

Ngoc Tran

GRAPHQL

From Basic Concepts to a Federated Supergraph

Technology
2024

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Ngoc Tran
Title GraphQL
 From Basic Concepts to a Federated Supergraph
Year 2024
Language English
Pages 42
Name of Supervisor Kenneth Norrgård

GraphQL has emerged as a powerful alternative to traditional RESTful APIs,
offering a more flexible and efficient approach to data fetching and manipulation.
This thesis delves into the foundational concepts of GraphQL, elucidating its core
principles, syntax, and operations. Through a comprehensive examination, it
elucidates how GraphQL enables clients to query precisely the data they need,
fostering a more streamlined and tailored interaction between client and server.

Furthermore, the thesis investigates the evolution of GraphQL into a federated
architecture, wherein multiple GraphQL services collaborate to form a unified
graph, known as a supergraph. This federated approach allows organizations to
scale their GraphQL implementations efficiently, enabling the composition of
complex schemas from disparate sources. By implementing a sample project
which demonstrates GraphQL Federation technologies in both Node.js and PHP
environments, the thesis analyzes the principles and mechanisms underpinning
GraphQL federation, and provides insights into the design, configuration and
implementation of federated supergraphs.

Through a combination of theoretical analysis and practical examples, this thesis
endeavors to equip readers with a comprehensive understanding of GraphQL and
its federated extensions. By exploring the transition from basic GraphQL concepts
to the construction of federated supergraphs, it seeks to contribute to the growing
body of knowledge surrounding GraphQL and its applications in modern software
development paradigms.

The thesis is beneficial for software developers who are looking for an advanced
solution to replace RESTful API for scalable systems. System architects can also
examine the GraphQL Federation in this thesis to consider this architecture for
their system communication.

Keywords GraphQL, supergraph, federation, HTML, RESTful API

CONTENTS

ABSTRACT

LIST OF FIGURES AND TABLES

LIST OF ABBREVIATIONS

1 INTRODUCTION ...8

2 BACKGROUND .. 10

2.1 HTML, CSS and JavaScript ... 10

2.2 React ... 11

2.3 Node.JS and Express.JS framework .. 11

2.4 PHP and Laravel Framework ... 12

2.5 RESTful API and Microservice Architecture .. 14

3 GRAPHQL .. 16

3.1 Concept ... 16

3.1.1 Graph in GraphQL ... 16

3.1.2 Query ... 17

3.1.3 Comparison between GraphQL with REST 19

3.2 Apollo GraphQL Platform .. 20

3.2.1 Apollo Client .. 21

3.2.2 Apollo Server ... 22

3.3 GraphQL Federation.. 23

3.3.1 Apollo Federation .. 24

4 IMPLEMENTATION .. 25

4.1 Project Overview ... 25

4.1.1 Use Case .. 25

4.1.2 Project System Architecture ... 25

4.1.3 Project Source Code Structure .. 26

4.2 Development Process ... 27

4.2.1 NodeJS Backend Microservice Components 27

4.2.2 PHP Backend Microservice Components 30

4.2.3 GraphQL Federation Service ... 32

4.2.4 React Frontend .. 35

5 CONCLUSIONS AND ASSESSMENT .. 39

REFERENCES .. 41

LIST OF FIGURES AND TABLES

Figure 1. Example PHP Code snippet. ... 13

Figure 2. Node and edge in directional graph .. 16

Figure 3. From graph to tree (DEV Community 2020.). .. 17

Figure 4. Example GraphQL query. ... 17

Figure 5. Example nested GraphQL query. ... 18

Figure 6. Example GraphQL query with parameters. ... 18

Figure 7. Example GraphQL query with aliases. ... 18

Figure 8. Example GraphQL query with reusable fragments. 19

Figure 9. App data flow with Apollo and GraphQL (Apollo GraphQL Docs 2019.) 21

Figure 10. Apollo Client architecture (Huder 2019).. 22

Figure 11. Federation architecture ... 24

Figure 12. Apollo federation architecture (Apollo GraphQL Docs 2019.) 24

Figure 13. Project system architecture. .. 26

Figure 14. Project source structure. ... 26

Figure 15. GraphQL query definition for NodeJS server. 28

Figure 16. Mock dataset for the NodeJS server.. 29

Figure 17. GraphQL resolver definition for NodeJS server. 29

Figure 18. Apollo Server definition. .. 30

Figure 19. GraphQL query definition for PHP server. ... 30

Figure 20. Schema path configuration. ... 31

Figure 21. Resolver classes of the project. ... 32

Figure 22. GraphQL resolver implementation for PHP server. 32

Figure 23. GraphQL Federation configuration. ... 33

Figure 24. Define locations for storing temporary data. 34

Figure 25. Executing Rover CLI commands. .. 34

Figure 26. Frontend ApolloClient initialization. .. 35

Figure 27. ApolloClient and React app integration. .. 36

Figure 28. Executable queries in client side.. 37

Figure 29. Client query with inputs. .. 37

Figure 30. Client query with authentication. .. 38

LIST OF ABBREVIATIONS

API Application programming interface

CDMI Cloud Data Management Interface

CSS Cascading Style Sheets

DOM Document Object Model

HTML Hypertext Markup Language

MVC Model-View-Controller

ID Identity Document

IDEs Integrated Development Environments

I/O Input/Output

JSX JavaScript XML

JWT JSON Web Token

NPM Node Package Manager

PHP Hypertext Preprocessor

REST/ RESTful Representation State Transfer

SOA Service-oriented architecture

UIs User interfaces

XML Extensible Markup Language

8

1 INTRODUCTION

In the realm of web development, the evolution of headless architectures has

ushered in a paradigm shift, where frontend and backend components are

developed independently and interconnected via RESTful APIs. While RESTful APIs

have been widely adopted for communication between frontend and server, as

well as among various microservices within a system, they present inherent

limitations that can hinder the performance of web and mobile applications.

One of the primary challenges associated with RESTful APIs is the issue of over-

fetching, wherein a client retrieves more data than necessary for its operations.

This inefficiency arises from the rigid structure of REST requests, making it difficult

to retrieve only the specific fields required by the client. GraphQL is a query

language for APIs that offers a solution to this problem by enabling clients to

precisely request the data they need, eliminating the burden of over-fetching.

GraphQL allows developers to get exactly the necessary data without any

redundant parts.

Beyond optimizing data retrieval for frontend clients, GraphQL also facilitates

communication between multiple microservices within a microservices

architecture. However, the adoption of GraphQL introduces a new challenge:

orchestrating communication between frontend clients and multiple

microservices simultaneously. Sending individual queries from the frontend to

disparate microservices can lead to suboptimal performance and increased

complexity.

To address this challenge, the concept of federation emerges as a pivotal

intermediary solution. Federation acts as a unifying layer between the clients and

GraphQL servers, serving as the authoritative source of truth and the sole point of

entry for requests originating from frontend clients. By federating GraphQL

servers, organizations can streamline communication between frontend clients

9

and distributed microservices, enhancing performance, scalability, and

maintainability.

The aim of this thesis is the exploration of GraphQL, tracing its evolution from basic

concepts to the implementation of federated supergraphs. The thesis delves into

the foundational principles of GraphQL, examining how it revolutionizes data

fetching and manipulation for frontend clients. Furthermore, the thesis

investigates the emergence of GraphQL federation as a mechanism for

orchestrating communication between frontend clients and distributed

microservices. Through theoretical analysis, practical examples, and case studies,

the thesis aims to provide insights into the design, implementation, and

deployment of federated supergraphs, contributing to the broader discourse on

GraphQL and its applications in modern web development architectures.

10

2 BACKGROUND

2.1 HTML, CSS and JavaScript

HTML, or Hyper Text Markup Language, is standard markup language used to

create structure and content of Web pages on the internet. It consists of a system

of tags enclosed in angle brackets, which define various elements like headings,

paragraphs, links, images, and more. HTML documents are interpreted by web

browsers to render visually appealing web pages for users to view and interact

with. (W3Schools 2022.)

CSS standing for Cascading style Sheets describes how HTML elements are to be

displayed on screen, paper, or in other media. (W3schools 2019.) By control the

layout of multiple web pages all at once it can save a lot of work. External

stylesheets are stored in CSS files.

JavaScript is a programming language which adds interactivity to a web page by

dynamically changing the HTML content or CSS styles. Traditionally, JavaScript is

understood as client-side script, which is executed by a web browser to interact

with the opening web page. This limitation is extended nowadays, as JavaScript

can run on a background process to support features like push notification or

background sync. (Archibald 2015.)

Using Node.js as a JavaScript runtime environment, JavaScript source code can be

executed as a standalone application and interact with the operating system,

allowing JavaScript to be a server-side programming language like PHP, Java or

Python. Node.js uses event-driven architecture with non-blocking operations that

makes it becomes a high-performance server-side language. (Patel 2018.)

There are hundreds of thousand Node.js libraries written by the developer

community. NPM is a dependency manager tool for Node.js applications. It

arranges the libraries in place and manages version conflicts so that libraries can

be integrated into Node.js applications. (npm Docs 2019.)

11

2.2 React

React is a popular JavaScript library for building user interfaces (UIs) in web

applications. Developed by Facebook, React allows developers to create reusable

UI components and efficiently manage the state of their applications. (React n.d.)

One of React's key features is its use of a virtual DOM (Document Object Model),

which enables efficient updates to the user interface by only re-rendering

components that have changed. This approach results in better performance and

smoother user experiences, particularly in complex and dynamic web applications.

React employs a component-based architecture, where UIs are broken down into

smaller, self-contained components that can be easily composed together to build

complex interfaces. Each component manages its own state and can communicate

with other components through props (properties) and callbacks.

React also promotes the use of JSX (JavaScript XML), a syntax extension that allows

developers to write HTML-like code directly within JavaScript files. JSX makes it

easier to create and maintain UI components by embedding HTML-like syntax

within JavaScript, facilitating the development process, and improving code

readability.

2.3 Node.JS and Express.JS framework

Node.js is a server-side JavaScript runtime environment that allows developers to

build scalable and high-performance web applications (NodeJS n.d.). Because of

being built on Chrome’s V8 JavaScript engine and using an event-driven, non-

blocking I/O model, it is efficient and lightweight for handing concurrent

connections and asynchronous operations. Using asynchronous and non-blocking

I/O operations allows Node.JS to handle multiple concurrent connection

efficiently. This makes it well-suited for building real-time application like chat

applications, online gaming platforms and streaming services.

12

Besides, Node.js operates on a single-threaded event loop, but it can handle many

concurrent connections without the need for multithreading. Instead, it employs

asynchronous callbacks and event-driven programming to manage I/O operations

without blocking the execution of other code. Furthermore, HTTP is a first-class

citizen in Node.js, designed with streaming and low latency in mind. This makes

Node.js well suited for foundation of a web library or framework.

Express.js is a minimal and flexible Node.js web application framework that

provides a robust set of features for web and mobile applications. With a myriad

of HTTP utility methods and middleware at your disposal, creating a robust API is

quick and easy. Express provides a thin layer of fundamental web application

features, without obscuring Node.js features that you know and love. Many

popular frameworks are based on Express. (OpenJS Foundation 2017.)

2.4 PHP and Laravel Framework

PHP, standing for Hypertext Preprocessor is a widely used open-source general-

purpose scripting language that is especially suited for web development and can

be embedded into HTML. (PHP 2019.)

Instead of lots of commands to output HTML (as seen in C or Perl), PHP pages

contain HTML with embedded code that does “something” (In this following

example, output “Hello, I’m a PHP script!”).

13

Figure 1. Example PHP Code snippet.

Enclosed within special start and end processing instructions <?php and ?>,

the PHP code enables developers to seamlessly transition in and out of "PHP

mode". This key distinction sets PHP apart from client-side JavaScript as the code

is executed on the server-side, resulting in the generation of HTML that is

subsequently transmitted to the client. Consequently, while the client receives the

output of the executed script, they are unaware of the underlying PHP code.

Moreover, developers have the option to configure their web server to process all

HTML files with PHP, ensuring that users are unable to distinguish the specific

operations being carried out by the developers.

Laravel is an open-source PHP web framework known for its elegant syntax, robust

features, and developer-friendly environment. It follows the Model-View-

Controller (MVC) architectural pattern, which separates the application logic,

presentation, and data layers, making it easier to develop and maintain complex

web applications. (Laravel n.d.)

Laravel offers an expressive and intuitive syntax that allows developers to write

clean and concise code, making the development process more efficient and

enjoyable. It comes with a modular structure and built-in support for Composer, a

PHP dependency manager, allowing developers to easily add or remove

components and third-party packages to extend the framework functionality.

Besides, Laravel provides a migration system that allows developers to define and

14

manage database schemas using PHP code, making it easy to version control

database changes and collaborate with other developers. Additionally, Laravel's

database seeding feature enables developers to populate databases with sample

data for testing and development purposes.

2.5 RESTful API and Microservice Architecture

A RESTful API (Representational State Transfer Application Programming

Interface) is an architectural style for designing networked application. In that, API

(an application programming interface) plays function role to define the rules in

communication with two software systems. Then, other application can

communication with APIs being created programmatically. The rest, REST

(Representation State Transfer) is a software architecture that imposes condition

on how an API should work. REST was initially created as a guideline to manage

communication on a complex network like the Internet. APIs that following the

REST architectural style are called REST API or RESTful API. (Amazon Web Services

n.d.)

A RESTful API deconstructs transactions into smaller, modular components, each

addressing a specific aspect of the transaction, offering developers flexibility but

also posing challenges in designing from scratch. To mitigate this, various models

provided by companies like Amazon S3, Cloud Data Management Interface

(CDMI), and OpenStack Swift are available, among others. These APIs operate by

utilizing commands to access resources, where the state of a resource at any given

time is termed a resource representation. Leveraging HTTP methodologies

outlined in RFC 2616, including GET for retrieval, PUT for state alteration, POST for

creation, and DELETE for removal, a RESTful API must adhere to six architectural

constraints for true RESTfulness. (S 2020.) These include uniform interface usage

for resource identification, clear client-server delineation, stateless operations,

resource caching, a layered system architecture, and the provision of executable

code when required, ensuring a robust and efficient communication protocol for

distributed systems.

15

Microservices represent a modern architectural paradigm where complex

software applications are decomposed into smaller, independently deployable

services, each responsible for a distinct business function. These services are

designed to be modular and autonomous, enabling development teams to work

on different services concurrently and deploy updates to individual services

without affecting the entire application. (Richardson 2017.)

Each microservice typically encapsulates its own data store and business logic,

communicating with other services via well-defined APIs over a network. This

decentralized approach to data management and communication promotes loose

coupling between services, allowing them to evolve independently and scale

horizontally as needed. Additionally, microservices are often implemented using

lightweight protocols like HTTP or messaging queues, facilitating efficient

communication between services.

While microservices offer numerous benefits, including improved agility,

scalability, and resilience, they also introduce challenges such as service discovery,

orchestration, and monitoring. Organizations adopting a microservices

architecture must carefully consider factors such as service boundaries, data

consistency, and deployment strategies to effectively harness the advantages of

this approach. Despite these challenges, microservices enable organizations to

build complex, scalable applications that can adapt to changing business

requirements and technological advancements.

One example of a microservices architecture is found in the e-commerce industry.

On an online retail platform where various functionalities, such as user

authentication, product catalog management, order processing, and payment

processing, are each handled by separate microservices.

16

3 GRAPHQL

3.1 Concept

GraphQL is query language and runtime for APIs developed by Facebook. It

provides are more efficient and flexible alternative to traditional RESTful APIs by

allowing clients to request only the specific data they need. With GraphQL, clients

specify the structure of the response, enabling them to fetch multiple resources

in a single request. This helps to reduce over-fetching (retrieving more data than

necessary) and under-fetching (not getting enough data) issues commonly seen in

RESTful APIs.

3.1.1 Graph in GraphQL

Graph is known as a data structure to be built based on the natural way in building

mental models and relate concepts. Graphs are abstracted by adding nodes or

vertices and connecting them together with edge. Among different types of

graphs, the acyclic directed graph is used in GraphQL. In an acyclic directed graph,

a start node and an end node are connected by a directed edge and only be

traversed following that direction. The meaning of the relationship between nodes

is changed and a hierarchy is introduced by adding direction to the edges.

Figure 2. Node and edge in directional graph

Depending on the constraints between nodes and edges in an acyclic directed

graph, the graph can be transformed into many different types of data structures.

The tree structure is a directional graph that is also acyclic.

17

Figure 3. From graph to tree (DEV Community 2020.).

The advantage of the tree structure is its recursive nature which uses processing

data by imposing the necessary constraints on it.

3.1.2 Query

In GraphQL, a query is a fundamental concept that represents a request for

specific data from GraphQL API. It serves as a structured way for clients to define

precisely what information they need. Allowing them to retrieve only the required

fields and nothing more. At the core of a GraphQL query are fields, which

correspond to the properties or attributes of the data being requested. Clients

specify the fields they want to retrieve, and the server responds with exactly those

fields.

Figure 4. Example GraphQL query.

With GraphQL, nesting fields within other fields enables clients to fetch related

data in single query.

18

Figure 5. Example nested GraphQL query.

Queries can include arguments to filter, paginate or other specific the data to be

retrieved. These arguments are passed to fields as paraments.

Figure 6. Example GraphQL query with parameters.

Clients can use aliases to request the same filed with different names in the

response.

Figure 7. Example GraphQL query with aliases.

Fragments are reusable units of fields that can be included in multiple queries.

19

Figure 8. Example GraphQL query with reusable fragments.

3.1.3 Comparison between GraphQL with REST

GraphQL’s flexibility stands out as a significant benefit. It allows clients to specify

the precise data they require by nesting fields or fragments and the server delivers

exactly that information in response. This streamlined approach minimizes both

over-fetching and under-fetching of data, resulting in more efficient network

usage with GraphQL. In contrast, REST APIs frequently encounter issues of over-

fetching, where the server send unnecessary data, and under-fetching, which

requires clients to make multiple requests to various endpoints to gather all

necessary information.

REST, although simple in concept, often necessitates supplementary

documentation to assist developers in understanding available endpoints and

their associated data structures. Other side, GraphQL’s robust typing system and

introspection features contribute to a more seamless development process.

Integrated Development Environments (IDEs) can leverage the GraphQL schema

to offer auto-completion and documentation, assisting developers in crafting

accurate queries and mutations.

Version control is a critical aspect of API management for any project. In the case

of GraphQL, its single endpoint and robust typing system often allow for updates

without disrupting existing clients. Clients that do not request newly added fields

or types remain unaffected by these changes. In the opposite side, REST commonly

employs versioning through URL paths (e.g., /v1/users) or headers to handle

20

modifications. This approach can result in compatibility challenges, as clients must

be informed of and adjust to API changes.

Efficient caching plays a vital role in enhancing API performance. In the context of

GraphQL, clients can precisely define the data they require, which reduces the

chances of excessive caching. However, incorporating caching into GraphQL

systems requires additional considerations due to the dynamic nature of queries.

On the other hand, REST, with its resource-oriented architecture, has established

caching methods. Clients can cache responses based on resource identifiers, and

servers can control caching behavior through cache headers.

Both GraphQL and REST offer effective scalability solutions, albeit with differing

approaches. GraphQL's capability to request specific data proves advantageous in

scenarios where bandwidth constraints are a concern. However, the versatility of

GraphQL queries can present challenges when optimizing database queries and

caching strategies. In contrast, REST's simplicity and stateless nature facilitate

horizontal scaling by adding more servers. Additionally, caching implementation

in REST is more straightforward due to the predictability of resource-based

endpoints. (joan 2024.)

3.2 Apollo GraphQL Platform

Apollo is a platform for constructing data graphs, created by Meteor Development

Group Inc. The data graph serves as a bridge between the client-side of

applications and the internal services, allowing for seamless communication.

The Apollo platform aids in the creation, retrieval, and administration of a data

graph. This unified data layer empowers applications to interact with data sourced

from connected data repositories and external APIs. Positioned between

application clients and backend services, the data graph streamlines the flow of

data between them, as shown in the following figure.

21

Figure 9. App data flow with Apollo and GraphQL (Apollo GraphQL Docs 2019.)

3.2.1 Apollo Client

Apollo Client is a robust state management library in JavaScript, designed for

handing both local and remote data seamlessly with GraphQL. It simplifies tasks

such as fetching, catching, and modifying application data while ensuring

automatic UI updates. With Apollo Client, developers can structure their code in

an efficient, predictable, and declarative manner that aligns with modern

development practices. The core @appllo/client library comes with built-in

integration for React, providing a solid foundation for managing data in React

applications. Moreover, the boarder Apollo community maintains integration for

various other popular view layers, extending its usability across different

frameworks. (Apollo GraphQL Docs 2019.)

Developers can write queries and receive data without the need to manually track

loading states. Apollo Client offers valuable tooling support for TypeScript,

Chrome/ Firefox devtools, and VS Code, aiding in smoother development

workflows. Besides, it takes full advantage of the latest React features, including

hooks, to streamline development processes. Developers can seamlessly integrate

Apollo Client into any JavaScript application, incorporating its features

22

progressively as needed. With a vibrant and active community, developers can

benefit from sharing knowledge, insight, and best practices within the GraphQL

ecosystem, ensuring ongoing support and innovation.

The figure below shows the general Apollo Client architecture.

Figure 10. Apollo Client architecture (Huder 2019)

The core elements of the Apollo Client consist of the cache and network layers.

The cache functionality within the Apollo Client is designed to store query results

directly in the browser. This approach helps in minimizing unnecessary network

requests, thereby enhancing the speed of the application. With different fetch

policy settings, a query can either retrieve fresh data from the server or access it

directly from the cache.

3.2.2 Apollo Server

Apollo Server is an open-source, spec-compliant GraphQL server that is

compatible with any GraphQL client, including Apollo Client. It is the best way to

build a production-ready, self-documenting GraphQL API that can use data from

any source. Apollo Server can serve as the GraphQL server for a subgraph within a

federated supergraph or an extension to any new/existing Node.js applications,

23

which includes applications running on Express (including MERN stack apps), AWS

Lambda, Azure Functions, Cloudflare, Fastify, and other platforms.

Apollo Server offers simple setup, allowing client developers to swiftly fetch data.

It allows enabling the addition of features as required. Apollo Server provides

compatibility with any data source, build tool, and GraphQL client and confidence

in running the graph in a production environment.

3.3 GraphQL Federation

Microservices, the modern evolution of service-oriented architecture (SOA),

represent a significant trend in the software development field, and GraphQL is

emerging as the favored query language due to its versatility. However, managing

microservices can meet challenges. For instance, to handle multiple endpoints for

users, the implementation of federation is a potential solution. (Bhattacharya

2021.)

Federated architecture consolidates various services into a single API endpoint. By

using GraphQL federation developers can set up a single GraphQL API, or a

gateway which fetches from all other APIs. Then, each service is a subgraph now.

Fill the page. If the figure does not fit here, then moce text from under the figure

here.

24

Figure 11. Federation architecture

The gateway becomes the source of truth where the frontend sends the query to

retrieve needed data.

3.3.1 Apollo Federation

Apollo Federation allows for the declarative merging of multiple GraphQL APIs into

a unified, federated graph. This federated graph empowers clients to

communicate with multiple APIs through a solitary request. When a client initiates

a request, it is directed to the single-entry point of the federated graph, known as

the router. The router then efficiently coordinates and disperses the request

across the connected APIs, providing a consolidated response. From the client's

perspective, the process of querying the router appears identical to querying a

standard GraphQL server.

Figure 12. Apollo federation architecture (Apollo GraphQL Docs 2019.)

25

4 IMPLEMENTATION

4.1 Project Overview

4.1.1 Use Case

This thesis project encompasses three primary use cases aimed at demonstrating

various functionalities of the system. These use cases include retrieving product

information based on an ID, obtaining a list of all messages within the system, and

facilitating user login to generate JWT tokens for authentication purposes.

The first use case involves retrieving product information by ID as a

demonstration. When a user sends a query to the federation service, the

federation service analyzes and forwards the query to "server-PHP," the service

responsible for processing and returning the requested data. Subsequently, the

federation service responds to the client with the relevant product information.

The second use case demonstrates retrieving all system messages, which is

processed by the Node.js GraphQL server. This query requires authentication,

thereby showcasing the authentication mechanism using JWT tokens with the

GraphQL server.

The third log in the use case illustrates how users can log into the system using a

GraphQL query to obtain a JWT token for authentication purposes. This use case

showcases the login process and the subsequent reception of a JWT token to

enable authenticated access to system resources.

4.1.2 Project System Architecture

The thesis implementation project is a monorepo project following the

architecture below:

26

Figure 13. Project system architecture.

4.1.3 Project Source Code Structure

The project implementation for this thesis involves a monorepo structure

comprising several child projects, focusing on three main parts: the server

included Nodejs service and PHP service, federation service, and client.

Figure 14. Project source structure.

The server project is constructed with a microservice architecture, featuring two

distinct services. The first service, named server, utilizes the Node.js platform

27

to implement GraphQL functionalities. Additionally, there is a service developed

on a PHP environment, known as server-php facilitating GraphQL operations

within the PHP framework.

The federation service follows GraphQL principles, serving as the central synthesis

point for the GraphQL schema supported by the two aforementioned services:

Node.js and PHP. Through federation architecture, these services transform into

subgraphs, each fulfilling specific roles within the federated system.

Lastly, the client directory functions as a user-facing application, responsible for

real-time data presentation. When the client requires data, it sends requests

directly to the federation. The federation service then evaluates the query and

forwards it to the respective server responsible for resolution, ensuring seamless

data retrieval for the client interface.

Within the scope of the thesis, this project can be run locally using Docker. There

is docker-compose.yml file configuration that helps to start all these child

projects in the local environment.

4.2 Development Process

The overall process includes developing backend services with additional support

for GraphQL query. After that, the federation service is implemented with

configurations to connect to the backend services GraphQL endpoints via internal

network. Finally, the client application can send GraphQL queries to the federation

service without communicating to the backend services.

4.2.1 NodeJS Backend Microservice Components

For developing the backend service with Node.js, the @apollo/server library

is utilized, which means the required npm dependencies are @apollo/server

and graphql can be installed by the following command:

npm install @apollo/server graphql

28

In a GraphQL server, the first step is defining the GraphQL schema. Every GraphQL

server, including Apollo Server, relies on a schema to outline the structure of data

that clients can query. This schema comprises type definitions, often referred to

as typeDefs which collectively define the framework for executing queries

against the data of the project. In this example, a server is created for querying a

collection of messages by user.

Figure 15. GraphQL query definition for NodeJS server.

Once the structure of the project's data is defined, the next step is to define the

data itself. Apollo Server has the capability to fetch data from various sources that

developers connect to, such as databases, REST APIs, static object storage services,

or even other GraphQL servers. In the scope of this thesis project, the illustrative

data is defined as below, although in a real-world application, this data would

typically be stored in a database.

29

Figure 16. Mock dataset for the NodeJS server.

Having established our dataset, the Apollo Server needs to be instructed to utilize

this data during query execution. This is achieved by creating resolvers, which

define how the server retrieves the associated data for a specific type. Since

mocked chat messages collection is hardcoded for demonstration purposes, the

corresponding resolver is straightforward.

Figure 17. GraphQL resolver definition for NodeJS server.

To initialize Apollo Server, the resolver and query definitions must be provided

during the ApolloServer constructor invocation. Upon passing an ApolloServer

instance to the startStandaloneServer function, the process involves the following

30

steps: creation of an Express app, installation of the ApolloServer instance as

middleware and preparation of the app to handle incoming requests.

Figure 18. Apollo Server definition.

4.2.2 PHP Backend Microservice Components

The PHP backend microservice was developed using the Laravel framework with

LightHouse PHP to facilitate GraphQL functionality. LightHouse can be easily set

up via Composer using the following command:

composer require nuwave/lighthouse

A schema defines the capabilities of a GraphQL server. The syntax for defining a

schema in PHP with LightHouse server is similar to the Node.js with Apollo Server.

In this project, the schema is defined in schema.graphql file with the code

below.

Figure 19. GraphQL query definition for PHP server.

31

The following commands is to utilize the included LightHouse configuration:

mkdir --parents config

cp vendor/nuwave/lighthouse/src/lighthouse.php config/

Next, the configuration file is registered in the bootstrap/app.php file:

$app->configure('lighthouse');

The service provider is registered in bootstrap/app.php file:

$app-

>register(\Nuwave\Lighthouse\LighthouseServiceProvider:

:class);

After registering the configuration file, the schema path which indicate the

location of the defined schemas is configured in the lighthouse.php file as

shown below:

Figure 20. Schema path configuration.

Similar to the Node.js Apollo service, the PHP server needs query resolvers. These

resolvers are implemented as classes within the server-php/app/GraphQL

directory. Each resolver class corresponds to a query declared in the

schema.graphql file.

32

Figure 21. Resolver classes of the project.

The implementation of a resolver class might look like this:

Figure 22. GraphQL resolver implementation for PHP server.

The __invoke function within the resolver class is responsible for returning the

desired data. In this project, the resolvers work with hardcoded data for

demonstration purposes.

Furthermore, all GraphQL components such as mutations, types, and directives

must be declared within the namespaces of the Laravel application in the

lighthouse.php file. This ensures that all GraphQL components are properly

registered and accessible within the GraphQL schema..

4.2.3 GraphQL Federation Service

The GraphQL federation service in this thesis project serves as a central synthesis

point for GraphQL schemas, harmonizing the Node.js and PHP services into

33

specialized subgraphs within a federated system. Through this federation

architecture, our service offers a unified approach to GraphQL, facilitating efficient

data aggregation and streamlined communication between services. The

federation service can be implemented by the following steps.

The first step is to configure the router location, including the supported methods,

the allowed headers for the HTTP requests, and the endpoint to access this

federation supergraph.

Figure 23. GraphQL Federation configuration.

Because the federation service does not define its own GraphQL schemas, it

retrieves GraphQL schemas from the backend services periodically and stores in a

temporary location.

The script below is to build the retrieved schemas. The temporary data of the

federation service including schema and its configuration are stored in

schemaDir and tempDir locations respectively.

34

Figure 24. Define locations for storing temporary data.

The federation service is a supergraph, it uses Apollo GraphOS platform for

building, managing, and scaling the graphs via the Rover CLI tool. Rover commands

can be executed with TypeScript code as below.

Figure 25. Executing Rover CLI commands.

35

4.2.4 React Frontend

The client is a React application that was setup Apollo Client dependencies to send

request query to federation service. The following is the way client can send

request query.

In order to incorporate Apollo Client into applications, two essential top-level

dependencies are required:

• @apollo/client: This comprehensive package acts as the foundation

for Apollo Client, encompassing vital functionalities such as the in-memory

cache, local state management, error handling, and a React-based view

layer.

• graphql: This package provides the necessary logic for parsing GraphQL

queries within the Apollo Client framework.

To install these dependencies, the following command is executed:

npm install @apollo/client graphql

The ApolloClient initialization is done by passing its constructor a configuration

object with the URI and cache fields:

Figure 26. Frontend ApolloClient initialization.

The uri parameter defines the URL of our GraphQL server. The cache variable

represents an instance of InMemoryCache, which Apollo Client utilizes to store

and cache query results obtained after fetching them.

36

The ApolloProvider component integrates Apollo Client with React. Similar

to React's Context Provider, it encapsulates the React application, making Apollo

Client accessible throughout the component hierarchy via the application context.

In the main.tsx file, the React app is wrapped by the ApolloProvider. It is

recommended to position the ApolloProvider at the highest level, preferably

above any components that require access to GraphQL data.

Figure 27. ApolloClient and React app integration.

The executable queries can be defined by wrapping each of them in the gql

template literal in file graphql-queries.ts.

For example, the GET_PRODUCT query can take a product id as an input, the

backend uses the given id as an argument to filter the correct product and

response to the client. On the other hand, the GET_ALL_MESSAGES query has no

arguments because all messages will be returned.

37

Figure 28. Executable queries in client side.

In a React component, React Hook useQuery or useLazyQuery provided by

@apollo/clients library is to call and use the query.

If the query request needs inputs such as id, the inputs can be defined with the

variables field, similar to the code below.

Figure 29. Client query with inputs.

For queries that require authentication, the authorization header can be added to

the request JWT token.

38

Figure 30. Client query with authentication.

Upon rendering, the useQuery hook initiates the execution of the query and

yields a result object comprising loading, error, and data properties. Apollo Client

seamlessly manages the loading state of the query, providing the loading property

to reflect its progress. Likewise, the error property indicates any potential errors

encountered during the query execution.

39

5 CONCLUSIONS AND ASSESSMENT

Throughout the development and testing phases of this thesis project, the

reliability of the GraphQL Federation Service has been a paramount focus. Testing

procedures and validation checks have been implemented to ensure the stability

and robustness of the system. The integration of Node.js and PHP services,

orchestrated through federation architecture, has demonstrated consistent and

accurate responses to client requests. By adhering to best practices in software

development and GraphQL standards, the service has proven its reliability in

handling various use cases.

The system architecture, built upon GraphQL principles, provides a unified and

intuitive interface for clients to interact with diverse APIs. The federation

architecture seamlessly integrates multiple services into specialized subgraphs,

simplifying data retrieval and enhancing efficiency. Developers and end-users alike

benefit from rich documentation, standardized GraphQL schemas, and

streamlined communication between services. The user-friendly design and

flexibility of the service contribute to its high usability rating.

The transferability of the GraphQL Federation Service is a notable feature,

allowing for easy integration into a variety of projects and environments. The

modular design of the service, with separate Node.js and PHP services

transformed into subgraphs, offers flexibility and adaptability. By utilizing

standard GraphQL libraries such as Apollo Server and LightHouse PHP, the service

ensures compatibility with a range of frameworks and platforms. The schema

definitions and query resolvers are structured to facilitate easy transferability to

different applications, making the service adaptable for future projects.

In conclusion, this thesis project has successfully implemented a GraphQL

Federation Service, demonstrating reliability, usability, and transferability. The

reliability of the system has been validated through testing, ensuring stable and

accurate responses to client requests. Usability has been a central focus, with the

40

service providing an intuitive interface for interacting with diverse APIs.

Transferability is a key feature, allowing for easy integration into various projects

and environments. Overall, the adoption of GraphQL Federation has proven

beneficial, offering improved efficiency, flexibility, and scalability in handling data

queries and interactions within the system.

41

REFERENCES

Amazon Web Services, Inc. (n.d.). What is RESTful API? - RESTful API Explained -

AWS. Amazon Web Services, Inc. Retrieved March 2, 2024, from

https://aws.amazon.com/what-is/restful-api

Apollo GraphQL Docs. (2019). Introduction. Apollo GraphQL Docs.

https://www.apollographql.com/docs/react/

Archibald, J. (2015, December 8). Introducing Background Sync | Blog. Chrome

for Developers. https://developer.chrome.com/blog/background-sync

Bhattacharya, B. (2021, October 28). An introduction to GraphQL federation. Tyk

API Management. https://tyk.io/blog/an-introduction-to-graphql-

federation/

DEV Community. (2020, April 14). The Graph in GraphQL. DEV Community.

https://dev.to/bogdanned/the-graph-in-graphql-1l99

Huder, K. N. (2019). Modifikovanij sposib kešuvannya danih klientsʹkoj biblioteki

 Apollo-Client dlya GraphQL. [Modified method of caching Apollo-Client

client libraryfor GraphQL.] Original publication: Модифікований спосіб

кешування даних

клієнтської бібліотеки Apollo-Client для GraphQL. Master's thesis, Igor

Sikorskij KPI.

joan? (2024, February 13). GraphQL vs REST: Choosing the Right API for Your

Project. DEV Community. https://dev.to/joanayebola/graphql-vs-rest-

choosing-the-right-api-for-your-project-

193m?fbclid=IwAR2wKbLk5sVDdewo9wxfkblGqmfH3PVlSRx1pHiBQW25G

nZMTitOUDHsorQ

Laravel. (n.d.). Installation. Laravel. Retrieved March 2, 2024, from

https://laravel.com/docs/10.x#meet-laravel

NodeJS. (n.d.). About Node.js. Node.js. Retrieved March 2, 2024, from

https://nodejs.org/en/about

npm Docs. (2019). npm | npm Documentation. Npm Docs.

https://docs.npmjs.com/cli/npm

https://aws.amazon.com/what-is/restful-api
https://www.apollographql.com/docs/react/
https://developer.chrome.com/blog/background-sync
https://dev.to/joanayebola/graphql-vs-rest-choosing-the-right-api-for-your-project-193m?fbclid=IwAR2wKbLk5sVDdewo9wxfkblGqmfH3PVlSRx1pHiBQW25GnZMTitOUDHsorQ
https://dev.to/joanayebola/graphql-vs-rest-choosing-the-right-api-for-your-project-193m?fbclid=IwAR2wKbLk5sVDdewo9wxfkblGqmfH3PVlSRx1pHiBQW25GnZMTitOUDHsorQ
https://dev.to/joanayebola/graphql-vs-rest-choosing-the-right-api-for-your-project-193m?fbclid=IwAR2wKbLk5sVDdewo9wxfkblGqmfH3PVlSRx1pHiBQW25GnZMTitOUDHsorQ
https://dev.to/joanayebola/graphql-vs-rest-choosing-the-right-api-for-your-project-193m?fbclid=IwAR2wKbLk5sVDdewo9wxfkblGqmfH3PVlSRx1pHiBQW25GnZMTitOUDHsorQ

42

OpenJS Foundation. (2017). Express - Node.js web application framework.

Expressjs.com. https://expressjs.com/

Patel, P. (2018, April 18). What exactly is Node.js? FreeCodeCamp.org.

https://www.freecodecamp.org/news/what-exactly-is-node-js-

ae36e97449f5

PHP. (2019). PHP: What is PHP? - Manual. Php.net.

https://www.php.net/manual/en/intro-whatis.php

React. (n.d.). Describing the UI. React. Retrieved March 1, 2024, from

https://react.dev/learn/describing-the-ui

Richardson, C. (2017). Microservices.io. Microservices.io; Chris Richardson.

https://microservices.io/

S. Gillis, A. S. G. (2020, September). What is REST API (RESTful API)?

Techtarget.com.

https://www.techtarget.com/searchapparchitecture/definition/RESTful-

API

W3Schools. (2022). Introduction to HTML. W3schools.com.

https://www.w3schools.com/html/html_intro.asp

W3schools. (2019). CSS Introduction. W3schools.com.

https://www.w3schools.com/Css/css_intro.asp

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/Css/css_intro.asp

	1 Introduction
	2 Background
	2.1 HTML, CSS and JavaScript
	2.2 React
	2.3 Node.JS and Express.JS framework
	2.4 PHP and Laravel Framework
	2.5 RESTful API and Microservice Architecture

	3 GraphQL
	3.1 Concept
	3.1.1 Graph in GraphQL
	3.1.2 Query
	3.1.3 Comparison between GraphQL with REST

	3.2 Apollo GraphQL Platform
	3.2.1 Apollo Client
	3.2.2 Apollo Server

	3.3 GraphQL Federation
	3.3.1 Apollo Federation

	4 Implementation
	4.1 Project Overview
	4.1.1 Use Case
	4.1.2 Project System Architecture
	4.1.3 Project Source Code Structure

	4.2 Development Process
	4.2.1 NodeJS Backend Microservice Components
	4.2.2 PHP Backend Microservice Components
	4.2.3 GraphQL Federation Service
	4.2.4 React Frontend

	5 ConclusionS and Assessment
	References

