
Bachelor’s Thesis

Turku University of Applied Sciences

Information and Communications Technology

2024

Eemeli Elgfors

Developing a Contract Test

Preparation Application

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

2024 | 48 sivua

Eemeli Elgfors

Sopimustestien valmistelusovelluksen kehittäminen

Tämän opinnäytetyön tarkoituksena oli luoda sovellus, joka pystyy socket-

kommunikaatioon Lashmate-sovelluksen kanssa viestintäprotokollan kautta, ja siten

pystyä etsimään ja esittämään virheitä Lashmaten suorittamissa laskelmissa.

Sovelluksen ideana oli vähentää Lashmaten virheiden etsimiseen kuluvaa aikaa ja

säästää Lashmate-kehittäjien aikaa.

Opinnäytetyön sovellus kehitettiin pääasiassa C#- ohjelmointikielellä. Sovellukseen

vaaditut päätoiminnot jaettiin vaiheisiin, jotka oli suoritettava, jotta sovellus toimisi

kunnolla. Sovelluksen testaus suoritettiin tarkkailemalla sovelluksen tuottamien

raporttien tarkkuutta ja sovelluksen yleistä suorituskykyä. Lashmate-kehittäjien

aikarajoituksista johtuen alkuperäinen sovelluksien kommunikaatiotapa ei ollut tässä

opinnäytetyössä mahdollinen, joten opinnäytetyötä varten luotiin

kommunikaatioprotokollasta imitaatio. Tästä johtuen opinnäytetyön raporttien

tarkkuustestaus testaa vain, että sovellus tulostaa imitaatioprotokollan esiasetetus tiedot

oikealla tavalla.

Sovelluksen testauksesta kerätyt tiedot olivat pääosin odotuksen mukaisia.

Opinnäytetyösovellus onnistui tuottamaan oikeat arvot imitaatioprotokollasta ja

sovelluksen ohjelmointitoimintojen suorituskyky oli riittävä. Tiedon määrän vuoksi

sovelluksen käyttöliittymä kohtasi vakavia suorituskykyongelmia.

Vaikka lopullinen sovellusversio ei pystynyt muodostamaan oikeanlaista socket-

kommunikaatiota Lashmaten kanssa, pystyy opinnäytettyösovellus silti tuottamaan

haluttuja tietoja, joita tarvitaan sovelluksen jatkokehittämisessä.

Asiasanat:

Virheraportti, Ohjelmavirhe, Konttikuljetus, Ohjelmisto

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2024 | 48 pages

Eemeli Elgfors

Developing a Contract Test Preparation Application

The objective of this thesis was to create an application capable of socket communication

with the Lashmate application through a communication protocol, and thus be able to

seek out and display errors in the calculations Lashmate performs. The purpose of the

application was to decrease the time it takes to seek out errors in Lashmate to save the

Lashmate developers’ time.

The application was developed using mainly C# programming language. The required

core functionalities of the application were divided into steps that had to be completed

for the application to run properly. The testing of the application was to be carried out by

observing the accuracy of the reports that the application output, and by the overall

performance of the application. Due to the Lashmate developer’s time constraints, the

original intended method of application-to-application communication was not possible

in this thesis, so an imitation of the communication was created for this thesis specifically.

Due to this, this accuracy testing of the thesis only tests that the application is properly

outputting the pre-set data from the imitation protocol.

The data collected from the testing of the application was mostly as expected. The thesis

application was successful in outputting the correct values from the imitation protocol,

and the overall performance of the methods inside the application was sufficient.

However, due to the amount of data output, the user interface encountered serious

performance issues.

Although the final application version was unable to establish proper socket

communication with Lashmate, the development of the contract test preparation

application outputs the desired data needed for further development.

Keywords:

Bug report, Error, Container shipping, Software

Contents

List of Abbreviations 7

1 Introduction 8

1.1 Objective of Thesis 9

1.2 Scope and Deliverables 9

1.3 Structure of Thesis 10

2 Theory 12

2.1 Container Ships, containers, and lashing equipment 12

2.2 Forces applied to containers 14

2.3 Container Placement Measurements 15

2.4 Lashmate 16

2.5 Relevant technologies 18

2.5.1 Visual Studio 18

2.5.2 Programming languages 19

2.5.3 Compound File Binary Format 20

2.5.4 CONSORT 20

3 Development 21

3.1 Designing the Application 21

3.1.1 Functionality Design 21

3.1.2 User Interface Design in the Application 22

3.2 Programming and Operational Design 27

3.2.1 Code Structure 27

3.2.2 Functionality Implementation 28

3.2.2.1 LoadShipFile 29

3.2.2.2 PairShipFiles 31

3.2.2.3 OpenLmuiFolder 32

3.2.2.4 ShipDefinitionReader 34

3.2.2.5 Result Query 35

4 Application Testing 36

5 Testing Results 38

5.1 Report Output 38

5.2 Performance 40

5.3 Result Discussion 42

6 Conclusion 44

References 47

Figures

Figure 1. Contract Test Preparation Application flow map. 10

 Figure 2. C5AM-DF semi-automatic twistlock produced by MacGregor

(MacGregor container securing systems product catalogue 2016). 13

Figure 3. Lashing bars and turnbuckles used to secure container stacks into a

lashing bridge (MacGregor container securing systems product catalogue,

2016). 14

Figure 4. Container ship’s linear and rotational motion depicted visually

(MacGregor container securing systems product catalogue 2016). 15

Figure 5. The primary measurement for container placement (Grundmeier

2016). 16

Figure 6. Main window view of the contract test preparation application. 24

Figure 7. Load Ship window view. 25

Figure 8. Match Ships and Containers window view. 26

Figure 9. Directory hierarchy of the ContractTestApplication project. 28

Figure 10. “fileExplorer” function used to select the installation folder. 29

Figure 11. “lookForvalidFiles” function. 30

Figure 12. Example of an error from missing files in the Lashmate installation

folder. 31

Figure 13. “PairShipsFile.xaml.cs” main functions. 32

Figure 14. Report output in the thesis application. 39

Figure 15. The output of the queryConstainerResults. 39

Figure 16. UI thread Utilization Graph. 42

Tables

Table 1. Performance test results. 41

List of Abbreviations

API Application Programming Interface

CFBF Compound File Binary Format

DLL Dynamic-link Library

IDE Integrated Development Environment

LMUD Stowage Plan File

LMUI Container Ship Definition File

MSI Microsoft Installer

TEU Twenty-foot Equivalent Unit

UI User Interface

VS Visual Studio

WPF Windows Presentation Foundation

XAML Extensible Application Markup Language

 8

Turun AMK:n opinnäytetyö | Eemeli Elgfors

1 Introduction

A software bug is an error, flaw, or unintended behavior in a computer program

or software application. Software bugs manifest themselves in many ways and

are often a detriment to the application they are found in. In larger applications

the amount of code can exceed tens of thousands of lines, so the specific cause

for a bug can be hard to find. Therefore, a large amount of software developers’

time is spent in finding the cause for the software bugs.

Software bug issues are unavoidable in software development and maintenance

(Zhou 2020). In software development bugs can appear in multiple separate

phases of the development process, with the most common phases being

development or coding. Harmful bugs are fixed before the release of the

application to the consumers, but sometimes more detrimental bugs can pass

through the testing process due to time constriction or because of an oversight

from the testers. Updates on the application carry out this same risk as well.

Depending on the severity of the bug this can have a large monetary impact on

the development company, so the time it takes to fix the bug is better kept at

minimum.

Software testing can take up to half of the resources of the development of new

software (Arcuri 2008). Manual bug finding consumes more time compared to

automated testing. An automated test environment removes the manual aspects

around bug finding, and it ensures that all the processes involved in and around

software development testing are seamless, joined up, and fully integrated. The

benefit of automated testing is the consistent results as well as saved time for the

developers.

 9

Turun AMK:n opinnäytetyö | Eemeli Elgfors

1.1 Objective of Thesis

The thesis' objective is to create a working contract test preparation application

for MacGregor, which is part of the Cargotec Oyj company. The test application

works in tandem with the company’s own application Lashmate. Communication

between the contract test preparation application and Lashmate is conducted

through socket communication. Socket communication is essentially a

mechanism of communication between processes (Haiping, 2019).

The development of this application is important to Macgregor as it saves time on

finding the bugs manually. Lashmate is an ongoing project in MacGregor, and it

is constantly being updated due to the consumer demand of the Lashmate

application. These updates may cause unforeseen bugs in the application that

hinder the usage of the application to some consumers. Finding the bugs as fast

as possible is particularly important.

This thesis’s application will be developed mainly using Visual Studio. Visual

Studio will be used to create the application, with C# as the programming

language. The application also consists of multiple DLL’s that are connected to

C++ programming language snippets that allow communication between thesis’s

application and Lashmate. There are two main parts in the script, one is to assert

the connection between the applications and the other is to process the

information collected through the connection and present it to the user in an easily

readable format.

1.2 Scope and Deliverables

The contract test preparation applications scope is too broad for this thesis, so

the thesis scope has been scaled down to a more appropriate level. Creating

proper bug test reports would entail an automatic installation and proper handling

of older Lashmate versions which cannot be driven programmatically. This

process would consist of significantly more work than is possible to deliver in this

thesis. The output of this thesis is to deliver a working script that creates a file

 10

Turun AMK:n opinnäytetyö | Eemeli Elgfors

that compares results from unchanged internal test cases to newly performed test

cases.

Figure 1 shows the flow map of a working thesis application. The dark green area

entitles Contract Test Preparation Application covers the scope of this thesis. The

light green elements depict the next steps of the application development

process. The Lashmate printer driver client and Lashmate proxy CONSORT

protocol are already developed protocols that the thesis application will utilize.

Figure 1. Contract Test Preparation Application flow map.

1.3 Structure of Thesis

This thesis consists of 6 main chapters. The first chapter is an introduction

chapter meant to introduce the reader to the thesis subject, objective, and scope.

The second chapter includes the bulk of the theory relating to the thesis. This

chapter contains basic information about container shipping, containers,

appropriate tools of the industry relating to the thesis, and the physical forces that

containers are subjected to. The chapter also explains some essential key words

relating to container positioning on the ship. Relevant technologies and tools used

 11

Turun AMK:n opinnäytetyö | Eemeli Elgfors

in the thesis are also briefly described in this chapter, although some of them will

be touched upon in later chapters.

The third chapter aims at explaining the methodologies and practices used in the

thesis application’s development. This chapter explains the philosophies of user

interface design decisions and goes through the intended functionality pipeline of

the application and its main functions and methods.

The fourth chapter includes the methodologies used in testing the thesis

applications functionality and performance. The fifth chapter intends to highlight

the test results from the application's testing and discuss the results.

The last chapter is the conclusion of the thesis. This chapter summarizes the key

findings of the study, describes the limitations and problems that the testing

methodologies caused, and recommends improvements for the testing method.

 12

Turun AMK:n opinnäytetyö | Eemeli Elgfors

2 Theory

This chapter contains basic information about container shipping, containers,

appropriate tools of the industry relating to the thesis, and the physical forces that

containers are subjected to. The chapter also explains some essential key words

relating to container positioning on the ship. Relevant technologies and tools used

in the thesis are also briefly described in this chapter, although some of them will

be touched upon in later chapters.

2.1 Container Ships, containers, and lashing equipment

MacGregor specializes in equipment in cargo and load handling on container

ships. As the thesis application is related to the Lashmate application used in

cargo handling, a review of basic container ships and container information is

required.

Container ships have grown significantly in size in over the last 20 years, in 2002

a large container ship would be able to carry approximately 6,500 TEU, today the

largest containerships can now transport 24,000 TEU (International Chamber of

Shipping s.a.). For such rapid growth in the industry, specialized equipment used

to load and transport such substantial amounts of cargo is needed. The

equipment often consists of twistlocks used in combination with turnbuckles,

[lashing] rods (Andersson 1997).

A twistlock (Figure 2) is a mechanical locking device attached to the corner of a

container. Twistlocks and latchlocks locate and secure containers either to each

other, withing a stack, or to the transport mode (Andersson 1997). A twistlock can

be locked either manually or automatically, depending on the twistlock type being

used.

 13

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 2. C5AM-DF semi-automatic twistlock produced by MacGregor (MacGregor

container securing systems product catalogue 2016).

Lashing bars (Figure 3) is one of equipment safety used for fastening container

when cruise which will be connected with turnbuckle (Australian Standard, 2001).

A lashing bar is a solid steel rod that is inserted into lashing points on containers,

and they connect multiple containers to the ship’s deck. Turnbuckle is a

tensioning device which in one end fits to the bottom part of a lashing rod and in

the other end to the structure of the transport mode (Andersson 1997).

Turnbuckle is used to adjust and maintain the required tension needed for the

lashing bars to secure the containers properly. Turnbuckle’s central frame can be

turned, applying, or relieving tension in the securing system.

 14

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 3. Lashing bars and turnbuckles used to secure container stacks into a lashing

bridge (MacGregor container securing systems product catalogue, 2016).

2.2 Forces applied to containers

Lashing systems and equipment are necessary, because of the forces that are

applied to the containers and other cargo while the container ship travels through

the seas. Safe sea transport of containers stowed on weather deck requires that

containers and their lashing gear withstand extreme forces caused by gravity,

ship motions in waves, and wind-induced pressure loads acting on outer

container stacks (Wolf & Rathje, 2021).

As stated by the German Insurance Associaton in their Container handbook

(2002), a container ship exhibits two types of dynamic motions, linear motion, and

rotational motion. Linear motion includes ship’s motion along longitudinal axis

called surging, motion along the transverse axis called swaying, and motion along

the vertical axis called heaving. Rotational motion includes ship’s motion around

 15

Turun AMK:n opinnäytetyö | Eemeli Elgfors

the longitudinal axis called rolling, motion around the transverse axis called

pitching, and motion around the vertical axis called yawing.

Figure 4. Container ship’s linear and rotational motion depicted visually (MacGregor

container securing systems product catalogue 2016).

Other forces affecting the container ships also include the container ship’s

acceleration and deceleration, torsion forces created by the ship’s linear and

dynamic motions, as well as environmental forces applied to the containers. All

ships experience air and wind resistance while under way at sea (Andersen

2012).

2.3 Container Placement Measurements

The methodical stacking and placing of containers on a vessel are an important

aspect of cargo management. The suitable arrangement of containers is directly

related to their placement in the vessel (Firooz 2022). The stowage position on

board container ships is generally documented according to the bay-row-tier

system (COP for Packing of CTU 2012). The “tier” represents the vertical stacking

 16

Turun AMK:n opinnäytetyö | Eemeli Elgfors

of containers on top of each other. The tiers are the layers of containers,

numbered from the bottom and up. The “bay” refers to the longitudinal sections

of the vessel, with containers arranged side by side within a bay. Bays run

perpendicular to the ship's length and are typically numbered from bow to stern.

Lastly, the “row” refers to the alignment of containers along the length of the ship.

Rows are numbered from the middle of the ship outwards, with even numbers on

the port side and odd numbers on the starboard side. The precise coordination

of these tier, bay, and row measurements optimizes cargo distribution, enhances

stability, and facilitates efficient loading and unloading operations on container

ships.

Figure 5. The primary measurement for container placement (Grundmeier 2016).

2.4 Lashmate

As explained in the previous chapter, containers on top of an actively moving

container ship are being constantly affected by various forces of different power

and direction. Pre-emptively measuring, calculating, and predicting these various

forces and their breaking points is especially important for shipping companies

across the world.

 17

Turun AMK:n opinnäytetyö | Eemeli Elgfors

A stowage plan is made for every single voyage a container ship takes moving

cargo across the globe. A stowage plan is one where the size, weight, and

destination of the containers are considered for how they are placed inside or on

top of the container ship. Objectives for an optimal stowage plan is to maximize

the available capacity of the ship to bring in as much cargo as possible, to protect

the ship and the cargo, to provide for rapid and systematic discharging and

loading of the cargo, and to adhere by global standards and regulations of cargo

shipping.

Modern stowage plans are executed by computer programs using mathematical

calculations (Azevedo et al. 2013). MacGregor’s stowage plan calculation

software is called Lashmate, which is the software that the contract test

preparation application supports. Lashmate is one of many commercial stowage

plan calculation software options in the world. Lashmate works by using container

ships profiles and stowage plan export files, which are special files created and

used internally by MacGregor. A new container ship definition profile is created

for each individual ship using the Lashmate program. This ship definition profile

is called LMUI, and it contains the specific ship’s size, model, name, and

container slots inside container ship’s cargo holds and on top of the deck. The

stowage plan export file is called LMUD, and it is a digital version of the stowage

plan for a specific voyage. Lashmate utilizes both LMUI and LMUD to calculate

the lashing forces for the entire ship’s lashing system and actual loading cases

of the cargo. The software gives out warnings if excessive forces on the

containers or lashings are detected. These excess forces are calculated by using

different shipping classification standards that the ships must abide by. Lashmate

can also suggest optional stack distribution methods, if applicable for the

situation.

 18

Turun AMK:n opinnäytetyö | Eemeli Elgfors

2.5 Relevant technologies

This chapter discusses and explains the development environment used to create

the thesis application, as well as the relevant methods, protocols, and coding

languages used in it. Only a generic overview of the code is given in this chapter,

as the specifics of the code are discussed more thoroughly in later chapters.

2.5.1 Visual Studio

Contract test preparation application is developed and programmed inside the

Visual Studio. Visual Studio is an integrated development environment (IDE) that

can be used to write, edit, debug, and build code (Microsoft Learn 2023a).

developed by Microsoft and widely used for computer program development.

Visual Studio can be used for free with a community license, but the thesis

application is developed using a business license. Visual Studio supports

development with many different programming languages, which the thesis

application utilizes.

To allow the usage of multiple programming languages in one project, Visual

Studio uses Dynamic-link Libaries, also known as DLL. A DLL is a library that

contains code and data that can be used by more than one program at the same

time (Microsoft Learn 2024). DLLs are used to share functions and methods from

one program to another for a more streamlined and performance-oriented

program. DLLs can use a different programming language from the main

program, with the integration between the two languages being handled by Visual

Studio.

 19

Turun AMK:n opinnäytetyö | Eemeli Elgfors

2.5.2 Programming languages

Contract test preparation application uses multiple different programming

languages for its different methods and protocols. The thesis application is

developed by using C#, while more memory-heavy functions are handled with

C++. Extensible Application Markup Language (XAML) is used to create the

application’s UI.

The main programming language used in the thesis application is C#. C# is an

object-oriented high-level programming language that runs on the .NET

framework (Microsoft Learn 2023b). In the contract test preparation application

C# is used on the creation of basic functionalities in the UI, file crawling, data

collection, bug test comparison, and test report output. Most of the functions and

methods used in the application are written in C#, as the intuitive language design

and automatic memory allocation makes the language versatile.

WPF is used to create the thesis application’s UI. WPF framework is implemented

inside the .NET framework, and so is well suited for the thesis application. WPF

uses its own programming language for UI building called XAML. XAML is a

declarative language (Microsoft Learn 2023c) based on XML and is structurally

like the JavaScript programming language. The thesis application uses XAML to

create its controls, graphics, and different data binds between UI elements and

the C# code.

C++ is a high-level programming language with manual data allocation. C++ is

used in the thesis to crawl, open, decrypt, and finally parse LMUI files. The

method of reading LMUI files proved to be too complex with C#, so C++ was used

for this reason. The C++ application was shared to the main application via DLL.

 20

Turun AMK:n opinnäytetyö | Eemeli Elgfors

2.5.3 Compound File Binary Format

CFBF, also called Compound File, is a compound document file format for storing

numerous files and streams within a single file on a disk (Microsoft Corporation

2008). Key features of CFBF include its structured file storage model (Microsoft

Learn, 2021), data streams that can contain several types of data, and property

sets, an attachment file that can store information about the data it attached to.

CFBF is a memory-efficient way to store important data of applications, and in

the case of the thesis application, LMUI files are CFBF files.

2.5.4 CONSORT

CONSORT is a communication protocol that is used to connect Lashmate with

the contract test preparation application. To achieve communication between

applications, Lashmate must first be installed via MSI administrative installation.

After this the CONSORT protocol runs Lashmate in the CONSORT server mode,

which drives the application programmatically. With Lashmate in this mode,

CONSORT protocol provides communication between the applications through

socket communication. Bidirectional stream socket communication is used to

control applications and for data exchange. This process allows contract test

preparation application to query test results from Lashmate using the LMUD and

LMUI files. These results can then be accessed by the thesis application and the

comparison between Lashmate results and thesis applications expected results

can be performed.

 21

Turun AMK:n opinnäytetyö | Eemeli Elgfors

3 Development

This chapter delves into the designing, programming, and development of the

contract test preparation application. The codebase and the methods and

functions used will be explained more deeply.

3.1 Designing the Application

Before starting the application’s programming, a well-thought-out design is

recommended. The design of an intuitive and easy-to-use application requires a

good UI design and a streamlined use process. The application must be as easy

to understand as possible without further instructions but also must consider the

intended userbase of the application. The contract test preparation application

will only be used internally in the company, so the overall design can be more

lenient in its operation explanations.

3.1.1 Functionality Design

The first step in designing the contract test preparation application is to define the

application's functionality. Without first defining the operations the application is

supposed to perform the UI design and programming cannot be optimally

performed.

The contract test preparation application has several core operations that it must

carry out to satisfy its functionality requirements. These core operations have

been requested by the company where this thesis’ application is going to be used.

These are the core functionalities that are required to be in a working condition

for the application to be usable in its first design:

1. The user must be able to select the Lashmate installation folder for

processing.

 22

Turun AMK:n opinnäytetyö | Eemeli Elgfors

2. Lashmate installation folder must contain the required LMUI and LMUD

files, as well as the executive file for Lashmate installation. The application

must check if the folder meets these requirements.

3. For installation folders with multiple LMUI and LMUD files: an option to

mark the files as pairs for further processing must be present.

4. Ability to start the processing after all is set up correctly. The user interface

must be responsive during lengthy operations and the abort processing

command must be available.

5. Processing status must be reported. Both successful and failed processes.

There must be an option to save reports to a file.

With these operations the application can run its main goal of displaying the

results of the tests to the user. The operations listed above are large

generalizations, and their specific functions and procedures are to be explored

more in the coming chapters.

3.1.2 User Interface Design in the Application

The success of any computer application is dependent on it providing appropriate

facilities for the task at hand in a manner that enables users to exploit them

effectively (Dillon 2006). This aspect of software development is encapsulated in

user interface design, which serves as the bridge between software’s back-end

functionality and the users who interact with it.

UI is the point of interaction between humans and technology. It consists of the

visual and functional elements of an application, granting the user an ability to

navigate and interact with the said application. At its core, UI design is the art of

presenting complex functionality in a way that is intuitive, accessible, and

aesthetically pleasing.

Main principles that should be considered in good UI design are clarity,

consistency, simplicity, feedback, and flexibility. A well-designed UI enhances the

application, as it can affect many aspects of the application's usability. Good UI

increases user experience, making interactions with the application smooth,

 23

Turun AMK:n opinnäytetyö | Eemeli Elgfors

enjoyable, and frustration-free. Intuitive UI design streamlines the user’s

workflow, increasing productivity and efficiency. A well-thought-out UI also

minimizes user errors in the application’s operation process, since creating a

simple and easy-to-understand UI layout reduces the possibility of

misunderstandings and mistakes. Providing the user with feedback regarding

their actions helps them understand the weight of their interactions with the

application.

The contract test preparation application takes into account the principles of good

UI design. The application lacks the complexity of larger commercial applications,

so clarity and simplicity are easy to apply. The thesis application’s UI design also

takes reference from other applications used internally by MacGregor, as the

relative familiarity of the UI will enhance the user experience and reduce the

learning curve associated with the application. As the application is only to be

used internally at the company, the UI is more focused on functionality over visual

appeal.

Figure 6 shows the main window view of the thesis application. The main window

is empty, aside from the “File” and “Communication” dropdown menus on the top-

left corner of the window. Inside the File dropdown menu is only the “Exit” input,

which closes the application. The Communication dropdown menu is populated

by the “Load Ship,” “Match Ships and Containers,” “Query Results,” and “Quit”

inputs. Having these dropdown functions in this way is identical to another

application used internally at the company called “Lashmate socket

communication client test application.” This similarity between the two

applications will help the intended users navigate the thesis application more

easily.

The Communication dropdown menu holds the application's main functionality.

The operations are placed in the dropdown menu in a way that the user must

activate each operation in a top-to-bottom order to complete the application’s

functionality.

 24

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 6. Main window view of the contract test preparation application.

Load Ship input (Figure 7) is the first step that the user must take in the

application. Pressing the Load Ship input in the Communication dropdown menu

opens a separate, smaller window in the middle of the main window. In this

separate window the user must open the file explorer to find the appropriate

Lashmate installation folder, which holds the necessary folders and files to

execute the application’s main function. The Load Ship window is a small window

with clear and simple buttons. After choosing the folder through the file explorer,

the folder’s path will be shown in the thin, gray rectangle on the top-left area of

the window. This works as feedback for the user, as the printed folder location

indicates that the application has confirmed the folder’s existence. After the folder

has been found, the user presses either “Apply” to apply the chosen folder for the

next operation, or press “Cancel” to cancel the chosen folder and close the Load

Ship window.

 25

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 7. Load Ship window view.

The next step in the application is to enter the “Match Ships and Containers”

input in the Communication dropdown menu. The window contains three

different list elements, with two of them next to each other at the top of the

screen, and the third one at the bottom. The top two lists contain the LMUI and

LMUD files from the folder chosen in the Load Ship input step, while the bottom

list appears empty. The user must select one LMUI and one LMUD file from the

top lists by clicking on them, and then press the “Add Pair” button to add the two

files together. This created pair will appear on the bottom list. The user can also

choose to delete an added pair by clicking on it and pressing “Delete Pair”

button instead. To ensure that the user is aware of a clicked element, the

window highlights the chosen element by boldening the font of the chosen

element. This method works as more feedback for the user, so the risk of

creating unwanted file pairs is reduced. The “Apply” and “Cancel” buttons are

also like the ones from the previous Load Ship window to create a consistent UI

experience for the user. After the user has created the wanted pairs, the user

can either press “Apply” to apply the chosen file pairs for the next operation, or

press “Cancel” to cancel the chosen file pairs and close the open window

 26

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 8. Match Ships and Containers window view.

The remaining two inputs inside the Communication dropdown menu do not

consist of their own separate window views. “Query Results” input can only be

operated successfully once the user has completed the two previous steps

without complications. The Query results input will start the CONSORT protocol

to temporarily install Lashmate application and create the socket communication

with Lashmate and contract test preparation application. Results and

comparisons of the test cases inside the chosen Lashmate installation folder will

be automatically calculated and shown in the application’s main window’s

previously empty area. The process of the query is shown for the user in lengthier

processes to provide feedback. After the query has been completed successfully,

the user will be given a possibility to save the results to a separate text file. The

“Quit” input’s function deletes the previously selected folder and pair information

from the application’s temporary memory, as well as the result information

showing in the main window view. After this the user may start another operation

cycle in the application.

To ensure consistent, quick, and intuitive application utilization, multiple error

handling functions have been developed. There are multiple different error

messages that can appear once the user tries to apply the chosen folder in the

Load Ship window. In Macgregor, the Lashmate installation folder has an

internally standardized composition, with specific folder names and file locations.

Because of this, error messages about different missing files and folders are

plentiful. In the “Match Ships and Containers” window the user cannot add the

 27

Turun AMK:n opinnäytetyö | Eemeli Elgfors

same pair twice into the third list, as an error pop-up window will appear to warn

the user of the mistake. In the Query Results step of the application if the two

previous steps have yet not been completed, a pop-up error window will appear

in front of the main window view to tell the user so. The application utilizes pop-

up error windows to inform the user of a mistake in the operation process.

3.2 Programming and Operational Design

This subchapter will discuss the programming of the thesis application, its distinct

functions, and the application’s code structure. The subchapter will also touch on

the CFBF and its implementation in the application more thoroughly than

described before.

3.2.1 Code Structure

The thesis application project is done in Visual Studio, using a WPF app template

with .NET framework. This template utilizes the use of C# programming language

and is used to create Windows desktop applications. Contract test preparation

application’s directory structure follows the WPF app template’s primary

hierarchical structure, with UI-defining XAML files nestling the XAML.cs files that

hold the main functions and methods of the application. The various files have

been inserted into differently named folders to improve readability and structure

of the directory. Further programming files that are not tied to an XAML file are

placed separately.

As seen in figure 9, the XAML files have been placed in the “View” folder, which

contains the “UserControls” and “Windows” folders. “UserControls” folder stores

the application’s dropdown menu bar's XAML and XAML.cs files, while

“Windows” folder holds the appropriate files for the functionality of the windows’

buttons. “ShipDefinitionReader.cs” and “LogicHandler.cs” are programming files,

that consist of the application’s function code, excluding buttons’ click functions.

LogicHandler.cs contains the function that works in collaboration with

 28

Turun AMK:n opinnäytetyö | Eemeli Elgfors

OpenLmuiFolder.dll to correctly open and read the LMUI files needed. Most of

the application’s main functionality was sought to be kept in one programming file

to keep the data types of the application from traversing through different

programming files, which complicates the code unnecessarily. However, some

functions could not all be implemented into the LogicHandler.cs due to the

dependencies they had on the specific file types.

Figure 9. Directory hierarchy of the ContractTestApplication project.

Naming conventions in the code of the application follow the basic and widely

used principles, with classes and variables utilizing capitalization in every word

of the name, and functions having the first word be lowercase. Code

documentation has been used to help the code’s readability.

3.2.2 Functionality Implementation

In paragraph 3.2.2 the code of the main functions of the contract test preparation

application will be explored. Due to the large amount of code, only the most

significant and essential functions and methods shall be depicted and analyzed.

These functionalities will be explored in the same order as they are operated in

 29

Turun AMK:n opinnäytetyö | Eemeli Elgfors

the application’s standard operation order. The code of some of the

functionalities, for example: CONSORT and LMUDReader, will not be shown and

analyzed in the thesis, as they have been imported into the project as a DLL file.

3.2.2.1 LoadShipFile

LoadShipFile.xaml.cs and LogicHandler.cs contain the functionalities to complete

the steps 1 and 2 from the core functionality list in 4.1.1. In this file the selection

and checking of the Lashmate installation folder is performed. File exploration is

done by using “System.Windows.Forms” namespace. This namespace contains

a “FolderBrowserDialog” class, which can perform the necessary folder

exploration and selection. “DialogResult” method from the namespace confirms,

that the user has selected a folder. After the confirmation, the selected folder path

is saved into a default string variable for further use. The explained program

operation is shown in figure 10.

Figure 10. “fileExplorer” function used to select the installation folder.

The folder path selected by the “fileExplorer” function is next checked by

“lookForValidFiles” function. This function crawls through the selected folder,

looking for specific folder names inside it. As mentioned in one of the previous

chapters, Lashmate installation folders are internally standardized, so they

include the same names for files and folders. Inside the selected folder

“lookForValidFiles” searches for folder named “Installer,” “SHIP DEFINITION,”

 30

Turun AMK:n opinnäytetyö | Eemeli Elgfors

and “TEST FILES.” These three folders are further explored for .msi, LMUI,

LMUD files. For each valid folder and file found the function changes the values

of two Boolean data type arrays called “foldersNotEmpty” and “filesFound.” These

Boolean arrays’ pre-designed values are set to “false” and for every correct folder

and file found a specific Boolean value is changed to “true.” These Boolean arrays

are later used to tell the user of missing folders and files. The explained program

operation is shown in figure 11. If no missing files and folders are detected the

program saves the locations of all LMUI and LMUD file location paths into two

arrays for later use.

The Boolean arrays are used in functions “checkFolders,” “checkFileBool,” and

“CheckFolderBool.” These functions create custom error messages depending

on which folders and/or files are missing in the Lashmate installation folder. An

example error message is shown in figure 12.

Figure 11. “lookForvalidFiles” function.

 31

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 12. Example of an error from missing files in the Lashmate installation folder.

3.2.2.2 PairShipFiles

Next functionality to be implemented was the pairing operation of LMUI and

LMUD files. This was carried out in the “PairShipFiles.xaml.cs” file (Figure 13).

This program takes the before-saved LMUI and LMUD file location paths from the

arrays and prints them out in a shortened version for the user to select. Upon

selecting two different file paths and adding them as a pair, the code simply adds

the two shortened file path names together in a sentence, printing out the pair in

the pair list. The pair selection data is saved in an array list called “pairIndexList,”

that stores the index of both file paths from the arrays they were first acquired

from. From here the paired file paths will be opened and get their data extracted

by two data parsing programs.

Due to the high number of buttons and click functions in the file pairing section of

the application operation, the functions inside the PairShipFiles.xaml.cs could not

be immigrated inside the LogicHandler.cs. The data typer, however, are still

called from the LogicHandler.cs, which simply copy the values that the user sets

in the PairShipsFile.xaml window that was shown in figure 8.

 32

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 13. “PairShipsFile.xaml.cs” main functions.

3.2.2.3 OpenLmuiFolder

The data parsing of the LMUI folder was done in another programming language

due to the difficulty of the implementation in C#. “OpenLmuiFolder.sln” is a

common language runtime (CLR) template from Visual Studio that uses C++ as

its programming language. CLR runs on the .NET framework, and it allows the

C++ programming functions to work inside the C# based contract test preparation

application via DLL.

As stated previously, LMUI files are CFPF files, also known as compound files.

These files are structured storages with standardized file structure and

incremental file accessing. The functions and methods to create, parse, and

access these files are implemented inside an API called Component Object

Model (COM). This API is not accessible in C# and implementing them separately

 33

Turun AMK:n opinnäytetyö | Eemeli Elgfors

would be a difficult and time-consuming task, thus another programming

language was used for data parsing the compound files. Inside the

OpenLmuiFolder.sln are four functions:

o OpenAndExploreCompoundFiles

o ExploreStorage

o ReadAndPrintStreamContents

o ReturnData

OpenAndExploreCompoundFiles simply takes the compound file location,

initiates the exploration of the chosen compound file, and handles the possible

error checking that comes with the initialization of this operation. This function

also initializes COM with the “CoInitialize” method, as well as opening the

compound storage using the “StgOpenStorage” method. At the end, the

function also releases the memory and resources used by the operation and

uninitializes COM. ExploreStorage function works on exploring the different

folders and files of the selected compound file. The function runs through the

compound file and uses the next function, ReadAndPrintStreamContents, to

read the files. The reading function selects the necessary files by name and

parses them through as a single byte array to the last function called in the

OpenLmuiFolder.sln, the ReturnData-function. ReturnData takes the created

byte array and turns it into a data type that is usable in the main application.

Back at the contract test preparation application, a function called “decodeLmui”

can be found inside the LogicHandler.cs file. This function receives the byte array

from the ReturnData function. Currently, the byte array is unreadable, so the

function must decrypt it first. After the decryption, the function parses the

decrypted byte array into a “MemoryStream” method that is provided by a

“System.IO” namespace. This method turns the byte array into a readable string

data type.

 34

Turun AMK:n opinnäytetyö | Eemeli Elgfors

3.2.2.4 ShipDefinitionReader

The information from the OpenLmuiFolder.sln, decrypted and parsed by

decodeLmui function, is used to extract essential information about the container

ship that the LMUI file was created for. This necessary information contains items

like ship name, International Maritime Organization (IMO) code, ship builder

company name, hull number, and the ship classification society name. These

specific data are picked from the created string by a function called

“lmuiValueReader” that is located inside the ShipDefinitionReader.cs

programming file. The function uses regular expressions to search the string for

the required information. Due to the structure of the string, the information right

before and after the required data is known, so the regular expressions target the

data between the known values. The wanted data is then placed into a list to be

used on by the “reportMaker” function. This function takes the list of created data

and places it in report format to be later shown to the user.

 35

Turun AMK:n opinnäytetyö | Eemeli Elgfors

3.2.2.5 Result Query

The last operation to be ran in the contract test preparation application is the

“QueryResults.” This function controls the dropdown menu click function of the

same name. QueryResults consists of four calls to distinct functions: previously

mentioned “decodeLmui,” as well as three other ones, “containerReader,”

“consortStackTest,” and “consortContainerTest.” containerReader is a function

that utilizes the LMUDReader DLL provided by the MacGregor programmers. The

function decodes the LMUD files and parses through the container information of

the file. This container information consists of container’s specific weight, code,

and height, and containers position in the ship, comprising row, bay, and tier data.

This data and the LMUI data are then used in the consort test function. To put it

simply, consort test functions are test functions meant to imitate the real

CONSORT protocol. The consort tests require both LMUD and LMUI data

collected from previous functions to operate properly. Once the “QueryResults”

function is activated, the application runs the programs connected to the function,

carries out the necessary calculations, and finally displays the results in a report

format for the user in the main window of the application.

 36

Turun AMK:n opinnäytetyö | Eemeli Elgfors

4 Application Testing

This chapter will explore the testing functions and the methodology used in testing

the thesis application. The chapter will also touch upon the imitation CONSORT

protocol used in the testing, as the real CONSORT protocol is unavailable for use

in the application testing. The imitation protocols return values are also listed for

context.

The contract test preparation application’s testing is handled by the consort test

functions, as stated in the previous chapter. Due to the application using simple

test functions instead of the real CONSORT protocol, the results of the tests are

known beforehand the testing. The test functions utilize a DLL called

“ConsortInterface,” which is provided by the MacGregor programmers.

ConsortInterface imitates real methods used in CONSORT protocol but returns

only pre-determined values from the methods. Parameters required by

ConsortInterface methods are also accurate to the real protocol, so if the consort

test functions in the thesis application work correctly with ConsortInterface then

it will also work with the real CONSORT protocol. The testing will determine if the

application’s operations and their respective functions and methods work

properly to output the already-known values provided by the ConsortInterface

DLL.

ConsortInterface returns a number of different values through various methods.

Some of the more important methods are called “queryStackResults” and

“queryContainerResults.” These two methods return values such a container

stack weights, container stack’s vertical center of gravity, individual container’s

position in the bays, rows, and tiers, and each container’s corner coordinate

position and container’s general direction. Each container also includes ten

different values for various forces applied to them, such as compression, lashing,

and tension.

 37

Turun AMK:n opinnäytetyö | Eemeli Elgfors

As an imitation protocol, ConsortInterface returns only the same values for every

container, stack of containers, and other CONSORT values. These values

exceed over 20,000 depending on the size of the LMUI and LMUD files used,

which would greatly affect the application's performance. With the imitation

protocol in use instead of the real CONSORT protocol, the displaying of error

calculation values is not possible. Thus, only basic container stack values of one

LMUI and LMUD pair are going to be printed out in a user report format, and the

rest will be displayed in Visual Studio’s Solution Explorer window. In the practical

usage of the application, these values would only be presented to the user if the

values differ from pre-determined test values created for specific LMUI files, but

in this test scenario the values are shown to test the application’s output and

performance.

The performance of the application shall be tested via using “MethodTimer.Fody”

tool acquired from NuGet, which is a package manager for the .NET framework.

This tool adds a way to measure the time it takes to complete methods inside the

application code. With the measured time of different methods, performance of

the application can be analyzed with average time values calculated from various

runs of the application and detect bottleneck methods in the code that slow the

performance down significantly. Due to the simplicity of MethodTimer.Fody, only

the most data intensive methods shall be calculated, focusing on the methods

dealing with the data from LMUI and LMUD files. The test will be carried out with

ten of the main methods of the application, with the test being repeated ten times.

Additionally, the performance of the UI will be tested by utilizing a test tool native

to the Visual Studio called “Performance Profiler”. From this tool a graph of the

UI thread utilization can be displayed, which shows the highest performance-

taxing processes are in the user interface. This test shall include one full

application run time, which lasted approximately thirty seconds.

 38

Turun AMK:n opinnäytetyö | Eemeli Elgfors

5 Testing Results

This chapter will introduce the testing results, including the accuracy of the

returned values and the application's performance. The results will be further

discussed, and some limitations and recommendations will also be presented.

5.1 Report Output

The application’s report output was as expected. The LMUI file was read

correctly, and the necessary information about the ship was printed out at the

start of the report. This information can be seen in Figure 14 below, with the actual

outputs blurred out for security reasons. After the LMUI file’s information comes

the stack results. The positions of the individual stacks are read from the LMUD

file provided for the application, which are afterwards run through the

queryStackResults method. This outputs the necessary information about each

stack in numerical order, starting with the stack on the deck of the ship with the

lowest bay and row number. In the case of the test LMUD, this stack was in bay

1 and row 0. Some relevant information about the stack was also presented after

the location of the stack. These include the overall weight of the stack and the

vertical center of gravity related to the stack. These values were static in the test

scenario, which was expected.

In Figure 15 the output of the queryContainerResults method can be observed.

The number of containers in this test scenario was 11,133, with each container

containing the values of the containers position, direction, and forces applied. In

the figure one such container with its inner values can be seen. This output was

omitted from the printed-out report due to the vast number of values, and thus

was decided to be only observed through the Visual Studio Solution Explorer. By

reviewing the query's values, it can be determined that its output was sufficient

and contained the expected values.

 39

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 14. Report output in the thesis application.

Figure 15. The output of the queryConstainerResults.

 40

Turun AMK:n opinnäytetyö | Eemeli Elgfors

5.2 Performance

Table 1 below shows results of the performance tests of the selected main

methods. The performance of the methods was measured in milliseconds. From

the table it can be seen that most of the methods perform in well under a second

after the initiation of the methods.

 The significant outlier of the group was the fileExploration method that is used to

select the Lashmate installation folder for the application to process further. As

mentioned in chapter 4.2.2.1, this method uses the FolderBrowserDialog class to

run the folder browsing. This class is derived from a namespace created by

Microsoft. The next method, lookForValidFiles, took an insignificant amount of

time to verify the chosen folder.

The next two methods, decodeLmui and containerReader, both work towards

reading and storing the data from the LMUI and LMUD files found inside the

chosen folder. Both methods took on average 50 ms together to complete. The

consort test methods consortStackTest and consortContainerTest both

completed on average faster than expected.

The heaviest methods of the application, excluding the folder browser method,

were the methods executing the report making and printing. The

“stackResultToString” method arranges the data from queryStackResults into a

more readable format, which is passed on to the “reportMaker” method, which

completes the reports by adding the necessary LMUI information. Finally, the

reports are presented to the user via the “ShowResults_Click” function. The

methods used in creating the reports and presenting them to the user were on

average the second longest functionalities in the application.

 41

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Table 1. Performance test results.

Method Name

Number of Performance Tests (ms)

1 2

3

4 5

6

7

8

9

10 Average

fileExploration 398

9

240

4

249

3

286

4

243

2

260

2

282

6

238

7

242

1

240

6

2682.4

lookForValidFiles 5 3 3 2 3 3 3 2 2 2 2.8

decodeLmui 31 21 19 19 21 19 19 19 20 21 20.9

containerReader 50 28 43 27 33 26 26 35 28 27 32.2

consortStackTest 9 7 21 8 7 8 8 7 10 7 9.2

consortContainerTes

t

31 37 48 32 34 29 29 30 34 37 34.1

lmuiValueReader 0 0 0 0 0 0 0 0 0 0 0

stackResultToString 432 408 531 391 388 381 381 391 377 499 417.9

reportMaker 470 446 568 426 428 412 412 421 411 535 452.9

ShowResults_Click 560 512 629 514 495 497 497 491 481 603 527.9

From the performance profiler testing tool shown in figure 16 it can be seen that

the heaviest processes taxing the performance of the application’s UI are the

application code and the Layout. Parsing also causes a significant spike in

performance utilization at the start of the application run time. This is due to the

fileExploration method mentioned in Section 4.2.2.1. While the first ten seconds

of the application run time shows a notable UI utilization growth due to the

application code, this did not affect the performance of the UI in a serious

manner. However, at the end of the application run time, between twenty and

thirty seconds, a very notable performance issue was spotted due to the Layout

process. This process is responsible of the large report being printed and

shown to the user. The UI experienced a significant decrease in framerate and

responsiveness in the basic functionalities of the application and the scrolling of

the report was notably delayed and lacked smoothness.

 42

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Figure 16. UI thread Utilization Graph.

5.3 Result Discussion

The results of this test scenario provided valuable insights into the thesis

application's functionality and performance. One of the larger anomalies of the

results was the fileExploration method. Due to the FolderBJurowserDialog class

being made and provided by a third party, it can be argued that the notable

performance difference between the fileExploration method and the other

methods was due to the suboptimization of the FolderBrowserDialog class. The

reduction in performance indicated that the WPF TextBlock control used in the

report display could not handle a report with a lot of characters.

In the test cases a lot more data was being processed and output than would be

in a normal CONSORT protocol communication, so the values gotten from the

tests display the sheer output potential of the methods. The length of the full

report used in the test scenario was 277,309 characters, which was created, on

average, in about 1.5 seconds. The length of the full report also corresponds with

the methods decodeLmui and containerReader. The time taken to accomplish

these methods will vary depending on the size and number of the LMUI and

LMUD files paired up during the Load Ship input function, but overall, the

difference in time would not be significant enough to affect performance.

In the case of the lmuiValueReader method, in every performance test the

process time came out as 0, which might be due to the timer methods inability to

 43

Turun AMK:n opinnäytetyö | Eemeli Elgfors

show decimals past a millisecond. The possibility of lmuivalueReader coming out

from the test with a result of 0 is not due to an error in the code, as the reports

would not be output in the manner highlighted in the figure 14 if the method was

not functioning as intended.

The other interesting point of discussion is the difference between the consort

test methods consortStackTest and consortContainerTest. Container test took on

average 3.7 times longer than the stack test did. This was due to the difference

in amount of data the two test methods must have processed through. The other

method that outperformed its expectations was the lmuiValueReader method.

Although the time of creating and printing out the report's averages out on couple

of seconds, the real performance problem was observed after the reports were

displayed for the user. It can be assumed that this is due to the high number of

characters shown to the user, and/or due to the XAML element used to display

the report not being optimized enough to present the report without performance

issues.

 44

Turun AMK:n opinnäytetyö | Eemeli Elgfors

6 Conclusion

This thesis set out to create an application that is capable of socket

communication with MacGregor’s commercially used application Lashmate, and

by doing so is also capable of seeking out bugs and errors in the multiple

calculations Lashmate performs throughout its normal functions. The thesis

application and its functions were to be completed via a C# program created in

Visual Studio, using WPF for the user interface creation.

The original idea was to use the already-created CONSORT protocol to achieve

communication between the applications, but unfortunately due to time

constraints, the protocol could not be modified for the thesis application’s use.

Because of this, an imitation test protocol was created that mimics the real

protocol by outputting set values.

The testing scenario for the contract test preparation application encountered

some challenges and limitations during its testing. The initial difficulty of testing

the functionality of the produced reports was the unavailability of the real

CONSORT protocol in the thesis application. While the test protocol outputs

identical values and gives access to similar methods to the real CONSORT

protocol, it cannot accurately imitate the authentic socket communication that

would occur between the applications. Thus, the imitation protocol was used as

a substitute. Since the imitation protocol does not communicate between

applications to calculate its output values, but only outputs set values, the original

idea of comparing Lashmate’s calculated values to contract test preparation

application’s pre-determined values could not be recreated for the thesis test

scenario. Because of this, an alternative way of measuring application’s

capabilities was used, which involved the output of the imitation protocol’s set

values. However, even with this limitation the application is still able to perform

the communication with the real CONSORT protocol due to the connecting

functions with the imitation protocol.

 45

Turun AMK:n opinnäytetyö | Eemeli Elgfors

For the testing of performance, the limitations and challenges were less severe

than with the application functionality. The greatest limitation was the lack of a

method to accurately assess the reason for the performance issues of the UI

elements of the application. A significant difference in performance was visible as

evidenced by data, but the VS performance profiler lacked the means to expand

on the UI thread utilization further. Another limitation of the testing was the lack

of documentation on the MethodTimer.Fody method used to measure time. The

accuracy of the time measurements is based on the MethodTimer’s inner

methodologies, which is unknown for this test scenario. There is also a possibility

of the MethodTimer affecting the overall measurements. The small number of

tests can also skew the test results due to the small sample size. The

performance tests were completed manually, so as a timesaving method a small

sample size was decided upon. The small sample size also meant that

abnormalities in the test results change the average test results significantly more

than in a larger sample size. This can be observed in test number 1, where some

of the method’s results are higher than normal compared to the other tests. This

can mainly be seen on fileExploration, decodeLmui, and containerReader.

Improvements in the testing scenario methodology are highly recommended. A

genuine communication between contract test preparation application and

Lashmate via the CONSORT protocol is needed for more realistic test results

relating to the functionality of the application. On the performance side, a method

for automatically running the performance test is recommended. This would allow

for a higher sample size, creating more accurate data. A method for visualizing

performance data relating to the user interface of the application is also needed.

It is recommended to create or acquire a tool to monitor the framerate of the

application’s main window to measure the performance of the UI.

 46

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Further development of the thesis application is already planned in MacGregor.

The contract test preparation application must firstly establish a proper

connection with the Lashmate application for further other improvements and

updates. After this, the next step will be the creation of a system test process,

which will create test packages for the thesis application to use as the baseline

values for the Lashmate calculations. Further updates will include the

application’s assimilation to the general Lashmate build pipeline and the

possibility of handling older versions of Lashmate.

 47

Turun AMK:n opinnäytetyö | Eemeli Elgfors

References

Andersen, I. M. V. 2012, Wind Forces on Container Ships In: Mercator, Marts.

Andersson, L. 1997, SP Report, Container Lashing, Swedish National Testing

And Research Institute

Arcuri, A., 2008. On the automation of fixing software bugs. Proceedings of the

International Conference on Software Engineering, pp.1003-1006.

doi:10.1145/1370175.1370223.

Australian Standard 2001, Townley Forging Australian Quality, Sydney:

Australia.

Dillon, A., 2006. User Interface Design. doi:10.1002/0470018860.s00054.

German Insurance Association 2002, In: Container Handbook: Cargo loss

prevention information from German marine insurers, Volume 1. In:

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_vo.ht

ml (Accessed: 26 March 2024).

Group of Experts for the revision of the IMO/ILO/UNECE 2012 ,Guidelines for

Packing of Cargo Transport Units (CTUs), UNECE. In:

https://unece.org/transport/intermodal-transport/imoilounece-code-practice-

packing-cargo-transport-units-ctu-code (Accessed: 26 March 2024).

Grundmeier, N. 2016, Simulationsbasierte Energiebedarfsprognose in

Seehafen Container-Terminals, Oldenburg.

Hakimi Firooz, K. & Lee, M. & Tavakoli, M. 2022, Arrangement and placement

of containers in a container terminal. doi:10.13140/RG.2.2.16346.62404.

International Chamber of Shipping a.t., Container Ships, In: https://www.ics-

shipping.org/explaining/ships-ops/container-ships/ (Accessed: 20 March 2024).

MacGregor container securing systems product catalogue 2016, Container

securing systems, In:

https://www.macgregor.com/globalassets/picturepark/imported-

assets/65120.pdf/ (Accessed: 20 March 2024).

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_vo.html
https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_vo.html
https://unece.org/transport/intermodal-transport/imoilounece-code-practice-packing-cargo-transport-units-ctu-code
https://unece.org/transport/intermodal-transport/imoilounece-code-practice-packing-cargo-transport-units-ctu-code
https://www.ics-shipping.org/explaining/ships-ops/container-ships/
https://www.ics-shipping.org/explaining/ships-ops/container-ships/
https://www.macgregor.com/globalassets/picturepark/imported-assets/65120.pdf/
https://www.macgregor.com/globalassets/picturepark/imported-assets/65120.pdf/

 48

Turun AMK:n opinnäytetyö | Eemeli Elgfors

Microsoft Learn 2021, Containers: Compound Files, In:

https://learn.microsoft.com/en-us/cpp/mfc/containers-compound-

files?view=msvc-170 (Accessed: 20 March 2024).

Microsoft Learn 2023a, What is Visual Studio?, In:

https://learn.microsoft.com/en-us/visualstudio/get-started/visual-studio-

ide?view=vs-2022 (Accessed: 20 March 2024).

Microsoft Learn 2023b, A tour of the C# language, In:

https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/ (Accessed: 20

March 2024).

Microsoft Learn 2023c, XAML overview (WPF .NET), In:

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-

8.0 (Accessed: 20 March 2024).

Microsoft Learn 2024,What is a DLL, In: https://learn.microsoft.com/en-

us/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library

(Accessed: 20 March 2024).

Si H., Sun, C., Chen, B., Shi, L. and Qiao, H. 2019."Analysis of Socket

Communication Technology Based on Machine Learning Algorithms Under

TCP/IP Protocol in Network Virtual Laboratory System," in IEEE Access, vol. 7,

pp. 80453-80464, doi:10.1109/ACCESS.2019.2923052.

Tavares de Azevedo, A., Fernandes de Arruda, E., Leduino de Salles Neto, L.,

Au-gusto Chaves, A. &; Carlos Moretti, A. 2013, “Solution of the 3D Stochastic

Stowage Planning for Container Ships through Representation by Rules”.

doi:10.2991/.2013.15

Wolf, V., and H. Rathje. "Motion Simulation of Container Stacks on Deck."

Paper presented at the SNAME Maritime Convention, Providence, Rhode

Island, USA, October 2009. doi:https://doi.org/10.5957/SMC-2009-014.

Zhou C., Li B., Sun X. 2020, Improving software bug-specific named entity

recognition with deep neural network, In: Journal of Systems and Software,

Volume 165, 110572. doi:https://doi.org/10.1016/j.jss.2020.110572.

https://learn.microsoft.com/en-us/cpp/mfc/containers-compound-files?view=msvc-170
https://learn.microsoft.com/en-us/cpp/mfc/containers-compound-files?view=msvc-170
https://learn.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide?view=vs-2022
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library
https://learn.microsoft.com/en-us/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library
http://dx.doi.org/10.2991/.2013.15
https://doi.org/10.5957/SMC-2009-014
https://doi.org/10.1016/j.jss.2020.110572

