added 

0.5 milliseconds for transitioning from the current graph to the next the result would be 1.8116 

milliseconds.  This  would  still  leave  14.7884  milliseconds  for  the  processor  to  do  additional 

calculation without affecting the desired frame rate.

Frame rate Milliseconds per frame Time left after A-star (ms)

30 33.33 31.52

60 16.66 14.78

144 6.94 5.12

240 4.16 2.35

The table above displays comparison against different frame rates. In fast-paced game targeting 

144 frames per second there would only be 5.12 milliseconds left for other calculations and just 

2.35 when targeting 240 fps. However, this issue could be solved by multithreading where A-star 

calculates the path in a separate thread while main processing is done in other threads. Based on 

the experiments and the table above A-star will have no timing issues calculating the path as long 

as the path calculation is done in a separate thread.

A-star and its variants are well  researched, and many ready-made implementations exists in 

different programming languages. In game development and in programming in general it usually 

makes sense to use existing well tested components in order to save resources. A-star and its 

variants  are  flexible  and may adapt  to  different  kinds  of  environments  by  adjusting  different 

aspects  and logic  of  the  algorithm.  For  example  by  adjusting  heuristics  calculation  methods 

based on the problem. Additional logic can be included to the calculation, for example avoiding or 

preferring certain types of nodes or including waypoints to the path. Variants like D-star avoid 

reordering the priority queue when recalculating the path which adapts to dynamic environments.
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6 DISCUSSION AND CONCLUSIONS

As seen in the OpenAI Five model experiments with Dota 2 game, training a deep reinforcement 

learning agent is challenging, time-consuming and very resource intensive. Even with small test 

environments like Minigrid, it took time and required some trial-and-error effort in order to get the 

model to converge and solve the environment. However, the OpenAI Five research indicated that 

a  fine-tuned model  is  able  to  beat  human players  in  a  complex  game with  lots  of  different  

parameters affecting the actions of the agent. Training and experimenting with such an agent is 

possible only in games with high budgets and resources.

There is a chance for model drifting as the game or software develops further. Model drifting 

means degrading of the model’s performance over time. In addition to the code also the model 

needs to be kept up to date which needs resources and time. In order to train the agent the 

reward mechanism needs to be developed to the game-play which also requires additional time. 

Using advanced techniques like “Surgery” developed by OpenAI, could reduce the time and cost 

retraining a model. Using surgery method OpenAI was able to incorporate changes and new 

versions to the deep learning model without restarting the training process (OpenAI 2019).

Based on the research and acquired results, and the strong arguments in favour of A-star as 

mentioned in the chapter 5.3, it is better to use traditional A-star and it’s variants for sole purpose 

of path finding instead of training a deep reinforcement learning model. This thesis focused only 

on  Q-Learning  and  PPO  algorithms.  Some  other  reinforcement  learning  algorithms  might 

however yield better results and with less resources. However, as mentioned in the previous 

chapters implementing a reinforcement learning algorithm is challenging and time-consuming. A-

star  on the other hand,  is  straight  forward to implement and has good performance.  This is 

another argument against reinforcement learning for path finding.

There might be other game-play areas which could benefit from reinforcement learning other than 

path finding. In a future research it would make sense to focus on a single reinforcement learning 

algorithm. The research could focus on aspects of the game-play which traditionally require lots 

of logic based programming for the AI. For example in a turn based strategy game a player needs 
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to manage a city, resources, and army and make different kinds of decisions to improve position. 

The opponent AI could be trained to take the best decision using reinforcement learning. The 

model  could  be trained using a  super  computer  during development  and then distributed to 

player’s device. Gaming computers often have powerful GPUs which could calculate predictions 

efficiently. Latest mobile device chips now-days also include an “AI-chip” built in. In turn based 

games  all  processing  can  be  done  at  the  end  of  each  turn  which  would  not  affect  to  the 

enjoyment of the game as much as in real-time games.

Playing against an agent which always beats human players is not enjoyable. Reinforcement 

learning agent by its nature tries to maximize the reward it receives from the environment. This 

could add additional challenge when training a model because it should not be “too good” when 

playing  against  humans.  This  could  potentially  be  mitigated  by  adjusting  the  agent’s  reward 

mechanism so that in a long run greater reward is accumulated if the agent does not win all the 

time. Player feedback could be collected during game-play and the model could be adjusted 

based on that. The trained model could be then distributed to players in regular game updates.

It would be interesting to research how large language models would perform as an alternative to 

reinforcement learning. The rules of the game could be inputted as a prompt to the model. The 

model  could  be  asked  to  provide  output  which  can  be  easily  parsed  using  a  programming 

language, so it could be translated to actions in a game. Also, one target of research could be to 

see how large language models solve mazes that this thesis experimented with.
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