

Developing Advanced Web Applications with

the Yii Framework

Sam Stenvall

Degree Thesis

Information and Media Technology

2014

EXAMENSARBETE

Arcada

Utbildningsprogram: Informations- och medieteknik

Identifikationsnummer: 4645

Författare: Sam Stenvall

Arbetets namn: Utveckling av avancerade webbtillämpningar med ramver-

ket Yii

Handledare (Arcada): Hanne Karlsson

Uppdragsgivare:

Sammandrag:

Syftet med arbetet är att beskriva PHP-ramverket Yii med fokus på hur man kan an-

vända det för att bygga webbapplikationer. Arbetet baserar sig på programmet XBMC

Video Server som skapats med hjälp av ramverket. Programmet är en fristående webb-

applikation som möjliggör strömning och nedladdning av den media som användaren

har tillgänglig i XBMC. Programmet har från början publicerats som öppen källkod. I

arbetet har jag strävat efter att illustrera ramverkets användning med exempel från

XBMC Video Server för att kunna ge en praktisk inblick i hur det kan användas i verk-

liga livet för mer nischade projekt. Arbetet börjar med en introduktion till Yii-

ramverket, hur det har uppstått och vilka alternativ det finns till det. Vidare beskrivs yt-

ligt hur ramverket används rent praktiskt, med fokus på sådana funktioner och teknolo-

gier som används i XBMC Video Server. Illustrationer i form av korta kodsnuttar an-

vänds för att ge en bättre överblick. I arbetets andra del beskrivs i korthet pakethantera-

ren Composer som är en integral del i XBMC Video Server. I den tredje och sista delen

beskrivs XBMC Video Server både från ett tekniskt- och ett användargränssnittsper-

spektiv. Illustrationer i form av skärmbilder från programmets centrala delar används

för att ge en helhetsbild av det som texten beskriver.

Nyckelord: Yii, PHP, ramverk, videoströmning, öppen källkod, XBMC

Sidantal: 61

Språk: Engelska

Datum för godkännande: 15.12.2014

DEGREE THESIS

Arcada

Degree Programme: Information and Media Technology

Identification number: 4645

Author: Sam Stenvall

Title: Developing Advanced Web Applications with the Yii

Framework

Supervisor (Arcada): Hanne Karlsson

Commissioned by:

Abstract:

The purpose of the thesis is to describe and evaluate a PHP framework called Yii, with a

focus on how to use it to build web applications. The thesis is backed by an application

called XBMC Video Server which has been developed using the framework. XBMC

Video Server is a standalone web-based web application which enables streaming and

downloading of media from XBMC, a popular entertainment center software. XBMC

Video Server is published as free software. In the thesis I’ve tried to illustrate how the Yii

framework is used by using examples from XBMC Video Server in order to provide an

insight into how it can be used when developing more unique projects. The thesis begins

with an introduction to the Yii framework itself, its history and some of the available al-

ternatives to it. Furthermore the framework is analyzed from a practical perspective with

focus on features and technologies that have been utilized in XBMC Video Server. To

give the reader a better overview, illustrations in the form of short code samples are used.

The dependency manager Composer is described shortly in the second part of the thesis,

since it’s an integral part of XBMC Video Server. In the third and final part the XBMC

Video Server application itself is described both from a technical and a user interface

standpoint. Illustrations in the form of screen shots are used to give a better picture of the

information that the text is trying to convey.

Keywords: Yii, PHP, frameworks, video streaming, open source,

XBMC

Number of pages: 61

Language: English

Date of acceptance: 15.12.2014

CONTENTS

1. Introduction .. 9

1.1 Background ... 10

1.2 Methods and goals .. 11

1.3 Constraints .. 11

2. The Yii framework .. 13

2.1 Overview .. 13

2.2 Installation and basic architecture ... 13

2.2.1 The bootstrap script ... 14

2.2.2 Request routing ... 14

2.2.3 Directory structure ... 15

2.3 Components .. 17

2.3.1 Application components .. 17

2.4 Models ... 18

2.4.1 Derived model classes .. 18

2.4.2 Rules and scenarios .. 19

2.5 Controllers ... 20

2.5.1 Filters ... 21

2.5.2 Layouts and views ... 25

2.5.3 Widgets .. 26

2.6 Caching ... 27

2.6.1 Data caching .. 29

2.6.2 Fragment caching .. 30

2.6.3 Cache invalidation ... 31

2.7 Modules ... 33

2.8 Extensions ... 33

3. Composer ... 34

3.1 Introduction .. 34

3.2 The composer.json file .. 35

3.2.1 The composer.lock file... 36

3.3 Packagist ... 37

3.4 Integrating Composer with Yii ... 38

3.4.1 Using Composer dependencies as application components 38

4. XBMC Video Server ... 39

4.1 Background ... 39

4.1.1 XBMC .. 40

4.2 Functionality overview ... 41

4.3 Design ... 42

4.3.1 The API layer ... 42

4.3.2 Browse pages .. 45

4.3.3 Details pages ... 48

4.3.4 Settings and administration ... 53

5. Conclusions ... 56

References .. 59

Appendice 1 - Sammanfattning på svenska

FIGURES

Figure 1 A skeleton Yii project directory structure .. 15

Figure 2 A validator method ... 20

Figure 3 A controller action.. 21

Figure 4 A method filter ... 23

Figure 5 An example of how the access control filter works ... 24

Figure 6 Rendering a widget using CController::widget() ... 27

Figure 7 Rendering a widget using beginWidget() and endWidget() 27

Figure 8 Configuring cache components .. 29

Figure 9 How to use data caching .. 30

Figure 10 Fragment caching in action .. 31

Figure 11 How cache invalidation can be accomplished ... 32

Figure 12 A composer.json file in its simplest form .. 36

Figure 13 A composer.json file which references a private repository 37

Figure 14 Example usage of the simple-json-rpc-client library 43

Figure 15 Example of how to use the VideoLibrary static helper 44

Figure 16 Illustration of how VideoLibrary can map raw objects to a desired class 44

Figure 17 The browse page in the XBMC Video Server application 46

Figure 18 the Recently added episodes page .. 48

Figure 19 A details page for a movie ... 49

Figure 20 Watch/Download dialog... 50

Figure 21 Grid view of the available seasons for a TV show... 51

Figure 22 Example of an expanded season listing all the episodes for that season 52

Figure 23 Partial view of the application settings page .. 54

Figure 24 The system log ... 55

TERMS AND ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

APC Alternative PHP Cache

API Application programming interface

CMS Content management system

Codeception A testing framework for PHP

CRUD Create, read, update and delete

CSS Cascading Style Sheets

FFmpeg A set of libraries and programs for handling multimedia data

HTPC Home Theater PC, a computer dedicated to watching media

IMDb Internet Movie Database

JSON JavaScript Object Notation

JSON-RPC JavaScript Object Notation Remote Procedure Protocol

M3U A file format for multimedia playlists

Memcached In-memory key-value store for small chunks of arbitrary data

MP4 MPEG-4 Part 14, a video and audio container format

MVC Model-View-Controller

OpenELEC Open Embedded Linux Entertainment Center

PHP PHP: Hypertext Preprocessor

phpdoc A special code comment block that describes e.g. a method definition

phpass A PHP library for implementing proper password hashing

PDO PHP Data Objects, a database layer abstraction

PLS A file format that stores multimedia playlists

PSR PHP Standards Recommendation

RAR Roshal ARchive

SQL Structured Query Language

SQLite An SQL database embedded in a single file

TCP Transmission Control Protocol

WebSocket A protocol that provides full-duplex communications channels over a

single TCP connection

XBMC XBMC Media Center, a popular open source media center

XSPF XML Shareable Playlist Format

ACKNOWLEDGEMENTS

I would like to thank the XBMC developer community for creating their media center

application, without which the application developed for this thesis would not have been

possible. Especially I’d like to thank Sascha Montellese (@Montellese) and Tobias

Arrskog (@topfs2) for their crucial work on implementing the JSON-RPC API that

XBMC uses since without it this application wouldn’t be possible.

 In addition I would like to thank Christoffer Niska for being sort of a mentor

over the years; he’s been of tremendous help in learning how to use the Yii framework.

He has also written some of the components used in my application, which have saved

me and countless others from having to write them ourselves.

 Finally I’d like to thank my mentor Hanne Karlsson for assisting me in writing

this thesis.

9

1. INTRODUCTION

The purpose of this thesis is to examine the Yii framework, how it is used, and present

an example of an application made with it. As a part of this thesis I have created a web

application called XBMC Video Server [1], which is a supplementary tool to access me-

dia from the widely used XBMC media center software. The idea is to give the reader

enough knowledge about the architecture and usage of the Yii framework to be able to

see its merits. The application I’ve chosen to portray fits this purpose well since it’s rel-

atively unique.

 The thesis is divided into three distinct parts. The first part shows how the Yii

framework works, how its various components fit together, and how they can be used.

When appropriate, examples from the XBMC Video Server application are used. The

second part describes a dependency manager known as Composer [2]. While technically

not part of the Yii framework, I have chosen to include it here since it is a very integral

part of PHP development nowadays, including development of the XBMC Video Server

application.

 The third and final part will showcase the XBMC Video Server application it-

self. Beginning with some background information on what it is used for, I will illus-

trate some of the underlying architecture and design as well as a general overview of

how the application works, what features it has, and so on.

 Last but not least, I will reflect on the properties of the Yii framework as well as

on the XBMC Video Server application.

 Due to the nature of the subject, practically all my sources are web based. There

are a few books about the Yii framework [3], but the main reference guide has always

been its website [4]. Since citing electronic sources using the Harvard system may be

confusing to the reader I’ve chosen to forgo that in favor of the ISO 690 numerical ref-

erence system with square brackets [5].

 This thesis uses a couple of typographic conventions to distinguish among vari-

ous kinds of text:

 Code lines, commands, method and variable names appear in a mono-spaced

typeface

10

 Placeholders in syntax descriptions appear surrounded by <chevrons>

 Italic type is used for new terms as well as for file names and paths

1.1 Background

The methods and tools used to create web applications have changed and improved

drastically over the last few years. It is no longer common to design a web site com-

pletely from scratch – not even for small projects. Instead web developers have come to

rely on various frameworks (among other things) to ease development of both small and

large scale web applications.

 There are three main groups of frameworks used today. The framework best

suited depends on the task at hand and the amount of customization the developer is

looking to make.

 The first group consists of various fairly simple CMS systems. These include

frameworks such as WordPress and Joomla [6]. They make it easy to quickly set up

new web sites like blogs, company pages and information portals. There are many third-

party plugins and extensions that a developer may decide to integrate into the applica-

tion to enhance or extend the framework's functionality.

 Not all CMS systems are simple company or portfolio pages. For more advanced

requirements many people opt for more complete CMS frameworks, of which Drupal is

arguable the most famous one [7]. Frameworks like Drupal can be used to create almost

any kind of web site, be it a simple blog or a fully featured multilingual web store.

 Last but not least there are frameworks that are purely code, which means they

don't provide any point-and-click functionality like the previous types of frameworks.

Popular frameworks in this category include Laravel, Symfony and Yii [8]. These

framework types are the most powerful and flexible of all since the developer is in full

control. Coding frameworks are often used for more specialized web applications where

you'd have to do a lot of coding yourself no matter which framework you decide to use.

They also tend to be the most efficient in regards to both resource usage and perfor-

mance since there is less overhead than in running a complete CMS solution underneath

the surface.

11

1.2 Methods and goals

XBMC Video Server is published on Github as free software under the GPL v3 license.

The idea behind this is to be able to receive potential code contributions from the com-

munity as well as to function as a showcase of what I’ve accomplished as a developer.

 Since the thesis is mainly about how to use the Yii framework (which the appli-

cation is built upon), XBMC Video Server is used as a source of examples on how to

use the various features available in the framework. Since the source code is freely

available, the concepts explained in the thesis can easily be studied in more detail

through code that’s actually in use somewhere. The original idea was to use XBMC

Video Server purely as an example of how the Yii framework can be used to build ad-

vanced web applications, though over time the application grew to such an extent that I

decided to take the opportunity to use this thesis as a form of show case for it.

 After reading the thesis the reader should be familiar enough with the Yii

framework to be able to examine and understand on a higher level the source code of

XBMC Video Server or any other moderately complex Yii application. This means that

this is by no means a complete guide on how to use the Yii framework.

1.3 Constraints

The Yii framework is a so called “full stack” framework. That means that it provides all

kinds of functionality, all of which are unlikely to be used by a single project. In the

case of XBMC Video Server this is even more true since it doesn't use a traditional da-

tabase for most of its data models, something which is generally common in web appli-

cations and which Yii provides a lot of functionality for. This means that this thesis

properly covers only the parts that the application uses. Specifically, the following ma-

jor concepts are not discussed in greater detail:

 The active record patterns

 Component events and behaviors

 Modules and extensions

12

On the subject of caching, the data caching mechanism will receive most attention, fol-

lowed by fragment caching which will be explained briefly. Page caching will not be

discussed since it is often achieved using different means, such as dedicated HTTP

caching software like Varnish [9].

Yii has support for unit testing using PHPUnit [10], nevertheless testing will not

be covered in this thesis since the subject is too broad for this context.

 There's a new major version (2.0) of the Yii framework currently under devel-

opment [11]. This version modernizes the framework drastically, making it more modu-

lar and fixes many of its current issues. However, this thesis will focus only on the cur-

rent stable release (version 1.1) since that's what the XBMC Video Server application

has been developed with, although in the conclusions section I will reflect a little bit on

some of the areas that are likely to improve with the new version of the framework.

13

2. THE YII FRAMEWORK

This chapter is in largely based on the official guide to using the Yii framework [12],

which is why there won’t be any references to it in the chapter itself. The examples,

however, are original and at times taken directly from the XBMC Video Server applica-

tion (depending on the line count).

2.1 Overview

The Yii framework is fairly new and has undergone many fundamental changes since its

inception in 2008. It was originally created by Qiang Xue while he was working on the

Prado framework (another PHP framework at the time). After about a year the work

spent on the project materialized in the first public release, version 1.0. Through user

and developer feedback some changes to the core architecture were made which after

some time resulted in the 1.1 release, which still today remains the stable and current

version of the framework. It is also this version that this thesis is focused around. [13]

 Since 2012 there has been ongoing work on a new major version which will es-

sentially be a rewrite of the whole framework based on modern concepts such as

namespacing, something that is relatively new in PHP [14] and not available at the time

when Yii 1.1 was created (since Yii 1.1 is targeted at PHP version 5.1). Version 2.0

brings many improvements to the code base, notably it better integrates with Composer,

it has improved AJAX support, it uses Codeception for unit testing, and database man-

agement has become more powerful [11].

2.2 Installation and basic architecture

In order to start developing applications with the Yii framework it has to be downloaded

and included somehow. One way to do this is to download the complete framework as a

ZIP file from the framework’s web site [15]. After unzipping the files to a location of

choice, a skeleton web application can be created using the yiic command line tool.

Yii can also be installed as a Composer dependency. The framework is published on

14

Packagist under the name yiisoft/yii [16]. Chapter 3 contains more information

about Composer and Packagist in general.

2.2.1 The bootstrap script

When developing a web application with Yii, the whole application is contained within

the Yii execution path since all requests are usually routed to index.php, which func-

tions as the bootstrap script. The purpose of the bootstrap script is three-fold:

 Include the framework. In Yii this is a file named yii.php, which includes

the rest as necessary.

 Read the project configuration file (which is required in order to set up the

Yii application) into a variable

 Run Yii::createWebApplication($config) which starts the

application and continues handling the request

2.2.2 Request routing

When the application is started a web application instance is created. The application

instance is a singleton which is available at all times using Yii::app(). The applica-

tion determines the route that should be executed based on automatic and/or user-

defined URL mappings. In the standard configuration a typical request URL might in-

clude index.php?r=user/profile, where the r parameter holds the desired route.

 Routes in Yii come in two forms; controller/route and module/controller/route.

In the first variation the controller is assumed to belong to the application itself (which

is typically the case) while in the second variation an application module is specified,

which means that the controller is part of the specified module, not of the application.

While modules will not be covered deeply, there is a short section on them in chapter

2.6.

 Once the request has been parsed and a route has been determined, the execution

is handed over to the specified controller action (see chapter 2.4).

15

2.2.3 Directory structure

A Yii project created using the yiic webapp command will have a default directory

structure, as illustrated in Figure 1:

Figure 1 A skeleton Yii project directory structure

At the highest level there is the bootstrap script (index.php), the assets/ directory (which

is where Yii publishes certain files, such as scripts and style sheets), css/ and images/

which are where publicly accessible files like style sheets and images should be placed,

and last but not least the protected/ directory.

The application files are located in the protected/ directory. The absolute path to

the directory can be accessed in code through Yii::app()->basePath and it is not

supposed to be accessible through the web server [17]. This access to the folder is usu-

ally restricted through the use of an .htaccess file. Restricting access to protected/ is im-

portant since it’s common to store some sensitive data in it, such as passwords, e-mail

16

addresses or API tokens. Storing such files in a web-accessible path is not normally a

problem, but if the files use a file extension unknown to the web server (such as “.inc”),

the file can be treated as plain text and thus served to the browser, revealing all of its

contents.

 Inside the protected/ directory is a bunch of different subdirectories. The struc-

ture here is not set in stone (some of the directories created by the yiic webapp

command are even empty), meaning the developer can modify it to better fit the appli-

cation structure. There are however a few directories that most projects use.

The config/ directory contains the configuration file for the application. The file

is usually named main.php and is parsed and passed to

Yii::createWebApplication() in the bootstrap script. The configuration file is

generally used to configure the various application components in Yii (more on that in

chapter 2.3.1) and the directory paths that should be scanned when attempting to include

PHP files. By default, Yii looks in protected/components/ and protected/models/, but it

is easy to extend this by modifying the import section in the configuration file.

Framework files

As mentioned earlier, the Yii framework is used by including the yii.php file, which in-

cludes the rest of the framework code as necessary. As can be seen in Figure 1, the ac-

tual framework files are seemingly nowhere to be found. There are a couple of good

reasons for this:

 the framework files should not be accessible through a browser, so it makes

sense to put them in a directory not available to the web server

 it is a good idea to keep the framework code out of the project's source control

repository since it is big and technically not part of the project's source code

As mentioned in the first chapter, the only place where the location of the framework

code is actually needed is in the index.php bootstrap script.

 Since Yii was invented before the advent of namespaces in PHP (starting with

version 5.3) it exposes all its files under the root namespace. To avoid naming colli-

sions, all classes and files are prefixed by the letter C, except the static class Yii. The

class contains some various getter methods and various helpers, of which the most im-

17

portant are Yii::app() which returns the CApplication instance and

Yii::t() which is used to make strings translatable.

2.3 Components

The smallest building block in Yii is a component. A component is anything that ex-

tends CComponent. CComponent is a thin base class which provides automatic get-

ters and setters, event handling functionality, and behavior functionality (not discussed

in this thesis). While a bare component is not very useful, a particular subclass of com-

ponents called application components is an integral part of the Yii framework.

2.3.1 Application components

An application component is anything that extends CApplicationComponent or

implements the IApplicationComponent interface. Application components are

classes that act like singletons and are accessible through

Yii::app()->component. Application components are specified using the main

configuration file.

 The use of application components is very common in Yii applications since Yii

comes with a fairly large set of often needed components which are available to the de-

veloper. Some of the most commonly used ones are:

 CClientScript, accessible via Yii::app()->clientScript. This

class handles registering JavaScript and CSS files and snippets. Once a page is

rendered, the client script component injects the HTML for the included scripts

and styles in the <head> section of the document. This means that the developer

doesn't have to include all the required scripts and styles in the application

layout, instead it can be done dynamically depending on when they're needed.

 CWebUser – accessible via Yii::app()->user. This object represents the

current user on the web site, be it a guest or an authenticated user. One of the

most common uses of this class is to display a one-time message on the page,

such as a notification after a user has successfully authenticated. This can be

18

conveniently done through Yii::app()->user->setFlash(<level>,

<message>).

 CDbConnection – accessible via Yii::app()->db. This object represents

a connection to a database and can be used to execute queries and retrieve

results. It is also used behind the scenes when using database abstraction layers

like the active record model, described shortly in the following chapter.

2.4 Models

All model classes in Yii extend from the common CModel class. Any model is by defi-

nition also a component since CModel extends CComponent. This means all models

are able to use magic getters and setters, something that can be quite useful. The

CModel class is the most basic type of model, which means it doesn't provide much

functionality. Its main purpose is to provide validation and scenario support.

2.4.1 Derived model classes

Apart from CModel itself there are two base classes for models, CActiveRecord

and CFormModel. CActiveRecord is used to represent both a single database rec-

ord as well as the database table in question. It provides an easy to use object-oriented

interface for performing CRUD operations on a database, as well as handling relations

between different models. This means the developer does not have to write any SQL

commands in order to perform basic tasks, something which normally is quite time-

consuming and prone to error.

 CFormModel is as its name suggests designed to model forms on a web page.

Form models are very useful for validating form input, especially if the form does not

represent a single database model. If a form only contains fields for one specific data-

base model there is no immediate benefit to using a form model instead of the database

model directly since the validation logic would most likely be duplicated. Nevertheless,

form models are often used to acquire input from the user that is not tied directly to any

particular model.

19

2.4.2 Rules and scenarios

Yii has a concept of validation rules and scenarios when validating models. Each model

attribute can have zero or more validation rules associated with it. A validation rule can

e.g. define that a “username” attribute must be unique (that means that there can be no

other model in the same database table with that value) and not empty, or that a particu-

lar attribute must be an integer-only number.

 The model rules are used when validating a model. This is usually done by call-

ing CModel::validate() or CModel::save(). Saving a model thus validates

the model before it is saved, and only if the validation passes is the model actually

saved. If validation fails, the list of errors is returned from CModel::getErrors().

The return value from this method is used by form helper classes to indicate to the user

why a form field didn’t validate.

 A validator in Yii can either be one of the built-in validators, a class validator

(that is any class that extends the base CValidator class), or a validator method (a

class method that takes two arguments, $attribute and $params).

 In Figure 2, a simple form model is shown. The model has one attribute,

number, which is validated using the isUniversal() method validator. The vali-

dator uses the CModel::addError() method to signal that the only value of

number to pass the validation is 42.

20

Figure 2 A validator method

A validation rule can limit itself to a specific scenario. By default, Yii uses two different

scenarios for models, “insert” and “update”. The scenario is set to “insert” if a model is

considered new (it has not been stored in the database yet); otherwise it is set to “up-

date”. This can be used to perform different validation based on other factors. For ex-

ample, a “User” model can require the password field to be repeated once when the

password should be changed while not requiring that when the model is first created.

 For a more complex example of how model validation can be used, refer to the

Backend model in XBMC Video Server [18].

2.5 Controllers

Controllers are the heart of any Yii application. There are a couple of things that deter-

mines when a class becomes a controller:

 it extends the CController base class

21

 its filename ends with “Controller”

 it is placed in the protected/controllers directory

When Yii receives a web request it automatically runs an action depending on the re-

quested route. As described in section 2.1.2, a route has the form controller/action or

optionally module/controller/action (see the “Modules” section later in this chapter).

This means that the route “user/login” would trigger a “Login” action in the class

UserController, which corresponds to the file protect-

ed/controllers/UserController.php.

An action is simply a public class method which name begins with “action”, e.g.

actionLogin(). If the method defines any parameters the values are mapped from

the request URL. If a parameter is not defined with a default value, Yii will throw a

HTTP 400 Invalid Request exception if the parameter is missing from the URL. Figure

3 shows how a controller like this can be implemented.

Figure 3 A controller action

2.5.1 Filters

Sometimes it is necessary to perform some checks before running a controller action, or

perform some sort of cleanup after the action has executed. This is where filters come

into play. When an action is executed, Yii checks for any filters defined in the requested

22

controller. Filters are defined by overriding CController::filter() and return-

ing an array representing the filter configuration for the controller.

A filter is a piece of code that runs either before the action (called a pre-filter) or

after the action (a post-filter). Filters are useful for factoring out common prerequisite

code from the various actions to avoid code duplication. Yii ships with a few built-in

filters but also gives the developer the ability to define own filters. The following sub-

chapters describe the filter types and some of the built-in filter types in more detail.

 While filters like access control usually apply to all actions in a controller, some

filters may only apply to a single action. This is not an issue since the granularity of

each filter can be controlled.

Method filters

The simplest type of filter is a method filter. Like the name implies it is simply a meth-

od in the controller class, prefixed with the word “filter”. Method filters are always pre-

filters, i.e. they always run before the action is executed. Every method filter should

take a single CFilterChain parameter. If the action should be executed, a call to

CFilterChain::run() must be made, otherwise execution will stop.

 The example below illustrates a rather naïve filter which prevents an action from

being executed unless the current day is a Monday.

23

Figure 4 A method filter

Class filters

Class filters are more powerful than method filters since they can act as both pre and/or

post-filters. In addition to that they can also take parameters when configured, which

allows them to be more generic.

A class filter is any class that extends CFilter and whose name ends with

“Filter”. CFilter provides two protected methods that should be overridden to im-

plement the desired functionality; CFilter::preFilter() and

CFilter::postFilter().

Access control

One of the most common filters is an access control mechanism. An access control filter

can place limits on which and by whom actions can be performed. For example, a user

that is not logged in (generally referred to as a “guest” in Yii) may only be able to view

24

a blog post while an authenticated user can also update a post, if it was written by that

user. Furthermore, an administrator can update and delete any post.

 Since access control is such a common requirement in web applications, Yii

ships with an integrated class filter called CAccessControlFilter which handles

this. The access control rules are defined by overriding the

CController::accessRules() method and returning an appropriate array. The

contents of the array determine how the access control is carried out by the filter. Each

element in the array is another array whose first value is either “allow” or “deny”, op-

tionally followed by other key value pairs that narrow down the scope of the access rule.

Figure 5 shows a base class for controllers which ensures all actions are execut-

able only by administrators (i.e. users who have the User::ROLE_ADMIN role). The

return value of the anonymous function determines whether the “allow” rule should be

used, otherwise the filter continues to the next rule which flatly denies the request.

Figure 5 An example of how the access control filter works

25

The example in Figure 5 illustrates an abstract base controller which restricts access to

any action for users who are not administrators (the logic that determines whether a user

has a specific role is not related to the access control filter itself, it is something the de-

veloper has to implement separately).

2.5.2 Layouts and views

Every web application needs to render something to the browser, usually HTML. When

creating very simple sites with only a few distinct pages it may be tempting to just copy

the layout to each file that is served to the browser and vary the actual content inside. A

smarter approach is to use a master layout view to represent the similar or static parts of

the web page (such as the <head> and <body> tag, excluding the actual page con-

tents) so that they can be reused and easily modified. Yii uses this concept and provides

an easy way to use the layout to render individual pages.

 In Yii, all view files, including the layouts are placed in the protected/views di-

rectory. This directory contains subdirectories for each controller and a special layouts

directory where the layout views are placed.

 A view is usually rendered from a controller action using the method

CController::render(). This method takes two parameters; the first is the name

of the view to render, the second is an optional array of parameters to pass to the view.

Each parameter key will be extracted into a variable that can be used inside the view

file. The controller itself determines which layout file should be used. The layout de-

faults to “main” but can be changed by changing the value of

CController::$layout.

 A view by itself is not very useful, so when render() is called it actually

places the contents of the rendered view inside a variable named $content, which is

echoed in the layout file. The effect of this is that the layout and the view are merged

into a complete web page, which is sent to the browser when the request is completed.

Partial views

Sometimes a particular view is generic and thus supposed to be reused by different ac-

tions. A common example of this is a form. The same form could be rendered on both

26

the “create” and “update” pages. Instead of duplicating the necessary code, a partial

view can be used.

 A partial view in Yii is very similar to a standard view, except it’s render with

CController::renderPartial() instead of render(). The difference be-

tween these methods is that render() wraps the layout around the rendered view

while renderPartial() just renders the output directly, without any surrounding

layout. This also means that renderPartial() should usually be called from inside

a view, not from a controller. A common exception to this rule is an action that is sup-

posed to be called via AJAX to fetch some piece of HTML. In that case the controller

should render just the view and nothing more since the whole page, including its layout,

has already been sent to the browser.

2.5.3 Widgets

Yii has a concept of widgets, which despite the name is actually just a view in class

form. Widgets are very useful when you need to implement more complex views, espe-

cially those that display different things depending on various parameters, such as a cal-

endar.

 A widget is a class that extends the base class CWidget. When an instance of

CWidget is created, two methods are run; CWidget::init() and

CWidget::run(). The run() method is usually the one responsible for doing the

actual rendering.

 There are two ways of using widgets. Despite being a regular class, widgets

aren't meant to be instantiated directly. Instead, the base controller class provides meth-

ods for rendering widgets, namely CController::widget(),

CController::beginWidget() and CController::endWidget().

 The first method is the easiest and most common way to create a widget. When

widget() is called, the widget's init() and run() methods are called immediate-

ly. Optional parameters can be passed to widget() to configure the widget class, as

seen in Figure 6.

27

Figure 6 Rendering a widget using CController::widget()

The second way is to use the begin/end methods. In this scenario, beginWidget()

calls the init() method and endWidget() calls the run() method. This is how so

called active forms in Yii work (an active form is a form that is tied to a particular mod-

el). When using an active form, beginWidget() renders the opening <form> tag,

the caller then renders the form elements before endWidget() is called which renders

the closing </form> tag. An example is shown in Figure 7.

Figure 7 Rendering a widget using beginWidget() and endWidget()

2.6 Caching

A web application is by default stateless since the underlying HTTP protocol has no

state. Generally this means that when a page is displayed, all the calculations required to

render it have to be done again. Data needs to be fetched from the database and pro-

cessed; templates need to be compiled and so on. For a small application this may not

28

pose a problem, but the more processing is required in order to display a page, the big-

ger the chance that the page will load slowly. Various levels of caching are one com-

monly used solution to this problem.

 Yii provides a robust framework for caching content on a web page. There are

different caching mechanisms for caching data, depending on the specific scenario:

 Data caching. This implies caching the value of a single variable, such as the

results of an expensive database query or a complex calculation.

 Fragment caching. A fragment is a section of a page, like a list of new products

on the front page of a web store.

 Page caching. A page of course refers to a complete web page.

Caching in Yii is accomplished by using a cache component. To control the underlying

caching mechanism, the component can be specified in the configuration file. Some of

the most commonly used caching components include:

 CFileCache. This is the default cache component used. It caches data in a flat

files located in protected/runtime/cache.

 CApcCache. This component utilizes the PHP APC extension to store cached

data. APC is normally used for opcode caching but it can also cache so called

“user data”. The data is stored in memory and is usually emptied implicitly

when the web server is restarted.

 CMemCache. Utilizes a memcached server for storing cached data.

Caching can also be used more transparently by various parts of the framework. Two

common examples are message caching (a message in Yii is a string translation from

one language to another) and database query caching. Regardless of how something is

cached, be it explicitly or implicitly, the default cache component is used (unless explic-

itly changed).

By default, Yii provides a default cache component in Yii::app()->cache.

The default underlying cache implementation is a CFileCache. Quite often it is

enough to use a single cache component and store all data there, but in larger applica-

29

tions it may make sense to use different components depending on the size and type of

the data to be cached. For example, while a CFileCache is very fast compared to per-

forming an SQL query, a CApcCache is even faster since the cached data is stored in

memory and thus doesn’t have to be read from disc. An in-memory cache has other

weaknesses though, such as limited storage space, so it can be beneficial to selectively

define which cache component is used for what data.

Figure 8 shows how different cache components can be configured. The compo-

nents are accessible using Yii::app()->apcCache and Yii::app()->cache

respectively.

Figure 8 Configuring cache components

2.6.1 Data caching

Data caching is very useful for hiding a caching mechanism in the lower levels of an

application. For example, the results of a method named getAllCustomers() may

be used to create a data provider which in turn will be used in various views across an

application. By encapsulating the caching in getAllCustomers(), the upper layers

of the code do not have to concern themselves with the caching at all, in fact, they need

not even be aware that any caching is taking place.

 Data caching is accomplished by using the CCache::get() and

CCache::set() methods. The getter will return the value specified by a “cache ID”,

or false if no value exists in the cache. In that case, the data should be stored in the

cache using set(). This process is illustrated below in Figure 9.

30

Figure 9 How to use data caching

Data caching is not the solution to all performance problems. If a lot of small pieces of

data are stored in a CFileCache it may actually be slower to fetch the values from the

cache than to recalculate them. In cases like that, a faster cache component should be

used or caching should be eliminated completely.

2.6.2 Fragment caching

Fragment caching involves caching a portion of the final HTML (the fragment) that is

rendered on a page. This is useful when data caching is not an option, such as when the

operations required to render the content are so many that implementing caching for all

of them would be infeasible.

 A common use case for fragment caching is the main menu of a website. On a

dynamic website, the process of building the actual menu structure can be fairly com-

plex. Database queries, user permission checks and the current language are just a few

examples of things that may be going on in the background while the menu is rendered.

 Fragment caching in Yii is accomplished by the CBaseController::

beginCache() and CBaseController::endCache() methods. Any output

between those calls will be stored in the cache and then rendered, except if

beginCache() returns false, which means the content is already cached and can be

served immediately from the cache. Fragment caching is illustrated in Figure 10.

31

Figure 10 Fragment caching in action

2.6.3 Cache invalidation

A recurring problem when caching dynamic data is that the cached data may be outdat-

ed compared to the actual data. In some scenarios this might be okay, but imagine a

main menu on a page that remains the same after a user changes the site language. A

properly designed caching mechanism should take into account all the factors that can

invalidate the cached data and automatically react to any changes in these factors. This

way the caching can be completely transparent to the user, albeit at the cost of more fre-

quent cache invalidations. The net effect however, is usually a better performing appli-

cation.

Yii provides three main ways to indicate how and when a cache should be invali-

dated:

 Time duration. The cache will automatically invalidate itself after a certain

amount of time has passed. This can be useful for simple caching scenarios

where it is not critical that the information displayed is totally up to date.

 Cache dependency. A cache dependency is an object that encapsulates the logic

that determines whether a cache should be invalidated or not.

 “Vary by expression”. This means that a separate cached copy is stored for every

variation of a certain value, usually the return value of a closure or a function.

32

To better illustrate how all these methods can be used to create complex cache invalida-

tion logic, let’s look at an example (Figure 11):

Figure 11 How cache invalidation can be accomplished

The snippet above defines the cache invalidation logic for the main menu on a page.

The menu is rendered by renderPartial(), and the objective is to avoid perform-

ing that operation by all means. All three methods explained previously are used in this

example:

 the cache is valid for a year (the duration parameter) unless the dependency

doesn’t change

 a CFileCacheDependency is used to invalidate the cache whenever the file

that contains the menu contents changes

 last but not least, the cached copy is varied by an expression, in this case the

value of a string comprised of various other expressions, such as the current lan-

guage, the current base URL (so that if the application is moved to another phys-

ical file location the links will be updated) and the user’s role (administrators

have more items in the menu than normal users).

33

2.7 Modules

Modules in Yii are practically applications within an application. Modules have their

own directory structure that mimics the base path of the main application (the protected/

directory), including its own controllers etc. Requests that are handled by a module have

the module's name prefixed to the route, e.g. admin/user/create, which corresponds to

UserController::actionCreate() in the Admin module.

2.8 Extensions

Extensions are any piece of code, be it an application component, a behavior, or any-

thing else, that is not a part of the Yii framework. Extensions are generally placed in

protected/extensions, and Yii includes a default “ext” path alias for that directory to ease

importing of extensions.

 The Yii framework web site has a collection of community-developed exten-

sions that can be used, although nowadays more and more extensions are available

through Composer instead (see the next chapter).

34

3. COMPOSER

Whenever an application is developed, the developer usually strives to minimize the

amount of code that has to be written, especially if it’s been written before by someone

else. In cases like that it makes sense to include third-party code in the project instead of

“reinventing the wheel”. This is a situation where a dependency manager enters the pic-

ture. Without a dependency manager, if an application requires e.g. framework “X” and

libraries “Y” and “Z”, the alternatives for the developer would be to:

 Include the source code for the dependencies in the project’s source tree. This

bloats the size of the code that each developer has to check out and makes

handling updates to the dependencies a bit cumbersome

 Include the frameworks as sub-repositories in the project source control

repository. This is better than straight off copying the dependencies into the

source tree itself, but it still makes version management a bit complicated.

 Leave the dependency management to the end-user completely. This is seldom

preferred since the deployment instructions have to be very clear as to where to

put the files in question, which versions to use, and so on.

A dependency manager solves this problem in a manageable way. The developer only

has to compile a list of the third-party projects required along with their respective ver-

sions. The dependency manager will then take care of acquiring those dependencies and

installing them in a common location.

3.1 Introduction

Composer is a tool for dependency management in PHP [19]. Composer itself is written

in PHP and is shipped as a single PHP Archive file (PHAR).

 Composer only started to take off after the introduction of PHP 5.3, which intro-

duced namespaces [14]. The ability to declare classes under namespaces paved the way

for a set of rules for naming classes, and thus autoloading them as well. The first of

these standards is today known as PSR-0 [20].

35

When you want to use a class in PHP, you have to include the file in which the

class is declared, either by calling require or include. Naturally, this becomes te-

dious for any but the smallest web applications. By using a standard way of naming and

namespacing classes, tools like Composer can figure out where to find the correspond-

ing files once installed. For example, if you attempt to use a class named

touki\FTP\Connection, Composer’s autoloader will know (thanks to PSR) that it

should look for a file named Connection.php in the directory touki/FTP.

In order to start using Composer, one must download and install it. The easiest

way to do this is to run the command curl -sS

https://getcomposer.org/installer | php in the project’s root directo-

ry. This downloads a file named composer.phar, which is the actual Composer executa-

ble. To install Composer globally on the computer (which is often preferred if the com-

puter hosts many different projects) the file can be renamed to just composer and

moved to a location within the user’s path (e.g. /usr/local/bin on Unix-based systems).

This way the user can type composer instead of php composer.phar regardless

of the current directory.

3.2 The composer.json file

The next step is to create a composer.json file in the project’s root directory. This file

lists the project dependencies, including which versions of the individual libraries

should be used. Once the project dependencies have been defined they can be installed

by running php composer.phar install. The install command downloads all

the dependencies into a directory named vendor.

After installing all dependencies, Composer creates an auto-generated class

loader in vendor/autoload.php. This file knows which namespaces exist in which fold-

ers, which means it’s the only file that a developer has to include in his project in order

to use the installed dependencies. As additional dependencies are added and installed,

the class loader file is updated accordingly to make the new dependencies available.

The composer.json file is like its name suggests comprised of JSON. The con-

tent is a single JSON object which in its simplest form can look like Figure 12.

36

Figure 12 A composer.json file in its simplest form

As illustrated, the file contains a single JSON object. Inside it the require property is

an object that lists the dependencies one by one. Each object’s attribute is the name of

the package and the value is the desired version. In the example above, the

“monolog/monolog” project is listed as a dependency. The defined version string means

that any version beginning with 1.0 is desired.

Projects required through Composer are advised to use semantic versioning [21];

otherwise the desired version required cannot be correctly determined. Semantic ver-

sioning means that the project version number should be in the form major.minor.patch,

e.g. 2.5.1. The major version is bumped whenever an incompatible API change is made,

the minor version is bumped when new functionality is added without breaking existing

functionality, and finally the patch version is bumped whenever a simple bug fix is

made.

3.2.1 The composer.lock file

Once the defined dependencies have been installed, a lock file named composer.lock is

created. The lock file contains information about the dependencies installed, such as

which exact version was installed. This file should be included along with compos-

er.json in the project’s source control [22].

 The lock file is an important tool in assuring that anyone who installs the project

dependencies gets the exact same versions as the original developer intended. Going

back to the example with “monolog/monolog” from the previous chapter, let’s imagine

that the developer gets version 1.0.2 and develops against this specific version. Later

when a different developer is about to install the dependency, the newest version of

“monolog/monolog” may be 1.0.4. Without the lock file, when the developer installs the

dependencies Composer would download version 1.0.4, which may or may not work

with the existing code. If a lock file would be present, Composer would have installed

37

version 1.0.2 instead, despite a newer version being available. This is why it is recom-

mended to include the lock file in the project’s source control [22].

 Going further, if a developer decides that a dependency should be upgraded to

the latest version he can run composer update <dependency> to update a sin-

gle dependency, or simply composer update to pull the latest version of all config-

ured dependencies. This command will automatically update the lock file so that the

next time someone runs composer install, the newest version will be download-

ed.

3.3 Packagist

In the example with “monolog/monolog” in the previous chapters it is clear that the

composer.json file doesn’t specify where to acquire the dependencies from. What Com-

poser actually does is look up the dependencies one by one through a service called

Packagist. Packagist is the main repository for Composer dependencies [23]. Through

Packagist, anyone can submit Composer-compatible projects which then become avail-

able to anyone using Composer. By linking an existing Github account to Packagist the

site can be automatically updated whenever a developer pushes commits to a published

project, including new tags.

 Sometimes you’ll find that a particular project is not available on Packagist. This

doesn’t pose a problem since Composer supports specifying package sources manually.

This way, private projects (e.g. private repositories on Bitbucket or git projects hosted

on an internal company server) can be used as dependencies too.

Figure 13 A composer.json file which references a private repository

38

In Figure 13, the “acme/hello-world” project is apparently not available on Packagist, so

a repositories property has been defined. This property is an array of objects, each

defining a particular repository. When running composer install, Composer will

notice that “acme/hello-world” is not published on Packagist and check the user-defined

repositories instead.

3.4 Integrating Composer with Yii

As previously mentioned, Composer comes with its own autoloader which is updated

whenever new dependencies are installed or updated. This loader needs to be included

somewhere in order for PHP to find dependencies directly using their namespaced

name. This can be achieved by adding the required include statement to the Yii boot-

strap script. Once the autoloader is included¸ Composer dependencies can be used nor-

mally from anywhere inside the Yii application.

3.4.1 Using Composer dependencies as application components

While including the Composer autoloader is generally enough in order to use the in-

stalled dependencies, there is a caveat when they are to be used as application compo-

nents. Like mentioned in the early chapters, an application component is defined in the

main Yii configuration file. The name of the class is specified as a string here. To find

the class, Yii attempts to load the class directly using any registered autoloaders, unless

the string is a class path, in which case it attempts to include the file based on that path.

While this shouldn’t normally pose a problem, there’s an outstanding bug in Yii’s load-

ing mechanism that prevents e.g. 'class'=>\monolog\Monolog, from working

[24].

Luckily, there is a decent workaround for this, namely to specify the Composer-

generated vendor/ directory as a path alias and use a path when specifying the class

name. The path alias is defined by calling

Yii::setPathOfAlias('composer', '/path/to/vendor'); in the

bootstrap script. After that the “monolog/monolog” class can be defined as

'class'=>'composer.monolog.Monolog'.

39

4. XBMC VIDEO SERVER

This section describes the XBMC Video Server application that was developed as a part

of this thesis.

4.1 Background

Today's home Internet connections are faster than ever before which have given rise to

new possibilities regarding what can be done with them. Traditionally people come into

contact with video streaming through third-party services such as YouTube or Netflix.

To use these types of services reliably, all you really need is a decent amount of down-

stream bandwidth [25].

 It is due to the increase in upstream bandwidth over the last few years that a pre-

viously unthinkable scenario has become reality, namely to stream video files from your

home network over the Internet, bypassing the need for any third-party service.

 Video streaming isn't very different from audio streaming, except that it requires

a lot more bandwidth. However, one important caveat is the software available to ease

the experience. It has always been possible to set up a simple HTTP server that serves

directories, although it is not very convenient. There is the issue about access control (it

is generally a bad idea to expose a large part of your local file system to the public In-

ternet), and traditionally the user interface is not easily customizable, although recent

developments have improved this area a lot [26]. It may work satisfactorily if all you

want is to get access to your files, but people want a more complete experience than

that. If you're going to be browsing and streaming media, you want as much accompa-

nying details about the media as possible, such as cover art, playback duration, et cetera.

 For music streaming this problem has been practically solved a long time ago.

There are many very capable open source projects aimed at providing a good interface

for exposing your private music collection to the Internet, complete with audio file tag

parsing to get at the metadata. Examples of such applications include Ampache (the

name itself is a combination of Winamp, a classic music player for PCs, and Apache,

the most popular web server in use today) and Subsonic (kind of a personal Spotify ap-

plication). [27]

40

 None of the existing tools and projects is particularly well suited to streaming

movies and TV shows. First, video files usually don't contain any metadata like music

files often do [28], instead the only hint as to the contents of the file is the filename it-

self. This means that in order to provide a rich user experience, some online service

would have to be consulted to retrieve metadata for a particular file. That in itself is not

a huge problem, but once you have a way of gathering metadata you need to store it

somewhere and preferably not directly in the file system.

 Another concern is how to deal with multi-part files, e.g. a movie that is split

over two files as well as files that are split into RAR archives. The latter is common

with media downloaded from the Internet [29]. While some media players can play files

contained in RAR archives natively, they still require direct access to all the subsequent

archive parts, something that is not easily accomplishable when files are served over the

web [30].

 To counteract these problems I decided to base my application on a widely used

piece of software called XBMC.

4.1.1 XBMC

XBMC [31], nowadays known as Kodi [32], is an award-winning free and open source

software media player and entertainment hub [33]. Originally developed as a media

player for hacked Xbox consoles back in 2002, it has grown to become one of the larg-

est and most widely known media center solutions in use today. Since the original Xbox

gradually became more and more outdated, the project was ported to the Linux and

Windows operating systems. In recent years it has seen continued growth and is now

available on Android as well as other ARM platforms, Apple iOS, Mac OS X, and

FreeBSD (in addition to Linux and Windows).

 XBMC maintains what it calls a library over the media files in your computer.

You configure a set of sources (which can be e.g. local directories or remote networks

shares), specify what type of data the source contains (be it movies, TV shows, music et

cetera), and what scraper should be used to gather metadata about the contents (IMDb

for example). XBMC then scans the sources and builds a database containing all the in-

formation that has been gathered. This solves one of the previously mentioned prob-

lems, namely how to categorize and extract metadata from various media files.

41

 XBMC contains an integrated web server which can be used to control the ap-

plication as well as to access files in its virtual file system. The virtual file system is

comprised of the media sources one has configured as well as special paths for extra

data, such as artwork and other images. This way a third-party application can access

the media files that XBMC has scanned into its library, a crucial feature for XBMC

Video Server. The virtual file system is exposed through /vfs on the web server [34].

 Clients wishing to communicate with XBMC may do so through a JSON-RPC

API. JSON-RPC is a relatively simple RPC protocol based on sending JSON objects

back and forth. The JSON-RPC protocol is transport agnostic, which means that it is up

to the developer to define how exactly the RPC is implemented. XBMC supports five

different transports: [35]

 A Python transport, used only by XBMC add-ons

 HTTP POST requests (the de facto standard for JSON-RPC servers)

 HTTP GET requests where the request body is sent in a query parameter named

request

 Raw TCP sockets. In this mode a client sends raw JSON-RPC requests over a

TCP socket to port 9090 on the machine running XBMC. This feature has to be

enabled explicitly in XBMC in order to work.

 Using WebSockets

XBMC Video Server relies solely on the HTTP POST API since it is very easy to inte-

grate in a language like PHP that is designed for use on the web.

4.2 Functionality overview

XBMC Video Server allows users to expose their XBMC library contents to the web

through an easy to use interface. The user can browse the library and view details about

specific movies, TV shows or episodes. The browse pages can be filtered according to

various parameters, such as genre, year, quality, and rating.

 The details page for an item contains basic information about the item in ques-

tion, such as artwork, runtime, plot, and so on, as well as a button for watching the me-

dia.

42

 The application itself requires users to authenticate with a user name and pass-

word, which means that there is a concept of user roles. There are three distinct roles;

administrators, users and spectators. Administrators can create new users and change

the global application settings, such as language. Normal users can only consume con-

tent on the site (and change their own password) and finally, a spectator can only

browse content, not download or stream anything. The spectator role isn't very useful, it

was added mainly because someone requested it [36].

 The application settings allow certain aspects of the application's functionality to

be changed. Some of the more important ones include the ability to cache API call re-

sults (in order to speed up the application, especially on slower platforms) and check

users against a white-list before allowing them to log in.

 XBMC Video Server supports adding multiple backends. A backend in this con-

text is an instance of XBMC that the application connects to and displays information

from. Certain operations can be performed on the backend, such as triggering a library

update.

4.3 Design

This chapter will explain how the application is designed and how to various parts work

together.

4.3.1 The API layer

As mentioned earlier, all communication with XBMC goes through its JSON-RPC API.

When I started working on this application I noticed that there weren't any suitable

JSON-RPC clients for PHP available so I decided to write my own. The result was an

independent library called simple-json-rpc-client. The library is also published on Pack-

agist so that it can be used as a dependency to any project that uses Composer.

 The JSON-RPC client is pretty simple (hence its name). It consists of request

and response objects and a client. Since the JSON-RPC specification doesn't specify any

particular transport for the API calls, an interface is used which all clients must imple-

ment. The library includes a default client which uses HTTP POST requests for com-

munication. The HTTP client is taken from the Zend framework.

43

 To use the client the user creates a Request object and calls a method on the

client object which sends the request to the server and returns a Response object. The

Response object is a PHP representation of the raw JSON response.

 Figure 14 shows a real example of how simple-json-rpc-client can be used.

Figure 14 Example usage of the simple-json-rpc-client library

In XBMC Video Server, the interface for the JSON-RPC client is contained within an

application component called simply XBMC. Like all application components in Yii it

can be accessed through Yii::app()->xbmc. The component provides wrappers for

sending requests and receiving eventual responses. It is at this layer in the application

that the API call cache is implemented. Since most of the data returned from the API

(such as the list of available movies) doesn't change very often, and processing the data

takes a while (especially with large result sets), it makes sense to cache it. By containing

the functionality here the rest of the application doesn't need to be aware of any caching

mechanism.

 The actual calls to the API are mostly performed by a static helper class called

VideoLibrary. It provides convenient methods for fetching specific data from

XBMC and provides an abstraction in case the underlying API changes sometime in the

44

future (the XBMC API has gone through a few major revisions since its inception [37]).

The illustration in Figure 15 shows an example of how it can be used.

Figure 15 Example of how to use the VideoLibrary static helper

The JSON-RPC client returns API responses as raw PHP objects, i.e. instances of

stdClass. This means that the objects don't have any methods and their properties are

not known, making automatic code completion in editors impossible. To solve this

problem I've used a mapper library called jsonmapper.

Jsonmapper's purpose is to map JSON objects to real objects. It does this by

parsing the phpdoc annotation blocks from a class in order to determine which proper-

ties should be mapped where. Using this library, The VideoLibrary component can

dynamically map the API results to corresponding classes. This enables the application

as a whole to work with instances of Movie, TVShow and Episode etc. instead of

raw objects. Figure 16 shows how this mapping library is integrated

into the VideoLibrary class.

Figure 16 Illustration of how VideoLibrary can map raw objects to a desired class

45

The normalizeResponse method can be a bit difficult to understand when taken

out of context like this. In essence, it converts raw responses (a stdClass instance or

an array of such instances) into an object or objects of a more concrete type (specified

by $targetObject) using the map and mapArray library methods. The method is

also used to provide a default value in case the response doesn’t contain the result ex-

pected (hence the “normalize” in the method name).

 When I started working on XBMC Video Server I didn't use jsonmapper at all,

mostly because at the beginning it wasn't that cumbersome to work with the raw objects

directly. As the application grew I noticed that a lot of code started to get duplicated so I

decided to start mapping the response objects to actual classes. Once again, the applica-

tion grew and exposed some pretty serious performance issues in the jsonmapper li-

brary.

 After some investigation I managed to add some runtime caching to the most

critical parts of the analysis code. It took me a while but my changes were ultimately

merged upstream and are now part of the library as of version 0.4.0 [38].

4.3.2 Browse pages

The first page a user sees after a successful login is the “Movies – Browse” page. The

browse page contains a list of all movies and a filter form which is used to narrow down

the results. The results view can be toggled between two modes; grid mode and list

mode. In grid mode, the artwork and title for each item is shown in a grid. List mode

means the results are displayed as a simple list containing title, year, genre, rating and

runtime.

46

Figure 17 The browse page in the XBMC Video Server application

The pages for browsing movies and TV shows are very similar. There are practically

only two differences; the available options in the filter form and the columns in the re-

sult when viewed in list mode. Because of this the filter form functionality has been fac-

tored out into two separate classes, both deriving from a common base class. The same

is done for the results since the only thing that differs is the columns that are rendered.

 One of the biggest challenges with the browse pages was image handling. Each

item in the result is supposed to display the item artwork, which is usually a poster. The

images available from the API are quite large, sometimes hundreds of kilobytes in size,

which is not suitable for a web page. Additionally an administrator may increase the

default page size to more than 60 items which further increases the amount of data the

browser has to request.

 In order to combat this issue the application uses two techniques. One is to

resize images on-the-fly and store them on disk so that they're accessible later. The oth-

er trick is to defer loading the actual image in the browser until the image is visible in-

47

side the view port, something often referred to as lazy loading. The image resizing is

done using a third-party package called php-image-resize [39].

 Lazy loading of images is done using JavaScript. In this particular case a small

script called jQuery Unveil [40] is used. JQuery Unveil works by adding a placeholder

image (often an animated loading icon) as the src attribute of the image tag and the

actual image URL as a data-src attribute. Data attributes is a new feature in HTML5

that allows developers to add arbitrary attributes to tags which can later be accessed

through JavaScript [41]. Once the image element is within the view port (the area of the

web page that is visible on the screen), the value in the src attribute is replaced by that

of the data-src attribute which triggers the browser to load the image from the serv-

er. The performance gain achieved by this technique is most noticeable on long pages

with lots of images, and it is also commonly used on pages with infinite scrolling.

 Despite the fact that the results are paginated (defaulting to 60 results per page),

all data is actually fetched from the API and the pagination is done in the application

instead. While this sounds inefficient, the results from the API can be cached. This

means that no matter what page the user requests the data is already on the server, alle-

viating the need to request it all again from the API. It is possible to request just a range

of items from a list through the API, though as that would result in a different API call

for each page it would end up being less efficient than retrieving the full list from cache

and filtering it in the application manually.

 While the “Browse” pages are the main way of accessing the content in the li-

brary, there are also “Recently added” pages for both movies and TV shows. These pag-

es show the newest items in the library. The “Recently added movies” page looks just

like the browse page except that it has no filter mechanism. The corresponding page for

TV shows on the other hand has a slightly different look. It is a large list where the sea-

son and episode, plot and runtime of the episode can be seen (see Figure 18).

48

Figure 18 the Recently added episodes page

4.3.3 Details pages

In the context of this application, a “details” page is one you get to when you click an

item on the browse page (be it a movie or a TV show). The content and visual appear-

ance of these pages varies depending on the content type.

Movie details

A movie details page is quite simple. It fetches information about the movie from the

API and displays it on the page. In Figure 19, a typical details page is shown. It contains

basic information about the movie itself, such as title, year, genre and plot, as well as

the so called stream details (seen as black badges) which describe the technical details

of the file in question. In this particular case we’re dealing with a standard Blu-Ray ver-

sion of a movie.

49

Figure 19 A details page for a movie

Even though some of the visual elements are very similar to the details page for TV

shows (described in the next chapter) most of the code is not shared. However, what is

shared is the widget that renders the buttons for watching an item and its download

links.

When the button is pressed, a small dialog opens and the user is presented with var-

ious options for how to watch the media item (Figure 20). Currently these options are

available:

 Play the item on the backend. This option plays the file on the screen connected

to the current backend. Only administrators are able to see and use this button.

 Download as a playlist. This option serves a small playlist file to the user which

can then be opened in a media player in order to play the underlying file or files.

The playlist format used can be selected before pressing the button.

50

 Watch in browser. This option redirects the user to an in-browser video player

that then streams and plays the file directly in the browser. This option is only

available for files which are in a format known to be playable directly in the

major browsers.

 Direct link to the item. Useful for downloading the file locally for later viewing.

Figure 20 Watch/Download dialog

Currently the supported playlist formats are M3U, XSPF and PLS. The reason for sup-

porting many different formats is that some players may only handle some of them.

XSPF, being the most advanced format, also supports embedding URLs to artwork. De-

pending on the media player used to play the playlist, these images may or may not be

displayed.

 Playlist files are always served as attachments, which means that the browser

always opens the “Save file as” dialog instead of attempting to open the file itself [42].

51

TV show details

Like a movie details page, a TV show details page starts with some basic information

about the show. After the list of actors there's a list of all the seasons available in the

library (if there's only one season the list is not collapsed). The list of seasons can, like

the browse pages, be displayed either as a list or as a grid. When displayed in grid

mode, clicking a season simply takes you to a new page where the episodes are listed.

When displayed in list mode, the seasons are shown in a collapsed list complete with

season art and the number of episodes it contains. Clicking a season link fetches the list

of episodes for that season asynchronously using AJAX and opens that part of the list to

reveal the individual episodes. This is a necessity since some shows have a large

amount of episodes (e.g. talk shows that often air on a daily basis) and rendering every-

thing during the initial page load takes a long time. Figure 21 shows a typical season list

in its collapsed form.

Figure 21 Grid view of the available seasons for a TV show

52

When a season is expanded, the artwork is slightly enlarged and the list of episodes is

rendered. Each episode row contains a button for watching or downloading the episode

in question (using the same dialog as for movies) as well as the title, plot and runtime of

the episode.

 In addition to the episode list there's a large “Watch the whole season” button

which serves a playlist containing all the episodes of that season to the browser (as seen

in Figure 22). This way the user can easily watch more than one episode and switch be-

tween them without having to reopen the browser. A playlist for the whole show is also

available under the TV show poster further up on the page. Unlike when attempting to

watch movies or episodes, with these buttons there is no way of selecting which playlist

format should be used. Instead, the default playlist format specified by the application

settings is used.

Figure 22 Example of an expanded season listing all the episodes for that season

53

4.3.4 Settings and administration

The application is designed so that no manual editing of configuration files is necessary.

While the application uses a configuration file per se (the main Yii configuration file), it

is not supposed to be changed by the end-user. Instead it uses an SQLite database which

holds information about users, backends and general settings as well as the application

log.

 The database is created when the application is installed using the installation

instructions. A set of commands are run which creates the required tables and populates

them with default values. In this step the first and only user is created (named “admin”).

Generally the application stores user passwords in hashed form (using the phpass li-

brary), but in this case the password is specified as plain-text. Once the user logs in for

the first time the password will be hashed. The reasoning for this is that phpass uses dif-

ferent hashing algorithms depending on what’s available on the system in question, so

it’s a matter of guessing which one to use if the hash is not created using the phpass li-

brary directly.

 When the user has logged in for the first time he is asked to configure a backend.

Using pre-filters the application knows whether a backend has been configured or not

and continues to redirect the user to this setup page if he hasn’t done so yet. Additional-

ly, the validation for the form is relatively sophisticated in that it checks that the entered

hostname or IP address is actually reachable, then it goes on to check if the server on the

other end identifies itself as XBMC (by looking at the HTTP authentication realm

string) and finally that the entered API credentials match. This ensures that people don’t

accidentally enter the wrong port and end up with a broken installation. It is also fairly

common to have some other piece of software involved on the same machine that uses

the same default port as XBMC's web server (8080). These validation steps try to make

it obvious to the user that it's eventually not XBMC listening on that port.

Once a backend has been created the user is directed to the main page, the

“Movies - Browse” page, and is free to create additional users or change the application

settings. The settings page (shown in Figure 23) is a simple page that lists all available

settings in a form. Most of the settings are related to the user interface or performance

related. The global application language can also be set here.

54

Figure 23 Partial view of the application settings page

System log

Last but not least, the application keeps a log that can be viewable directly from the in-

terface. By default, Yii logs exceptions and other messages to a file (by default protect-

ed/runtime/application.log), but to make the log more discoverable I decided to addi-

tionally log everything to the SQLite database the application already uses. In Yii this is

a simple matter of configuring an additional log route to the main log router component.

 The system log page (Figure 24) displays all log items as a paginated list. Ex-

ceptions (which are logged by default by Yii) are marked red so as to distinguish them

from less serious log messages. Each line has a small “eye” icon which when clicked

will show more details about the log item. This is most useful for exceptions since the

full stack trace will not be visible in the list itself.

 Most user actions are logged, meaning that an administrator can keep tabs on

successful and unsuccessful login attempts and who is watching what. The mechanism

which determines whether an item has been streamed or downloaded isn’t very smart;

55

an item is logged as watched as soon as the watch button or download link is clicked. In

the case of the download link (which is a direct link to the file, i.e. it doesn’t get handled

by the application itself) a small piece of JavaScript sends a logging request to the serv-

er using AJAX. All other actions are logged directly on the server side.

Figure 24 The system log

56

5. CONCLUSIONS

The Yii framework is a serious alternative to similar frameworks. It is easy to use, even

for beginners, and the documentation is excellent. If you're about to design something

common like a blog or a web forum I wouldn't perhaps recommend using Yii in the first

place since you'd be reinventing the wheel on quite a few levels, but for any application

that is a little more unique it is a good choice.

 Despite all that, Yii has some major short-comings, and while most of them are

rectified in the upcoming Yii 2.0 version (currently in beta) the current stable version is

likely going to be around for a while, so it's good to be aware of them. One drawback is

the fact that the framework is largely monolithic. Unlike Zend and Symfony it is not

possible to use only a small part of Yii; you either use it or you don't. This is perhaps

not a big issue if you're developing a somewhat large web application since chances are

you'll be using most of the framework's functionality anyway, but for smaller, more

niche projects it can feel a bit wasteful. The monolithic design also means it's difficult,

if not impossible, to replace certain parts of an application with custom implementa-

tions.

 XBMC Video Server has come a long way since I started working on it in June

2013. Despite being a niche product it has gathered a lot of interest on the Internet, es-

pecially after I posted about it on the XBMC forums [43]. The fact that it is actually

used by people, combined with the fact that the source code is free for everyone to look

at and use has made me strive toward keeping the code as clean and bug free as possi-

ble.

It is hard to come up with exact usage numbers since there are multiple ways of

acquiring the source code for the application. It is mainly done by cloning the git reposi-

tory, but users can also download a tagged revision as a ZIP archive. Additionally,

Github lets repository owners see statistics only from the last two weeks. Packagist on

the other hand keeps a running counter of the number of times a published library has

been downloaded using Composer. Here are some actual numbers as of November 26th

2014:

57

 XBMC Video Server: 54 clones (34 unique), 2471 views (535 unique visitors)

during the last two weeks (12-26 November) [44]

 simple-json-rpc-client: 1967 installs through Packagist [45]

 php-whitelist-check: 2343 installs through Packagist [46]

Even though I'm happy with the current state of the application, there are still some are-

as that could be improved. I've gotten great feedback from a static analyzer service

named Scrutinizer that has prompted me to refactor some parts of the application, most-

ly for the better [47].

 For anyone who has used Yii in combination with SQL databases, the fact that

XBMC Video Server bypasses the active record model completely means that the ma-

nipulation of movies and TV shows becomes a bit more complicated. The idea of map-

ping raw results to classes using jsonmapper makes it a bit more intuitive, but it's still

not a replacement for being able to type something like Movie::model()-

>findAll(). I did consider creating an active record implementation of the API, but

Yii's active record concept is very intimately tied to PHP PDO, so that approach was

simply infeasible. This is yet another example of the drawbacks of a monolithic frame-

work design.

 The application is still missing one big feature – transcoding of video to arbi-

trary formats. This is something that is necessary if you want to be able to watch any

video file directly in your browser or on limited platforms such as Apple devices. There

is a proof-of-concept available which uses FFmpeg in a background process to pipe the

raw transcoded data to the browser (which in turn is served to the client). While it works

and I believe the foundation is solid, the feature set is lacking and the user interface is-

n't as good as it could be. Add to that the fact that there are still a lot of unresolved ques-

tions, like if seeking in a transcoded movie will be possible at all or if it's possible to

perform a live transcode to MP4 at all.

 Coding issues aside, one thing I would have liked for the project was to get more

code contributions from the community. The majority of the code has been written by

me, though there has been at least one large pull request from the community [48]. Peo-

ple have also contributed French and German translations. I haven't been able to deter-

mine why the number of contributions has been fairly low, though it could of course be

a sign that the application is fairly bug-free and no one has had a reason to dig into the

58

code. People have hinted that I should try to extend the range of platforms it is available

on (notably to OpenELEC [49], a barebones HTPC operating system mainly designed to

run XBMC) which could hopefully trigger the interest of new people, some of which

may even contribute something code-wise.

59

REFERENCES

1. Jalle19/xbmc-video-server. github.com. [Online] [Citat: den 11 12 2014.]

https://github.com/Jalle19/xbmc-video-server.

2. Composer. getcomposer.org. [Online] [Citat: den 11 12 2014.]

https://getcomposer.org/.

3. Amazon.com: yii. amazon.com. [Online] [Citat: den 24 11 2014.]

http://www.amazon.com/s/ref=nb_sb_noss/188-0994387-5830256?url=search-

alias%3Daps&field-keywords=yii.

4. Tutorials | Yii PHP Framework. www.yiiframework.com. [Online] [Citat: den 11 12

2014.] http://www.yiiframework.com/tutorials/.

5. BibWord Microsoft Word Citation and Bibliography styles - Download; ISO 690 -

Numeric Reference with Square Brackets. bibword.codeplex.com. [Online] [Citat:

den 24 11 2014.] https://bibword.codeplex.com/releases/view/14646.

6. Top 10 content management systems. www.webdesignerdepot.com. [Online] [Citat:

den 12 11 2014.] http://www.webdesignerdepot.com/2011/10/top-10-content-

management-systems/.

7. CMS comparision - WordPress vs Joomla vs Drupal. websitesetup.org. [Online]

[Citat: den 11 12 2014.] http://websitesetup.org/cms-comparison-wordpress-vs-

joomla-drupal/.

8. Sitepoint - Framework popularity, end of 2013. www.sitepoint.com. [Online] [Citat:

den 27 5 2014.] http://www.sitepoint.com/best-php-frameworks-2014/.

9. Varnish Community | Varnish makes websites fly! www.varnish-cache.org. [Online]

[Citat: den 27 10 2014.] https://www.varnish-cache.org/.

10. Testing: Overview, The Definitive Guide to Yii. www.yiiframework.com. [Online]

[Citat: den 27 05 2014.]

http://www.yiiframework.com/doc/guide/1.1/en/test.overview.

11. Yii 2.0 Beta is released. www.yiiframework.com. [Online] [Citat: den 22 05 2014.]

http://www.yiiframework.com/news/77/yii-2-0-beta-is-released/.

12. The Definitive Guide to Yii | Yii PHP Framework. yiiframework.com. [Online]

[Citat: den 24 11 2014.] http://www.yiiframework.com/doc/guide/.

13. About Yii. www.yiiframework.com. [Online] [Citat: den 27 5 2014.]

http://www.yiiframework.com/about/.

14. PHP: New features. www.php.net. [Online] [Citat: den 27 5 2014.]

http://www.php.net/manual/en/migration53.new-features.php.

60

15. Yii PHP Framework: Best for Web 2.0 Development. www.yiiframework.com.

[Online] [Citat: den 24 10 2014.] http://www.yiiframework.com/.

16. yiisoft/yii. packagist.org. [Online] [Citat: den 11 12 2014.]

https://packagist.org/packages/yiisoft/yii.

17. Fundamentals: Conventions, The Definitive Guide To Yii. www.yiiframework.com.

[Online] [Citat: den 27 5 2014.]

http://www.yiiframework.com/doc/guide/1.1/en/basics.convention#directory.

18. xbmc-video-server/Backend.php at master · Jalle19/xbmc-video-server. github.com.

[Online] [Citat: den 11 12 2014.] https://github.com/Jalle19/xbmc-video-

server/blob/master/src/protected/models/Backend.php.

19. Getting Started - Composer. getcomposer.org. [Online] [Citat: den 27 5 2014.]

https://getcomposer.org/doc/00-intro.md.

20. PSR | Petermoulding.com. petermoulding.com. [Online] [Citat: den 27 5 2014.]

http://petermoulding.com/php/psr#psr-0.

21. Package versions, Composer documentation. getcomposer.org. [Online] [Citat: den

27 5 2014.] https://getcomposer.org/doc/01-basic-usage.md#package-versions.

22. composer.lock – The Lock File, Basic Usage. getcomposer.org. [Online] [Citat: den

27 5 2014.] https://getcomposer.org/doc/01-basic-usage.md#composer-lock-the-

lock-file.

23. Packagist. packagist.com. [Online] [Citat: den 24 10 2014.] http://packagist.org/.

24. Yii & composer modules autoload (1.1.14-RC), Issue #2642, yiisoft/yii, Github.

github.com. [Online] [Citat: den 27 5 2014.]

https://github.com/yiisoft/yii/issues/2642.

25. Internet Connection Speed Recommendations, Netflix. help.netflix.com. [Online]

[Citat: den 27 5 2014.] https://help.netflix.com/en/node/306.

26. h5ai – a modern HTTP web server index for Apache httpd, lighttpd, nginx and

Cherokee. larsjung.de. [Online] [Citat: den 28 5 2014.] http://larsjung.de/h5ai/.

27. 6 Subsonic Alternatives – TechSchout. www.techshout.com. [Online] [Citat: den 28

5 2014.] http://www.techshout.com/alternatives/2013/09/subsonic-alternatives/.

28. ID3.org – The MP3 Tag Standard. id3.org. [Online] [Citat: den 28 5 2014.]

http://id3.org/.

29. WhyRAR.omfg.se! whyrar.omfg.se. [Online] [Citat: den 28 5 2014.]

http://whyrar.omfg.se/index_eng.php.

30. Use VLC to Play Videos Inside [sic] an RAR File. lifehacker.com. [Online] [Citat:

den 28 5 2014.] http://lifehacker.com/5922124/use-vlc-to-play-videos-inside-an-

rar-file.

61

31. XBMC | Open Source Home Theatre Software. xbmc.org. [Online] [Citat: den 24 10

2014.] http://xbmc.org/.

32. XBMC Is Getting a New Name – Introducing Kodi 14 | XBMC. xbmc.org. [Online]

[Citat: den 24 10 2014.] http://xbmc.org/introducing-kodi-14/.

33. About | XBMC. xbmc.org. [Online] [Citat: den 28 05 2014.] http://xbmc.org/about/.

34. 2.5 Virtual File System /vfs, Webserver – XBMC. wiki.xbmc.org. [Online] [Citat:

den 28 5 2014.] http://wiki.xbmc.org/index.php?title=Webserver.

35. Transports & Functionalities – JSON-RPC API – XBMC. wiki.xbmc.org. [Online]

[Citat: den 28 5 2014.] http://wiki.xbmc.org/index.php?title=JSON-RPC_API.

36. Read only list of TV and Movies · Issue #48 · Jalle19/xbmc-video-server · GitHub.

github.com. [Online] [Citat: den 24 10 2014.] https://github.com/Jalle19/xbmc-

video-server/issues/48.

37. JSON-RPC API – API versions. kodi.wiki. [Online] [Citat: den 24 10 2014.]

http://kodi.wiki/view/JSON-RPC_API#API_versions.

38. Performance improvements by Jalle19 • Pull Request #8 • netresearch/jsonmapper •

GitHub. github.com. [Online] [Citat: den 19 10 2014.]

https://github.com/netresearch/jsonmapper/pull/8.

39. eventviva/php-image-resize. github.com. [Online] [Citat: den 28 5 2014.]

https://github.com/eventviva/php-image-resize.

40. jQuery Unveil - A very lightweight plugin to lazy load images. luis-

almeida.github.io. [Online] [Citat: den 24 10 2014.] https://luis-

almeida.github.io/unveil/.

41. John Resig - HTML 5 data- Attributes. ejohn.org. [Online] [Citat: den 24 11 2014.]

http://ejohn.org/blog/html-5-data-attributes/.

42. PHP: header - Manual. [Online] [Citat: den 28 05 2014.]

http://php.net/manual/en/function.header.php.

43. XBMC Video Server: stream/download your library contents. forum.xbmc.org.

[Online] [Citat: den 24 10 2014.]

http://forum.xbmc.org/showthread.php?tid=168296.

44. Screenshot of Github traffic statistics for Jalle19/xbmc-video-server. github.com.

[Online] [Citat: den 26 11 2014.]

http://werket.tlk.fi/~negge/images/github_traffic_screenshot.PNG.

45. jalle19/simple-json-rpc-client - Packagist. packagist.org. [Online] [Citat: den 26 11

2014.] https://packagist.org/packages/jalle19/simple-json-rpc-client.

46. jalle19/php-whitelist-check - Packagist. packagist.org. [Online] [Citat: den 26 11

2014.] https://packagist.org/packages/jalle19/php-whitelist-check.

62

47. Code Quality Summary - Jalle19/xbmc-video-server - Measure and Improve Code

Quality continuously with Scrutinizer. scrutinizer-ci.com. [Online] [Citat: den 24

11 2014.] https://scrutinizer-ci.com/g/Jalle19/xbmc-video-server/.

48. Option to power off the backend by pweisenburger • Pull Request #206 •

Jalle19/xbmc-video-server • GitHub. github.com. [Online] [Citat: den 24 10

2014.] https://github.com/Jalle19/xbmc-video-server/pull/206.

49. OpenELEC Mediacenter - Home. openelec.tv. [Online] [Citat: den 24 10 2014.]

http://openelec.tv/.

Appendice 1 / 1 (5)

APPENDICE 1 - SAMMANFATTNING PÅ SVENSKA

1.1 Introduktion

Webbutveckling är något som utvecklats med rasande takt under de senaste åren. Ut-

vecklare förväntas få mera gjort på kortare tid, vilket innebär att det inte längre är all-

män praxis skriva webbsidor helt ”för hand”, utan man använder ofta någon form av

hjälpmedel i form av färdigutvecklad mjukvara eller ramverk. När man talar om ram-

verk i webbutvecklingssammanhang går det att göra några grova indelningar. Dels har

vi kompletta CMS-system med hjälp av vilka man enkelt kan skapa relativt enkla webb-

sidor, såsom bloggar, företagssidor eller mindre webbutiker. Dessa ramverk är delvis

riktade till personer som inte har en bakgrund som programmerare. På den andra ändan

av skalan finns s.k. programmeringsramverk, t.ex. Zend Framework, Symfony och Yii.

Det här arbetet handlar om Yii-ramverket samt programmet XBMC Video Server som

baserar sig på ramverket. Syftet är att ge läsaren en inblick i hur Yii-ramverket används

samt ge ett praktiskt exempel på hur pass avancerade program man kan åstadkomma

med dess hjälp. Arbetet tar även upp beroendehanteraren Composer eftersom den spelar

en central roll i hur man bygger upp avancerade webbapplikationer med PHP.

 Den här sammanfattningen är strukturerad på samma sätt som själva arbetet,

dock används inga källhänvisningar utan läsaren hänvisas till själva huvudtexten.

1.2 Yii-ramverket

Yii-ramverket är ett ramverk för PHP som ursprungligen skapats av Qiang Xue år 2008.

Det här arbetet fokuserar på version 1.1 av Yii, fastän version 2.0 hållit på att utvecklats

redan en tid. Yii är ett ramverk för programmerare, till skillnad från exempelvis Word-

press som även kan användas av personer som inte har en bakgrund inom programme-

ring.

 För att komma igång med Yii behöver man ladda ner en kopia av själva ramver-

ket och skapa en grundapplikation, en s.k. ”skeleton”. Ramverket kan endera laddas ner

som ett ZIP-paket från projektets officiella hemsida1 eller installeras med Composer ge-

1 http://www.yiiframework.com/

Appendice 1 / 2 (5)

nom att definiera Yii som ett beroende till ens applikation. När man väl har installerat

ramverket kan man skapa en grundapplikation med kommandot yiic webapp.

 Den grundläggande byggstenen i Yii är en komponent, CComponent. Denna

klass erbjuder funktioner såsom getters och setters, händelse- samt beteéndehantering

(eng. behaviors). En hel del av den basfunktionalitet som Yii tillgängliggör baserar sig

på något som kallas applikationskomponenter, en speciell typ av komponenter som är

tillgängliga globalt genom Yii::app()->component, där ”component” är namnet

på den komponent man vill använda.

 Utöver komponenter läggs det i arbetet ganska mycket vikt på modeller (base-

rade på klassen CModel) och kontrollers (baserade på klassen CController). I ka-

pitlet om modeller behandlas främst validering av data, såsom den data användaren

skickat till servern via ett webbformulär. Då kontrollers diskuteras ligger fokus mycket

på det som i Yii kallas för filter. Filter är bitar av kod som körs endera före eller efter en

aktion (en aktion är en metod i kontrollern som anropas beroende på vilken sökväg som

anges i webbläsaren) och kan påverka om aktionen ska köras eller inte. Andra helheter

som tas upp i det här kapitlet är vyer och layouter, så kallade widgets (klassbaserade

vyer för mer komplexa eller dynamiska delar av ett användargränssnitt) samt ett lite

längre stycke om mellanlagring av data (eng. caching).

1.3 Composer

Composer är en s.k. beroendehanterare (eng. dependency manager) för PHP. En bero-

endehanterare används för att på ett enkelt och standardiserat sätt inkludera tredjeparts-

programvara (såsom ofta använda bibliotek) i sitt projekt utan att manuellt behöva ladda

ner rätt versioner.

 Composer baserar sig på två filer, composer.json och composer.lock. Den först-

nämnda innehåller information om ens applikation, och kanske viktigast av allt de bero-

enden som applikationen har. Via composer.json kan man specificera exakt vilken vers-

ion av ett visst paket man vill ha. Efter att man installerat de paket man definierat skapar

Composer automatiskt composer.lock-filen. Denna fil innehåller information om exakt

vilken version som installerats för att säkerhetsställa att framtida installationer får den

version som utvecklaren hade tänkt sig.

Appendice 1 / 3 (5)

 För att Composer ska kunna hitta de paket man definierat är det enklast om pa-

keten är publicerade på tjänsten Packagist. Man kan dock även använda egna paket,

t.ex. internt utvecklade bibliotek som man inte vill publicera öppet på internet, genom

att i composer.json definiera från vilken webbadress Composer kan hämta en kopia av

paketet.

1.4 XBMC Video Server

Dagens internetuppkopplingar har blivit såpass snabba att det är möjligt att se på eller

strömma videofiler direkt utan att behöva ladda ner filerna på förhand. Det traditionella

sättet att se på strömmad video är att använda sig av en tredjeparts nättjänst såsom

Youtube eller Netflix. Med dagens anslutningar är dock uppladdningshastigheten ofta

tillräcklig för att strömma video från sin egen anslutning och på så vis inte behöva an-

vända en tredje part över huvud taget.

 XBMC Video Server är en applikation som möjliggör detta scenario på ett rela-

tivt unikt sätt. Applikationen är ett fristående webbaserat gränssnitt till det populära un-

derhållningscentret XBMC. Både XBMC och XBMC Video Server är fri mjukvara. Via

webbgränssnittet kan man bläddra bland de filmer och TV-serier som man har i sitt

XBMC-bibliotek för att sedan strömma eller ladda ner dem för senare bruk.

Liknande lösningar har funnits för musik under en lång tid, men för strömning

av video har situationen varit sämre. Detta beror framför allt på att man i ljudfiler oftast

har s.k. ”metadata” inbäddad i filen, något man oftast inte har i videofiler. Detta är inte

ett problem för XBMC Video Server eftersom den får all denna metadata från XBMC

via dess API. XBMC i sig hämtar informationen från olika internetkällor, t.ex. IMDb.

 XBMC Video Server kommunicerar med XBMC med hjälp av JSON-RPC-

protokollet. JSON-RPC är ett transportagnostiskt protokoll, vilket innebär att specifikat-

ionen inte ställer några krav på hur själva kommunikationen ska ske. En av de vanlig-

aste metoderna är att utföra kommunikationen över HTTP POST-anrop, och det är den

metoden som XBMC Video Server använder sig av. För att använda JSON-RPC från

PHP var jag tvungen att skriva ett eget bibliotek för det som jag döpte till simple-json-

rpc-client. Även detta bibliotek är tillgängligt på internet som fri mjukvara.

 XBMC Video Server har ett ganska enkelt användargränssnitt. Efter att man

loggat in ombes man skapa en ny ”backend”, d.v.s. en instans av XBMC som applikat-

Appendice 1 / 4 (5)

ionen ansluter till. Då det är gjort kan man bläddra och filtrera bland instansens filmer

och TV-serier. Då man klickar på en film får man upp en sida där information om fil-

men visas samt en ”Watch”-knapp som ger olika alternativ för att se eller ladda ner fil-

men. Man kan välja att ladda ner en spellista som en fil (i M3U-format, men det går att

ändra) eller ladda ner filen i sig för att kunna se den utan internetuppkoppling.

 Vyerna för TV-serier påminner mycket om dess motsvarigheter för filmer. Man

kan bläddra bland de tillgängliga TV-serierna, och då man klickat på en serie kommer

man till en sida med information om serien samt en lista på de säsonger som finns till-

gängliga. Genom att klicka på en säsong utvidgas en lista på alla avsnitt som finns till-

gängliga för den valda säsongen. Här kan man välja att endera se på enskilda avsnitt el-

ler ladda ner en spellista för hela säsongen så att man enkelt kan hoppa mellan olika av-

snitt.

 Förutom möjligheten att bläddra bland innehållet i biblioteket går det även att

göra administrativa saker som att lägga till och ta bort användare och ändra inställningar

för hela applikationen (språk, hur resultat visas o.s.v.). Det finns dessutom en logg vari-

från man kan se detaljerad information om eventuella fel som uppstått i applikationen.

Detta har varit till stor nytta eftersom man lätt kan få bra och relevant information från

användare som rapporterat buggar.

1.5 Slutsatser

Yii-ramverket är ett seriöst alternativ bland de olika ramverk som finns idag. Det är

ganska lätt att använda, även för nybörjare, och dokumentationen är utmärkt. Det är inte

att rekommendera för enkla sidor som bloggar eller webbforum (där de ofta finns fär-

diga lösningar) men för lite mer unika tillämpningar lämpar det sig väl.

 Allt detta till trots har ramverket en del nackdelar. Det är bl.a. monolitiskt, vilket

innebär att det inte på ett enkelt sätt går att använda endast en del av ramverket (något

som Zend och Symfony är kända för). De flesta av dess negativa sidor har åtgärdats på

ett eller annat sätt i den kommande versionen (2.0), men det lär ännu ta en tid innan den

nuvarande versionen börjar fasas ut helt.

 XBMC Video Server har gått ganska långt sen utvecklingsarbetet påbörjades i

juni 2013. Fastän det är en ganska nischad produkt har många på internet fått upp in-

tresset för den, vilket även reflekteras i statistiken över nerladdningar. Bara under en två

Appendice 1 / 5 (5)

veckors period i november 2014 (över ett år sedan produkten lanserades officiellt) hade

projektets sida 2471 visningar och 54 installationer (baserat på Githubs statistik). Jag

skulle vilja påstå att programmet är relativt buggfritt, något som jag strävat efter ef-

tersom vem som helst kan läsa källkoden.

Det finns fortfarande en del funktionalitet som jag gärna skulle se implemente-

rad men inte har haft tid med, först och främst ”omkodning” av video till format som

dagens webbläsare är kompatibla med och därmed kan spela upp direkt. På så vis skulle

man inte behöva använda en extern mediaspelare på den enhet man spelar upp videon

på.

