
Bachelor’s thesis

Information and Communications Technology

2024

Jaakko Haavisto

Designing implementable tools

– the importance of easy and fast implementation

in the metaverse era

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

March 2024 | 34 Pages

Jaakko Haavisto

Designing implementable tools

 the importance of easy and fast implementation in the metaverse era

The aim of this thesis was to investigate existing approaches to developer tool

design and the impact these approaches have on the ease and speed of

implementation.

The commissioner of this thesis, Futuristic Interactive Technologies research

group at Turku University of Applied Sciences, requested that a Unity Engine

tool for use in future metaverse platform development was developed as part of

this thesis. In relation to this, this thesis explores the importance of properly

designed developer tools in the realm of metaverse platform development and

the viability of Unity Engine as a platform for metaverse platform development in

comparison to Unreal Engine and Godot.

Existing material on tool design was researched and used to guide the design

during the tool's development. Design principles derived from the material were

then used to conduct a small study on the impact of specific design elements on

the implementation of a tool.

The results of the study support the hypothesis that developers find consciously

designed tools easier and faster to implement, though further studies are

needed for more concrete and conclusive results.

Keywords:

virtual reality, Unity Engine, software development, software design, metaverse

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

2024 | 34 sivua

Jaakko Haavisto

Implementoitavien työkalujen suunnittelu

 nopean ja helpon implementaation tärkeys metaverse-ajalla

Tämän opinnäytetyön tavoitteena oli tutkia olemassa olevia kehittäjätyökalujen

suunnittelutapoja ja näiden vaikutusta työkalun implementoinnin nopeuteen ja

helppouteen.

Opinnäytetyön tavoitteena oli myös kehittää työkalu Unity Engine

-pelimoottorille, joka tulisi käyttöön tulevissa metaverse-alusta projekteissa.

Tästä syystä opinnäytetyössä tutkittiin työkalujen suunnittelun vaikutusta

metaverse-alustojen kehityksessä. Opinnäytetyössä selvitettiin myös Unity

-pelimoottorin sopivuutta metaverse-alustojen kehittämiseen suhteessa Unreal

Engine ja Godot -pelimoottoreihin.

Työkalun suunnittelussa ja kehityksessä käytettiin hyväksi kirjallisuuslähteistä

löydettyjä suunnittelumalleja. Näiden suunnittelumallien tehokkuutta tutkittiin

antamalla ryhmälle insinöörejä kysely suunnitteluelementtien vaikutuksesta

työkalun implementaatioon.

Tutkimuksen tulokset kannattavat hypoteesia, että kehittäjien näkökulmasta

implementaatioon keskittyen suunnitellut työkalut ovat merkittävästi helpompia

ja nopeampia implementoida, mutta lisätutkimuksia vaaditaan tarkempien ja

varmempien tulosten saamiseksi.

Asiasanat:

virtuaalitodellisuus, Unity, ohjelmistotuotanto, ohjelmistosuunnittelu, metaverse

Contents

List of Abbreviations and Terms 6

1 Introduction 7

2 Metaverse, the Internet of Experiences 9

3 Unity as a Game Engine for Metaverse Development 11

3.1 Comparison of game engines 11

3.2 Pricing 13

3.3 Build target diversity 13

3.4 Performance 14

3.5 Asset Store 14

3.6 Addressables 15

4 Striving for Quick and Easy Implementation 16

4.1 Design Motivation 16

4.2 Tool Structure 16

4.3 Code Formatting 17

4.4 Supplemental material 18

4.5 Questionnaire and results 19

5 Development and Structure of the Tool 21

5.1 Purpose of the tool 21

5.2 Design Reasoning 21

5.3 Structure of the tool 22

5.4 Functional description 23

5.5 Supplemental material 27

6 Conclusion 29

References 31

 Images

Image 1. An example of class separation by implementation depth. 17

Image 2. Class structure of the tool. 22

Image 3. Example of different solutions caused by different area restrictions. 24

Image 4. Layout of the Example GUI with elements highlighted for clarity. 27

Tables

Table 1. Comparison of game engines. 12

Table 2. Interview data. 19

List of Abbreviations and Terms

2D Two-Dimensional

C++ A programming language

C# A programming language

DOTS Data-Oriented Technology Stack

FIT Futuristic Interactive Technologies

GDScript A programming language

GUI Graphical User Interface

XR Extended Reality, catch-all for Augmented Reality,

Virtual Reality and Mixed Reality

7

Turku University of Applied Sciences Thesis | Jaakko Haavisto

1 Introduction

Maintainability and ease of implementation are no doubt positive attributes for

any piece of software, but they become increasingly important when the aim is

to create tools that are to be functioning pieces of a much larger, unknown

system. General-use tools developed outside the environment must account for

problems that more project-specific software can solve as they appear. When

implementing tools like these, developers must spend time understanding the

tool and how it fits into the existing infrastructure of the project. Therefore, if it is

possible to design tools to minimize the time spent on implementation without

sacrificing functionality, it should be seen as an important part of tool

development. This thesis's aim was to determine the impact of implementation-

conscious design on the ease and speed of tool implementation.

The topic of the impact of implementation-conscious design was chosen, as

there is a lack of material available on design principles focusing on tool

development. This lack of material can be attributed to lack of demand for

academic research on the topic, but increasing global interest in metaverse

platform development makes this topic highly relevant. As metaverse platforms

benefit from being able to add new tools as needed, it is important that these

tools can be seamlessly implemented without the need for large system

changes. The thesis hypothesizes that being conscious of the impact of tool

design on implementation quality is especially important in metaverse

development.

The thesis aims to test the impact of implementation-conscious design on

implementation quality by using available material on tool design and finding a

set of design principles to follow. These principles are then followed to develop

a tool for procedurally instantiating content in a Unity project using the Unity

Addressable Asset System, with a specific focus on easy implementation of the

tool into any future project. As the tool developed is partially intended for use in

possible metaverse platform projects, the theoretical part of this thesis explores

the current state of metaverse platforms and their use-cases in addition to a

8

Turku University of Applied Sciences Thesis | Jaakko Haavisto

brief comparison of game engines and an evaluation of Unity Engine from the

perspective of metaverse platform development.

The tool developed was created for the Futuristic Interactive Technologies

research group at Turku University of Applied Sciences, which commissioned

this thesis. The tool was commissioned as a way for metaverse users to quickly

request an arbitrary number of assets as they need them and have them appear

instantiated and placed sensibly. The practical part of this thesis describes the

design principles used in developing the tool and how they were implemented in

the final product. Finally, the design principles are evaluated based on a small

group of interviewed experts.

9

Turku University of Applied Sciences Thesis | Jaakko Haavisto

2 Metaverse, the Internet of Experiences

As businesses become increasingly globalized and more people start to work

from home, the demand for platforms that enable virtual collaboration between

co-workers and businesses is on the rise. Companies like Microsoft, Nvidia and

Meta have made significant investments to develop metaverse platforms in

response to this demand. These platforms aspire to recreate real world places

and objects, to create a "permanent, immersive mixed-reality world where

people and people and people and objects can synchronously interact,

collaborate, and live beyond the limitations of time and space, using avatars

and the immersion-supporting devices, platforms, and infrastructures" (Lee &

Kim 2022, 3–4). This two-way link between the real world and the virtual world

is the defining characteristic of the metaverse and the feature that allows

metaverses to provide unique benefits to businesses.

To capitalize on these advantages, companies like BMW and AB InBev, parts of

the financial industry and many educational environments have partnered with

metaverse platforms to create "digital twins" of their factories or workspaces to

enable virtual collaboration (George 2021; Karkaria 2023; Chen 2023, 9;

Hussain 2023, 2–3). These companies believe that being able to test new

things in a virtual space before any real-world commitment will speed up

production steps like planning and testing while reducing the risk of errors.

Virtual collaboration in the metaverse lets people exchange information in an

immersive way, replacing traditional slideshow presentations with physical

simulations and examples. Collaborators can freely interact with and manipulate

the virtual world, rapidly sharing and expanding on ideas. Any problems found

while in the metaverse can be quickly addressed and the changes immediately

presented to any collaborators. Even large-scale projects can be planned and

simulated thoroughly, eliminating mistakes early without incurring the high costs

in time and resources caused by real world iteration.

However, it is essential to recognize that a metaverse, at its core, only serves

as a platform that can support additional content and tools to facilitate

10

Turku University of Applied Sciences Thesis | Jaakko Haavisto

collaboration. These tools must be built for increasingly specific purposes as

more vague and broad tools fail to meet the ease-of-use and feature demands

of new users. By building simple and maintainable tools early, these tools can

be modified, iterated upon, and reused later to create tools for specific use

cases more easily. By simplifying and speeding up the creation,

implementation, and maintenance of these tools, the widespread adoption of

metaverses can also be accelerated.

11

Turku University of Applied Sciences Thesis | Jaakko Haavisto

3 Unity as a Game Engine for Metaverse Development

While many of the larger metaverse platforms run on completely proprietary

software, smaller studios looking to participate in the metaverse market might

look towards commercially available game engines to jumpstart their

development. This chapter will mainly focus on Unity, as it is the chosen engine

of the commissioner of the tool developed, but a short comparison of other

game engines will be included for context. The engines are mostly compared

using data provided by the developers of the engines and a summary of the

comparison can be seen in table 1.

3.1 Comparison of game engines

There are countless viable options for game engine choice, but this comparison

specifically examines Unity, Unreal Engine and Godot. These engines have a

wide appeal and low specificity, but their differences still make each engine the

most desirable choice for different developers.

Unity markets itself as a game engine for mobile game development and for

multiplatform projects (Unity 2024b). It does not boast the ability to produce the

state-of-the-art graphics of more industry-standard options like Unreal Engine,

while still advertising its built-in technology more than free, community focused

game engines like Godot (Unreal Engine 2024a; Godot 2024b). While it is not

the focus of its marketing, the size of Unity’s asset library compared to other

engines hints at its community being larger than its competitors, a conjecture

supported by it being the game engine with the largest userbase (Unity 2024d;

Unreal Engine 2024c; Godot 2024d; SlashData 2022). It is overwhelmingly the

engine of choice for top mobile developers, with over 70% of the top one

thousand mobile games being made with Unity (Unity 2024a).

Unreal Engine posits itself as the game engine to use for teams who want to

take advantage of state-of-the-art technology and to minimize the performance

overhead of their projects (Unreal Engine 2024a). It is preferred over Unity by

12

Turku University of Applied Sciences Thesis | Jaakko Haavisto

major studios with high budgets, with the total game revenue of computer

games developed with Unreal being over double that of Unity (Milenovic 2023).

Table 1. Comparison of game engines.

 Unity Unreal Engine Godot

Pricing

Free with paid

professional

versions,

percentage of

revenue, runtime

fee (Unity 2024e;

Unity 2024f)

Percentage of

revenue (Unreal

Engine 2024d)

Free (Godot

2024e)

Programming

languages
C# C++

C++, C# and

GDScript

Asset library size
93019 assets

(Unity 2024d)

42658 assets

(Unreal Engine

2024c)

1674 assets

(Godot 2024d)

Advertising focus

Multiplatform,

Mobile

development

(Unity 2024b)

High Graphical

fidelity,

Performance

(Unreal Engine

2024a)

Community,

Modularity,

Simplicity (Godot

2024b)

Godot is open-source and thus completely free but while its usage with

independent developers is on the rise, it has yet to see significant use by major

studios (Milenovic 2023; Godot 2024e). The programming language unique to

Godot, GDScript, has high performance overhead compared to C# but is

designed to be easy to learn and use (Godot 2024a; GDScript 2024). Godot

also supports C++ and C#, making using GDScript completely optional.

13

Turku University of Applied Sciences Thesis | Jaakko Haavisto

3.2 Pricing

For professional use, Unity is generally more affordable as a development

platform than Unreal Engine. The main exception to this is that, as of the writing

of this report, Unity has a runtime fee which penalizes developing software that

makes low revenue per install. This means that for a small team developing an

openly distributed free platform with optional purchases, the combined price of

Unity software license and the runtime fee might add up to a much larger

fraction of their revenue than the 5% revenue split of Unreal Engine (Unity

2024f; Unity 2024e; Unreal Engine 2024d).

This directly shapes which types of metaverse platforms are feasible to develop

with Unity, as free-to-play virtual worlds intended as social platforms will likely

incur a large runtime fee, but more specialized platforms intended only for a

small-to-medium userbase are very affordable.

3.3 Build target diversity

The amount of popular desktop, console and mobile platforms have over time

reduced to a handful of options each. Currently these options are Windows,

MacOS and Linux for desktops, Xbox, PlayStation and Switch for consoles and

iOS and Android for mobile devices. While these platforms will change over

time and thus require continuous support from the developer of each game

engine, all game engines compared support the newest version of all these

platforms (Unity 2024c; Unreal Engine 2024b; Godot 2024c).

Conversely, there are many XR (extended reality) platforms in use, with new

ones still being developed. Unity offers a wide range of supported XR platforms,

with their own framework specifically built for XR development (Lexis et al.

2022).

Metaverse developers that want to leverage XR technology must consider

which XR platforms their product will be used with. If the metaverse platform is

openly distributed, their userbase might be using very varied XR platforms, as

14

Turku University of Applied Sciences Thesis | Jaakko Haavisto

many XR hardware manufacturers have their own platform that must be

specifically accounted for when developing a metaverse platform. The wide

range of platforms supported by Unity makes it an attractive choice for

developers who are not developing with specific hardware in mind.

3.4 Performance

The only programming language compatible with Unity is C#, a high-level

language designed with simplicity and generality in mind (ECMA 2006, 21).

While this choice of language makes Unity more approachable for less savvy

programmers, the language lacks the performance and capability for fine-grain

optimization that languages like C++ have (Ogala et al. 2020, 11–14).

Unity is developing a new architecture called DOTS (Data-Oriented Technology

Stack), which has been tested to reduce frame times by up to 50 times, but the

architecture is not yet ready for production (Antich, 2023). These performance

gains apply mostly to projects with many parallelizable actions, which may be

relevant to large, openly distributed metaverse platforms.

Depending on the kind of metaverse platform being developed, the relatively

inferior performance of Unity may be a dealbreaker. If the platform requires high

graphical fidelity, extensive simulation or is intended for low powered hardware,

developers might look towards a different engine. Metaverse platforms

developed with Unity will likely have to opt for a simpler presentation, something

that the largest metaverse platforms already do. For simpler, well optimized

platforms like these, Unity will effectively have equal performance to other game

engines.

3.5 Asset Store

By counting the assets in each asset category on the websites of all three asset

libraries compared, the amounts of assets provided in table 1 can be found. It is

apparent from these numbers that Unity has the widest array of ready-made

15

Turku University of Applied Sciences Thesis | Jaakko Haavisto

assets and plugins available out of all game engines compared. This can be

attributed to the Unity Asset Store being older than the asset distribution

websites of the other engines. Everything on the Unity Asset Store can be used

in used in any number of projects after a single payment, so development

teams who have used Unity in the past have extra incentive to continue using

Unity for their future projects.

The Unity Asset store contains multiple solutions for easy-to-use and high-

performance multiplayer game development. This makes developing a

metaverse platform with Unity more straightforward and frees up development

time for other tasks. Other assets available on the store can be used as

placeholders to quickly reach a minimum viable product, or to test out new

functionality. Using assets in this way helps developers focus on the unique

aspects of their platform first, gradually replacing assets with self-developed

content as necessary.

3.6 Addressables

The Unity Addressable Asset system is an asset management system which

allows loading assets in a more dynamic manner. The system allows for smaller

update sizes, better content packaging workflow and better support for live

content delivery (Palmer 2019). The system also supports loading assets from

the web, simplifying user submitted content distribution and remote asset

storage.

While all these benefits can be relevant for metaverse platform development,

having support for delivering live content updates at runtime is an especially

great tool for digital twin metaverse platforms. This allows multiple people to

collaborate on modifying an asset and to see it update in real time, for

developers to update existing assets without the need for distributing an

updated version of the platform and for users to upload and modify their own

assets uploaded to the web.

16

Turku University of Applied Sciences Thesis | Jaakko Haavisto

4 Striving for Quick and Easy Implementation

4.1 Design Motivation

Building a fully outsourced tool comes with a set of challenges and

considerations. The tool will have to fit into a largely unknown workflow and be

able to be implemented into a project that the developer of the tool has no

access to, often with the understanding that the client will not be able to contact

the developer with questions afterwards. It is therefore vitally important to

design tools to both intuitively and through direct guidance minimize both the

friction during implementation and the problems the client will have with the tool.

Anticipating questions posed by developers and providing the information

required to answer those questions is an important part of tool design (LaToza

& Myers 2011, 2).

Through good and open communication with the client both before and during

development, developers can ascertain their tools will not only function as

required, but also fit well into their environment. However, this type of

communication is not always possible, causing developers to have to rely on

other means of guaranteeing the quality of their tools.

4.2 Tool Structure

Structuring a tool to have a clear delineation between what the developers

using the tool should and should not interface with helps make the tool more

readable by cutting down on the amount of information the developers will have

to digest (Scalabrino et al. 2016, 10; Tashtoush et al. 2023, 25). Depending on

the complexity of the tool, it can also be useful to have added delineations

between different levels of custom implementations.

17

Turku University of Applied Sciences Thesis | Jaakko Haavisto

Image 1. An example of class separation by implementation depth.

As an example, a tool can be divided into a GUI, an interface class and a

background work class as seen in image 1. For basic implementation, using the

GUI might be sufficient, very straightforward and require no knowledge of

programming or how the tool works. For more advanced implementation, the

interface class lets developers with some programming knowledge and

understanding of the tool implement it in a more customized way, while still

hiding the logic they do not need to access or understand in the background

work class.

4.3 Code Formatting

Readable code not only helps tool developers make less mistakes during

development but is especially important when the developers know it will have

to be read and understood by other people. Following code format guidelines

and naming conventions will reduce misunderstandings and general confusion

the client will have to deal with during implementation (Scalabrino et al. 2016,

10).

When building an outsourced tool, tool developers must be especially conscious

of naming conventions. Names the developers of the tool are used to and

understand might be completely foreign and opaque to their target developers.

The solution is to sacrifice brevity for clarity, name even short-lived variables

descriptively and avoid inline declarations (Scalabrino et al. 2018, 21).

18

Turku University of Applied Sciences Thesis | Jaakko Haavisto

Adding comments to code is the most obvious way to clarify its purpose and

convey information to the reader, but often well written code does not need

comments and over-commenting ends up making the code slower to read and

harder to parse (Spinellis 2003, 4; Scalabrino et al. 2018, 21). However,

comments briefly explaining complex or important parts of code or warnings

against modifications can not only speed up the implementation process, but

also potentially save the client from making mistakes the tool developers have

already dealt with.

4.4 Supplemental material

For more complex tools, supplemental materials provide a way to communicate

with the client indirectly. Through examples and explanations, supplemental

materials can help clear up confusion about a tool and direct its proper usage

(Garousi et al. 2015, 16–17). The types of supplemental material a tool should

use depend on many factors, such as platform, complexity, and the client.

There are, however, some supplemental materials which can be added to

almost any tool.

Technical documentation is seen as an important practice for most software

development. It allows the tool’s creator to highlight important parts of the tool

and explain its functionality in an intuitive way. While properly implementing any

tool that uses the aforementioned design guidelines is possible without

technical documentation, the client would have to read through code to

understand it. Technical documentation can provide a step-by-step process for

implementation, answer potential questions, isolate, and explain important parts

of code and help troubleshoot common issues.

Implementation examples are supplemental materials that let the client see

what a possible implementation could look like. These can range from full

examples, where the tool is used as a part of a small project, often alongside

other tools, to small examples that only demonstrate a possible implementation

of part of the tool. These examples can ease implementation by letting the client

19

Turku University of Applied Sciences Thesis | Jaakko Haavisto

reverse engineer the example and see how to build their own, or even use parts

of the example in their own implementation.

4.5 Questionnaire and results

A group of 3 engineers from the FIT (Futuristic Interactive Technologies)

research group at Turku University of Applied Sciences were invited to respond

to a short questionnaire about the impact of the design elements described in

this chapter on the speed and ease of implementing a tool. All engineers had

experience in videogame programming and Unity Game Engine. The goal of the

questionnaire was to gauge the opinions and their homogeneity of engineers

with experience in implementing outsourced tools.

The elements were divided into 4 structures: class separation, code formatting,

documentation, and examples. The engineers were briefed on the meaning of

each structure, after which they rated each structure on a scale of 1 to 7, with

grade 1 meaning the structure is useless for implementation and grade 7

meaning implementation is impossible without the structure.

The engineers mostly agreed on each structure, with the “examples” structure

being an outlier with a grade variance of 4.32 compared to the average grade

variance of 1.5 and an average grade variance of 0.56 when ignoring the

“examples” outlier.

Table 2. Interview data.

 Class separation Code formatting Documentation Examples

Engineer 1 5 4 6 3

Engineer 2 6 4 5 7

Engineer 3 7 5 6 4

All structures received average grades above the median available grade of 4,

with the “class separation” structure being rated highest with an average grade

of 6, emphasizing the importance of a clear separation of different

implementation levels. As seen in table 2, the “documentation” structure was

20

Turku University of Applied Sciences Thesis | Jaakko Haavisto

rated only slightly below the “class separation” structure with an average grade

of 5.67 and the “code formatting” structure was rated lowest with an average

grade of 4.32. As the grade variance of the “Examples” structure was so high,

its impact on implementation is less clear from the results, but it should be

noted that two of the engineers rated it as the least important structure, while

one engineer rated it as being a requirement for a successful implementation.

While the small size of the study prevents it from providing any conclusive

evidence, the high average grades support the hypothesis that conscious

attention paid to these specific design elements helps developers implement

tools faster and easier.

21

Turku University of Applied Sciences Thesis | Jaakko Haavisto

5 Development and Structure of the Tool

5.1 Purpose of the tool

For this thesis, a tool was commissioned by the FIT research group for use in

various future projects. The goal of the tool was to use the Unity Adressables

system to add objects into the game world in a specific manner. Players can

choose the objects and their amounts, and those objects will appear in the

game world. This is only restricted by the area in which the objects appear in, if

the objects cannot fit, they will not appear. The purpose of the tool therefore is

to take the selected objects and try to find a way to fit them all inside the area,

no matter their size or shape.

5.2 Design Reasoning

The tool is designed to be as easy to understand and implement as possible,

with potential problems either intuitive to solve, or anticipated in the design

process and a solution provided in the supplemental material. The tool is also

designed to be easily implementable into as wide of a range of different projects

as possible.

The separation of the base class and the area class serves two essential

functions. The clear separation between an interfacing class and a functional

class intuitively tells the developers which parts of the code they are meant to

access. The separation between code that needs to access Unity namespaces

and code that does not increases modularity and allows parts of the code to be

used in a wider range of projects.

An additional separation layer could be added by isolating every public method

of area class into its own class, but since the same separation is implicit in the

class between public and private methods, it was not deemed necessary.

22

Turku University of Applied Sciences Thesis | Jaakko Haavisto

5.3 Structure of the tool

The tool primarily consists of two classes: a class that generates a solution for

packing rectangular objects into a rectangular area, referred henceforth as

"base class", and a class that interfaces between the base class and Unity,

referred henceforth as "area class". The base class uses a binary tree 2D (two-

dimensional) bin-packing algorithm with additional conditionals to check for

solutions where some or all the objects are rotated by 90 degrees (Skiena 2008,

595–597). The class runs entirely asynchronously. The area class is attached

as a Unity component to a prefab, which is an empty GameObject and is used

for the position, rotation, and size of the area in which to spawn the objects. Any

number of these objects can exist and function simultaneously in a scene.

Image 2. Class structure of the tool.

While the tool does not primarily include any interface between the area class

and the user, an example interface class for this purpose is included as

supplemental material. This class uses a simple mouse and keyboard GUI to

pass user input data to the area class. Additionally, a prefab is supplied that

uses this class and default Unity user interface elements to build a full mouse

and keyboard GUI (Graphical User Interface) that works without modification

when dropped into any scene.

The hierarchical structure of the tool can be seen in image 2, with each class

only calling the class more generic than itself. The base class not inheriting the

Unity MonoBehaviour class required for all Unity integration makes it the most

23

Turku University of Applied Sciences Thesis | Jaakko Haavisto

generic, only dealing with abstract data passed to it when called by the area

class.

A sample Unity project that implements every aspect of the tool is provided as

supplemental material. This project consists of a simple scene only including

the aforementioned example GUI and area prefab.

Technical documentation precisely describing the tool and all its parts is

included as supplemental material. This documentation also includes a step-by-

step guide for quick implementation.

5.4 Functional description

Base class

The base class uses a binary tree 2D bin-packing algorithm, modified to

account for more possible solutions (Skiena 2008, 595–597). The algorithm has

been modified in two ways:

1. Whenever an object is recognized to not fit in a proposed position, the

algorithm rotates the object 90 degrees around the y-axis and tries again.

2. Whenever the algorithm completes but could not find a solution, it will rotate

every object 90 degrees around the y-axis and tries again. The second attempt

cannot trigger this behavior again.

These modifications work in tandem to vastly increase the number of

arrangements considered. The unmodified algorithm tries to place every object

in its original orientation, and therefore can often fail to find a solution when

using objects with a significant difference between height and width. The first

modification solves this problem by checking two different orientations. Since

every object is rectangular, this eliminates all possible rotations with 90-degree

increments. This modified algorithm still prefers placing objects in their original

orientations and can therefore lock itself out of a possible solution. The second

modification solves this problem by running a second check that prefers rotated

24

Turku University of Applied Sciences Thesis | Jaakko Haavisto

orientations the first time the algorithm determines a solution could not be

found.

As seen in the top-right section of image 3, with available space in both

horizontal and vertical directions, the red objects stay vertical and the yellow

objects horizontal. When the horizontal area is restricted, as seen in the top-left

section of image 3, some of the yellow objects rotate to fill the space more

efficiently. In the bottom section of image 3, because the red objects are placed

first and the algorithm prefers to place the objects in their original orientations,

the vertical size of the area has to be restricted to be less than the height of one

red object for the objects to rotate.

Image 3. Example of different solutions caused by different area restrictions.

Since the full algorithm is computationally expensive, it is important to use less

resource intensive checks before initiating it to stop execution early when a

solution clearly cannot be found. The checks included in the base class stop

execution if the combined area of the objects is greater than the area of the

spawn area, if the height of any of the objects is larger than the height of the

spawn area, or if the base class is called with parameters which would cause

errors in the algorithm.

25

Turku University of Applied Sciences Thesis | Jaakko Haavisto

The algorithm outputs an array of 2D coordinates, with (0,0) being the bottom

left corner of the spawn area and assumes each object's pivot is also at its

bottom left corner.

The algorithm was programmed to run asynchronously to minimize its impact on

game performance.

Area class

The area class is an interface between the base class and Unity. It provides

multiple functions that allow the base class to seamlessly be used with Unity

Addressables. Its functions include:

1. Loading addressables.

2. Calculating the bounds of objects.

3. Transforming the 2D coordinates calculated by the base class into three-

dimensional coordinates.

4. Instantiating objects.

5. Moving objects to align to a new corner of the spawn area without

reinstantiation.

6. Visualization of the spawn area in Unity editor.

The area class is mainly accessed through a single method which accepts

information consisting of the objects to spawn, the amount of each object to

spawn, the amount of space to leave between each object and the corner of the

spawn area to align the objects towards. It then executes the first four of the

functions listed above, in order. Other methods exist to guarantee functionality,

help improve performance or to provide useful information.

Transforming the 2D coordinates calculated by the base class into three-

dimensional coordinates is the most involved part of the area class. The

coordinates of each object need to be partially or fully negated if the objects are

not to be aligned to the bottom-left corner of the spawn area. They then must be

26

Turku University of Applied Sciences Thesis | Jaakko Haavisto

offset by the position of the spawn area, the position of the object’s pivot and

finally both rotated and moved to match the rotation of the spawn area. All these

calculations are different depending on the chosen corner of the spawn area to

align the objects towards.

To account for the bottom-left corner alignment of the base class coordinates,

the area class pre-emptively calculates vectors from world (0,0,0) to each of the

four bottom corners of the spawn area. It also calculates vectors from the four

bottom corners of each object to its pivot and stores them for future use. Once

these vectors are calculated, they can be used to calculate offsets for any

combination of chosen alignment corner and rotation of the object.

The area class contains a method for changing the alignment corner without

executing the base class algorithm again by calculating new positions for the

objects and directly changing their positions to match. Using this method

instead of the main method whenever possible helps with performance, since it

doesn't execute the expensive base class algorithm, nor does it destroy and

reinstantiate the existing objects.

27

Turku University of Applied Sciences Thesis | Jaakko Haavisto

5.5 Supplemental material

Example GUI

The example GUI provides a simple mouse and keyboard interface for the user

and interacts with the area class. It consists of a C# class attached as a

component to a Unity prefab, which contains all the necessary elements of the

GUI.

Image 4. Layout of the Example GUI with elements highlighted for clarity.

As seen in image 4, the interface includes:

1. A dropdown menu listing available addressables

2. A button to add the selected addressable to the list

3. A field for specifying the offset between each addressable

4. A button to spawn the selected addressables in specified quantities

5. A button to re-align existing objects without respawning the objects

6. A set of radio buttons to select the alignment corner of the objects

7. Fields for specifying the amount of each selected object

8. Buttons for removing a selected object from the list

28

Turku University of Applied Sciences Thesis | Jaakko Haavisto

The example GUI has no functionality for selecting different spawn areas, so it

can only be used for situations where a scene contains only a single spawn

area.

Sample Unity project

The sample Unity project consists of a simple scene, only containing a floor, a

single spawn area, the example GUI, and four simple prefabs configured as

addressables.

No additional setup is needed for the project to work, and all the elements of the

tool are on display and ready for experimentation.

Technical documentation

An eight-page technical documentation is provided with the tool.

The documentation contains:

1. A brief description of the tool and it's components

2. A list of notable issues with the tool

3. A step-by-step guide for simple implementation

4. An in-depth description of each class and their methods

29

Turku University of Applied Sciences Thesis | Jaakko Haavisto

6 Conclusion

The objective of this thesis was to study the importance of designing tools with

ease and speed of implementation in mind, focusing on development for

metaverse platforms. A tool commissioned by the FIT research group at the

Turku University of Applied Sciences was developed with a focus on

implementation design and used as an example in a small study to gauge the

views of developers on the importance of specific design elements.

As the tool was commissioned for Unity development with plans of

implementation into future metaverse projects, the thesis examined the game

engine from the perspective of metaverse platform development in comparison

to Unreal Engine and Godot. This examination showed Unity to have many

beneficial aspects for the purpose, with the downsides relative to other

examined game engines being situational and manageable.

A small study on the importance of specific design elements was conducted by

querying developers with experience in programming. Due to the small sample

size of the study the results are inconclusive, but support the hypothesis that

implementation-conscious design, specifically design using class separation,

readable code and additional materials help speed up implementation.

The thesis could have been improved by researching and documenting more

approaches to tool design before the beginning of development and conducting

a larger scale study to compare the impact of these approaches to the

implementation process of the tool. A more conclusive study examining the

implementation quality of the tool developed was considered, but because of

the time required to implement even an easily implementable tool, such a study

was out of the scope of this thesis. The results of the study conducted in this

thesis only reveal the importance of the design elements in theory and cannot

be used to draw conclusions on their effectiveness in practical applications. In

addition, without any specific study on the relative importance of implementation

quality in the development of metaverse platforms, the original hypothesis of

30

Turku University of Applied Sciences Thesis | Jaakko Haavisto

implementation-focused design being more important for this purpose can only

be supported by written material.

Future research on the topic could benefit from interviewing developers who

have released developer tools on platforms like the Unity Asset Store. As the

tools released on platforms like these are exactly the kind of general-use tools

this thesis is focused on, their developers could have important insight into

useful design practices and their impact on implementation.

Overall, the thesis finds implementation-conscious design an important part of a

properly developed tool, with theoretical benefits for ease and speed of

implementation. The hypothesis that implementation-focused design has

elevated importance in metaverse platform design was not confirmed by the

thesis.

31

Turku University of Applied Sciences Thesis | Jaakko Haavisto

References

Antich, A. “Unity DOTS / ECS Performance: Amazing” [online]. 2023. Consulted

23.01.2024. https://medium.com/superstringtheory/unity-dots-ecs-performance-

amazing-5a62fece23d4

Chen, Z. Metaverse and Stock Market—A Study Based on Fama-French Model.

In: Proceedings of the 2022 3rd International Conference on E-Commerce and

Internet Technology (ECIT 2022). Atlantis Press International BV; 2023:725-

734. doi:10.2991/978-94-6463-005-3_74

ECMA. 2006. C# Language Specification (4th ed.). 2006.

www.ecma-international.org

Garousi, G., Garousi-Yusifoğlu, V., Ruhe, G., Zhi, J., Moussavi, M., Smith, B.

Usage and usefulness of technical software documentation: An industrial case

study. Information and Software Technology. 2015;57:664-682.

doi:10.1016/j.infsof.2014.08.003

GDScript. “GDScript” [online]. 2024. Consulted 7.2.2024. https://gdscript.com/

George, S. “Converging the physical and digital with digital twins, mixed reality,

and metaverse apps” [online]. 2021. Consulted 10.12.2023.

https://azure.microsoft.com/en-us/blog/converging-the-physical-and-digital-with-

digital-twins-mixed-reality-and-metaverse-apps/

Godot. “Performance of C# in Godot” [online]. 2024a. Consulted 7.2.2024.

https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_basic

s.html#performance-of-c-in-godot

Godot. “Features” [online]. 2024b. Consulted 5.2.2024.

https://godotengine.org/features/

Godot. “List of features” [online]. 2024c. Consulted 5.2.2024.

https://docs.godotengine.org/en/stable/about/list_of_features.html#platforms

Godot. “Godot Marketplace” [online]. 2024d. Consulted 5.2.2024.

https://godotmarketplace.com/product-category/all/

Godot. “License” [online]. 2024e. Consulted 5.2.2024.

https://godotengine.org/license

https://medium.com/superstringtheory/unity-dots-ecs-performance-amazing-5a62fece23d4
https://medium.com/superstringtheory/unity-dots-ecs-performance-amazing-5a62fece23d4
http://www.ecma-international.org/
https://gdscript.com/
https://azure.microsoft.com/en-us/blog/converging-the-physical-and-digital-with-digital-twins-mixed-reality-and-metaverse-apps/
https://azure.microsoft.com/en-us/blog/converging-the-physical-and-digital-with-digital-twins-mixed-reality-and-metaverse-apps/
https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_basics.html#performance-of-c-in-godot
https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_basics.html#performance-of-c-in-godot
https://godotengine.org/features/
https://docs.godotengine.org/en/stable/about/list_of_features.html#platforms
https://godotmarketplace.com/product-category/all/
https://godotengine.org/license

32

Turku University of Applied Sciences Thesis | Jaakko Haavisto

Hussain, S. Metaverse for education – Virtual or real? Frontiers in Education.

2023;8. doi:10.3389/feduc.2023.1177429

Karkaria, U. BMW to Build Factories Faster Virtually: Nvidia’s Omniverse Cuts

Costs, Increases Flexibility.; 2023. https://www.proquest.com/trade-

journals/bmw-build-factories-faster-virtually/

LaToza, T. D., Myers B. A. Designing useful tools for developers. In:

Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of

Programming Languages and Tools. ACM; 2011:45-50.

doi:10.1145/2089155.2089166

Lee, U. K., Kim, H. UTAUT in Metaverse: An “Ifland” Case. Journal of

Theoretical and Applied Electronic Commerce Research. 2022;17(2):613-635.

doi:10.3390/jtaer17020032

Lexis, T. A., Flynn, S., Ruddell, D., Brown, D., McDonald, W. ”Games Focus:

Extending your reality with XR” [online]. 2022. Consulted 30.01.2024.

https://blog.unity.com/engine-platform/games-focus-extending-your-reality-with-

xr

Milenovic, S. “Exploring the PC Game Engine Landscape” [online]. 2023.

Consulted 7.2.2024. https://www.gamedeveloper.com/game-

platforms/exploring-the-pc-game-engine-landscape

Ogala, J., Ogala, B., Onyarin, J. COMPARATIVE ANALYSIS OF C, C++, C#

AND JAVA PROGRAMMING LANGUAGES. Global Scientific Journal.

2020;8(5):1899-1913. https://www.researchgate.net/publication/358368843

Palmer, S. “Addressable Asset System” [online]. 2019. Consulted 30.01.2024.

https://blog.unity.com/games/addressable-asset-system

https://blog.unity.com/engine-platform/games-focus-extending-your-reality-with-xr
https://blog.unity.com/engine-platform/games-focus-extending-your-reality-with-xr
https://www.gamedeveloper.com/game-platforms/exploring-the-pc-game-engine-landscape
https://www.gamedeveloper.com/game-platforms/exploring-the-pc-game-engine-landscape
https://www.researchgate.net/publication/358368843
https://blog.unity.com/games/addressable-asset-system

33

Turku University of Applied Sciences Thesis | Jaakko Haavisto

Scalabrino, S., Linares-Vásquez, M., Oliveto, R., Poshyvanyk, D. A

comprehensive model for code readability. In: Journal of Software: Evolution

and Process. Vol 30. John Wiley and Sons Ltd; 2018. doi:10.1002/smr.1958

Scalabrino, S., Linares-Vasquez, M., Poshyvanyk, D., Oliveto, R. Improving

code readability models with textual features. In: 2016 IEEE 24th International

Conference on Program Comprehension (ICPC). IEEE; 2016:1-10.

doi:10.1109/ICPC.2016.7503707

Skiena, S. S. The Algorithm Design Manual: Second Edition. Springer London;

2008. doi:10.1007/978-1-84800-070-4

SlashData. “Did you know that 60% of game developers use game engines?”

[online]. 2022. Consulted 7.2.2024. https://www.slashdata.co/post/did-you-

know-that-60-of-game-developers-use-game-engines

Spinellis D. Reading, Writing, and Code. Queue. 2003;1(7):84-89.

doi:10.1145/957717.957782

Tashtoush, Y., Abu-El-Rub, N., Darwish, O., Al-Eidi, S., Darweesh, D., Karajeh,

O. A Notional Understanding of the Relationship between Code Readability and

Software Complexity. Information (Switzerland). 2023;14(2).

doi:10.3390/info14020081

Unity. “Games” [online]. 2024a. Consulted 7.2.2024. https://unity.com/games

Unity. “Unity Engine” [online]. 2024b. Consulted 5.2.2024.

https://unity.com/products/unity-engine

Unity. “Platform Development” [online]. 2024c. Consulted 5.2.2024.

https://docs.unity3d.com/Manual/PlatformSpecific.html

Unity. “Unity Asset Store” [online]. 2024d. Consulted 5.2.2024.

https://assetstore.unity.com/

Unity. “Plans and Pricing” [online]. 2024e. Consulted 30.1.2024.

https://unity.com/pricing

Unity. “Runtime Fee Estimator” [online]. 2024f. Consulted 30.1.2024.

https://unity.com/runtime-fee-estimator

https://www.slashdata.co/post/did-you-know-that-60-of-game-developers-use-game-engines#:~:text=Unity%20has%20the%20largest%20share,engine%E2%80%94much%20lower%20than%20Unity
https://www.slashdata.co/post/did-you-know-that-60-of-game-developers-use-game-engines#:~:text=Unity%20has%20the%20largest%20share,engine%E2%80%94much%20lower%20than%20Unity
https://unity.com/games
https://unity.com/products/unity-engine
https://docs.unity3d.com/Manual/PlatformSpecific.html
https://assetstore.unity.com/
https://unity.com/pricing
https://unity.com/runtime-fee-estimator

34

Turku University of Applied Sciences Thesis | Jaakko Haavisto

Unreal Engine. “Unreal Engine 5” [online]. 2024a. Consulted 5.2.2024.

https://www.unrealengine.com/en-US/unreal-engine-5

Unreal Engine. “Features” [online]. 2024b. Consulted 5.2.2024.

https://www.unrealengine.com/en-US/features

Unreal Engine. “Unreal Engine Marketplace” [online]. 2024c. Consulted

5.2.2024. https://www.unrealengine.com/marketplace

Unreal Engine. “License” [online]. 2024d. Consulted 5.2.2024.

https://www.unrealengine.com/en-US/license

https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/features
https://www.unrealengine.com/marketplace
https://www.unrealengine.com/en-US/license

