
Danila Timoshchenko

MALWARE ANALYSIS FOR ARM-BASED UNIX-LIKE SYSTEMS

MALWARE ANALYSIS FOR ARM-BASED UNIX-LIKE SYSTEMS

Danila Timoshchenko
Bachelor’s Thesis
Spring 2024
Software Development Engineering
Oulu University of Applied Sciences

ABSTRACT

Oulu University of Applied Sciences
Software Development Engineering

Author: Danila Timoshchenko
Title of the thesis: Malware Analysis for Arm-Based Unix-Like Systems
Thesis examiner(s): Teemu Korpela
Term and year of thesis completion: Spring 2024 Pages: 28

The goal of this thesis was to assess the current state of malware, developed and recompiled for
ARM-based Linux and MacOS systems.

In the thesis, the threat of malware for newer ARM-based systems is reviewed for both Linux and
MacOS. For analysis purposes, Ghidra was set-up using virtualised instance of MacOS as a
secure environment using UTM.

The common measure of protection MacOS and Linux systems were mentioned, the threat of
repurposed malicious code originally written for x86 architecture as well as Rosetta 2 being able
to run x86 architecture malware.

To research the malware, the source code of Mirai botnet was reviewed as an example for Linux
systems and their vulnerability to such attacks. For MacOS, the sample of GoSearch22 malware
was analysed using Ghidra. With GoSearch22 analysis, the attention was drawn towards its anti-
debugging behaviour as it utilised many techniques currently used to avoid research.

The thesis is finalised with the need for understanding low level programming, and obfuscation
techniques of malicious binaries for proper malware analysis. Taking the nature of the analysed
malware, some protection vectors of currently used systems are mentioned as well.

Keywords: Apple Silicon, Malware Analysis, Linux, Ghidra, Anti Debugging Logic.

3

CONTENTS

1 INTRODUCTION.. .5

2 MALWARE PROTECTION MEASURES.. .6

2.1 Linux Protection Measures... .6

2.2 MacOS Protection Measures... .7

3 UNIVERSAL AND ARM SPECIFIC MALWARE SAMPLES... .8

3.1 Linux Samples.. .8

3.2 MacOS Samples.. .9

4 ARM SPECIFIC MALWARE ANALYSIS TOOLS AND APPROACHES................................11

4.1 Linux Malware Analysis.. .11

4.2 Preparing Ghidra for MacOS Malware Analysis... .16

4.3 MacOS Malware Analysis.. .19

5 CONCLUSION... .24

REFERENCES... .26

4

1 INTRODUCTION

Devices based on ARM architecture SoC are becoming more widespread on the market. With the

introduction of Google’s ChromeOS, Apple Silicon devices, and other ARM-based laptops and

desktop computers, such devices are now directly competing with x86-64 based computers, with

a positive trend of occupying more market share with each year.(1)

With this continuously expanding market-share of ARM-based computers, the first native malware

sample for Apple silicon chip has been reported.(2) This included the concern of some of the

antivirus engines having architectural specific signatures for known malware, making it harder to

analyse ARM binaries. Many reports state that the most concerning threat for MacOS are poten-

tially unwanted programs and adware, with malware accounting for only 1.5 percent of total de-

tections in 2020.(3)

Unlike MacOS, Linux is heavily utilized as an operating system for servers and supercomputers,

powering only 2 percent of desktops, making Linux systems a target for other types of malware

compared to Apple’s system.(4) Trojans and web shells pose a greater threat to Linux systems

than potentially unwanted programmes and adware.(5), (6) This correlates with the claim that

only 15 percent of Amazon AWS’s cloud servers were ARM-based, and while ARM-based serv-

ers are growing in numbers, it is still difficult to compete with well-established x86 solutions, which

could be the reason of slower distribution of Mirai family malware across ARM-based devices

shown in some reports (7).

5

2 MALWARE PROTECTION MEASURES

2.1 Linux Protection Measures

Linux distributions come with package managers, which allow their users to install most programs

via terminal, without the need of searching for the necessary software online. Most software dis-

tributed from such repositories is open source and any changes in the source code are review-

able by anyone. Such approach creates a community of trusted developers and proactive users,

who take part in bug reporting the issues and contributing the development of the software for

Linux systems.

Considering Linux being a relatively unpopular desktop solution, Canonical team claims there is

no virus by definition in almost any known and updated Unix-like operating system (8). It is

achieved by not running programs as a root in Linux and having less malicious actors actively

developing malware for desktop Linux. However, Linux systems are not invincible to malware,

and there are still ways of getting infected, rootkits and backdoors pose a great threat as well,

being able to covertly infect the system and inspect files inside the system, leaking any sensitive

data stored as plaintext.

Being a system with a wide choice of distributions with different software installed, there are no

anti-virus software prebuilt in the system. However, there are ways of protecting the system such

as installing various rootkit searching software, examples being chkrootkit and the rootkit hunter

project. For other types of malware, ClamAV is recommended as an open-source anti-virus en-

gine for Linux (9), (10), (12).

Some Linux distributions also provide extra security features, Qubes OS is a Linux distribution,

which offers an isolation-based type of managing the system, where each application can be

assigned to isolated virtual machine, that has no information accessible outside its allowed scope,

including disposable virtual environments, capable of erasing any data left by the action of the

program or the user, without any change to the system itself.

6

2.2 MacOS Protection Measures

Like Linux and Windows systems, MacOS allows its users to download and install applications in

several ways:

- Downloading applications from Apple App Store.

- Downloading images of applications from 3rd party websites (13).

- Using package managers such as Homebrew or Nix (14), (15).

Such approach is different from iOS and iPad OS systems, which do not allow any applications

installed outside of App Store (16). However, to comply with EU’s Digital Markets Act, Apple might

need to allow side-loading applications on their devices in near future (17), (18).

To ensure the safety of the system from malware, Apple uses 3 layers of defence, which consist

of preventing the launch of the system with vetted App Store, blocking known malware from ex-

ecuting with Gatekeeper and Notarisation, and remediating the malware that has been executed

with XProtect.(19)

Gatekeeper is responsible for quarantine of malicious software if such software is attempted to be

executed. Its task is to verify if the software is notarized by Apple, otherwise, the application is

prevented from executing and is assigned a quarantine extended attribute (20).

Notarisation is a process of submitting an application written for MacOS to review by Apple. This

reduces the user warnings about launching the application and ensures the developer’s compli-

ance with Apple’s policies and guidelines for distributing the software outside of App Store (21).

Despite this, applications with no notarization can still be launched on MacOS devices after dis-

playing the warning to the user.

XProtect acts proactively, scanning MacOS files every time the computer is idle or when an app

has been changed or the signatures are updated (22). It acts as a rudimentary antivirus system

that checks files for known malware based on signatures and other heuristics.

Additionally, there are several 3rd party solutions for active anti-malware software such as Avast

Antivirus, Norton Antivirus or Kaspersky Antivirus for Mac (23), (24), (25).

7

3 UNIVERSAL AND ARM SPECIFIC MALWARE SAMPLES

3.1 Linux Samples

Most malware samples detected on Linux come in a form of binaries(5), to inspect if a binary files

can be launched on linux for ARM, the ‘file’ command can be used in order to inspect the binary.

This also works for libraries and any other file in the system, including images and text files.
~ file /bin/ls

/bin/ls: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), dynamically

linked, interpreter /lib/ld-linux-aarch64.so.1

Most of the binaries on Linux are ELF format binaries, they come in forms of x86, ARM and uni-

versal binaries. Using an ARM Linux distribution, it is possible to natively compile an aarch64

binary.
~ gcc -o hello_world_aarch64 hello_world.c

~ file hello_world_aarch64

hello_world_aarch64: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), dy-

namically linked, interpreter /lib/ld-linux-aarch64.so.1

Tools such as FatELF might allow creation of universal binaries for multiple architectures (26).

However, such approach would require prior patching of the system where the binary is to be

executed. The lack of patching of the target system requires the malware to be compiled and

distributed with understanding of the final target, which may shield ARM based desktop Linux

systems from already existing malware, compiled for x86.

Being used for various IoT applications, Linux for ARM shares the same threat both on desktop

and IoT devices, therefore, most known malware for such devices can be labeled as Linux mal-

ware in general, sharing similar file structure and CPU architecture (27). Additionally, the need of

targeting specific architecture and recompiling the code in order to target ARM devices makes

open-source malware dangerous, as multiple malicious actors can target different types of

devices, modifying the source code to suit their needs.

The example of such malware is Mirai family botnet, of which source code was publicly available.

Mirai originally targeted IoT devices, infected devices then scanned the network for vulnerable

targets and, using a list of most common root password combinations, acquired super-user priv-

8

ileges, spreading the botnet further. Being compiled for ARM devices, refactored version of Mirai

might target ARM based desktop devices and gain control over the device and leak confidential

data stored as plaintext. Such malware may infect desktop machines which have improper root

usernames and passwords set up as well as poorly managed firewall rules for the system.

Additionally, as modern malware become more and more polymorphous, anti-virus software may

struggle with performing static analysis and signature detection. Online anti-virus engines, both

standalone or built into file exchange websites, have limitations for file sizes, the file limit can

easily be reached with filling the end of the file with junk data (28). This would allow malware to

avoid being sent for scanning via the anti-virus API and would further obfuscate the malicious

software.

3.2 MacOS Samples

Unlike standard ELF binaries, Mach-O binaries can be compiled for both x86 and ARM-based

MacOS systems, developers can compile their programs for both architectures, which allows

malware to target all modern MacOS systems. Thus, malware developed for x86 does not need

to be targeted to only one of the architectures as it can be compiled as a universal binary and be

executed on either architecture (29).

One of the first malware samples found as a universal binary being compiled for Apple Silicon

ARM system is GoSearch22 (SHA256 value: b94e5666d0afc1fa49923c7a7-

faaa664f51f0581ec0192a08218d68fb079f3cf). Searching the malware databases and reports for

malware, that could potentially run on newer Apple Silicon System on Chip lead to the sample.

The filtering process included ‘arm’, ‘64’, ‘mach-o’ and ‘multi-arch’ tags. Using ‘file’ command

again, GoSearch22 binary can be inspected to reassure it is compiled for ARM.

% shasum -a 256 GoSearch22

b94e5666d0afc1fa49923c7a7faaa664f51f0581ec0192a08218d68fb079f3cf GoSearch22

% file GoSearch22

GoSearch22: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit execut-

able x86_64] [arm64:Mach-O 64-bit executable arm64]

GoSearch22 (for architecture x86_64): Mach-O 64-bit executable x86_64

GoSearch22 (for architecture arm64): Mach-O 64-bit executable arm64

9

At the moment, more binaries compiled for Apple Silicon can be found, searching the malware

databases, including universal binaries for both x86 and Apple ARM architectures.

With introduction of Macintosh computers based on Apple Silicon arm chips, Apple provides its

consumers with Rosetta 2 emulation tool, which allows to execute x86 programs using ARM-

based devices (30). Rosetta 2 easies the transition from x86 to Apple Silicon ARM, but it can also

be dangerous as it can aid in executing malware, developed for Intel based Macintosh com-

puters.

Recent studies show that it is indeed possible to execute malware compiled for x86 on Apple

Silicon devices with the help of Rosetta 2, more so, the malware written for x86 and running

through Rosetta does not have to be signed in order to be executed. This may potentially create a

greater threat to ARM macintosh devices as the absence of need of signing the malware removes

one of the protection layers, reminding the user of potentially malicious capabilities of the pro-

gram to be executed (31), (32).

10

4 ARM SPECIFIC MALWARE ANALYSIS TOOLS AND APPROACHES

4.1 Linux Malware Analysis

With the fast-growing market of IoT devices, Mirai has become a popular tool for malicious actors.

However, due to its open code and structure, Mirai was easily available for evaluation and ana-

lysis.

Looking at Mirai botnet’s structure we can see some of the key traits of this botnet on figure 1.

Instead of a more resilient structure of Peer-to-Peer bot network, Mirai uses Command and Con-

trol Server structure to command the network and issue orders to the botnet. Such structure is

less persistent as if the C&C server is to be taken down by the law enforcement, the botnet will

11

FIGURE 1. Mirai’s botnet structure. Credit - Meghan Carole Riegel(37)

end up being orphaned. To prevent the orphanage of the, the C&C server must be changed fairly

often.

Infecting is performed with, firstly, scanning the IP addresses of possible IoT devices for open

telnet ports and, secondly, attempts to gain root access on the device in order to install the mal -

ware. It utilizes hard-coded login-password pairs to attempt to gain root access, which can be

found in mirai/bot/scanner.c file.

After establishing connection and gaining root access, the binary is downloaded via wget or tftp

and installed. If neither wget or tftp are installed, the attacker loads the downloader binary with

echo and installs the full binary after it. Once the binary is installed, the connection is closed and

the newly recruited bot is starting to search for new hosts to attack and recruit new devices for the

network (Figure 2).(37)

Mirai bots have been called ‘territorial’ for their never before seen behaviour of botnet killer pro-

cess. It attempts to detect other malware processes on the infected device and kill them, trying to

be the only malware running on the infected device. This behaviour can be seen, analysing the

file mirai/bot/killer.c (38). (Figure 3)

12

FIGURE 2. Sequence of attack of a bot in the network. Credit - Meghan Carole Riegel(37)

After the competing malware processes are stopped, Mirai attempts to scan the network in order

to gain access to new devices to infect.

Another trait of Mirai’s scanning process is avoidance of some IP address ranges, for example,

Mirai actively avoids the US Postal Service, as well as the US Department of Defence. Avoiding

the unwanted attention towards the botnet may be the reason behind such behaviour, making the

botnet less visible to the government law enforcements (figure 4) and potentially prolonging the

window of opportunity for the botnet to act.

After infecting enough devices, C&C Server can issue an attack for a botnet, the botnet readies

the attack, creating multiple threads and if another attack is being performed, stops it, this can be

inspected in mirai/bot/attack.c:

13

FIGURE 3. mirai/bot/killer.c lines 511-528

FIGURE 4. List of IP addresses Mirai actively avoids.

In mirai/bot/attack.h This can be seen in the code (Figure 5), responsible for initialising the attack

and adding placing the attack methods into a dictionary for later accessing by the bot. It then

receives a target for the DDoS attack from the C&C as well as the needed flags for the attack,

which the bot can then query from the dictionary (Figure 6).

14

FIGURE 5. mirai/bot/attack.h lines 44-62 attack initialisation.

The attacks themselves are not unique, compared to other botnets, however, they may pose a

great threat threat because of the numbers of the bots in the network, as well as the obfuscated

direction of the attack, with the bots being spread across the globe.

The structure of the Command and Control Server consists of an SQL database with client list,

which consists of bots in the network, the API for controlling the network and an interface for

users to log-in.

Figures 7-8 shows the initialisation of the ClientList structure in mirai/cnc/clientList.go file as well

as bot structure for the database in mirai/cnc/bot.go file.

15

FIGURE 6. Defining attack types.

The additional code can be found in the same mirai/cnc/ directory, Mirai provides a wide variety of

settings regarding access to its C&C server, the owner of the server can set-up additional ac-

counts, choose how much DDoS time the accounts are allowed to perform, the number of bots,

dedicated to the user and the cooldown between the attacks. With this in mind, Mirai was de-

signed as a part of the system, that could provide DDoS attacks as a service. This continues the

trend of subleasing the botnets for hire, which lowers the barrier to entry for a DDoS attackers

(39).

Mirai was one of the malware samples, which further threatens the ARM-based devices. The

malware thrives upon the networks with poorly or not configured firewalls and exploits the stand-

ard login – password pairs. The protection measures, required to avoid becoming a target of such

exploits are extremely basic, however, with the wide spread of IoT devices, such measures as

randomly generated passwords and properly set-up firewalls may be reasonable to enforce upon

the manufacturers of said devices, to strengthen the poorly protected market of IoT devices.

4.2 Preparing Ghidra for MacOS Malware Analysis

It is important to prepare the secure environment for working with malware. The most straight-for-

ward approach would be setting up emulated or virtual machines with QEMU (33). For setting up

16

FIGURE 7. Initialisation of ClientLists in SQL database.

FIGURE 8. Initialisation of bots in SQL database.

a virtual environment under MacOS, UTM will be used, it is based on QEMU and tailored more

towards working with Apple Silicon based MacOS systems (34). UTM then needs to be installed

via brew package manager or directly from the official website.

After installing UTM, it will open with the welcome screen. The system can be virtualised or emu-

lated, shown in figure 9:

Then it is possible to pick MacOS, it will be downloaded and installed as a virtual machine and

appear in the most left column in UTM interface.

Such setup allows malware researchers to safely reproduce and observe malware’s behaviour

without causing any harm to the host system. It is possible to control what data is accessible by

the virtual machine as well as restricting network access.

After initial setup of the system itself, brew package manager needs to be installed in the virtual

environment as well (Figure 10):

% /bin/bash -c "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

17

FIGURE 9. Creating UTM virtual environment.

After it has been installed, it reminds to add Homebrew to system’s PATH:

% (echo; echo 'eval "$(/opt/homebrew/bin/brew shellenv)"') >> /Users/User/.zprofile

% eval "$(/opt/homebrew/bin/brew shellenv)"

Brew can be then used to install other packages such as Ghidra and its dependencies.(35)

Ghidra is a powerful reverse-engineering tool, which allows dissecting the binary into assembly

instructions. It is a crucial tool for the analysis as it allows breaking down the binary into readable

instructions, which can be inspected then. Ghidra is an open-source tool, developed by NSA's

Research Directorate. As an alternative, Hopper can be used as an alternative to Ghidra, how-

ever, it is a proprietary solution (41).

% brew install ghidra python3 gradle opendjk

Using brew, Ghidra, Python3, Gradle and OpenJDK respectively can be installed, which is seen

in the command above. Then the variable can be exported, the versions of OpenJDK and Gradle

18

FIGURE 10. Installing brew package manager in UTM.

can be different depending on which version was installed, which can also be checked with

HomeBrew.

export JAVA_HOME="/opt/homebrew/opt/openjdk"

export GHIDRA_INSTALL_DIR="/opt/homebrew/Caskroom/ghidra/11.0.1-20240130/

ghidra_11.0.1_PUBLIC"

After exporting the variables, ‘buildNatives’ script needs to be launched in Ghidra, which will stop

the gatekeeper from the denial of access to the decompiler.

% cd ${GHIDRA_INSTALL_DIR}/support

% ./buildNatives

Some extensions for Ghidra may require Python, for this it is essential to install Ghidraton exten-

sion(36). MacOS does not have Python 2 installed, according to Ghidraton documentation, it will

switch to Python 3 interpreter when ghidrathon_configure.py is launched.

Ghidra now be used to create projects and start analysing the code of the malicious software via

reverse-engineering.

4.3 MacOS Malware Analysis

GoSearch22 was one of the first discovered malware samples compiled natively for Apple Silicon,

using Ghidra to create a project and start analysing its behaviour.

Distributed as a .app application file for MacOS, the victim had to grant permission to execute the

program. The malware changes the search engine of the default web-browser of the victim, act-

ing as an adware.

Infected devices would have their browser sessions compromised, having the search engine

changed to GoSearch website. It could also leak sensitive data and could potentially push un-

wanted content and malicious code through the browser extension.

19

The focus of GoSearh22 analysis will be pointed towards its mechanisms of debugging avoid-

ance. The sample actively tries to avoid being debugged and researched under controlled envir-

onment. The malware applies several logical checks and procedures in order to make sure if it is

being debugged:

1. Invoking supervisor call (svc instruction)

2. Invoking sysctl API call

3. Check if the malware is running in a virtual environment

4. Check if SIP is disabled

Other malware samples have also implemented anti-debugging techniques, dealing with it is now

a required practice for malware analysis(42). Instruction obfuscation techniques and adding junk

instructions to the binary is also becoming a widely used practice to further harden the malware

against dynamic analysis tools.

To analyse the logic of an svc instruction, a project in Ghidra needs to be created to open the

malware sample inside the project. After uploading the file, it is possible to select the needed

language and then check the file for any mistakes while uploading or any differences with SHA

sums (Figure 11).

20

FIGURE 11. Creating and inspecting GoSearch22 project in Ghidra.

Using Ghidra’s code browser, the malware can be analysed in search of the needed instruction.

Searching for the instruction mnemonic, the first svc call at 00bc12c can be found, shown on

figure 12.

Another svc call can be found at address 000bc1fc. (Figure 13)

21

FIGURE 12. First svc interrupt call.

FIGURE 13. Second svc interrupt call.

To bypass such svc calls, it is possible to set a breakpoint at the instruction address in a debug-

ging tool and then skip over the problematic call. The rest of the program will continue as if the

supervisor call was never there in the first place. This concludes the anti-debugging logic of this

malware sample.

However, GoSearch22 implements another tactic of making a call to sysctl API. The API can be

used for various purposes, including the information about the state of the process. With this, the

malware can be determined whether it is being debugged. Once again, it is invoked with the bl

instruction. (Figure 14)

This check can be avoided similarly to svc call, just skipping over the problematic instruction in

the debugger. After locating the instruction, where the p_trace is attached, it is possible to skip

over the instruction, leaving the register unchanged for later checks.

The malware sample also checks for various artifacts in the system, which can hint to the pro-

gram that it is being run in an emulated environment. In the section below, the parsing process is

displayed, which is used to determine whether the malware is being executed under the virtual

environment.

/bin/sh -c -c,

readonly VM_LIST="VirtualBox\|Oracle\|VMware\|Parallels\|qemu";is_hwmodel_vm() { ! sy-

sctl -n hw.model|grep "Mac">/dev/null;};is_ram_vm(){(($(($(sysctl -n hw.memsize)/

1073741824))<4));};is_ped_vm(){ local -r ped=$(ioreg -rd1 -c

IOPlatformExpertDevice);echo "${ped}"|grep -e "board-id" -e "product-name" -e "model"|

grep -qi "${VM_LIST}"||echo"${ped}"|grep "manufacturer"|grep -v "Apple">/dev/

null;};is_vendor_name_vm(){ ioreg -l|grep -e "Manufacturer" -e "Vendor Name"|grep -qi "$

{VM_LIST}";};is_hw_data_vm(){ system_profiler SPHardwareDataType 2>&1 /dev/null|grep -e

"Model Identifier"|grep -qi "${VM_LIST}";};is_vm() { is_hwmodel_vm||is_ram_vm||

is_ped_vm||is_vendor_name_vm||is_hw_data_vm;};main(){ is_vm&&echo 1||echo 0;};main "${@}

22

Figure 14. Sysctl API invoked with bl instruction.

This can be avoided the same way, skipping over the problematic instruction. Another solution

could be setting up the virtual environment in a way, that mimics the set-up on hardware, repeat-

ing the same entries as the system running on bare metal.

In order to debug malware under MacOS, it might be necessary to disable System Integrity Pro-

tection(40). This leaves the system vulnerable to malicious code, however, it is not an issue under

a virtual environment. As malware researchers may have the SIP disabled, GoSearch22 attempts

to execute the following:
-c command -v csrutil > /dev/null && csrutil status | grep -v "enabled" > /dev/null &&

echo 1 || echo 0

If the SIP is disabled, the command will echo 1, telling the malware to stop from running further.

The object can be printed out to examine the value of the register using lldb:
(lldb) po $x0

<NSConcreteTask: 0x1058306c0>

(lldb) x/s $x1

0x1e9fd4fae: "launch"

The object can be seen as an instance of an NSConcreteTask. With x/s it is possible to see the

second argument, which is a launch method, which will execute the task and interrupt the pro-

gram.

Concluding the techniques of GoSearch22 evading the analysis, the malware sample utilises

several techniques, which are essential to understand for any malware analyst, this also high-

lights the need of lower level programming skills and ARM instructions.

23

5 CONCLUSION

Comparing Linux and MacOS systems on ARM, the distinction between desktop and IoT solu-

tions is clearly seen, the transition of desktop solutions from x86 to ARM has not yet finished, but

the malicious code has already been found compiled for desktop systems running on ARM, the

translation layers such as Rosetta may also pose a threat(32).

Being used for various IoT applications, ARM has already become one of the leading architec-

tures for such devices. Unfortunately, analysing Mirai source code and its impact on the DDoS

threats, The vulnerability of these devices can be easily seen if left unprotected. Default login-

password pairs set-up by manufacturers have created a significant dent in the whole class of

devices, which are always online and surround us everywhere. The process of randomising the

login-password pairs during the initial set-up or during the production will eliminate such a

straight-forward exploit in these machines.

Setting up firewalls, sysadmins can leverage the sources of incoming packets, which a device or

a network can receive. Restricting the use of the device to the local network will also protect the

IoT device entirely from all the malicious activity coming from outside the network.

For desktop systems, the ways of protecting the device comes down to administrating the soft-

ware, allowed for executing. As mentioned before, the ways of protecting the desktop systems

come in a way of vetting the applications. However, GoSearch22 and Rosetta 2 showed us an

example of malicious software being temporarily signed or allowed to run without signing from

Apple.

Securing the desktop systems in business environment once again brings up a need for IT secur-

ity consulting, sysadmins setting up and managing the user accounts in the working environment,

and most importantly, teaching the employees cybersecurity fundamentals, to know how to se-

cure their system and not to fall victim of a malicious actor.

The slow transition towards ARM architecture for desktop systems now brings a need for under-

standing both x86 and ARM instructions on lower levels of software development. The techniques

of obfuscating the binary code is now widely used for both architectures, as well as the anti-de-

24

bugging methods. Better knowledge of system APIs as well as studying ARM assembly is now

essential not only for software development engineers working on embedded systems, but also

for malware analysts.

25

REFERENCES

1. Counterpoint Research, ‘Arm-based PCs to Nearly Double Market Share by 2027’.

Search date 1.2.2024 https://www.counterpointresearch.com/insights/arm-based-pcs-to-

nearly-double-market-share-by-2027

2. Patrick Wardle, VB2021 Localhost Conference, ‘ARM’d & dangerous an introduction to

analysing arm64 malware targeting macOS’ October 8, 2021. Search date 1.2.2024

https://vblocalhost.com/uploads/VB2021-Wardle.pdf

3. Malwarebytes.com, ‘2021 State of Malware Report’. Search date 1.2.2024

https://www.malwarebytes.com/wp-content/uploads/sites/2/2023/09/mwb_stateofmalware

report2021.pdf

4. Truelist.co, ‘Linux Statistics – 2023’, January 9, 2023. Search date 1.2.2024

https://truelist.co/blog/linux-statistics/

5. AV Atlas, ‘Total amount of malware and PUA under Linux’. Search date 1.2.2024

https://portal.av-atlas.org/malware/statistics

6. Trend Micro, ‘The Linux Threat Landscape Report’. Search date 1.2.2024

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-

linux-threat-landscape-report

7. Crowdstrike.com, ‘Mirai Malware Variants for Linux Double Down on Stronger Chips in

Q1 2022’. Search date 1.2.2024 https://www.crowdstrike.com/blog/linux-mirai-malware-

double-on-stronger-chips/

8. Ubuntu Help Page, ‘So You Want to Know How to Use Anti-virus Software on Ubuntu?’.

Search date 17.2.2024

9. Chkrootkit.org Main Page. Search date 17.2.2024 https://www.chkrootkit.org/

10. The Rootkit Hunter Project. Search date 17.2.2024 https://rkhunter.sourceforge.net/

11. ClamAV Main Page. Search date 17.2.2024 https://www.clamav.net/

12. Red Hat Blog, ‘3 antimalware solutions for Linux systems’. Search date 17.2.2024

13. Apple.com, ‘Install and uninstall apps from the internet or a disc on Mac’. Search date

13.2.2024 https://support.apple.com/guide/mac-help/install-and-uninstall-other-apps-

mh35835/mac

14. Brew.sh, ‘Homebrew The Missing Package Manager for macOS (or Linux)’. Search date

13.2.2024 https://brew.sh/

26

https://brew.sh/
https://support.apple.com/guide/mac-help/install-and-uninstall-other-apps-mh35835/mac
https://support.apple.com/guide/mac-help/install-and-uninstall-other-apps-mh35835/mac
https://www.clamav.net/
https://rkhunter.sourceforge.net/
https://www.chkrootkit.org/
https://www.crowdstrike.com/blog/linux-mirai-malware-double-on-stronger-chips/
https://www.crowdstrike.com/blog/linux-mirai-malware-double-on-stronger-chips/
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-linux-threat-landscape-report
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-linux-threat-landscape-report
https://portal.av-atlas.org/malware/statistics
https://truelist.co/blog/linux-statistics/
https://www.malwarebytes.com/wp-content/uploads/sites/2/2023/09/mwb_stateofmalwarereport2021.pdf
https://www.malwarebytes.com/wp-content/uploads/sites/2/2023/09/mwb_stateofmalwarereport2021.pdf
https://vblocalhost.com/uploads/VB2021-Wardle.pdf
https://www.counterpointresearch.com/insights/arm-based-pcs-to-nearly-double-market-share-by-2027
https://www.counterpointresearch.com/insights/arm-based-pcs-to-nearly-double-market-share-by-2027

15. Nixos.org, ‘Nix: the package manager’. Search date 13.2.2024

https://nixos.org/download.html#nix-install-macos

16. Apple Discussions, ‘Run DMG file in iPad Air 5’. Search date 13.2.2024

https://discussions.apple.com/thread/253921700?sortBy=best

17. European Commission, ‘About the Digital Markets Act’. Search date 13.2.2024

https://digital-markets-act.ec.europa.eu/about-dma_en

18. Bloomberg Blog, ‘Apple to Allow Outside App Stores in Overhaul Spurred by EU Laws’.

Search date 13.2.2024 https://www.bloomberg.com/news/articles/2022-12-13/will-apple-

allow-users-to-install-third-party-app-stores-sideload-in-europe

19. Apple Support, ‘Protecting against malware in macOS’. Search date 16.2.2024

https://support.apple.com/guide/security/protecting-against-malware-sec469d47bd8/web

20. Apple Support, ‘Gatekeeper and runtime protection in macOS’. Search date 16.2.2024

https://support.apple.com/guide/security/gatekeeper-and-runtime-protection-

sec5599b66df/1/web/1

21. Apple Developer Documentation, ‘Notarizing macOS software before distribution’. Search

date 16.2.2024

https://developer.apple.com/documentation/security/notarizing_macos_software_before_

distribution

22. Appleinsider.com Blog, ‘Apple XProtect is now proactive with periodic malware scans’.

Search date 16.2.2024 https://appleinsider.com/articles/22/08/31/apple-xprotect-is-now-

proactive-with-periodic-malware-scans

23. Avast.com Download Page. Search date 17.2.2024 https://www.avast.com/index#mac

24. Norton.com Download Page. Search date 17.2.2024

https://us.norton.com/products/norton-360-antivirus-plus#

25. Kaspersky.com Download Page. Search date 17.2.2024

https://www.kaspersky.com/mac-antivirus

26. FatELF Web Page, ‘FatELF: Universal Binaries for Linux’. Search date 20.2.2024

https://icculus.org/fatelf/

27. ‘A Survey on Cross-Architectural IoT Malware Threat Hunting’. Search date 22.2.2024

https://arxiv.org/abs/2306.07989

28. Virus Total Documentation, ‘Upload a file’. Search date 22.2.2024

https://docs.virustotal.com/reference/files-scan

27

https://arxiv.org/abs/2306.07989
https://us.norton.com/products/norton-360-antivirus-plus
https://www.avast.com/index#mac
https://appleinsider.com/articles/22/08/31/apple-xprotect-is-now-proactive-with-periodic-malware-scans
https://appleinsider.com/articles/22/08/31/apple-xprotect-is-now-proactive-with-periodic-malware-scans
https://support.apple.com/guide/security/gatekeeper-and-runtime-protection-sec5599b66df/1/web/1
https://support.apple.com/guide/security/gatekeeper-and-runtime-protection-sec5599b66df/1/web/1
https://support.apple.com/guide/security/protecting-against-malware-sec469d47bd8/web
https://www.bloomberg.com/news/articles/2022-12-13/will-apple-allow-users-to-install-third-party-app-stores-sideload-in-europe
https://www.bloomberg.com/news/articles/2022-12-13/will-apple-allow-users-to-install-third-party-app-stores-sideload-in-europe
https://digital-markets-act.ec.europa.eu/about-dma_en
https://discussions.apple.com/thread/253921700?sortBy=best
https://nixos.org/download.html#nix-install-macos

29. Apple Developer Documentation, ‘Building a Universal macOS Binary‘. Search date

23.2.2024 https://developer.apple.com/documentation/apple-silicon/building-a-universal-

macos-binary

30. Apple Support Page, ‘If you need to install Rosetta on your Mac’. Search date 19.2.2024

https://support.apple.com/en-us/HT211861

31. Apple Support Page, ‘Rosetta 2 on a Mac with Apple silicon’. Search date 28.2.2024

https://support.apple.com/guide/security/rosetta-2-on-a-mac-with-apple-silicon-

secebb113be1/web

32. Science Direct, ‘Assessing the threat of Rosetta 2 on Apple Silicon devices’. Search date

28.2.2024 https://www.sciencedirect.com/science/article/pii/S2666281723001300?

ref=cra_js_challenge&fr=RR-1

33. QEMU website. Search date 11.3.2024 https://www.qemu.org/

34. UTM website, ‘Securely run operating systems on your Mac’. Search date 11.3.2024

https://mac.getutm.app/

35. Ghidra repository. Search date 18.3.2024

https://github.com/NationalSecurityAgency/ghidra

36. Ghidraton repository. Search date 18.3.2024 https://github.com/mandiant/Ghidrathon

37. Meghan Carole Riegel. ‘TRACKING MIRAI: AN IN-DEPTH ANALYSIS OF AN IOT BOT-

NET’. Search date 01.04.2024

https://etda.libraries.psu.edu/files/final_submissions/15003

38. Mirai Source Code Repository. Search date 29.3.2024 https://github.com/jgamblin/Mirai-

Source-Code

39. Imperva blog, ‘Booters, Stressers and DDoSers’. Search date 01.04.2024

https://www.imperva.com/learn/ddos/booters-stressers-ddosers

40. Apple Developer Documentation, ‘Disabling and Enabling System Integrity Protection’.

Search date 02.04.2024

https://developer.apple.com/documentation/security/disabling_and_enabling_system_inte

grity_protection

41. Hopper Front Page. Search date 04.04.2024 https://www.hopperapp.com/

42. SentinelLabs Blog, ‘Defeating macOS Malware Anti-Analysis Tricks with Radare2’.

Search Date 04.04.2024 https://www.sentinelone.com/labs/defeating-macos-malware-

anti-analysis-tricks-with-radare2/

28

https://www.qemu.org/
https://support.apple.com/guide/security/rosetta-2-on-a-mac-with-apple-silicon-secebb113be1/web
https://support.apple.com/guide/security/rosetta-2-on-a-mac-with-apple-silicon-secebb113be1/web

	CONTENTS
	1 INTRODUCTION
	2 Malware protection measures
	2.1 Linux Protection Measures
	2.2 MacOS Protection Measures

	3 Universal and arm specific malware samples
	3.1 Linux Samples
	3.2 MacOS Samples

	4 Arm specific Malware analysis tools and approaches
	4.1 Linux Malware Analysis
	4.2 Preparing Ghidra for MacOS Malware Analysis
	4.3 MacOS Malware Analysis

	5 Conclusion
	References

