

Duy Le

WEB APPLICATION DEVELOPMENT

with React, Node.js and SQL

Technology and Communication
2024

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Duy Le
Title Web Application Development
 with React, Node.js and SQL
Year 2024
Language English
Pages 38
Name of Supervisor Anna-Kaisa Saari

The primary goal of the thesis was to create a full-stack web application that com-
bines front-end and back-end technologies to optimize tech operations which
shows the users how the application looks like and supports them to use its func-
tions. The web application uses several different programming languages and soft-
ware frameworks to provide a stable platform. This thesis outlines the basic ad-
vantages and disadvantages of a web application as well as suggests solutions for
these problems.

The outcome of this thesis is an example of building and operating a basic web app
development. Users can operate it by themselves or develop it on a large scale.
Besides, they can improve the basic knowledge and important features of techno-
logical web applications, which might be necessary in their programming develop-
ment career.

The project was made on the full-stack web application structure. The application
utilizes the technologies Node.js, Express.js and Sequelize for the back end, and
React, Axios and Yup for the front-end. The database management system of the
program is MySQL.

Keywords React, Node.js, SQL, full-stack, front-end, back-end

CONTENTS

ABSTRACT

1 INTRODUCTION .. 6

1.1 Overview ... 6

1.2 Expectation ... 6

2 THE BACK-END SIDE .. 7

2.1 Overview ... 7

2.2 Node.js .. 7

2.2.1 Introduction of Node.js ... 7

2.2.2 Influence of Node.js to Full-stack Web Development 8

2.3 Express.js ... 9

2.3.1 Introduction of Express.js ... 9

2.3.2 Influence of Express.js to Full-stack Web Development 10

2.4 Sequelize ... 10

3 THE MYSQL DATABASE MANAGEMENT SYSTEM ... 12

3.1 Overview ... 12

3.1.1 Introduction .. 12

3.1.2 Advantages .. 13

3.1.3 Disadvantages ... 13

3.2 Database Structure ... 14

3.3 Implementation of MySQL in Software Engineering 15

4 THE FRONT-END SIDE ... 17

4.1 Overview ... 17

4.2 React ... 17

4.2.1 Main Features ... 18

4.2.2 Key Concepts ... 19

4.2.3 Advantages .. 20

4.2.4 Disadvantages ... 20

4.3 Axios .. 21

4.4 Yup Schema Builder .. 21

5 WEB APPLICATION IMPLEMENTATION .. 22

5.1 Overview ... 22

5.2 Back-end Implementation .. 22

5.2.1 Models ... 23

5.2.2 Routes ... 27

5.2.3 Middleware ... 31

5.3 MySQL Database System Implementation ... 31

5.4 Front-end Implementation ... 33

6 CONCLUSIONS .. 36

REFERENCES .. 37

LIST OF FIGURES AND TABLES

Figure 1. Back-end directory ... 22

Figure 2. Machine model .. 23

Figure 3. Users model ... 25

Figure 4. Descriptions model .. 26

Figure 5. Machines route .. 27

Figure 6. Users route ... 29

Figure 7. Descriptions route .. 30

Figure 8. Authentication middleware ... 31

Figure 9. Database structure ... 32

Figure 10. description table in database ... 32

Figure 11. machines table in database ... 32

Figure 12. users table in database .. 33

Figure 13. The Front-end structure ... 33

Figure 14. Home page ... 34

Figure 15. Register page .. 34

Figure 16. The button bar after login .. 35

6

1 INTRODUCTION

1.1 Overview

In the ever-changing world of technology, web application fusion has emerged as

a key component of contemporary innovation. The connection of different tech-

nologies through web apps has pushed civilization into a new era of efficiency,

accessibility, and connectivity as the digital domain continues to develop. This the-

sis explores the significant effects of incorporating technology into online applica-

tions, examining their background and present situations. Moreover, the web ap-

plication serves as a significant tool for enhancing connectivity in the digital age.

With its diverse functionalities and benefits the application plays a important con-

tribution in fostering communication, collaboration, and information exchange in

today's interconnected world.

1.2 Expectation

The result of this thesis will be important information on the best methods for

developing and putting into practice complete web applications and favorable for

those engaged in software development.

In conclusion, the aim of the research is to emphasize the significant effects that

web application integration has on users, and innovation. Users may actualize an

effective, collaborative, and sustainable future by utilizing web applications to

fully utilize the revolutionary power of technology.

7

2 THE BACK-END SIDE

2.1 Overview

The back end is the part of a web application that is not visible to the user. It refers

to the way a website functions and all the components that help to deliver that

functionality. Processing requests from the front end, carrying out relevant tasks

(such as data retrieval, modification, and storage), and returning the results to the

client are its main responsibilities. Numerous programming languages and frame-

works are available for use in back-end development. JavaScript is currently widely

utilized for front-end and back-end development due to the popularity of Node.js.

The server part of this thesis project is made using Node.js. /1/

The work of back-end developers applies to the server side of operations. In back-

end development, working with databases to store and retrieve data is common.

Depending on the needs of the project, developers must be knowledgeable with

a variety of database management systems, such as MySQL, PostgreSQL, and

MongoDB. /1/

Application Programming Interfaces, APIs, are frequently created by back-end de-

velopers to facilitate communication between front-end and back-end systems.

The endpoints and data types that the front-end and back-end may communicate

with each other are specified by APIs. All things considered, the back end is essen-

tial to full-stack web development since it establishes the framework for online

application functionality and data administration.

2.2 Node.js

2.2.1 Introduction of Node.js

Node.js is an open-source, cross-platform JavaScript runtime environment and li-

brary that runs web applications outside of the client's browser. It is built on

8

Google Chrome’s V8 engine, which makes its execution time very fast, and it runs

very quickly. The asynchronous, non-blocking I/O paradigm of Node.js is well-

known for enabling effective management of several concurrent connections.

Building scalable applications that can manage several connections at once is

much easier with the asynchronous paradigm of Node.js. Web servers, APIs, and

backend services are frequently powered by Node.js. Because of its event-driven

architecture, it excels at managing I/O-intensive activities including database

transactions, file operations, and network requests. /2/

NPM is a popular Node.js package library. It accesses a huge ecosystem of open-

source libraries and tools. NPM allows developers to install, manage, and share

packages of reusable code easily, speeding up the development process. Together

with NPM, Node.js is a popular choice for developing contemporary online appli-

cations and backend services because of its adaptability and ease of use in web

applications. /2/

2.2.2 Influence of Node.js to Full-stack Web Development

Node.js has become an excellent option for full-stack web development due to its

efficiency, scalability, and the ability to use JavaScript for both frontend and

backend development. To be able to run JavaScript code outside of a web browser,

runtime environment is needed. Therefore, backend development primarily uses

Node.js on the server side. Node.js allows developers to create dependable, and

fast online applications.

Node.js is built on an event-driven, non-blocking I/O model. Because of this,

Node.js can manage several connections at once without being stopped, which is

essential for managing a lot of requests at once in web applications. Consequently,

Node.js exhibits exceptional performance and extensibility in managing real-time

applications with substantial traffic levels. Among the many characteristics of

9

Node.js are its considerable library of JavaScript modules, which makes online ap-

plication development easier, its capacity to manage several client requests at

once, and its support for two-way real-time web applications. /2/

Node.js is a great option for creating applications that can be quickly deployed and

expanded on the cloud because it is also very compatible with cloud-based archi-

tectures. Moreover, Node.js boasts a sizable and vibrant developer community

that offers a wealth of information and assistance to anyone utilizing technology.

Overall, Node.js influence extends beyond just the technical aspects, shaping the

way developer architect and build web applications in the modern era.

2.3 Express.js

2.3.1 Introduction of Express.js

Express.js, usually known as "Express," is a simple, quick, and Node.js backend

framework that offers strong functionality and tools for constructing scalable

backend applications. It is designed for building web applications and APIs, provid-

ing a robust set of features for developing server-side applications. /6/

One of the core features of Express.js is its middleware support, which enables

programmers to create modular, reusable components that are capable of han-

dling requests and answers. The duties that middleware functions can carry out

include error handling, logging, authentication, and request processing.

Express provides a robust routing system that enables developers to characterize

routes for handling various HTTP requests (GET, POST, PUT, DELETE). Routes can

be defined for specific URLs and HTTP methods, allowing for clean and organized

code. Express.js provides utility methods for working with HTTP requests and re-

sponses, making it easier to set headers, cookies, and status codes. Express.js han-

10

dles the routing and middleware aspect of the process, allowing developers to fo-

cus on the critical business logic of these features while designing live collabora-

tion solutions. /3/

2.3.2 Influence of Express.js to Full-stack Web Development

Express.js is popularly used for building web applications, ranging from small per-

sonal projects to large-scale enterprise applications. Besides, its impact on full-

stack development is significant and multifaceted, influencing both the frontend

and backend aspects of web development. /4/

Express.js is a simple framework that makes it easy and quick for developers to

construct online applications. Express.js is used widely in the JavaScript/Node.js

ecosystem — applications, API endpoints, routing systems, and frameworks can

be developed with Express.js. Furthermore, Express.js provides developers with a

high degree of flexibility and customization, allowing developers to tailor the

framework to suit their specific requirements. /6/

To summarize, Express.js has significantly influenced full-stack web development

by streamlining server-side development, enabling effective routing, encouraging

code reuse, integrating with frontend frameworks seamlessly, supporting a variety

of databases, guaranteeing scalability and performance, creating a thriving com-

munity, and providing flexibility and customization. Because of its adaptability and

simplicity of use, developers who want to create cutting-edge, reliable, and scala-

ble web applications choose to work with it.

2.4 Sequelize

Sequelize is a promise based ORM for Node.js which incorporates robust reading

applications, transaction relationships, support, and loading. It allows connecting

relational databases with JavaScript objects while abstracting away the intricacies

11

of database queries and maintenance. Sequelize supports several database lan-

guages, including PostgreSQL, MySQL, SQLite, and MSSQL. Sequelize simplify

CRUD (Create, Read, Update, and Delete) activities by offering ways for creating,

querying, updating, and deleting database records. /5/

12

3 THE MYSQL DATABASE MANAGEMENT SYSTEM

3.1 Overview

3.1.1 Introduction

MySQL, an open-source Relational Database Management System (RDBMS), al-

lows users to store, manage, and retrieve structured data effectively. MySQL is

extensively used for numerous purposes, including small-scale projects, large-

scale websites, and enterprise-level solutions. Because MySQL is offered under the

GNU General Public License (GPL), anybody can use, modify, and distribute it with-

out restriction. MySQL arranges data into tables with rows and columns and es-

tablished relationships between them using the relational paradigm. Effective

data processing and querying are made possible by this structure. SQL is the main

query language that MySQL employs to communicate with the database. SQL gives

users the ability to do several tasks, including inserting, deleting, and altering data.

/7/

MySQL is known for its fast performance, particularly in read-heavy workloads. It

provides effective database operations by utilizing several optimization strategies,

including caching, query optimization, and indexing. MySQL is compatible with

several operating systems, including Windows, Linux, macOS, and systems that re-

semble UNIX. Its cross-platform flexibility contributes to its adaptability and wide-

spread use in a variety of settings.

Overall, MySQL continues to be a highly valuable tool for efficiently managing data

with strong performance and security. Proficiency in MySQL equips developers

with the skills needed to leverage data effectively, empowering them to adapt to

the evolving technology and business landscape. /7/

13

3.1.2 Advantages

Delving into the advantages of MySQL (MySQL Database Management System)

can provide valuable insights for developers into MySQL utility and potentiality for

various applications. MySQL's free and open source nature makes it the top option

for startups and developers. Because of its cross-platform compatibility, research-

ers may utilize MySQL in a variety of computer settings without having to make

substantial changes, ensuring deployment flexibility. /8/

Scalability, high performance, stability, ease of use, cross-platform compatibility,

standard SQL support, security features, community support, and integration with

well-known tools are just a few of the many benefits MySQL provides to research-

ers. MySQL is an appealing option for organizing and evaluating research data

across several areas and applications because of these benefits. /8/

3.1.3 Disadvantages

MySQL has stability difficulties and is prone to corruption in certain use scenarios.

Stability issues can manifest as crashes or unexpected behavior under heavy loads.

Database corruption can occur due to reasons of hardware failure or software

bugs. While this criticism is rarely voiced in general, there have been widespread

concerns concerning data corruption when auditing or making transactions. /8/

Relational databases are meant to store structured data with well-defined rela-

tionships. They may be unsuitable for storing unstructured or semi-structured

data, such as documents, photos, and multimedia information. While MySQL has

a large and active community, official support from Oracle (the current owner of

MySQL) may not be as comprehensive or responsive as with other commercial

RDBMS vendors. Unlike commercial and paid database vendors that users of

MySQL may not receive the same depth of assistance or feature development. This

14

is a negative point to compare with those using Oracle Database or other premium

database providers. /10/

3.2 Database Structure

MySQL organizes data into databases, which serve as containers for tables, in-

dexes, views, stored procedures, and other objects. Each database is identified

with a unique name and can contain multiple tables.

Table provides a comprehensive set of functionalities for designing, managing, and

querying database tables, enabling efficient data storage and retrieval within

MySQL database. Tables consist of rows and columns, where row represents one

data record or tuple, and a cell stores actual data with a certain data type. Tables

are created using the CREATE TABLE statement and can be modified using ALTER

TABLE statements. /9/

Rows in MySQL represent individual records or entries in a table. Each row con-

tains data for each column defined in the table.

Columns define the structure of a table, indicating the types of data that can be

stored in each field. Integers, dates, texts, floating-point numbers, and binary data

are examples of common data types. Each column has a name and data type, and

additional constraints can be applied, such as NOT NULL, UNIQUE, PRIMARY KEY,

FOREIGN KEY, etc.

A primary key uniquely identifies each row in a table. Primary keys are used to

ensure data integrity and to provide a way of referencing specific records. /10/

A foreign key establishes a relationship between tables. It refers to the primary

key of another table and is used to link related data. Foreign keys are employed to

ensure data consistency and enforce referential integrity by connecting records

from one table to rows in another. /10/

15

An index is a set of pointers that is logically ordered by the values of a key. Indexes

provide quick access to data and can enforce uniqueness of the key values for the

rows in the table. /9/

Constraint is to preserve data consistency and integrity; constraints are guidelines

that are applied to the data in a table.

Data Types can store a wide range of data types, including texts, dates, times, in-

tegers, floating-point numbers, and more by MySQL. Selecting the proper data

type for every column is crucial for effective data storage and retrieval.

A trigger in DBMS is a special type of stored procedure that is automatically exe-

cuted in response to certain database events such as an INSERT, UPDATE, or DE-

LETE operation. /11/

3.3 Implementation of MySQL in Software Engineering

Web applications often utilize MySQL as their backend database. MySQL is sup-

ported as the main database option by frameworks such as Django (Python), Rails

(Ruby), and Laravel (PHP). MySQL can support any web application use case. It

currently is used in some of the largest web applications, such as eBay, Dropbox,

and Twitter. /12/

MySQL is used in software engineering data warehousing solutions, which com-

bine, store, and analyze massive amounts of data for business insight. MySQL can

house immense amounts of data to be analyzed. /12/

MySQL is frequently used in the backend systems that enable mobile applications.

MySQL is used by mobile applications to store and manage data on the server side

for features like content delivery, data synchronization, and user authentication.

16

MySQL is frequently implemented in the field of software engineering for gaming

to manage player data, game state data, leaderboards, and other backend fea-

tures. MySQL is frequently utilized by the top game production firms, such as Ac-

tivision Blizzard, as the database back end for numerous video games. /12/

17

4 THE FRONT-END SIDE

4.1 Overview

The front-end refers to the part of a website or web application that users interact

with. Front-end refers to anything that consumers view, touch, click, or interact

with on their screens. /1/

Front-end covers components including design, buttons, forms, navigation menus,

and multimedia files like pictures and videos. Creating an aesthetically pleasing,

intuitive, and user-friendly interface that helps people do activities quickly and

joyfully is the main objective of front-end development. Front-end developers

construct the front-end for a website or an application using many technologies,

languages, and frameworks. Front-end developers not only establish the overall

look of a site but also create its interface and user experience. /1/

Front-end developers typically work closely with others—web designers, user ex-

perience (UX) analysts and back-end developers—to ensure they meet the speci-

fications. To design cutting-edge user interfaces, front-end developers also need

to keep up with the newest developments in web development and technology.

Front-end developers ensure the application or website is search engine optimized

and accessible to people with impairments. To enable these, a thorough grasp of

web standards and best practices is necessary. /1/

4.2 React

React.js is an open-source JavaScript toolkit designed with precision by Facebook

to ease the complicated process of designing dynamic user interfaces. It is possible

for developers to create modular user interface elements that can be used in many

contexts and that automatically update as data changes. It makes it simple to cre-

ate intricate and dynamic user interfaces. /13/

18

In React, applications are developed by creating reusable components that can be

understood as independent Lego blocks. These components are individual pieces

of a final interface, which, when assembled, form the entire user interface of the

application. React component-based design makes it easier to maintain applica-

tions and reuse code. /13/

React's Virtual DOM is a lightweight version of the Real DOM. Real DOM manipu-

lation is much slower than virtual DOM manipulation. When an object's state

changes, the Virtual DOM updates only that object in the real DOM, not all of

them. React virtual DOM technology makes component rendering and updating

fast, contributing to its excellent performance. /15/

React is an excellent choice for web applications. Its extensibility and adaptability

also make it a popular option for developing intricate software systems and appli-

cations.

4.2.1 Main Features

React allows users to specify how the UI appears depending on the application

state. This makes it more comfortable to understand and debug code even if there

are many errors occurring. React is heavily component based. When understand-

ing it maintaining the code when working on larger scale projects is easier. React

updates the user interface quickly by using a virtual DOM. React updates the vir-

tual DOM whenever a component's state changes, then determines the most ef-

fective method to update the actual DOM. /14/

JSX is JavaScript syntax extension. It is not necessary to use JSX in React develop-

ment, but it is recommended. Using JSX makes it easier to create React compo-

nents. /14/

19

React uses one-way data flow, making it simple to comprehend the application.

Unidirectional data flow enables to maintain predictable behavior and simplifies

debugging. /14/

There is a huge and active developer community that uses React, so documenta-

tion, tutorials, and support are easily accessible. This simplifies the learning and

troubleshooting process for developers using React. The community continuously

provides new libraries and tools to improve the development experience.

4.2.2 Key Concepts

React application consists of components and elements. Elements are lightweight,

immutable objects that represent the UI components users want to render on the

screen. Elements are typically created using JSX.

Components are the building blocks that comprise a React application represent-

ing a part of the user interface. /15/

In React, understanding the concepts of props and state is fundamental to building

dynamic and interactive components. Props transmit data and event handlers to

a component's children (the children refer to the nested elements or components

that are passed as content to another component). Props are immutable and can-

not be modified by the child component. State is used to handle data that changes

over time within a component. Unlike props, state is changeable and may be mod-

ified with the `setState()` function. /15/

React provides a collection of life cycle events (or callback API) to attach function-

ality (the process of connecting or associating specific methods or behaviors with

different stages or events in a React component's lifecycle). These methods are

executed during the various stages of the component. The components stages are

the different phases that React component goes through during its lifecycle: ini-

tialization, mounting, updating, and unmounting. /14/

20

4.2.3 Advantages

React uses Virtual DOM concept to check and update the HTML document. Virtual

DOM is a special DOM created by React. Virtual DOM represents the real DOM of

the current document. Whenever there is a change in the document, React checks

the updated virtual DOM with the previous state of the Virtual DOM and update

only the different in the actual/real DOM. This improves the performance of the

rendering of the HTML document. /14/

In addition, components encourage code reuse, making it easier to maintain and

expand programs. React also has a huge and active community, as well as several

libraries, tools, and resources to assist developers in creating more efficient appli-

cations. React also supports mobile development with React Native, a React-based

framework. /15/

4.2.4 Disadvantages

React.js is a library for creating user interfaces. To construct complicated applica-

tions, developers must rely on other libraries or frameworks, such as Redux for

state management. This might result in greater complexity and boilerplate code in

larger projects. /16/

React has introduced JSX to operate with HTML and JavaScript. JSX is basically Ja-

vaScript coupled with HTML syntax. It allows combining HTML and JavaScript, but

introduces several new attributes and syntaxes, making it challenging to deal with

first starting development with React. /16/

21

4.3 Axios

Axios is a popular JavaScript library for sending HTTP requests via the browser or

Node.js. It provides a simple API for developers to send asynchronous HTTP que-

ries to servers and manage results.

Axios streamlines the process of sending HTTP requests by offering a clear and

intuitive API. It is promise-based; thus, developers may create asynchronous code

with `async/await` or using `.then ()` syntax. /18/

Axios may be used in either browser-based or server-side applications. On the

server-side it uses the native node.js `http` module, while on the client (browser)

it uses `XMLHttpRequests`. /17/

Axios has robust error handling features, allowing developers to gracefully handle

a variety of HTTP problems. This involves managing network problems, timeouts,

and status code issues.

4.4 Yup Schema Builder

Yup is a JavaScript schema builder that handles value parsing and validation. Form

validation is frequently handled in React.js apps using form frameworks like

Formik. With Yup, the developer can define a schema (or structure) of the ex-

pected data specifying its data type and whether it is required or not. /19/

Yup offers a powerful and flexible solution for defining and validating data sche-

mas in JavaScript applications, particularly in the context of form validation. Yup

simplifies the process of enforcing data integrity and ensuring that the application

handles user input correctly.

22

5 WEB APPLICATION IMPLEMENTATION

5.1 Overview

The main purpose of this thesis is to create a web application with basic functions

to consolidate information and knowledge for those who want to start web devel-

opment projects. The core features of the web application are representing ma-

chines and user’s metrics, allowing users to modify machines description data, and

supporting users on authentications. The project used very simple technologies to

make and took full advantage of these tools to create a complete web application.

Besides, the thesis also mentions and emphasizes important items of the above

technologies for readers to easily select.

5.2 Back-end Implementation

Figure 1 presents the server directory that contains the back-end source code and

the configuration of the database storing by MySQL DBMS. The `config` folder in-

cluded config JSON file that provides different set of database connections settings

for different environments. The `middlewares` folder contained `AuthMiddle-

Figure 1. Back-end directory

23

ware.js` file for a middleware function used for authenticating requests by verify-

ing JWTs passed in the request headers. The ̀ models` folder essentially sets up the

code with database configuration provided, loads all the models defined in it, es-

tablishes associations between them, and exports the database object to use

throughout the application. The `node_modules` is for managing project depend-

encies in the project. The `routes` folder provides the structured way to define

how server handles incoming requests, resources, and middleware.

5.2.1 Models

Figure 2 presents code snippet for a JavaScript module that builds a Sequelize

model for dealing with the MySQL database table `Machines`. The `Machines` ta-

ble is stored in MySQL DBMS and it is presented in Figure 11.

Figure 2. Machine model

24

- First line `module.exports` exports a function with two parameters: se-

quelize and DataTypes. This function is the Sequelize model definition.

- sequelize.define function defines the model "Machines" in Sequelize.

Function accepts two arguments: the model's name ("Machines") and an

object that describes the model's attributes.

- machine - attribute represents the machine's name and is specified as a

string. Attribute is configured to reject null values (allowNull: false), mean-

ing the field must be modified when creating or updating a record.

- function - attribute represents the machine's function and is specified as a

string. Like "machine", it does not support null values.

- username - attribute represents the machine's username. It is also a string

type that rejects null values.

- Machines.associate function in Sequelize defines relationships between

models. In this case, it indicates that a "Machines" object might have many

"Descriptions" objects linked with it.

- Code Machines.hasMany(models.Descriptions, {onDelete: "cascade"});:

creates a one-to-many relationship between the "Machines" and "Descrip-

tions" models. This means that any machine can be assigned several de-

scriptions.

- The {onDelete: "cascade”} option guarantees that when a machine is de-

leted, all related descriptions are likewise erased.

- return Machines: Finally, the method returns the "Machines" model, which

can be imported and utilized throughout the program.

25

Figure 3 presents code snippet for defining a Sequelize model for a database table

named `Users` and this table is presented in Figure 12.

- module.exports exports the function with two parameters similarly as

other models.

- sequelize.define function describes the model named `Users` in Sequelize.

- `username` and `password` - attributes are defined by an object with a

`type` property specifying the data and an `allowNull` property specifying

whether the attribute can be null or not.

- The function returns the `Users` model, making the application available

for use.

Figure 3. Users model

26

Figure 4 presents code snippet for defining a Sequelize model called “Descrip-

tions” to deal with the database table named “Descriptions” which is presented in

Figure 10.

- module.exports exports the function that takes two parameters.

- sequelize.define function takes two parameters, and an object defining the

model’s attributes and data types.

- descriptionBody - attribute represents the body of the description with the

data type String and not null.

- username - attribute also represents the username associated with the de-

scription, data type and requirement.

- Finally, Sequelize model definition is returned.

Figure 4. Descriptions model

27

5.2.2 Routes

The code shown in Figure 5 presents a part of a Node.js application that uses the

Express.js framework. It defines a router that handles HTTP requests related to

machines.

- express imports the Express.js framework, which makes it easier to create

web applications and APIs using Node.js.

Figure 5. Machines route

28

- router imports Express's Router module, which allows specifying routes in-

dividually and utilized in the application.

- {Machines} imports the Machines model from the ../models directory. Im-

porting model establishes Sequelize model for machines and enables in-

teraction with the database.

- GET `/` Route handles HTTP GET requests for the root URL ("/"). Calling the

URL all machines from the database are retrieved using Sequelize's findAll()

function and return data in json-format.

- GET `/byId/:id` Route replies to HTTP GET requests for URLs "/byId/:id",

where:id is an URL argument that represents the machine's ID. Request

fetches machine data from the database by its primary key (id) using Se-

quelize's findByPk() function and return data in json-format.

- POST `/` Route handles HTTP POST requests for the root URL ("/"). Request

requires a JSON payload with machine data in the request body. Calling the

URL then generates a new machine record in the database using Se-

quelize's create() function.

- All route handlers are declared as asynchronous functions using the ̀ async`

keyword. Async enables functions to utilize `await` to stop execution while

asynchronous processes, like database queries or model building, are fin-

ished.

- For GET routes, the server returns JSON data describing the machines that

were queried. The POST route, after generating a new machine record, the

same machine data as JSON in the response is returned.

29

Figure 6 presents the code for Users route, which implements basic user

registration, login, and authentication functionality with Express, bcrypt

for password hashing, and JWT for authentication. The code adheres to

standard practices by securely hashing passwords and implementing JWTs

for stateless authentication.

- Dependencies: express, bcrypt-hashing password securely, jsonwebt-

oken(JWT) and AuthMiddleware.

- Registration Route requires `username` and `password` in the request

body, password is hashed using bcrypt.

- Authentication Route uses `validateToken`, a custom middleware, to au-

thenticate requests. If the JWT token is valid, user information derived

Figure 6. Users route

30

from the token is returned. If the token is incorrect or absent, the middle-

ware returns an error message.

Figure 7 presents the code for Descriptions route using Express.js router module

to performs CRUD (Create, Read, Update, and Delete) activities for a resource

called "Descriptions." To conduct the activities, database communication is

needed. Additionally, `express` is required to define a router with `ex-

press.Router()` for importing the Descriptions model and `validateToken` middle-

ware from its respective modules.

Figure 7. Descriptions route

31

5.2.3 Middleware

The code snippet shown in Figure 8 provides the middleware function called `val-

idateToken`. The function is for verifying the presence of a JWT (JSON Web Token)

in the request header. If the token is present, authentication is done using a secret

key. If the verification is successful, a decoded token is added to the request object

and control is transferred to the next middleware or route handler. If the token is

missing or incorrect, an error response is provided. This middleware function en-

sures that incoming requests are having a valid access token and information

about the authenticated user is extracted for further processing in subsequent

middleware functions or route handlers.

5.3 MySQL Database System Implementation

The project gives a demonstration of three types of data: Machine, User and De-

scription. The Machine table contains properties machine, function, and username

where the User table contains username and password, and the Description table

contains descriptionBody and username.

Figure 8. Authentication middleware

32

Figure 9 represents the database schema for `thesisdb` -database which includes

the mentioned three tables: descriptions, machines, and users. The schema also

contains other objects called: Views, Stored Procedures and Functions. The

`Views` object contains virtual tables derived from the result set of a select query.

`Stored Procedures` are a set of SQL statements that are stored in the database

and can be executed repeatedly by invoking their name. ̀ Functions` are like stored

procedures but return a single value. The ``Views` and `Stored Procedures` are not

utilized in this project.

Figure 9. Database structure

Figure 11. machines table in database

Figure 10. description table in database

33

Figures 10, 11, 12 show the tables that store the data of the web application. In

addition, to the fields that were described earlier, MySQL automatically generates

id, createdAt and updatedAt for each table. The id field represents the unique

identifier to an object (machine, user, or description) and two other fields store

the time when the object has been modified.

5.4 Front-end Implementation

The graph in Figure 13 presents the structure of the web application developed in

the thesis. The application has four main pages: Home page, Create machine page,

Authentication page and User page. The Authentication page is run in three

stages: a new user needs to create a new account with password in the Register

Figure 12. users table in database

Figure 13. The Front-end structure

34

step. After the account creation, the user can log in to the application. The User

page has a description for giving information to the assigned machine.

Figure 14 shows the Home page where all machines and their information are

shown. Shown information includes machine name, functionality and username

assigned for the machine. When the user clicks one of these blocks the machine is

shown and the user can add more details about the machine.

Figure 14. Home page

Figure 15. Register page

35

Figure 15 represents the registration process that has some requirements for the

password. The password must be at least four characters long and it needs to con-

tain special characters. After the registration step, the user can login to the appli-

cation.

Figure 16 presents the navigation bar after the user has logged in. The Register

and Login buttons are hidden, the Logout button is displayed instead. Besides, the

name of the user is shown to highlight user has logged in. The state of the naviga-

tion bar is reset to the initial process bar after Logout.

Figure 16. The button bar after login

36

6 CONCLUSIONS

The creation of a full-stack web application is a substantial undertaking in the field

of current software engineering. The study and analysis offered in this thesis show

that such projects require a thorough grasp of both front-end and back-end tech-

nology, as well as the ability to smoothly integrate multiple components.

As stated throughout this paper, the advantage of full-stack web applications is

necessary for web developers. They provide greater flexibility, scalability, and per-

formance, resulting in a more coherent and dynamic digital experience. Further-

more, by embracing the most recent frameworks and technologies, developers

may expedite the development process, lowering time-to-market and assuring on-

going relevance in an ever-changing technological context.

This application was developed using MySQL DBMS, Node.js, Express.js, React, Ax-

ios, and Sequelize. The project was tough but satisfying. During the first develop-

ment phase, MySQL was used to design the database schema, while NodeJS and

ExpressJS were set up for server-side programming. In the second phase the client

side with React was built. During the development, many challenges were encoun-

tered, notably with the integration of several technologies, the user authentica-

tion method, and debugging and testing the application. The application's general

architecture seems strong, and it offers a secure authentication method that pro-

tects users from illegal access.

To summarize, developing a full-stack web application is more than just a technical

endeavor; it is also a demonstration of software engineers' intellect and imagina-

tion. Developers can realize the full potential of the web by adopting best prac-

tices, developing technologies, and prioritizing user-centric design, helping indi-

viduals and organizations to prosper in the digital era.

37

REFERENCES

1. Indeed. A Guide to Front-End vs. Back-End vs. Full-Stack Development.

Accessed 1.02.2024. https://www.indeed.com/career-advice/finding-a-

job/back-end-vs-front-end-vs-full-stack-develop-

ment#:~:text=The%20back%20end%20refers%20to,of%20compo-

nents%2C%20front%20and%20back

2. Simplilearn. What is Node.js: A Comprehensive Guide. Accessed

2.02.2024. https://www.simplilearn.com/tutorials/nodejs-tutorial/what-

is-nodejs

3. MDN Web Docs. Express/Node introduction. Accessed 2.02.2024.

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Ex-

press_Nodejs/Introduction

4. Medium. Node.js and Express.js: Powering Modern Web Development.

Accessed 5.02.2024. https://medium.com/@IEEE_Computer_Soci-

ety_VIT/node-js-and-express-js-powering-modern-web-development-

b88eaa6cfc58

5. Turing. How to Create MySQL Connection with Node JS using Sequelize

and Express. Accessed 5.02.2024. https://www.turing.com/kb/mysql-con-

nection-with-node-js-using-sequelize-and-express

6. Kinsta. What Is Express.js? Everything You Should Know. Accessed

11.02.2024. https://kinsta.com/knowledgebase/what-is-express-js/

7. Hostinger. What Is MySQL and How Does It Work. Accessed 13.02.2024.

https://www.hostinger.com/tutorials/what-is-mysql

8. Blueclawdb. MySQL Advantages and Disadvantages. Accessed

13.02.2024. https://blueclawdb.com/mysql/advantages-disadvantages-

mysql/

https://www.indeed.com/career-advice/finding-a-job/back-end-vs-front-end-vs-full-stack-development#:~:text=The%20back%20end%20refers%20to,of%20components%2C%20front%20and%20back
https://www.indeed.com/career-advice/finding-a-job/back-end-vs-front-end-vs-full-stack-development#:~:text=The%20back%20end%20refers%20to,of%20components%2C%20front%20and%20back
https://www.indeed.com/career-advice/finding-a-job/back-end-vs-front-end-vs-full-stack-development#:~:text=The%20back%20end%20refers%20to,of%20components%2C%20front%20and%20back
https://www.indeed.com/career-advice/finding-a-job/back-end-vs-front-end-vs-full-stack-development#:~:text=The%20back%20end%20refers%20to,of%20components%2C%20front%20and%20back
https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-nodejs
https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-nodejs
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://medium.com/@IEEE_Computer_Society_VIT/node-js-and-express-js-powering-modern-web-development-b88eaa6cfc58
https://medium.com/@IEEE_Computer_Society_VIT/node-js-and-express-js-powering-modern-web-development-b88eaa6cfc58
https://medium.com/@IEEE_Computer_Society_VIT/node-js-and-express-js-powering-modern-web-development-b88eaa6cfc58
https://www.turing.com/kb/mysql-connection-with-node-js-using-sequelize-and-express
https://www.turing.com/kb/mysql-connection-with-node-js-using-sequelize-and-express
https://kinsta.com/knowledgebase/what-is-express-js/
https://www.hostinger.com/tutorials/what-is-mysql
https://blueclawdb.com/mysql/advantages-disadvantages-mysql/
https://blueclawdb.com/mysql/advantages-disadvantages-mysql/

38

9. IBM. Relational database structure. Accessed 13.04.2024.

https://www.ibm.com/docs/en/mfci/7.6.2?topic=design-relational-data-

base-structure

10. KDnuggets. Introduction to Databases in Data Science. Accessed

20.02.2024. https://www.kdnuggets.com/introduction-to-databases-in-

data-science

11. PrepBytes. Trigger in DBMS. Accessed 20.02.2024. https://www.prep-

bytes.com/blog/dbms/trigger-in-dbms/

12. Planetscale. What is MySQL and what is it used for? Accessed 23.02.2024.

https://planetscale.com/learn/articles/what-is-mysql

13. Hubspot. What is React.js? Uses, Examples, & More. Accessed

29.02.2024. https://blog.hubspot.com/website/react-js

14. Tutorialspoint. ReactJS – Overview. Accessed 29.02.2024.

https://www.tutorialspoint.com/reactjs/reactjs_overview.htm

15. Simplilearn. The best guide to know What is React. Accessed 29.02.2024.

https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs

16. KnowledgeHut. What are the Pros and Cons of React. Accessed

3.03.2024. https://www.knowledgehut.com/blog/web-develop-

ment/pros-and-cons-of-react#pros%C2%A0

17. Axios. Documentation What is Axios? Accessed 6.03.2024. https://axios-

http.com/docs/intro

18. DigitalOcean. How to use Axios with React. Accessed 6.03.2024

https://www.digitalocean.com/community/tutorials/react-axios-react

19. Sanity. Form validation with Yup. Accessed 10.03.2024. https://www.san-

ity.io/guides/form-validation-with-npm-yup

https://www.ibm.com/docs/en/mfci/7.6.2?topic=design-relational-database-structure
https://www.ibm.com/docs/en/mfci/7.6.2?topic=design-relational-database-structure
https://www.kdnuggets.com/introduction-to-databases-in-data-science
https://www.kdnuggets.com/introduction-to-databases-in-data-science
https://www.prepbytes.com/blog/dbms/trigger-in-dbms/
https://www.prepbytes.com/blog/dbms/trigger-in-dbms/
https://planetscale.com/learn/articles/what-is-mysql
https://blog.hubspot.com/website/react-js
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm
https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs
https://www.knowledgehut.com/blog/web-development/pros-and-cons-of-react#pros%C2%A0
https://www.knowledgehut.com/blog/web-development/pros-and-cons-of-react#pros%C2%A0
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://www.digitalocean.com/community/tutorials/react-axios-react
https://www.sanity.io/guides/form-validation-with-npm-yup
https://www.sanity.io/guides/form-validation-with-npm-yup

