

Ilpo Alatalo

NEED-BASED ARTIFICIAL INTELLIGENCE FOR A COMPUTER GAME

Case Spaceship Captain –prototype

NEED-BASED ARTIFICIAL INTELLIGENCE FOR A COMPUTER GAME

Case Spaceship Captain –prototype

Ilpo Alatalo
Thesis
Autumn 2014
Business Information Technology
Oulu University of Applied Sciences

3

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietojenkäsittely, web-sovelluskehitys

Tekijä(t): Ilpo Alatalo
Opinnäytetyön nimi: Tarve-pohjainen tekoäly tietokone peliä varten
Työn ohjaaja: Ani Ruusila
Työn valmistumislukukausi- ja vuosi: Sivumäärä: sivut + liitteet:
syksy 2014 29 + 2

Tämän opinnäytetyö tavoitteena oli kehittää tarve-pohjaisen tekoälyn prototyyppi tietokonepeliä
varten. Työlle ei ollut kolmannen osapuolen toimeksiantoa vaan tein sen omasta
mielenkiinnostani sekä edistämään tietotaitoani.

Olen kehittänyt Spaceship Captain nimistä peliä jo jonkin aikaa ja opinnäytetyön tekoäly
kehitettiin sitä varten. Spaceship Captain on tarinavetoinen 2D-elämäsimulaatio-/roopeli PC:lle ja
sen pääominaisuuksina ovat sen satunnaisgeneroidut hahmot sekä näiden The Sims -pelejä
muistuttava sosiaalinen tekoäly. Koska pelin tekoäly kokonaisuudessaan olisi ollut liian laaja ja
monimutkainen aihe opinnäytetyölle, päätin keskittyä sen sijaan vain sen tarve-pohjaiseen
toiminnallisuuteen.

Prototyyppi tehtiin käyttäen Unitya ja Microsoft Visual Studiota. Tärkeimmät metodit prototyypin
kehityksessä olivat ääreelliset automaatit, sumea logiikka, navigaatioverkot ja älyesineet. Koska
The Sims -pelien tekoäly on myös tarve-pohjainen, käytin sitä lähtokohtana tekoälyn kehitykselle.
En kuitenkaan ottanut tarpeita The Sims -peleistä, vaan käytin sen sijaan Maslown
tarvehierarkiaa pohjana ja muokkasin sitä omien vaatimuksieni mukaiseksi.

Tekoälyn prototyyppi kehitettiin onnistuneesti, vaikkakaan siitä ei tullutkaan niin laajan kuin
alunperin suunnittelin. Vain kourallinen suunnitelluista tarpeista päätyi prototyyppiin, mutta tämä
ei toisaalta ollut ongelma, sillä puuttuvien tarpeiden toteuttaminen halutulla tavalla olisi vaatinut
lisäjärjestelmien tekemistä prototyyppiin. Tarvepohjaisuuden peruslogiikka toteutettiin kuitenkin
onnistuneesti.

Opinnäytetyön kirjoittamisen aikana huomasin muutamia parannuksen kohteita prototyyppiin,
mutta laajuutensa vuoksi jätin ne jatkokehitystä varten.

Asiasanat: peli, tietokonepeli, tekoäly, Unity, The Sims

4

ABSTRACT

Oulu University of Applied Sciences
Business Information Technology, web-application development

Author(s): Ilpo Alatalo
Title of thesis: Need-based artificial intelligence for a computer game
Supervisor(s): Ani Ruusila
Term and year when the thesis was submitted: Number of pages: 29 + 2
autumn 2014

The goal of this thesis was to develop a prototype of a need-based artificial intelligence (AI) for a
computer game. The thesis wasn't commissioned by a third party, but was done out of my own
interest and to improve my know-how.

The AI was developed for Spaceship Captain, a game I have been working on for some time.
Spaceship Captain is a story focused, 2D-life simulation/role-playing game for PC. The game’s
central feature is random generated non-playable characters and their social AI, highly
reminiscent of the AI seen in The Sims. As the complete AI was going to be too complex subject
for a thesis, I instead decided to only cover the need-based functionality.

The prototype was developed with Unity and Microsoft Visual Studio. The most important
methods for developing the prototype were finite state machines, fuzzy logic, navigation meshes
and smart objects. The AI of The Sims was used as a jumping-off as it's also need-based.
Instead of taking the needs that The Sims uses though, Maslow's hierarchy of needs was used a
base instead and later modified further.

The AI prototype was successfully developed, though not as expansively as first envisioned. Only
a handful of the designed needs made their way into the prototype, but this ultimately wasn't a
real issue, as implementing all of the needs as designed, they would've needed additional
systems to accompany them. The core of the need-based functionality was however developed
as planned.

During the writing of this thesis, a handful of points of improvement were discovered with the
prototype, but as again they weren't something to be dealt with within the scope of the thesis,
they were left for future development.

Keywords: game, computer game, AI, artificial intelligence, Unity, The Sims

5

TABLE OF CONTENTS

1 INTRODUCTION ... 6

2 ABOUT SPACESHIP CAPTAIN .. 7

3 DEVELOPMENT TOOLS .. 9

3.1 Unity ... 9

3.2 Microsoft Visual Studio ... 9

4 ARTIFICIAL INTELLIGENCE METHODS .. 11

4.1 Finite State Machine ... 11

4.2 Fuzzy Logic .. 11

4.3 Navigation mesh ... 12

4.4 Smart Objects ... 13

5 REFERENCES AND RESEARCH ... 15

5.1 The Sims .. 15

5.2 Maslow's Hierarchy of Needs ... 16

6 DESIGNING & DEVELOPING THE AI .. 18

6.1 Designing the needs ... 18

6.2 Scoring the needs .. 19

6.3 Deciding and performing an action ... 20

6.4 Moving characters around the ship .. 22

6.5 Implementing smart objects .. 23

7 RESULTS AND DISCUSSION .. 27

SOURCES ... 29

6

1 INTRODUCTION

This thesis is about the design and development of an artificial intelligence (AI) for a computer

game. The subject was not commissioned by a third-party, but was chosen by me out of my own

interest and use for my own projects.

For some time now I have been working on a computer game project, work name “Spaceship

Captain”. On a technical level, the game is built around a sophisticated, need-based, social AI,

somewhat similar to the AI found in the game series The Sims. As the scope of Spaceship Cap-

tain is large and the technical side of its development complex, I decided to start the development

of the game from the AI, as it's a core feature of the game, around which the rest is built upon.

The scope of this thesis was to design and develop a prototype of the need-based functionality of

the AI. Further functionality was considered, but ultimately left out in order to keep the thesis'

scope manageable.

As far as the game Spaceship Captain is concerned, everything described in this thesis is subject

to change. As the design of the game and the AI is not yet final, this thesis may or may not end

up reflect the final product, if and when it is complete.

7

2 ABOUT SPACESHIP CAPTAIN

Spaceship Captain is a story focused 2D –life simulation/role-playing game for PC in which the

player steps in to the shoes of a captain of a space-transport ship. The player’s goal in the game

is to transport people and goods around the galaxy, whilst maintaining the safety and operability

of himself, his ship and his passengers.

The game takes place in a sci-fi universe, alternative to our own, far in the future. Despite its

strong narrative focus, the game doesn’t follow a traditional story. The game’s world is designed

to rich with detail and fully dynamic, leaning on the use of emergent storytelling instead of a linear

narrative. The story is shaped by the decisions made by the player, making it different on every

playthrough.

Mechanically Spaceship Captain is a light mix of role-playing and management. The player uses

most of his/her time controlling the player character around the ship, interacting with objects and

speaking to other characters. The game is viewed from a top-down perspective and is mainly

controlled with a mouse. The game’s central themes are survival and morality and the player is

constantly put into situations, where they must weigh the value of their own life and the lives of

others and also the morality of their choices. The game doesn’t have a definite end, but goes on

until the player character dies or his/her ship is destroyed.

FIGURE 1. A concept picture of how the game might look

8

The central feature of the game is its random generated non-playable characters (NPC) and their

social AI. Because the narrative of the game revolves almost entirely around character interac-

tion, the AI has to be able to create the illusion of characters with unique personalities, habits and

histories. To this end the AI is designed to be fully autonomic, able to take care of itself and inter-

act not only with the player, but also other AI characters. A big part of this is the dialogue system,

through which most of the character interactions happen. When talking to characters, the player

has a predetermined pool of topics and responses that grow and change depending on the state

of the relationship the player has with the character. The characters also remember what they’ve

told the player before and what the player in change has told them. Though technically quite sim-

ple, the characters persistent memory of earlier conversations makes the system feel more realis-

tic and believable.

9

3 DEVELOPMENT TOOLS

3.1 Unity

The main development tool for Spaceship Captain is Unity (also known as Unity 3D) which is at

the time of writing the most popular game development software globally (Unity Technologies

2014a, referenced 19.11.2014). Unity is a game development ecosystem, meaning it includes

both a game/rendering engine and an integrated development environment (IDE), thus making it

possible to create full video games with no additional software, excluding the creation of the

game's assets (3D-models, sounds, textures etc.). Unity was originally made for the creation of

3D games, but it has grown to support the creation of 2D games with the addition of internal 2D

development tools (Unity Technologies 2013, referenced 19.11.2014). Unity supports cross-

platform development, meaning a game project can be built for multiple platforms. Supported

platforms include Windows, Mac, Linux, mobile platforms, web browsers and consoles. (Unity

Technologies 2014b, referenced 19.11.2014.)

The project was made with the free version of Unity. Additional features such as better cross-

platform support, greater graphics tools and options can be unlocked with the paid Pro-version

license, but for the scope of the project these weren't necessary (Unity Technologies 2014c, ref-

erenced 19.11.2014).

3.2 Microsoft Visual Studio

For development Unity supports three programming languages: C#, JavaScript (also called

UnityScript) and Boo. Unity comes bundled with a code editor called MonoDevelop, but external

editors can also be used. (Unity Technologies 2014d, referenced 19.11.2014.)

Thought the MonoDevelop is perfectly adequate for Unity's programming needs, out of personal

preference the code editor of choice for Spaceship Captain was Microsoft Visual Studio 2013.

Visual Studio is an IDE, designed for developing applications for desktop, web and cloud devices

(Microsoft 2014a, referenced 2.12.2014). It comes in many different versions, such as Ultimate,

10

Premium and Professional, each with a different set of features, but the version used in this pro-

ject was Express (Microsoft 2014b, referenced 2.12.2014).

The reason I chose Express over the other versions was primarily because of the cost: Express is

free where the other version are not. Also, since I only needed a lightweight and fast code editor,

Express suited my needs perfectly. Being a free version, Express is quite lightweight since it

doesn't have many unneeded features to weigh it down.

11

4 ARTIFICIAL INTELLIGENCE METHODS

4.1 Finite State Machine

Finite state machines (FSM) are one of the most important tools in an AI-programmer's tool belt.

In its most simple form - as its name suggests - a FSM is in charge of changing the state of an AI-

character from a set of predetermined set of states. The number of possible states can vary

greatly depending on the need of the AI, but the set of states doesn't change during execution.

The conditions leading to the states however, can change. (Mark 2009, 30.)

In a first-person shooter game for example a FSM could be in charge of changing an enemy's

state from idle to attacking to fleeing to dying. The enemy might start in an idle state and it will

stay in that state until one of the state changing conditions is met. If the player for example enters

a certain radius of the enemy or the enemy establishes line-of-sight with the player, its state

would change to attacking. If the player manages to reduce the enemy's health to 10% of its max-

imum, its state would change to fleeing. Lastly, if the enemy's health reaches zero, its state

changes into dying. (Mark 2009, 30.)

Naturally an enemy like this would be highly predictable and not smart at all. The player could

easily avoid the enemy altogether or the enemy might flee from the player indefinitely if it had no

way of regaining health. By applying algorithms and complex conditions to state changes, even a

simple FSM like this could make an enemy seem smarter. (Mark 2009, 30.)

4.2 Fuzzy Logic

Fuzzy logic in the simplest terms means turning a binary decision into non-binary. If your aim is to

make a "believable" AI, fuzzy logic is one of the best tools for the job. As an example lets use a

hypothetical role-playing game (RPG) in which the combat mechanics consist of three types of

attacks: melee, spells and ranged. Let’s say each of our attack types has an ideal range: melee is

close range, spells are mid-range and ranged is long range. Our AI needs to be able to change its

attack style depending on the player’s actions, so naturally using the distance between the player

and the AI as the condition for changing our type of attack seems like the smart thing to do. But

just like before, the AI is completely predictable and thus doesn’t seem smart or

(Mark 2009, 31-32.)

Now we could make the conditions more complex with multiple terms, but

we can just use fuzzy logic. Instead of a binary choice, we use

and the AI and apply it to a simple arithmetic function

into a more unpredictable and so more believable AI. At close range the AI is most likely to use a

melee attack, but it is also quite likely to cast a spell

course of action, the AI could also use a ranged attack, which might throw the player off balance.

(Mark 2009, 31-32.)

4.3 Navigation mesh

Navigation meshes (short: navmesh), like their name suggests, are a method used by AI's to

navigate a virtual space. In the past the primary method of navigation for AIs was to use wa

points - singular points placed around the environment, between which the AI

move. While waypoints work quite fine in a simple, controlled environment, they

ra of problems when placed into a large, complex and dynamic environment. Navmeshes on the

other hand are more suited for such conditions.

A navmesh is as its name states

a mesh. Important to note however, is the fact that the polygons that form the mesh must be co

vex polygons (as opposed to concave polygons).

less than 180 degrees (Epic Games 2012. Referenced 2.12.2014).

FIGURE 2. A convex polygon (left) a

12

the AI is completely predictable and thus doesn’t seem smart or

Now we could make the conditions more complex with multiple terms, but for

Instead of a binary choice, we use the distance between the player

o a simple arithmetic function, turning it into a probability.

into a more unpredictable and so more believable AI. At close range the AI is most likely to use a

melee attack, but it is also quite likely to cast a spell and even though it might not be the best

course of action, the AI could also use a ranged attack, which might throw the player off balance.

Navigation meshes (short: navmesh), like their name suggests, are a method used by AI's to

In the past the primary method of navigation for AIs was to use wa

singular points placed around the environment, between which the AI

move. While waypoints work quite fine in a simple, controlled environment, they

ra of problems when placed into a large, complex and dynamic environment. Navmeshes on the

for such conditions. (PaulT 2008, referenced 2.12.2014.)

A navmesh is as its name states, a mesh: a collection of polygons (nodes) linked together to form

a mesh. Important to note however, is the fact that the polygons that form the mesh must be co

vex polygons (as opposed to concave polygons). In a convex polygon all of the interior a

(Epic Games 2012. Referenced 2.12.2014).

n (left) and concave polygon (right)

the AI is completely predictable and thus doesn’t seem smart or believable at all.

 a simpler solution

the distance between the player

, turning it into a probability. This translates

into a more unpredictable and so more believable AI. At close range the AI is most likely to use a

ight not be the best

course of action, the AI could also use a ranged attack, which might throw the player off balance.

Navigation meshes (short: navmesh), like their name suggests, are a method used by AI's to

In the past the primary method of navigation for AIs was to use way-

singular points placed around the environment, between which the AI-character would

move. While waypoints work quite fine in a simple, controlled environment, they creates a pletho-

ra of problems when placed into a large, complex and dynamic environment. Navmeshes on the

(PaulT 2008, referenced 2.12.2014.)

linked together to form

a mesh. Important to note however, is the fact that the polygons that form the mesh must be con-

In a convex polygon all of the interior angles are

13

The need for convex polygons is integral to the functionality of a navmesh. Inside a convex

shape, a line can be drawn between any two points, which in turn makes it possible to construct a

path from any two points inside a navmesh, by drawing lines between the nodes. A navmesh

usually has to be different from the graphical mesh of the terrain, because calculating movement

across a high-detail mesh is too computer intensive. For this reason the navmesh is either specif-

ically made by a 3D-artist or computer calculated (aka. baked) from the graphical mesh. (Epic

Games 2012. Referenced 2.12.2014).

FIGURE 3. Waypoint navigation (left) vs. navmesh navigation (right) (PaulT 2008. Referenced

2.12.2014)

4.4 Smart Objects

The term “Smart Object” in the context of this thesis originates from The Sims -series. As the

name strongly suggests, smart objects are objects with intelligence – namely they contain parts of

the intelligence necessary for the AI characters to interact with said objects. In the case of The

Sims, the objects would contain scripts, animations, navigation information and much more, effec-

tively containing all the related AI data. (Champandard 2007. Referenced 2.12.2014.)

For The Sims, from a technical standpoint the choice to use smart objects in its AI was done for

three reasons: editability, maintainability and ease of debugging. When working on a game with

the scale of The Sims, it’s important that the tools in your disposal maximize productability. The

game has hundreds (check?) of objects and though most are just “duplicates” of one another, not

all are completely identical and even the actual individual “object types” are in the double digits. If

every object or even every object type would have had to be programmed into the game individu-

14

ally, it would’ve been an enormous task. And if all the necessary AI logic was to be in a single

place, for example the characters, editing, maintaining and debugging the code would’ve been

extremely inefficient. So it would only make sense in the case of The Sims to have the AI’s inter-

action logic in the object themselves. This also made adding new objects into the game effortless.

(Champandard 2007. Referenced 2.12.2014.)

Another great feature of the smart objects is their ability to “advertise” the needs they sate.

Though from a technical standpoint a very minor feature and almost too obvious to even mention,

its importance only becomes more apparent when a character has multiple needs at once and

has to decide which to sate next. Does the AI choose the most critical need and focus on that, or

does it play smart and try to maximize its effectiveness by satisfying multiple needs at once.

(Champandard 2007. Referenced 2.12.2014.)

15

5 REFERENCES

When designing and developing an AI of this scale and complexity, it’s easy to get lost in the

details and not see the big picture. Coming up with every solution on your own takes lots of time

and considerable effort, so instead of reinventing the wheel, I decided it would be smart to refer to

other sources to find help.

5.1 The Sims

Perhaps the biggest source of inspiration for Spaceship Captain, especially from the AI’s point of

view, has been The Sims -series and more closely the first game in the series. Though there

have been lots of other games with exceptional AI, The Sims’ resembles the type of functionality

I’m looking for. It’s also a very accessible and well documented game so it was easy to find de-

tailed information about it.

My main focus when researching The Sims was the AI’s need-based functionality and the associ-

ated smart objects, as they were a big part of the core functionality I wanted to have in my own

AI. There were also other design and gameplay focused aspects of the game which heavily in-

spired me, but as they are not within the scope of this thesis, they shall be left undiscussed.

FIGURE 4. Motives as they appear in The Sims (Electronic Arts 2010, referenced 26.11.2014)

FIGURE 5. Happiness Weights in The Sims (AI Game

16.12.2014)

The actual core logic of The Sims’ AI’s need

to maximize a character’s happiness. Each of the motives, as seen in figure

happiness of a Sim, each to a different degree.

in the game “advertise” the needs they sate, which can be

vices, the AI in The Sims choose the next object to interact with based on cumulative “

score” the object provides. (AI Game

5.2 Maslow's Hierarchy of

Abraham Maslow (1908-1970) was a

father of Humanistic Psychology and his theory of the Hierarchy of Needs. Instead of focusing on

the abnormalities of human nature like most psychologists of his time, Maslow was more interes

ed in positive psychology like human potential and improving mental health. (Cherry 2014, refe

enced 22.12.2014.)

With the publication of his paper "

tivation and Personality" in 1954, Maslow theorized that

needs in a hierarchical model: when the lowest level of needs is fulfilled a person moves on to the

next level, eventually working their way up to

16

. Happiness Weights in The Sims (AI Game Programmers

re logic of The Sims’ AI’s need-based nature is surprisingly simple: the AI

happiness. Each of the motives, as seen in figure 5, affects

happiness of a Sim, each to a different degree. As stated in the previous chapter,

tise” the needs they sate, which can be multiple at once. If left

vices, the AI in The Sims choose the next object to interact with based on cumulative “

(AI Game Programmers Guild, referenced 16.12.2014.)

ierarchy of Needs

1970) was a well known American psychologist, best known as being the

father of Humanistic Psychology and his theory of the Hierarchy of Needs. Instead of focusing on

the abnormalities of human nature like most psychologists of his time, Maslow was more interes

ive psychology like human potential and improving mental health. (Cherry 2014, refe

of his paper "A Theory of Human Motivation" in 1943 and later his book "M

tivation and Personality" in 1954, Maslow theorized that people are motivated to achieve certain

needs in a hierarchical model: when the lowest level of needs is fulfilled a person moves on to the

working their way up to self-actualization. This model is Maslow's Hierarchy

 Guild, referenced

based nature is surprisingly simple: the AI only aims

, affects the overall

As stated in the previous chapter, all the objects

. If left to their own

vices, the AI in The Sims choose the next object to interact with based on cumulative “happiness

Guild, referenced 16.12.2014.)

known American psychologist, best known as being the

father of Humanistic Psychology and his theory of the Hierarchy of Needs. Instead of focusing on

the abnormalities of human nature like most psychologists of his time, Maslow was more interest-

ive psychology like human potential and improving mental health. (Cherry 2014, refer-

A Theory of Human Motivation" in 1943 and later his book "Mo-

people are motivated to achieve certain

needs in a hierarchical model: when the lowest level of needs is fulfilled a person moves on to the

. This model is Maslow's Hierarchy

of Needs. (Abraham Maslow 2009, referenced 22.12.2014; McLeod 2014, referenced

22.12.2014.)

FIGURE 6. Maslow's Hierarchy of Needs (Factoryjoe 20

The original hierarchy, as seen in figure

Maslow in the 1960's and 1970's

ence needs. This expanded hierarchy however was not chosen for use in the development of AI

for Spaceship Captain, because

original hierarchy is fully utilized.

17

am Maslow 2009, referenced 22.12.2014; McLeod 2014, referenced

. Maslow's Hierarchy of Needs (Factoryjoe 2009, referenced 26.11.2014)

The original hierarchy, as seen in figure 6, had five levels, but was later expanded upon by

Maslow in the 1960's and 1970's to include three more levels: cognitive, aesthetic and transcen

ence needs. This expanded hierarchy however was not chosen for use in the development of AI

for Spaceship Captain, because as discussed in more detail in the next chapter

utilized.

am Maslow 2009, referenced 22.12.2014; McLeod 2014, referenced

.11.2014)

, had five levels, but was later expanded upon by

to include three more levels: cognitive, aesthetic and transcend-

ence needs. This expanded hierarchy however was not chosen for use in the development of AI

xt chapter, not even the

18

6 DESIGNING & DEVELOPING THE AI

6.1 Designing the needs

The first step in creating a need-based AI was defining the needs. As the AI in The Sims was very

similar to what I was looking for, it was an excellent jumping-off point. Nevertheless, as Space-

ship Captain is fundamentally a very different game from The Sims, using its needs “as is”

wouldn’t do - its characters were never intended to be fully autonomic, which was one of the core

ideas in Spaceship Captain. The Sims AIs needs are very basic and they all work in the same

fashion and two of the needs – Comfort and Room – are both heavily tied to the building and

decorating aspects of the game.

I wanted Spaceship Captain’s AI to be more realism and to that end after researching about the

basic human needs. One of the core behaviors I wanted the AI to depict was to treat its needs

unequally. As humans, we place survival above all else, which means when we are for example

hungry or tired, we take care of those needs before others because they are paramount to our

survival.

During my research I came across Maslow’s Hierarchy of Needs and decided to utilize it almost

straight away. It covered most of the needs I wanted to have in the game and its tier-based struc-

ture perfectly encompassed the priorization of certain needs above others I wanted. I eventually

ended up focusing mainly on the bottom three tiers of the pyramid, as they encompassed more or

less all the needs I wanted to include in the game. Another reason was my assessment that the

higher tiers – thought they would’ve made the AI far more sophisticated – would’ve raised the

difficulty of programming of the AI exponentially. I also believe they would’ve ultimately driven the

project off course, because the aim of the project wasn’t to create the world’s most advanced AI,

but one that suits the needs of the game. The hierarchy I finally ended up with is as follows:

• Primary: hunger, bladder, energy, health

• Secondary: hygiene, work

• Tertiary: entertainment, social, sex

The needs as they currently are, come in two variants: dynamic and static.

the basic human needs, like hunger and sleep have to be satisfied regularly in order for a person

to stay functioning. These need

category. A few of the needs (currently health and work)

meaning they don't fluctuate constantly, but stay the same until

another character.

6.2 Scoring the needs

Before the AI can make any decisions, it needs to know how likely it is to make a choice.

end all the needs of the AI must

rectly, this is done automatically

needs has a value from 99 to 0

score. It is then multiplied by a multiplier

cussed earlier, the needs are split into three tiers based on Maslow’s hierarchy, but i

this, the needs also have three states: high, medium and low. The intervals for these states differ

between needs.

FIGURE 7. Scoring function for the

It is important that the score multiplier is affected by both the tier and state of the need, as othe

wise the AI’s behavior would be less realistic or would make it less suitable for a game. If dete

mined only by the tier, the AI would spend m

19

The needs as they currently are, come in two variants: dynamic and static. Just like in real life,

the basic human needs, like hunger and sleep have to be satisfied regularly in order for a person

These needs are dynamic and most of the needs in the game

A few of the needs (currently health and work) behave differently.

meaning they don't fluctuate constantly, but stay the same until affected by outside forces, like

the AI can make any decisions, it needs to know how likely it is to make a choice.

end all the needs of the AI must to be scored. In order to simulate the degradation of needs co

atically every frame by Unity’s internal Update-function.

to 0, which when subtracted from the maximum serves as the base

is then multiplied by a multiplier, which is based on the needs tier and state

, the needs are split into three tiers based on Maslow’s hierarchy, but i

this, the needs also have three states: high, medium and low. The intervals for these states differ

Scoring function for the AI’s needs

It is important that the score multiplier is affected by both the tier and state of the need, as othe

wise the AI’s behavior would be less realistic or would make it less suitable for a game. If dete

mined only by the tier, the AI would spend most of its time sating the primary needs, which isn’t

Just like in real life,

the basic human needs, like hunger and sleep have to be satisfied regularly in order for a person

the needs in the game fall into this

differently. They are static,

affected by outside forces, like

the AI can make any decisions, it needs to know how likely it is to make a choice. To this

In order to simulate the degradation of needs cor-

function. Each of the

serves as the base

based on the needs tier and state. As dis-

, the needs are split into three tiers based on Maslow’s hierarchy, but in addition to

this, the needs also have three states: high, medium and low. The intervals for these states differ

It is important that the score multiplier is affected by both the tier and state of the need, as other-

wise the AI’s behavior would be less realistic or would make it less suitable for a game. If deter-

ost of its time sating the primary needs, which isn’t

how modern humans behave. We eat, sleep and go to the toilet usually only when we feel it’s

necessary. On the flipside, if the multiplier was

whole tier based structure would

starve instead of thinking about survival like actual humans would

also serve an important function.

would not be believable.

6.3 Deciding and performing an

FIGURE 8. Main loop of the character AI

The characters AI’s core logic

states, controlled by a single variable “actionState”

AI starts deciding what need it needs to sate next

all the needs by score and then limiting

which in my case I chose to be four, so that the AI cannot choose the currently most sated need

for example when there are more pressing needs to consider.

After the final decision pool is chosen

will be. Using basic probability calculus, e

and a random number from zero to the cumulative score

against the “score ranges” of each need. The need wi

bility of being chosen, while the least scoring need has the lowest.

After the next need is decided, the FSM changes into the next state (actionState == 1), in which

the AI finds the object that best sates the cho

objects in The Sims "advertise" the needs they affect, in Unity game

AI lists all the game objects tagged with the chosen need and

based on a set of predetermined conditions.

20

how modern humans behave. We eat, sleep and go to the toilet usually only when we feel it’s

necessary. On the flipside, if the multiplier was only dependent on the state of the needs, the

ed structure would serve no purpose and the AI might decide to watch TV

starve instead of thinking about survival like actual humans would. The differing state intervals

also serve an important function. If the AI would be just as likely to sleep as to

Deciding and performing an action

of the character AI

logic loop is handled by a simple finite state machine (FSM)

variable “actionState”. In the FSM’s first state (actionState =

what need it needs to sate next. The decision making process starts by sorting

eeds by score and then limiting the final decision pool of needs by an arbit

h in my case I chose to be four, so that the AI cannot choose the currently most sated need

for example when there are more pressing needs to consider.

After the final decision pool is chosen, fuzzy logic is then used to determine what th

Using basic probability calculus, each need and their “score range” is placed into an array

and a random number from zero to the cumulative score of the needs is drawn and checked

against the “score ranges” of each need. The need with the highest score has the biggest prob

bility of being chosen, while the least scoring need has the lowest.

After the next need is decided, the FSM changes into the next state (actionState == 1), in which

the AI finds the object that best sates the chosen need. Somewhat similarly to how

objects in The Sims "advertise" the needs they affect, in Unity game objects can be tagged.

objects tagged with the chosen need and then finds the best game

edetermined conditions.

how modern humans behave. We eat, sleep and go to the toilet usually only when we feel it’s

nt on the state of the needs, the

serve no purpose and the AI might decide to watch TV and

. The differing state intervals

If the AI would be just as likely to sleep as to go to the toilet, it

is handled by a simple finite state machine (FSM) with four

first state (actionState == 0), the

The decision making process starts by sorting

of needs by an arbitrary number,

h in my case I chose to be four, so that the AI cannot choose the currently most sated need

, fuzzy logic is then used to determine what the final choice

r “score range” is placed into an array

is drawn and checked

th the highest score has the biggest proba-

After the next need is decided, the FSM changes into the next state (actionState == 1), in which

Somewhat similarly to how the smart

objects can be tagged. The

finds the best game object

21

First and foremost, no matter what object the character is looking for, the AI always checks if the

object is already in use and filters out any objects currently in use. This functionality is still rather

simple, as the prototype doesn't have multiple characters, but the functionality will be important in

the future.

When looking for food (sating hunger), the AI tries to find the food object that most closely match-

es it's hunger level. This is done by arranging the food objects in descending order of "feeding

power", meaning how much hunger they sate. One by one the feeding powers of the objects are

compared to the need by absolute values, so that the result is always positive and thus easier to

compare, until the current object is less suitable than the previous or the end of the list is

reached. There were other faster, but less accurate ways of coming to a similar result, but in or-

der to keep the AI's logic believable even in extreme situations (massive hunger, small foods; tiny

hunger, big foods) this was the best solution.

When looking for a place to rest (sating energy), the AI currently primarily looks for objects that

they "own", which in this case is their designated bed on the ship and if such no such object can't

be found, they will simply go to the closest suitable object. This functionality of course is still very

rudimentary, as the character will always go to their bed if they have one, even if they only want

to have a short nap and are currently on the other side of the ship and near a suitable sofa. This

functionality obviously has to be expanded upon, but as complex functionality wasn't within the

scope of this thesis, these features will be left for future development.

For other needs the AI simply finds the closest object. Currently this is done by calculating the

distance between the character and the object as a simple vector, but in the future it will most

likely be replaced by a more robust system. As there might be many rooms and walls between

the character and object, currently the AI will, under the right circumstances, choose the object

with the shortest distance vector instead of the object within the shortest walking distance.

When the desired object has been chosen, the FSM changes to its final state (actionState == 2),

at which point the control of the character is given to the smart object. As the FSM is not needed

while the object is in charge, it goes idle (actionState == 3) and waits for outside input.

22

6.4 Moving characters around the ship

Before starting work on the AI’s logic for using the objects, I decided to tackle the matter of navi-

gation. At a very early point in designing the game, I entertained the idea of making the whole

game text based with no visual components to circumvent the problem of navigation entirely. The

idea was quickly scrapped, because the game had to have a time system and moving a character

around the ship instantaneously wasn’t an option and calculating movement times across differ-

ent sized rooms would’ve only made things more difficult. Ultimately I came to the conclusion,

that making a physical simulation of the ship and characters was the best solution.

Next I had to decide what method of navigation to use. At first I thought about using a waypoint

system, because of the simplicity of the ship’s design, but already during the design phase I quite

quickly realized the limitations and problems with the approach. Every waypoint would have to be

placed manually to guarantee correct placement, the connection between waypoints would have

to be made by hand and every room of the spaceship would most likely require close to ten way-

points. Adding a new room or modifying an old one would also mean reworking the waypoints of

multiple rooms. It's easy to see why this doesn't seem like a good solution. After that I went with

my secondary idea, which I quickly realized was the best approach: using navmesh navigation.

I knew beforehand that Unity has built-in navmesh functionality – with which I was already some-

what familiar with - so building the actual navmesh was fast and easy. I only encountered one

problem during the whole implementation process. At first, after building the physical mesh, the

navmesh itself wouldn’t bake. I spent a lot of time playing around with the navmesh baking op-

tions, suspecting they were the problem, but ultimately the problem was due to Unity’s internal

logic. Like all 3D programs, Unity has an x-y-z –coordinate system, which in Unity’s case goes: x-

axle is width, y-axle is height, and z-axle is depth. I had built the ship on the x-y –plane, meaning

the ship’s bow was pointing upwards and since Unity’s physics engine uses the x-z –plane as

“ground”, it couldn’t bake an “upright” navmesh. After I rotated the ship 90 degrees, so that it was

on the x-z –plane, the navmesh baked perfectly.

FIGURE 9. Screenshot of the ship and its navmesh

22.12.2014)

After the navmesh was complete, the character

component with which they c

code and the "Nav Mesh Agent

6.5 Implementing smart objects

In my eyes, when designing an AI, the aim is to boil its logic down to the

This makes the actual programming of the AI much easier,

with a handful of methods. I've learned this the hard way i

Tic-tac-toe AI. The AI couldn't lose

it's logic to a simple enough form,

each individual situation and outcome separately, because I couldn't come up with functions that

could cover every situation. To

carefully about how the core logic of sating the numer

of the objects would have to be able to function with a limited set of general functions

programming the AI wouldn't become a massive task.

23

. Screenshot of the ship and its navmesh in Unity (Unity Technologies 2014, viitattu

After the navmesh was complete, the characters must be given Unity’s “Nav Mesh Agent”

can be moved around the ship. This requires only a single line of

Nav Mesh Agent" takes care of the rest.

Implementing smart objects

hen designing an AI, the aim is to boil its logic down to the simplest

This makes the actual programming of the AI much easier, as its entire logic

I've learned this the hard way in the past, when I designed a "perfect"

couldn't lose and would always aim to win, but as I was unable to boil

it's logic to a simple enough form, programming it became a nightmare. I would've had to program

each individual situation and outcome separately, because I couldn't come up with functions that

To avoid the same pitfall with this project I thought very long and

carefully about how the core logic of sating the numerous needs would work. All, or at least most

of the objects would have to be able to function with a limited set of general functions

programming the AI wouldn't become a massive task.

in Unity (Unity Technologies 2014, viitattu

given Unity’s “Nav Mesh Agent” –

This requires only a single line of

simplest form you can.

as its entire logic can be executed

I designed a "perfect"

, but as I was unable to boil down

I would've had to program

each individual situation and outcome separately, because I couldn't come up with functions that

I thought very long and

All, or at least most

of the objects would have to be able to function with a limited set of general functions, so that

24

FIGURE 10. The object AI structure being designed

Since Spaceship Captain is a top-down 2D-game, the AI doesn't have almost any visual compo-

nent like in The Sims, where the characters must have unique animations for all the objects they

interact with. In this prototype-phase I only focused on the logic of the AI, which meant it was

enough that the AI only moves to the designated object with no animations. This could have

made it possible to program the entire logic of the AI into the characters themselves, but instead I

decided to use "smart objects" like in The Sims. Though the actual use of the smart objects

wouldn’t be exactly the same as in The Sims, they would still provide some of the same ad-

vantages: more easily maintainable code, which in turn makes editing and adding new object less

of a hassle. The script for the AI characters was already nearing 300 lines of code, which is al-

ready somewhat unwieldy, so adding the logic of all the objects in the game into the same script

would’ve made it an absolute horror to debug.

Because of the work I had put into designing the object AI, I could translate it's logic into a hand-

ful of reusable functions for most objects and so utilize a programming method called inheritance.

Inheritance works so that a base-class or "parent-class" contains all the variables and functions

the sub-classes or "child-classes" inherit all the contents of the base-class, but can modify and

add to them. Using inheritance saves me from rewriting code, but it also makes it more reusable

and easier to follow.

After defining the necessary function

AI was straightforward. The core of the object AI is

“state”. A secondary variable, “doOnce” is used in some cases to limit the execution of some

functions to a single execution.

or in some cases written in the object itself.

FIGURE 11. FSM of a food object in the prototyp

Though the "structure" of the AI's logic is contained in the objects themselves, some of the AI's

functions are actually executed by the charac

the first function seen in figure

FIGURE 12. "GoToObject()"-function in the

In the "GoToObject()"-fuction, the object sends the

to execute another identically named function

object itself or its parent object

FIGURE 13. "GoToObject()"-function in the character

25

After defining the necessary functions in the base-class, constructing the "structure

The core of the object AI is a simple FSM, controlled by a single variable,

“state”. A secondary variable, “doOnce” is used in some cases to limit the execution of some

functions to a single execution. Every state of the FSM is assigned a function from the base

written in the object itself.

of a food object in the prototype

Though the "structure" of the AI's logic is contained in the objects themselves, some of the AI's

executed by the characters themselves. For example, this is the case with

the first function seen in figure 11, "GoToObject()", which is defined in the base-

function in the base-class for all objects

fuction, the object sends the "user" (character using the object)

identically named function in the character AI and as a parameter

object itself or its parent object.

function in the character AI

structure" of the objects

, controlled by a single variable,

“state”. A secondary variable, “doOnce” is used in some cases to limit the execution of some

Every state of the FSM is assigned a function from the base-class

Though the "structure" of the AI's logic is contained in the objects themselves, some of the AI's

this is the case with

-class.

using the object) a command

and as a parameter gives the

26

Finally the "GoToObject()"-function in the character AI gives a command to Unity's "Nav Mesh

Agent" –component, which then starts moving the character towards the object given as the pa-

rameter (the food object).

By building the AI structure of the object like this, adding new objects and editing existing ones is

very simple. The scripts attached to the objects stay short and easy to read as in most cases they

only consist of the "Use()"-function, while the actual logic is kept in the base-class and the char-

acter AI.

27

7 RESULTS AND DISCUSSION

When I started working on this thesis, the biggest problem I had, was how to limit the scope of it.

At first I thought the need-based functionality would be too limited of a subject, but as I started

planning out the structure of the thesis and eventually writing the content, it turned out that the

need-based functionality was more than enough to make the thesis out of.

The question of whether or not the goal of the thesis was achieved is still something depends on

the point of view of the argument. The core of the AI's need-based functionality was successfully

developed, but not all of the documented needs made their way into the prototype. They could've

easily been implemented to some degree, but not in the way they would've functioned in the final

game. The needs would have needed other supporting systems, which would've blown the scope

out of proportion in this thesis and extended the development time of the prototype significantly. I

would've liked to develop the prototype further and especially start working on the social abilities

of the AI, as it's one of its key aspects for the finished game. Its complexity would've however

made it more suitable as its own thesis as a continuation of this one. Also the fact that the design

of the social aspect of the AI is still painfully unfinished meant that they had to be left out.

Overall I'm quite satisfied with this written part of the thesis. It's quite clear and cohesive work and

in my own opinion manages to showcase a plethora of design and programming challenges in a

practical light. However, I've been somewhat disappointed at the state I had to leave the actual

prototype in. In order to finish this thesis on time and other time constraints, I had to stop the de-

velopment of the prototype what I would say partway. Because of this, a few of the new features

were only implemented partially, but then again, as they weren't a part of this thesis, this is just a

personal gripe. However, there were some shortcomings in the need-based functionality I would

like to cover in more detail.

The decision making algorithm is something I most likely still have to put more work into in the

future. In current testing it does its job fine, as it cannot be tested in actual gameplay until the

development of the game reaches alpha or beta stage, it might turn out to be unsatisfactory later

on. It most likely can be improved with simple testing and tweaking the values, but during my

research into The Sims in the latter phases of this thesis, I started considering using a similar

system to the Happiness-system (chapter 5) instead of my current state-based system or a mix of

28

the two. However, as such a major change of mechanics requires a lot of further design and re-

search before any concrete decisions can be made, I decided not to tackle it now and leave it for

future development.

Another, closely related issue is interrupting actions. This functionality isn't yet implemented, but

is high on the list of future features, because as the prototype is right now, the AI can't choose a

new action until the current one is finished. Though not by far the worst problem, in extreme cas-

es it makes the AI's behavior highly unbelievable. If for example a characters bladder and energy

needs are both low and the character decides to sleep and during sleep his bladder would go all

the way down, the character wouldn't wake up, but wet his bed every time. This quite obviously

wouldn't be very believable behavior for rational adults. The most obvious solution would be to

have a "critical point" for all the needs, which when reached could have a chance of interrupting

the current action. Another solution would be to have multiple "critical points" or a dynamic inter-

rupting system, that alerts the character if the current action's remaining execution time will drain

a need completely.

There is also an issue regarding the smart objects in the prototype. Unlike in The Sims where the

smart objects can advertise multiple needs, in Unity each game object can only have one tag,

and as discussed earlier in chapter 6.3, the prototype currently uses tagging to advertise the

needs the objects sate. This wasn't a problem for the needs of this thesis, but in the future this

limitation has to be circumvented. I've seen multiple people request the ability to use more than

one tag per object, but as Unity Technologies is yet to confirm the feature for future releases, the

only solution I see is to write a custom system to handle the advertising functionality.

Another issue that wasn't really relevant to this thesis, but one that I realized while writing was the

way AI checks its distance to objects during the decision making process. Currently the AI calcu-

lates the distance between the character and the object as a simple vector. In the future, the level

(i.e. the spaceship) is most likely going to become a more complex structure, meaning there

might be many rooms and walls between the character and object. Using the current system, the

AI will ignore all walls and always choose the object with the shortest distance vector instead of

the object within the shortest walking distance. Under the right circumstances this result in unreal-

istic behavior. A possible solution to this problem would be to generate a navmesh path to each

object and compare their lengths instead of simple distance vectors, but I have yet to test whether

this feature is present in Unity.

29

SOURCES

Abraham Maslow. 2009. Abraham Maslow Biography. Referenced 22.12.2014,

http://www.abraham-maslow.com/m_motivation/Biography.asp.

AI Game Programmers Guild. 2011. The Sims. Referenced 16.12.2014,

http://gameai.com/wiki/index.php?title=The_Sims.

Champandard, A. 2007. Living with The Sims' AI: 21 Tricks to Adopt for Your Game. Referenced

2.12.2014, http://aigamedev.com/open/review/the-sims-ai/.

Cherry, K. 2014. Biography of Abraham Maslow (1908-1970). Referenced 22.12.2014,

http://psychology.about.com/od/profilesmz/p/abraham-maslow.htm.

Electronic Arts. 2010. Needs TS1.jpg. Referenced 26.11.2014,

http://sims.wikia.com/wiki/File:Needs_TS1.jpg.

Epic Games. 2012. Navigation Mesh Reference. Referenced 2.12.2012,

http://udn.epicgames.com/Three/NavigationMeshReference.html.

Factoryjoe. 2009. File:Maslow's Hierarchy of Needs.svg. Referenced 26.11.2014,

http://commons.wikimedia.org/wiki/File:Maslow%27s_Hierarchy_of_Needs.svg.

Microsoft. 2014a. Application Development. Referenced 2.12.2014,

http://www.visualstudio.com/explore/application-development-vs.

Microsoft. 2014b. Visual Studio with MSDN. Referenced 2.12.2014,

http://www.visualstudio.com/products/visual-studio-with-msdn-overview-vs.

Mark, D. 2009. Behavioral Mathematics for Game AI. Boston: Cengage Learning.

PaulT. 2008. Fixing Pathfinding Once and For All. Referenced 2.12.2014, http://www.ai-

blog.net/archives/000152.html.

30

McLeod, S. 2014. Maslow's Hierarchy of Needs. Referenced 22.12.2014,

http://www.simplypsychology.org/maslow.html.

Unity Technologies. 2013. Unity Releases 2D Tools With 4.3 Update. Referenced 19.11.2014,

http://unity3d.com/company/public-relations/news/unity-releases-2d-tools-43-update.

Unity Technologies. 2014a. The Leading Global Game Industry Software. Referenced

19.11.2014, http://unity3d.com/public-relations.

Unity Technologies. 2014b. Create the Games You Love With Unity. Referenced 19.11.2014,

http://unity3d.com/unity.

Unity Technologies. 2014c. License Comparison. Referenced 19.11.2014,

http://unity3d.com/unity/licenses.

Unity Technologies. 2014d. Creating and Using Scripts. Referenced 19.11.2014,

http://docs.unity3d.com/Manual/CreatingAndUsingScripts.html.

