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Used Acronyms and Symbols 

Acronyms 

BSI  British Standards Institution 

CE  Circular Equivalent 

DIN  Deutsches Institut für Normung 

DOF  Depth of Field 

ISO  International Organization for Standardization 

M-R  Moment-Ratio 

NA  Numerical Aperture 

PE  Polyethylene 

PP  Polypropylene 

PSD  Particle Size Distribution 

SOP  Standard Operating Procedure 

SS  Single-Site catalyst 

ZN  Ziegler-Natta catalyst 

Mathematical symbols 

   

𝐷̅𝑝,𝑞 D Mean particle diameter according to M-R notation (general formula) 

𝑖 i Number of the size bin 

𝑘 k Power of 𝑥 

lg⁡(𝑥) Lg Base 10 logarithm of 𝑥 

ln⁡(𝑥) Ln Natural logarithm of 𝑥 

log⁡(𝑥) Log Logarithm of 𝑥, can be either lg⁡(𝑥) or ln⁡(𝑥) 

𝑀𝑘,𝑟 M1 𝑘-th raw moment of a 𝑞𝑟(𝑥)-distribution 

𝑀′𝑘 M2 𝑘-th sample moment 

𝑚𝑘,𝑟 M3 𝑘-th central moment of a 𝑞𝑟(𝑥)-distribution 

𝑁 N Sample size 

𝑁∗ N2 Required sample size 

𝑛𝑖 N3 Frequency of the 𝑖-th size bin 

𝑃 P Confidence level 

𝑄𝑟(𝑥) Q1 Cumulative distribution 

𝑞𝑟(𝑥) Q2 Probability density distribution 

𝑞̅𝑟,𝑖 Q3 The height of the 𝑖-th column in a histogram 

𝑞𝑟
∗(𝜉) Q4 Transformed probability distribution, 𝜉 = 𝑓(𝑥) 

𝑞̅𝑟,𝑖
∗  Q5 The height of the 𝑖-th column in a transformed histogram 

𝑟 R Quantity type of a distribution 
𝑟 = 0, for number 

𝑟 = 1, for length 
𝑟 = 2, for surface 

𝑟 = 3, for volume 

𝑆(𝑥) S1 Standard sampling error of random variable 𝑥 
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𝑠𝑟 S2 Standard deviation of type 𝑟 distribution 

𝑢 U A parameter 

𝑥 X1 Independent variable; especially particle diameter 

𝑥min X10 Smallest particle diameter in a given sample 

𝑥max X11 Largest particle diameter in a given sample 

𝑥r X12 Image resolution 

𝑥10,r X2 10th percentile of a 𝑞𝑟(𝑥)-distribution 

𝑥50,r X3 50th percentile of a 𝑞𝑟(𝑥)-distribution 

𝑥90,r X4 90th percentile of a 𝑞𝑟(𝑥)-distribution 

𝑥𝑖−1 X5 Lower size of the 𝑖-th size bin 

𝑥𝑖 X6 Upper size of the 𝑖-th size bin 

𝑥̅𝑖 X7 Midpoint of the 𝑖-th size bin 

𝑥̅𝑘,𝑟 X8 Mean particle diameter according to DIN/ISO notation (general for-
mula) 

𝛿 Δ Admissible error 

∆𝑄𝑟,𝑖 Δq Increment of the cumulative distribution within the 𝑖-th size bin 

∆𝑥𝑖 Δx 𝑥𝑖 − 𝑥𝑖−1, width of the 𝑖-th size bin 

𝜉 Ξ 𝜉(𝑥), transformed coordinate 

𝜎g Σ Geometric standard deviation 

Φ(x) Φ Cumulative distribution function of normal distribution 

𝜔 Ω A parameter 
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1 Introduction 

 

The purpose of this thesis was to evaluate and further develop methods for particle size 

distribution analysis based on an image analyser. The work was done for Borealis and 

conducted in collaboration with Helsinki Metropolia University of Applied Sciences. 

 

Borealis is a producer of polyethylene (PE) and polypropylene (PP), collectively referred 

to as polyolefins, and also fertilisers. It is an international organisation headquartered in 

Vienna, Austria, and manufacturing operations in several countries in Europe, including 

the production plant and innovation centre in Porvoo, Finland. Borealis is owned by the 

International Petroleum Investment Company of United Arab Emirates and OMV of Aus-

tria. 

 

This thesis is divided into three parts. The parts can be read independently although it is 

assumed in the latter two parts that the reader is familiar with the basic concepts in par-

ticle size analysis. The first part Theoretical Background serves as an introduction to 

particle size analysis, and it has three chapters. Chapter 2 Terminology for catalysts and 

methods defines essential terms relating to this thesis. Chapter 3 Particle Size Analysis 

is a literature review of the mathematical and statistical theory of particle size analysis 

with an emphasis on ISO standards. Chapter 4 Image Analysis using Morphologi G3 

introduces the instrument and its functions; image analysis in general, however, is not 

covered in this thesis work, and only the methodology that is applicable to Morphologi 

G3 is discussed in the chapter. 

 

The second part Examination of the currently-used method is a detailed examination and 

discussion of the currently-used method (see the next chapter for the terminology re-

garding methods). Chapter 5 Sample preparation and measurement discusses issues 

related to sample preparation and measurement, and Chapter 6 Data handling issues 

related to the treatment of the obtained data. Chapter 7 ISO and BS standards-based 

assessment presents a statistical assessment of the method based on the standards 

BS 3406-4:1993 and ISO 13322-1:2004(E). 

 

The third part Development of two new methods presents the development of two new 

methods: the high-throughput method, the purpose of which is to enable the reliable 

screening of ZN catalysts (Chapter 8 The High-throughput Method), and the so-called 

detailed method, the purpose of which is to be used for obtaining high-quality imagery of 

SS catalysts (Chapter 9 The Detailed Method). The learnings obtained from the previous 

part were utilised in the method development. 
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Part I. Theoretical Background 

2 Terminology for catalysts and methods 

 

Particle size is one of the most important characteristics of a polymer product, and it is a 

well-known feature of polyolefin polymerisation that the size and shape characteristics 

of the catalyst are preserved during polymerisation – this is referred to as the replication 

effect – and thus the shape and size distribution of the polymer is directly related to the 

corresponding catalyst distribution. Particle size measurement is therefore an essential 

part of catalyst characterisation. 

 

Two kinds of commercially used catalysts are used in polyolefin production: the tradi-

tional Ziegler-Natta (ZN) catalyst and the Single-Site (SS) metallocene catalysts. Both 

are available in prepolymerised and non-prepolymerised form – although only the SS is 

measured in both forms. 

 

The method that is currently in use is different for the three types of catalysts owing to 

their different chemical and optical properties, and can, therefore, be divided in three: 

 

Currently-used⁡method {

for⁡ZN
for⁡prepolymerised⁡SS

for⁡non-prepolymerised⁡SS
 

 

In this thesis, the term currently-used method is used when the type of catalyst is of no 

interest; however, the catalyst will be specified whenever necessary, for example cur-

rently-used ZN method. 

 

The two new methods that are to be developed are as follows: 

 

High-throughput⁡method⁡for⁡ZN 

 

Detailed⁡method⁡ {
for⁡prepolymerised⁡SS

for⁡non-prepolymerised⁡SS
 

 

The term detailed method is used to refer to both versions of the method; if the type of 

catalyst makes a difference, it will be specified.  
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3 Particle Size Analysis 

 

Clear understanding of the properties of particles is essential in most chemical engineer-

ing processes. In polyolefin production, the ideal catalyst is uniform in size and shape 

because polymer particle properties are derived directly from the corresponding catalyst 

particle properties. Nevertheless, in reality particles appear in a range of sizes and 

shapes. The purpose of particle size analysis is to characterise the particle size distribu-

tion of particulate matter. 

 

3.1 Analysis methods 

 

Sieving has for a long time been the standard way of performing particle size analysis. 

The sample is put through a tower of multiple sieves arranged in descending order of 

grid size. At each sieve, a fraction of the matter is retained, and these fractions are then 

plotted as a function of the grid size. Sieving is simple and cheap, but it has a poor 

resolution, and, therefore, it is mainly suitable for screening purposes. 

 

Laser diffraction – more appropriately called Low Angle Laser Light Scattering (LALLS) – 

is one of the most commonly used techniques for particle size analysis. It is a calculated 

measurement, whose primary value is scattered light intensity and diffraction pattern, 

which are assumed to be directly proportional to particle size. Laser diffraction has a 

particularly wide size range; however, it works best only if particles are spherical. (Rawle 

(no date)) 

 

In image analysis, images are obtained from the sample, and these images are then 

analysed by a computer program. Computer vision is applied to recognise the particles 

in the images and then to measure their physical properties, such as size and shape 

characteristics. Owing to the recent developments in computer technology, image anal-

ysis methods have become increasingly accurate and automated. Image analysis meth-

ods are available for both optical and electron microscopes. Furthermore, image analysis 

can be used for dynamic screening. 
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3.2 Characterisation of particles 

3.2.1 Equivalent diameter 

 

Characterising a three-dimensional particle with one number is not a straight-forward 

task. To take particle shape into account, the concept of equivalent diameter has been 

adopted. (Leschonski 1984) It is defined in the British standard BS 2955:1993 as ‘[t]he 

diameter of a sphere which behaves like the observed particle relative to or deduced 

from a chosen property’. 

 

The physical particle properties that can be chosen as the basis for defining the equiva-

lent diameter are various. They can be one-dimensional properties, such as linear di-

mensions, two-dimensional, such as surface area or projected area, and three-dimen-

sional, such as volume and mass. Other physical properties, such as settling rate in a 

viscous fluid or response to an electrical field may also be chosen. (Leschonski 1984) 

Some possible equivalent diameters are presented in Table 1. The choice of equivalent 

diameter depends on the application in which the particles are present. In many in-

stances it is not possible to calculate the equivalent diameter theoretically, but it has to 

be measured instead. 

 

Table 1 Equivalent diameters (BS 2955:1993) 

Equivalent perimeter 

diameter 

Diameter of a circle whose perimeter is equal to that of 

the particle 

Equivalent projected 

area diameter 

Diameter of a circle whose area is equal to the  

projected area of the particle 

Equivalent surface 

diameter 

Diameter of a sphere whose surface is equal to the 

surface of the particle 

Stokes’s diameter 
Diameter of a sphere whose settling velocity is equal 

to that of the particle 

 

Since an image analyser captures two-dimensional images of three-dimensional parti-

cles, the most natural choice of equivalent diameter is the projected area diameter. The 

British standard BS 3406-4:1993 introduces the term equivalent circle diameter (CE) to 

be used when the projection is an image. (The mathematical definition will be given in 

Equation (22)). 
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3.3 Particle distributions 

 

There are two ways in which particle size distributions can be presented. The cumulative 

distribution 𝑄𝑟(𝑥) represents the relative quantity of particles equal to or smaller than 𝑥. 

Cumulative distribution is usually normalised so that 𝑄𝑟(𝑥𝑚𝑖𝑛) = 0 and 𝑄𝑟(𝑥𝑚𝑎𝑥) = 1. 

The probability density distribution 𝑞𝑟(𝑥) is related to the 𝑄𝑟(𝑥) according to Equation (1). 

(Leschonski 1984) 

 

 

𝑞𝑟(𝑥) =
d𝑄𝑟(𝑥)

d𝑥
⁡⁡⇔ ⁡𝑄𝑟(𝑥) = ∫ 𝑞𝑟(𝑥)

𝑥

𝑥min

d𝑥 (1)  

 

 

 

Figure 1 Graphical presentation of density and cumulative distributions 

 

In statistics, distributions are usually based on how frequently each particle size is ob-

served. However, many physical phenomena do not depend on the number of particles 

present, but on some other properties of the particles, such as surface area, volume or 

mass (Figure 2). For this reason, particle size distributions can be defined for different 

types of quantities, represented as the subscript⁡𝑟, as shown in Table 2. (Leschonski 

1984) 

 

𝑞
𝑟
 

𝑄
𝑟
 

𝑞𝑟(𝑥) 

𝑄𝑟(𝑥) 

𝑥 

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥 



8 

 

Table 2 Different types of quantity for q𝑟 and Q𝑟 

Subscript 𝑟 Type of quantity 

0 Number (frequency) 

1 Diameter 

2 Area 

3 Volume 

 

 

Figure 2 Graphical representation of the types of distributions presented in Table 
2, based on the same particle size data 

 

3.3.1 Moments of distribution 

 

Distribution characteristics can be defined according to moments of distribution. The 

mathematical definition for the 𝑘-th raw moment of density distribution 𝑞𝑟(𝑥) of the ran-

dom variable 𝑋 is given by the equation  

 

 

𝑀𝑘,𝑟 = ∫ 𝑥𝑘𝑞𝑟(𝑥)⁡d𝑥

𝑥max

𝑥min

. (2)  

log⁡(𝑥) log⁡(𝑥) 

log⁡(𝑥) log⁡(𝑥) 

𝑞
0
 

𝑞
1
 

𝑞
2
 

𝑞
3
 

Frequency Diameter 

Area Volume 
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The first subscript 𝑘 represents the order of the moment and the second subscript 𝑟 the 

type of quantity. (ISO 9276-2:1998(E)) 

 

Similarly the 𝑘-th central moment about the mean 𝑥̅ is defined in the equation below. 

(Alderliesten 1990a) 

 

 

𝑚𝑘,𝑟 = ∫ (𝑥 − 𝑥̅)𝑘  𝑞𝑟(𝑥)⁡d𝑥
𝑥max

𝑥min

 (3)  

 

The raw moment of order 𝑘 is the expected value of 𝑋𝑘, and the central moment is the 

expected value of (𝑋 − 𝑥̅)𝑘. The expected value of a random variable is the mean of 

possible values weighted according to their probabilities. (Dodge 2008, pp. 190–191, 

358–359) 

 

For the calculation of 𝑀𝑘,𝑟, Equation (2) may in many instances be found impractical 

because it requires that 𝑞𝑟(𝑥) be known. Numerical integration techniques can be used 

to compute the integral over a series of measured data points, but it is often the case 

that data are given in size bins. It is therefore more convenient to discretise the equation. 

In a histogram, 𝑞𝑟(𝑥) is constant within a size interval ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, and the Equa-

tion (2) can be rewritten as 

 

𝑀𝑘,𝑟 =∑  𝑞̅𝑟,𝑖 ∫ 𝑥𝑘 ⁡d𝑥

𝑥𝑖

𝑥𝑖−1

𝑁

𝑖=1

, 

 

which leads into the equation 

 

 
𝑀𝑘,𝑟 =

1

𝑘 + 1
∑ 𝑞̅

𝑟,𝑖
(𝑥𝑖

𝑘+1 − 𝑥𝑖−1
𝑘+1)

𝑁

𝑖=1

 

=
1

𝑘 + 1
∑∆𝑄𝑟,𝑖 (

𝑥𝑖
𝑘+1 − 𝑥𝑖−1

𝑘+1

𝑥𝑖 − 𝑥𝑖−1
)

𝑁

𝑖=1

 

for⁡𝑘 ≠ −1 (4)  
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where 𝑞̅𝑟,𝑖 and ∆𝑄𝑟,𝑖 are the constant values of 𝑞𝑟(𝑥) and 𝑄𝑟(𝑥) within the 𝑖-th size inter-

val. It is possible to derive a corresponding equation with 𝑘 = −1, and this would corre-

spond to the so-called harmonic mean. This is, however, beyond the scope of this thesis. 

See the standard ISO 9276-2:1998(E) for more information. 

3.3.2 Mean diameters, percentiles and the mode 

 

The concept of mean diameter is defined by the British standard BS 2955:1993 as the 

‘[s]ize of a hypothetical particle such that a population of particles having that size has, 

for the purpose involved, properties which are equal to those of a population of particles 

with different sizes and having that size as a mean size’. 

 

Although the concept is easily defined, there are two different mathematical notations: 

ISO/DIN and Moment-Ratio (M-R) systems. (Alderliesten 2011) The German standard 

DIN 66141 and the ISO standard 9274-2 are based on the ISO/DIN system, hence the 

name, whereas many applications as well as the British standard BS 2955:1993 apply 

the Moment-Ratio system. 

 

Both systems were extensively studied by Maarten Alderliesten in his articles (1990a) 

(1990b). His conclusion was that the statistical nature of the ISO/DIN system hampers 

its usability in practical applications, whereas the physical nature of the M-R system is 

more suitable in those cases. Here, the statistical nature of the former refers to the fact 

that it is calculated from a fitted size distribution, whilst the latter is calculated directly 

from measurement data, compare Equations (5) and (7). (Alderliesten 2011) 

 

According to the DIN system the mean diameter 𝑥̅𝑘,𝑟 is based on Equation (5): 

 

 𝑥̅𝑘,𝑟 = √𝑀𝑘,𝑟
𝑘  (5)  

 

Here, the subscripts 𝑘 and 𝑟 are the same as for the moment 𝑀𝑘,𝑟. (ISO 9276-2:1998(E)) 

 

Mean sizes of the form 𝑥̅𝑘,0 are called arithmetic average particle diameters, and mean 

sizes of the form 𝑥̅1,𝑟 is called weighted average particle diameters. (ISO 9276-

2:1998(E)) 

 



11 

 

In most instances, particle size data are given either as number-based (𝑟 = 0) or vol-

ume-based (𝑟 = 3). Then Equation (5) can be rewritten as Equation (6) below. (ISO 

9276-2:1998(E)) 

 

 

𝑥̅𝑘,𝑟 = √
𝑀𝑘+𝑟,0

𝑀𝑟,0

𝑘

= √
𝑀𝑘+𝑟−3,3

𝑀𝑟−3,3

𝑘

 (6)  

 

According to the moment-ratio system the mean diameter 𝐷̅𝑝,𝑞 is defined by the equation 

 

 

𝐷̅𝑝,𝑞 = (
𝑀𝑝

′

𝑀𝑞
′ )

1

𝑝−𝑞

. (7)  

 

The prime in 𝑀𝑘
′  implies that, instead of the real moment, an estimator, called the sample 

moment, is used. The sample moment is defined by the formula 

 

 𝑀′𝑘 = 𝑁−1∑𝑛𝑖𝑥̅𝑖
⁡𝑘

𝑖

, (8)  

 

where 𝑥̅𝑖 is the midpoint of the 𝑖-th size bin, and 𝑛𝑖 is the bin frequency, and 𝑁 = ∑ 𝑛𝑖𝑖 . 

(Alderliesten 1990a) 

 

By combining Equations (7) and (8) one arrives at the following equation: 

 

 

𝐷̅𝑝,𝑞 = (
∑ 𝑛𝑖𝑥̅𝑖

⁡𝑝
𝑖

∑ 𝑛𝑖𝑥̅𝑖
𝑞

𝑖

)

1

𝑝−𝑞

, for⁡𝑝 ≠ 𝑞. (9)  

 

As shown by Alderliesten (1990a), for p = q, 𝐷̅𝑝,𝑞 can be obtained from 

 

 
𝐷̅𝑝,𝑞 = exp(

∑ 𝑛𝑖𝑥̅𝑖
⁡𝑝
ln⁡(𝑥̅𝑖)𝑖

∑ 𝑛𝑖𝑥̅𝑖
⁡𝑝

𝑖

) , for⁡𝑝 = 𝑞. (10)  

 

If p = q = 0, 𝐷̅0,0 is called the geometric mean, and it is identical to the more common 

definition found in literature: 𝐷̅0,0 = √∏ 𝑥̅𝑖𝑖
𝑁

. If p = q > 0, 𝐷̅𝑝,𝑞 is called the weighted geo-

metric mean. (Alderliesten 1990a) 
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The two notations are related to one another by the equation below. (Alderliesten 1990a) 

 

 𝑥̅𝑘,𝑟 = 𝐷̅𝑝,𝑞 , for⁡𝑝 = 𝑘 + 𝑟, 𝑘 ≠ 0, 𝑟 = 𝑞 (11)  

Names for some of the most commonly used mean diameters are presented in Table 3. 

 

Table 3 Recommended nomenclature for mean diameters 

DIN/ISO M-R Recommended name (BS 2955:1993) 

𝑥̅1,0 𝐷̅1,0 Arithmetic mean diameter 

𝑥̅2,0 𝐷̅2,0 Mean surface diameter 

𝑥̅3,0 𝐷̅3,0 Mean volume diameter 

𝑥̅1,1 𝐷̅2,1 Diameter-weighted mean diameter 

𝑥̅1,2 𝐷̅3,2 Surface-weighted mean diameter 

− 𝐷̅3,3 Volume-weighted geometric mean diameter 

𝑥̅1,3 𝐷̅4,3 Volume-weighted mean diameter (Alderliesten 1990a) 

 

One should be careful with the nomenclature of mean diameters because terms such as 

volume mean and volume distribution mean are ambiguous. The volume-weighted mean 

𝐷4,3 is not the mean of the volumes of particles; instead, it is the mean of the particle 

diameters measured or weighted according to their volumes, hence the term volume-

weighted mean. (Alderliesten 1990b) 

 

The 𝑛-th percentile 𝑥𝑛,𝑟 of a distribution is defined so that 𝑄𝑟(𝑥𝑛,𝑟) = 𝑛/100, where 𝑛 is 

a percentage, and it tells how much of the distribution lies below the given value. The 

most commonly used percentiles are the 10th, 50th and 90th percentiles – although others 

are also widely used. The 50th percentile is also referred to as the median. (Dodge 2008, 

pp. 419-421) 

 

The mode is the most frequently observed value. Given a density distribution 𝑞𝑟(𝑥), the 

mode is the maximum of the distribution, and if the data are given as a histogram, the 

mode is the bin midpoint 𝑥̅𝑖 of the highest column. (Dodge 2008, pp. 351-353) 

 

3.3.3 Standard deviation 
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The spread of a distribution 𝑞𝑟(𝑥) is characterised by the standard deviation 𝑠𝑟 and its 

square 𝑠𝑟
2, the variance. In the standard ISO 9276-2:2001, variance is defined as the 

second central moment of a distribution, 𝑚2,𝑟, and it can be calculated using Equation (3). 

In DIN/ISO notation this can also be presented by the equation below. (ISO 9276-

2:1998(E)) 

 

 
𝑠𝑟 = √𝑀2,𝑟 −𝑀1,3

2  (12)  

 

Using the Moment-Ratio system, the standard deviation can be calculated from Equa-

tion (13). (Alderliesten 1990a) This equation may be easier to compute because it can 

be calculated by applying the sample moment, presented in Equation (8). It is also the 

equation recommended by Alderliesten (1990a). 

 

 
𝑠𝑟 = √𝐷̅𝑟+2,𝑟

2 − 𝐷̅𝑟+1,𝑟
2  (13)  

 

Another frequently used quantity is the geometric standard deviation, obtained from the 

equation 

 

 

𝑠g = exp(√
∑ 𝑛𝑖𝑖 (ln⁡(𝑥̅𝑖/⁡𝐷̅0,0))

2

𝑁 − 1
). (14)  

 

It is useful when dealing with log-normal distributions because log-normal distributions 

have the property that 𝑠 = ln(𝑠g). (Alderliesten 1990a) 

3.4 Graphical presentation 

 

Particle analysis data are most conveniently communicated in graphs. The graphs can 

be either direct measurement data visualisations or estimations of population probability 

density functions. 

 

3.4.1 Histogram 

 

The histogram is the most common representation. The data are divided into size bins, 

and each size bin is represented by one column, the area of each of which represents 
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the relative quantity of the corresponding size bin. Size bins need not be of the same 

width; in fact, it is a common practice to use a logarithmic series to determine the limits 

of the size bins (BS 3406-4:1993). 

If ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 is the width of the 𝑖-th size bin, then the corresponding increment of the 

𝑄𝑟(𝑥)-distribution ∆𝑄𝑟,𝑖 = 𝑄𝑟(𝑥𝑖) − 𝑄𝑟(𝑥𝑖−1) represents the relative quantity of that size 

bin. Thus the histogram is obtained using the equation 

 

 
𝑞̅𝑟,𝑖 = 𝑞̅𝑟(𝑥𝑖−1, 𝑥𝑖) =

∆𝑄𝑟,𝑖
∆𝑥𝑖

, (15)  

 

where 𝑞̅𝑟,𝑖 represents the height of the rectangular column. This is demonstrated in Fig-

ure 3. (ISO 9276-1:1998(E)) 

 

 

Figure 3 Histrogram representation of the density distribution 𝑞𝑟(𝑥) 

 

The weighted quantity ∆𝑄𝑟,𝑖 can be calculated from frequency data using the following 

equation 

 
∆𝑄𝑟,𝑖 =

𝑛𝑖𝑥̅𝑖
⁡𝑟

∑ 𝑛𝑖𝑥̅𝑖
⁡𝑟

𝑖
⁡, (16)  

 

where 𝑟 represents the type of quantity as specified in Table 2, 𝑛𝑖 the frequency and 𝑥̅ 

the midpoint of the 𝑖-th size bin. (BS 3406-4:1993) 

𝑞̅𝑟(𝑥𝑖−1, 𝑥𝑖) 

∆𝑥𝑖 

𝑥𝑖−1⁡⁡⁡⁡𝑥𝑖 

𝑞̅𝑟(𝑥𝑖−1, 𝑥𝑖) ∆𝑥𝑖 = ∆𝑄𝑟,𝑖 

𝑥 

𝑞
𝑟
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The standard ISO 9276-1:1998 recommends that, should the abscissa be changed, the 

total visual area should still remain constant irrespective of any changes of the abscissa. 

This requirement leads into the transformed distribution 𝑞𝑟
∗(𝜉), for which 𝜉 = 𝑓(𝑥), and 

the following equation holds: 

 

 𝑞̅𝑟
∗(𝜉𝑖−1, 𝜉1) ∆𝜉𝑖 = 𝑞̅𝑟(𝑥𝑖−1, 𝑥𝑖) ∆𝑥𝑖 (17)  

 

Using a logarithmic abscissa, 𝜉 = log(𝑥), and thus the height of the column is obtained 

from 

 

 
𝑞̅𝑟,𝑖
∗ =

𝑞̅𝑟,𝑖∆𝑥𝑖
log(𝑥𝑖) − log(𝑥𝑖−1)

=
∆𝑄𝑟,𝑖

log (
𝑥𝑖

𝑥𝑖−1
)
, (18)  

 

and it can be shown that the transformation between continuous density functions can 

be performed by 

 

 𝑞𝑟
∗  (𝜉) = 𝑥  𝑞𝑟(𝑥). (19)  

 

Nevertheless, the cumulative distributions remain unchanged by any transformation: 

 

 𝑄𝑟
∗  (𝜉) = 𝑄𝑟(𝑥) (20)  

 

It is important to realise that the logarithmically transformed distribution is essentially 

different from the traditional distribution. Figure 4 visualises the difference. 



16 

 

 

Figure 4 Comparison of the 𝑞𝑟(𝑥)- and 𝑞𝑟
∗(𝑥)-distributions, both plotted on a loga-

rithmic abscissa 

 

3.4.2 Frequency and volume curves 

 

The midpoints 𝑥̅𝑖 on top of each column in a histogram can be connected to form a seg-

mented line. This line representation is called the frequency polygon. As the number of 

size bins approaches infinity and the width of the bins approach zero, the curve becomes 

an increasingly accurate estimation of the underlying probability density function – pro-

vided a sufficient enough sample population. The limiting case at a large number of small 

bins is called the frequency curve. (Dodge 2008, pp. 208-212) 

 

Although not explicitly stated in any reference, polygons and curves based on histograms 

that represent observations weighted according to diameter, area or volume could be 

called diameter, area and volume curves respectively.  

 

It is obvious that in order to accomplish a good frequency curve, the sample population 

has to be large. With insufficient populations, the curve can be smoothed by taking the 

running average of a certain number of adjacent points. (Malvern Instruments 2013, 

p. 9-26) This is especially convenient for plots of the volume distribution, since the effect 

of large outliers become amplified. This is demonstrated in Figure 5. 

 

𝑞𝑟(𝑥) 

𝑞𝑟
∗(𝑥) 

CE diameter (µm) 



17 

 

 

 

 

Figure 5 The effect of smoothing on the frequency curve by taking the running av-
erage 

  

𝑞
𝑟∗
 

𝑞
𝑟∗
 

𝑞
𝑟∗
 

𝑞
𝑟∗
 

𝑥 𝑥 

𝑥 𝑥 

Unsmoothed Smoothed over three 

points 

Smoothed over 11 points Smoothed over 25 points 
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4 Image Analysis using Morphologi G3 

4.1 Malvern Morphologi G3 

 

Image analysis in general is the process of extracting information from images. One 

commercially-available image analysis system is the Morphologi G3, manufactured by 

Malvern Instruments, a British company specialising in analytical instruments (Figure 6). 

It is designed especially for characterising particle size and shape. The system com-

prises the instrument itself and the computer software that is used to control the instru-

ment and to handle the results. 

 

 

 

 

Figure 6 The instrument (left); close-up of the optics (top right); close-up of the 
movable stage 
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All photographed particles can be viewed and examined individually in the software. The 

software has also built-in features that calculate and present statistics ( 

Figure 7). The software is also used to create SOP-files (standard operating procedures), 

which contain predetermined parameters for different kinds of measurements. Each 

method and catalyst type warrants is own SOP-file. 

 

 

Figure 7 Morphologi software showing all captured images on the right, and statis-
tics on the left 

 

4.2 Sample preparation 

 

Catalyst samples are received either as dry samples in septa bottles or as oil slurries in 

bigger bottles. A sample concentration of approximately 0.4% by weight of catalyst is 

prepared, either by adding the required amount of oil to a dry sample or by further diluting 

a slurry sample. The sample is then mixed using a rotator mixer in order to homogenise 

the sample. The use of shakers should be avoided if possible because they would cause 

air bubbles to form. 

 

Two kinds of sample carrier plates are used; the wet cell is composed of two sheets of 

glass, which are separated by a spacer and hold the sample suspension in between the 

sheets of glass, and the microscope slide holder holds up to four standard microscope 

slides, see Figure 8. 
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Figure 8 The wet cell and the microscope slide holder 

 

After being thoroughly mixed, a subsample of approximately 3.5 ml is taken from the 

septa bottle and injected into the wet cell. The injection should be carried out smoothly 

by pushing the plunger steadily; otherwise particles will segregate. The wet cell is sealed 

by screwing on two caps. If the microscope slides are being used instead, the subsample 

is smaller and deposited onto a microscope slide. The sample plate is then placed onto 

the stage, and left for 20–30 minutes to allow particles to settle. 

 

The whole sampling process is presented in the flowchart Figure 9. Only sample divi-

sions 2, 3, and 4 are controlled in the laboratory, and can be considered as part of the 

method. 
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Figure 9 The sampling process for slurry samples from the pilot 

 

4.3 Image acquisition 

4.3.1 General 

 

For image acquisition, Morphologi G3 has five objectives. Each objective has its specific 

Depth of Field (DOF), which is the depth at which particles appear sharp, and a certain 

range of recommended particle sizes. The range is based on pixel size, see Chap-

ter 4.5.1 for more information. These specifications are presented in Table 4. 

 

Table 4 Ranges and DOFs of the objectives (Malvern Instruments 2013) 

 

Optics DOF Range 

2.5× 97.78 µm 13 µm–1,000 µm 

5× 24.44 µm 6.5 µm–420 µm 

10× 6.11 µm 3.5 µm–210 µm 

20× 3.44 µm 1.8 µm–100 µm 

50× 1.82 µm 0.5 µm–40 µm 

 

 

 

The batch to be 
sampled

Sample from pilot

• A sample is taken from 
the pilot

1. Subsampling

• A subsample is taken for 
PSD measurement

• Weight-percentage is 
approx. 20%

2. Subsampling

• Approx. 200 mg of the 
slurry is taken and diluted 
to a weight-percentage of 
approx. 0.4%

3. Subsampling

• Approx. 3.5 mL of sample 
is injected to the wetcell

4. Subsampling

• An area of the wetcell is 
scanned



22 

 

There are three illumination options: diascopic (bottom light), episcopic (top light) bright 

field and episcopic dark field, see Figure 10. Bottom light is recommended by default and 

has therefore been selected for all currently used SOPs; top light had been tested and 

found unsuitable in the development of the original methods. 

 

 

 

Figure 10 Top row: Pictures taken with the default diascopic illumination; Middle 
row: Pictures taken with bright field episcopic illumination; Bottom row: 
Pictures taken with dark field episcopic illumination 
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4.3.2 Frame overlap 

 

It is important to notice that some particles will be cut by the edge of the measurement 

frame. If these cut particles are accepted for measurement, they will introduce an error 

by biasing lower particle sizes. (ISO 13322-1:2004(E)) To remedy this, frames are set to 

overlap so that particles at the edge of one frame appear in the middle of another frame. 

This occurs in both horizontal and vertical directions. See Figure 11. 

 

  

 

Figure 11 Frame overlap in the horizontal direction. Notice how the particle at the 
lower right corner is cut by the edge of the measurement frame, but ap-
pears intact in the second image 

 

4.3.3 Z-stacking 

 

The depth of field can be widened by a technique called Z-stacking (or focus stacking), 

where images are taken at multiple focal distances and then combined into one so that 

the final picture is as if it had a combined depth of field of all the individual pictures. The 

trade-off is that the time needed to perform a measurements increases significantly be-

cause more images are taken in every one point. 

 

There are two z-stacking algorithms available: differential, which is the most recent algo-

rithm, and legacy, which is preserved only to allow the reproduction of older measure-

ments that were carried out using the original algorithm. More algorithms may be re-

leased in the future. 
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4.3.4 Merged-objective measurement 

 

Measurement range can be widened by the use of multiple objectives on one sample. If 

two areas are scanned with different objectives, the results are combined so that the 

merge point is the smallest recommended diameter of the lower magnification. Particles 

measured with the higher magnification that are larger than the merge point are not in-

cluded in the results. If the area for the higher magnification is smaller than the area for 

the lower magnification, different areas are compensated by multiplying the contribution 

that particles measured with the higher magnification have to the results by the frac-

tion 𝐴/𝑎, where 𝐴 is the area scanned with the lower magnification and 𝑎 is the area 

scanned with the higher magnification. Performing a merged-objective measurement has 

a significant time penalty. (Malvern Instruments 2009b) 

4.3.5 Measurement phases 

 

Each measurement consists of the following phases presented in Figure 12. 

 

 

 

Figure 12 Morphologi G3 measurement presented as a flow chart 

 

During initial focusing the software finds the focus reference point using the z-level ref-

erence point mounted on the sample carrier holder. The pixel size is calibrated using the 

Initial focusing
Calibrating pixel 
size according to 

inbuilt grating

Setting focus 
manually

Adjusting 
illumination and 

threshold 
manually

Compensating for 
plate tilt

Setting light 
intensity

Scanning the 
area(s)

Verifying light 
intensity

Measurement 
completed
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grates. The grating surface is found by using the top light and projecting a cross onto the 

surface. The surface is in focus, when the edges of the cross appear sharp. 

 

Focus, illumination and threshold can be set to a fixed value, thus these steps can be 

omitted. For the currently-used method, only the focus is set manually, while the others 

are set automatically to a predetermined level. 

 

During the compensation of plate tilt, the plate surface is checked at a number of defined 

positions near the corners of the measurement area. This is unnecessary for measure-

ments using low objectives, owing to their deep depths of focus. 

 

4.4 Image segmentation 

4.4.1 Segmentation by threshold 

 

Segmentation is the process by which an image is divided into areas of interest and into 

the background. The simplest of segmentation method is greyscale thresholding, in 

which every pixel lighter than a fixed threshold level is identified as background; the rest 

is identified as areas of interest (particles). Morphologi captures 8-bit images, meaning 

that each pixel has a total of 256 possible from 0 to 255, with 0 representing the darkest 

and 255 the brightest value possible. This method works best if the image histogram is 

bimodal with a clear distance between the two peaks. See Figure 13 for an example. 

 

A good threshold level should detect the whole particle boundary, but no pixels of the 

background around it. The software has a hole filing algorithm that can fill in particle 

images, as long as the perimeter is complete. The complete detection of the perimeter 

is usually easy because of the so-called halo, which is a dark ring appearing around 

particles. Figure 14 demonstrates the threshold setting. 
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Figure 13 An image taken with Morphologi G3, and its histogram representation; the 

red line marks the threshold value (160) that was used to segment the im-

age 

 

Figure 14 Clockwise from top left: the image to be thresholded; threshold set 

properly; threshold set too high, background starting to be counted as 

particles; threshold set too low, particles start to disappear 
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4.4.2 Segmentation by watershed 

 

Watershed is a segmentation method that can be used to separate touching particles 

(Figure 15). There are different algorithms for the method, but they are all based on 

finding the particle edge. This method is applied after segmentation by thresholding, and 

the algorithm is good only for spherical particles; it is not suitable for needle-like particles 

– especially if they are crossed. (Malvern Instruments 2013, p. 6-27) The effect of water-

shed was tested experimentally; the results are presented in Chapter 5.3. 

 

 

Figure 15 A paired particle cut in two by the watershed algorithm 

 

4.5 Particle image measurements 

4.5.1 Pixel size and measurement resolution 

 

The pixel size 𝑥r (also called the resolution) is determined by calibrating the instrument 

over four calibration grids. The grid bars are separated by a fixed and constant space. 

The grid spacing can be traced to National Physical Laboratory in the United Kingdom 

and National Institute of Standards and Technology in the United States. Calibration is 

carried out before each measurement to ensure the correct correspondence between 

pixel size and the used physical unit. The grid spacing may change slightly according 

temperature changes. 

 

The minimum particle size recommended in Table 4 is based on the assumption that 

images that contain less than 110 pixels cannot provide accurate enough shape infor-

mation. The area of a 110-pixel image is calculated by 𝐴 = 110 × 𝑥r
2, and the corre-

sponding minimum CE diameter by 𝑥𝐶𝐷 = √(4 × 𝐴/π). (See Equation (22) in the next 

section.) The relevance of this recommendation to the results is discussed in Sec-

tion 6.2.2. 
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Table 5 Resolution (pixel size) and the minimum pixel size (Malvern Instruments 
2013, p. 15-2) 

Optics 𝑥r (µm) Calc. minimum (µm) Given minimum (µm) 

×2.5 1.12 13 13 

×5 0.560 6.6 6.5 

×10 0.280 3.6 3.5 

×20 0.140 1.7 1.8 

×50 0.056 0.7 0.5 

 

4.5.2 Image size and shape descriptors 

 

According to ISO 13322-1:2004, the primary values of image analysis are the area and 

the maximum and minimum Feret’s diameters of a particle image. The Feret’s diameter 

is the distance between two parallel tangents that are on the opposite sides of a particle. 

Largest possible Feret’s diameter 𝑥𝐹𝑚𝑎𝑥 corresponds to the length and the smallest di-

ameter 𝑥𝐹𝑚𝑖𝑛 to the width of the particle. (BS 2955:1993) (ISO 9276-6:1998(E)) 

 

In Morphologi, length is defined so that all possible lines between two points on the pe-

rimeter are projected onto the major axis, and width so that the lines are projected onto 

the minor axis. Major axis is the axis that passes through the centre of mass at an ori-

entation corresponding to the minimum rotational energy of the shape; the minor axis 

passes through the centre of mass as well but is perpendicular to the major axis. 

(Malvern Instruments 2013, pp. 2-9–2-10) Therefore, width and length are different de-

pending on whether one uses the definitions presented in the standards or the ones 

that are used by Malvern. 

 

The aspect ratio is defined as the ratio of width and length, as shown in the equation 

 

 
Aspect⁡ratio =

𝑤𝑖𝑑𝑡ℎ

𝑙𝑒𝑛𝑔𝑡ℎ
. (21)  

 

Assuming that particles are spherical, particle size is expressed as circular equivalent 

diameter 𝑥CD, defined by the equation 

 

 

𝑥CD = √
4𝐴

π
. (22)  
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The circularity expresses to what degree the projected area deviates from that of a per-

fect circle. The circularity 𝐶 is defined for the projected area 𝐴 and the perimeter 𝑃 in 

Equation (23). (ISO 9276-6:1998(E)) 

 

 

𝐶 = √
4π𝐴

𝑃2
 (23)  

 

A more sensitive version of circularity is the high sensitivity (HS) circularity, which is 

obtained by squaring the circularity: 

 

 HS⁡Circularity = 𝐶2 (24)  

 

The convexity characterises the roughness of the image perimeter and is defined by the 

equation 

 
Convexity = ⁡

𝑃𝐶
𝑃
, (25)  

 

where the 𝑃𝐶 is the length of the perimeter of the convex hull. (ISO 9276-6:1998(E)) The 

convex hull of an object is the smallest perimeter that encompasses the object so that 

every two points on the perimeter can be joined by a straight line that remains within the 

convex hull (Figure 16). If areas constrained by the perimeters in Equation (25) are used 

instead, convexity is replaced by solidity. 

 

 

 

 

 

Figure 16 Convex hull of the particle image marked with a blue line 
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The elongation is a measure of the elongation of an image, and it is defined in Equa-

tion (26). (Malvern Instruments 2013, p. 2-6) This definition is different from the one in 

ISO 9276-6:2008. 

 
Elongation = 1 −

𝑤𝑖𝑑𝑡ℎ

𝑙𝑒𝑛𝑔𝑡ℎ
 (26)  

 

4.6 Post-measurement 

4.6.1 Particle image exclusion 

 

Not all particles can be seen as representing of the sample. A common problem is that 

some particles are touching each other and are therefore interpreted by the software as 

one large particle. Unless properly filtered out, pairs and collections of particles will bias 

the results towards larger sizes.  

 

After a measurement particle images are classified into customised classes, based on 

the descriptors presented in the previous chapter. The classification process will be as-

sessed in Chapter 6.1. Some non-representative images can be excluded from the 

measurement based on the classification or manual intervention. 

 

Aggregates are assemblies of particles, which are loosely attached to one another, as 

opposed to agglomerates, which are assemblies of rigidly joined particles. (BS 

2955:1993)  Agglomerates should be measured as one, but aggregates should not. How-

ever, the distinction between the assemblies is not always clear from the images. See 

Figure 17 for examples.  
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Figure 17 Assemblies of particles; the first row shows touching particles; particles in 
the second row might be either collections of touching particles or ag-
glomerates 

 

If the threshold level is set too high, some particles may appear as C-shaped, incomplete 

particles. As the perimeter is not complete, the hole filling algorithm cannot fill in the 

missing part. Incomplete images are interpreted by the software as being smaller than 

the true size, and their inclusion in the measurement would bias the results towards 

smaller sizes. 

 

 

Figure 18 Images with incomplete perimeters, the true size and shape information is 
lost 
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Gas bubbles are often easily recognised because of the bright spot they have in the 

middle, unfortunately however, the software is usually not capable of this. 

 

 

 

 

Figure 19 Different appearances of gas bubbles; the first bubble might also be a 
hollow particle 

 

4.6.2 Results reporting 

 

A report page that lists measurement parameters and statistical values and presents a 

volume-curve representation of the 𝑞𝑟
∗(𝑥)-distribution is created by the software and 

then communicated to the requestors. The plotted volume graph is smoothed over 11 

points – which is the default setting – and the reported mean diameter is the 𝐷̅4,3 (or 

𝑥̅1,3 using the ISO-notation). Percentiles 𝑥10,3, 𝑥50,3, and 𝑥90,3 are also reported. The 

dispersion of the distribution is characterised by the range (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) and the span, 

defined by the equation below.  

 

 span =
𝑥90,𝑟 − 𝑥10,𝑟

𝑥50,𝑟
 (27)  

 

For each magnification ×2.5, ×5, and ×10, two pictures are taken, preferably with the 

aid of z-stacking if need be. 
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Part II.Examination of the currently-used method 

5 Sample preparation and measurement 

5.1 Sample concentration 

 

The optimal sample concentration had been determined to be approximately 0.4% by 

weight. This concentration should provide a large enough sample population yet not have 

a large number of particles touching. However, as that concentration was determined 

using a reference sample that had a 𝐷̅4,3-mean of 60 µm, the concentration cannot be 

generalised to apply to samples of different sizes. If the particles are smaller, the con-

centration ought to be smaller as well, and if the particles are very large, the concentra-

tion ought to be larger. 

 

Using a sample from the pilot that was known to consist of smaller particles (𝐷̅4,3 of 

approximately 20 µm) and that had a solid content of 14.5%, four subsamples (Table 6) 

were prepared. 

 

Table 6 Sample concentrations 

Sample no. Slurry (g) Oil added (g) Weight percentage 

1. 0.366 12.887 0.41% 

2. 0.193 12.971 0.22% 

3. 0.106 13.171 0.12% 

4. 0.046 12.911 0.05% 

 

Pictures taken using the above-mentioned concentrations are presented in Figure 20.  
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1. 

 

2. 

 

3. 

 

4. 

 

 

Figure 20 Pictures of samples 1 through 4, taken with the ×5-objective 

 

The pictures suggest that aiming at about 0.1% would be a suitable choice for pilot sam-

ples of a smaller diameter. 

 

Exact determination and documentation of the concentration of each individual sample 

is most likely unneeded because all measurements are based on the number of individ-

ual particles. A discussion regarding the minimum required sample population can be 

found in Chapter 7.2.  The concentration could nevertheless be documented in order to 

allow the repeatability of measurements. 
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5.2 Focusing 

 

Particles suspended in oil do not always settle properly. In the wet cell quite often some 

particles get stuck to the upper sheet of glass while the rest settle to the bottom, leaving 

little of interest in between. Consequently, a considerable proportion of particles is left 

out of focus and thus not measured. 

 

Uneven settling is a real problem because it is possible that particles of the same kind 

will settle to the same level, thus excluding the out-of-focus particles will categorically 

leave out certain kinds of particles. Fortunately, however, particle settling is usually good; 

the example in the picture below is an extreme case. 

 

 

Figure 21 Focus set on particles on the top glass (left) and on the bottom (right) us-
ing a magnification of ×5 

 

One solution to uneven settling would be z-stacking, as introduced in Section 4.3.3. The 

trade-off is that taking more images increases the measurement time. An easy solution 

would be to set manually two focus points, one for the bottom and the other for the upper 

sheet of glass. However, this feature is not available with the software; instead, a fixed 

step size is used to determine the focus distance at which images are taken. Therefore, 

for the ×5-objective, a total of 6 layers (244 µm) would be needed to cover the depth of 

the wet cell; for the ×10-objective the maximum number of layers is eight, which covers 

a depth of 85 µm.  

 

The depth of field (DOF) is presented in-scale with the total depth of the wet cell as well 

as some of the minimum and maximum particles from Table 4 in the picture below. 
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Figure 22 In-scale picture showing the DOFs as bars and some of the minimum and 
maximum particles sizes as given in Table 4 

 

5.3 Watershed segmentation experiment 

5.3.1 Background 

 

As stated before, sample concentration ought not to be too high, lest particles aggregate 

and be measured as one, biasing the results towards larger size. The problem is best 

remedied by using a sample that is dilute enough, yet contains a sufficient number of 

particles. However, more often than not numerous particles can still be found touching, 

and the categorical exclusion of such a large amount of sample data may bias the results 

towards smaller size, as larger particles are more likely to be touching. Watershed seg-

mentation, as introduced in Section 4.4.2, may offer an improvement in such cases; cur-

rently watershed segmentation has not been used in any of the methods currently in use. 

 

Depths of Field for each objective 
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It was assumed that watershed would only have a noticeable effect if there were a con-

siderable number of touching particles in the sample. Watershed would, therefore, be 

used to improve the quality of measurement of highly-concentrated samples. 

 

5.3.2 The experiment 

 

The effect the use of watershed has on the results was evaluated experimentally. Two 

samples were prepared, one with a normal concentration of particles and the other with 

a highly excessive concentration of particles (Figure 23). Both were measured with the 

currently-used ZN method – albeit with a reduced area to save time and computer space. 

The obtained images were stored on computer’s hard drive and then measured with and 

without watershed. 

 

   

Figure 23 Highly-concentrated sample (left) with many aggregated particles, and a 
sample with a proper concentration (right) with only a small number of 
touching particles 
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5.3.3 Results and conclusions 

 

 

 

Figure 24  The effect of watershed segmentation on the highly-concentrated sample 
(Hi c.) and the sample with a lower concentration (Lo c.) 

 

The results presented in Figure 24 above suggest that if the sample is prepared properly 

with only a small number of touching particles, the use of watershed has little effect. 

However, should sample concentration turn out to be too high, the use of watershed can 

have a noticeable effect. As the separation algorithm is quite weak and fails to separate 

even some clear cases of touching particles, there ought to be no danger of it separating 

agglomerates, which are of interest. Overall, the use of watershed segmentation can 

save a considerable number of particles from exclusion and therefore improve the sam-

ple data. 

 

5.4 Fines detection experiment 

5.4.1 Background and experiment 

 

Fines are small particles. Whilst there is no fixed size, below which particles are to be 

considered fines, in this discussion particles beneath the size of 10 µm are defined as 

CE diameter (µm) 

𝑞
3∗
 

 Hi c., no watershed 

Hi c., watershed 

Lo c., no watershed 

Lo c., watershed 
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fines. The number of detectable fines depends mainly on the choice of objective. A poly-

disperse sample was measured using the first four objective in order to study fines de-

tection. 

 

The sample was prepared normally in the wet cell and then measured using modified 

versions of the currently-used ZN method. In order to make results comparable, exactly 

the same area was measured of the same wet cell; therefore, the results are based on 

the same particles. The threshold level was also set automatically for each magnification 

in order to minimise the potential differences in thresholding. Particle images below 10 px 

were excluded. 

5.4.2 Results and discussion 

 

The results are presented in Table 7 and illustrated in Figure 25 and Figure 26. 

 

Table 7 Statistics for different magnifications (Mag.) 

Mag. 𝑁 𝐷̅1,0⁡⁡(µm) 𝐷̅4,3⁡⁡(µm) 𝑥10,0⁡(µm) 𝑥10,3⁡(µm) 

×2.5 58,529 16.1 48.4 5.4 22.3 

×5 80,538 12.9 46.9 3.5 20.3 

×10 131,651 9.2 45.9 2.1 19.0 

×20 221,135 6.5 45.6 1.4 18.7 
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Figure 25 Graphical representation of the volume-weighted distribution; it remains 
virtually unchanged by the detection of fines 

 

 

 

Figure 26 Graphical representation of the number distribution; only the distribution 
obtained by the ×20-objective looks somewhat untruncated 
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CE diameter (µm) 
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The curve obtained using the ×20-objective suggests that the mode of the number-based 

distribution lies at about 3.5 µm. This may of course be an overestimation, and had an 

even higher magnification been used, more fines might have been detected. The mode 

seems to be roughly at the point where the curve for the ×5-objective starts to become 

truncated, thus leaving most of the particles outside of the capability of the ×5-objective. 

Nevertheless, from the practical point of view particles around the size of 10 µm are 

considered as fines, and statistical information of the distribution of the sizes of particles 

lower than that size is most likely unneeded.  

 

Although the number of particles detected was greatly increased by using a higher ob-

jective, the contribution the fines make to the volume-weighted distribution was very min-

imal. As only the volume-weighted results are of interest for most of time, there is no 

need to be too concerned about detecting fines.  
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6 Data handling 

6.1 Particle classification 

6.1.1 Spherical 

 

If the sample constitutes mostly of spherical particles, the descriptors circularity and HS 

circularity can be used to separate the bulk of particles into the class spherical. This can 

further be divided into smaller classes according to particle size, such as spherical, small 

and spherical, large. This classification works for most pilots samples, but is not very 

good for laboratory samples, because of their varying morphologies. 

6.1.2 Particle aggregates 

 

If the sample is prepared correctly, the number of particle aggregates should be small. 

This number can be further reduced by the use of watershed, as was demonstrated in 

Section 5.3. However, some amount of manual particle exclusion is still necessary, and 

classifying images into classes such as touching, pairs; touching, chains; and touching, 

groups is useful. 

 

The table below presents typical particle aggregates compared to real, non-spherical 

particles and their shape descriptors. It is shown that aggregates with more than two 

particles are easily classified using elongation, but paired particles are almost impossible 

to separate from non-spherical particles. It is also difficult to distinguish between aggre-

gates and agglomerates. 

6.1.3 Incomplete images 

 

Incomplete images as presented in Figure 18 are characterised by their low solidity and 

convexity, and they are therefore easily classified. However, it should be noted that in-

complete particles cannot be separated from curled fibres. 

 

6.1.4 Bubbles 

 

Bubbles appear spherical and solid, and they are difficult to separate form particles. The 

used approach is based on the fact that bubbles often appear darker than particles; 

hence, they have lower pixel intensity mean. Bubbles are usually uniformly dark, com-

pared to particles that are darker on the edges and lighter in the middle; thus, they also 
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have low pixel intensity standard deviation. Unfortunately, however, this classification 

does not work automatically even for most catalysts. If the catalyst particles appear dark 

as well, bubbles cannot be distinguished from particles, except for when bubbles are 

much larger in size than the largest of particles; see Figure 13 for an example of a dark 

catalyst. Table 8 shows a number of particle images and their shape descriptors. 

 

Table 8 Particle aggregates and non-spherical particles with their shape descrip-
tors (Elong. = Elongation; HS Circ. = HS Circularity) 

 

  
  

Elong.   0.560 Elong.  0.028 Elong.  0.465 Elong.   0.313 

Solidity  0.716 Solidity  0.735 Solidity  0.929 Solidity  0.951 

Circularity  0.573 Circularity  0.622 Circularity  0.852 Circularity  0.902 

HS Circ. 0.328 HS Circ. 0.387 HS Circ. 0.725 HS Circ. 0.813 

    

Elong. 0.330 Elong. 0.339 Elong. 0.191 Elong. 0.696 

Solidity  0.978 Solidity  0.999 Solidity  0.954 Solidity  0.852 

Circularity  0.930 Circularity  0.956 Circularity  0.895 Circularity  0.664 

HS Circ. 0.865 HS Circ. 0.915 HS Circ. 0.801 HS Circ. 0.441 
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6.2 Histogram construction 

 

In each Morphologi measurement, the data is represented as a histogram, constructed 

as described in Section 3.4.1. This chapter will discuss some issues related to the histo-

gram construction. 

6.2.1 Linear and logarithmical bin size 

 

By default, logarithmically evenly-spaced bins are used so that the range from 0.1 µm to 

2,000 µm is divided into 1,000 bins. This is also the case for all the methods currently in 

use. Bin settings are user-adjustable, and linearly evenly-spaced bins can also be se-

lected. 

 

As already discussed in Section 3.4.1, ISO 9276-1 recommends that, if a non-linear ab-

scissa is used, the transformed distribution 𝑞𝑟
∗(𝑥) be used instead of the 𝑞𝑟(𝑥)-distribu-

tion. The way Malvern seems to apply this is that when a logarithmic series of bins is 

used, the 𝑞𝑟
∗(𝑥)-distribution is applied regardless of the abscissa used, and when a linear 

series of bins is used, the 𝑞𝑟(𝑥)-distribution is applied regardless of the scaling of the 

abscissa. However, as both bin size and abscissa are logarithmic in all of the methods 

used, the software plots histograms in accordance with the standard. Most importantly, 

results should be comparable; therefore, the histogram type will not be changed. 

6.2.2 Number-based resolution 

 

Two aspects are to be considered when investigating the number-based resolution: bin 

width and distribution truncation. See also Section 5.4 for an experiment regarding the 

detection of fines. 

 

Because of limited resolution (pixel size), particles are measured discretely, smaller par-

ticles having fewer possible values. A problem arises when the default logarithmic bin 

size is used, as the width of some bins is actually smaller than the difference between 

possible particles sizes that can be measured. This leads into many empty bins at low 

particle sizes, as no particles can ever be measured with this size. 

Consider the example in Table 9 below. The three lowest particle sizes are presented in 

the column CE diameter, and their respective counts in the adjacent column. No particle 

sizes were measured between these three sizes. 
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Table 9 CE diameter of particles and their bin counts. Note how the particle size 
can have only certain values owing to limited measurement resolution 
and how several bins are left empty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 Left tail of a number-based distribution showing empty bins as gaps; the 
black line represents a frequency curve that has been smoothed over 
eleven points 

 

CE diameter 

(µm) 

Particle 

count 

 
Bin number 

Bin upper 

limit (µm) 
Bin count 

2.17 129  311 2.1610 0 

2.26 98  312 2.1825 129 

2.35 105  313 2.2043 0 

   314 2.2262 0 

   315 2.2484 0 

   316 2.2708 98 

   317 2.2934 0 

   318 2.3163 0 

   319 2.3394 0 

   320 2.3627 105 

 

𝑞
0∗
 

CE diameter (µm) 
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This problem could be averted by making the bin size either larger or linear. The latter 

option would be a drastic change, since changing the bin size linear would mean the 

change from the 𝑞𝑟
∗(𝑥)-distribution to the 𝑞𝑟(𝑥)-distribution. However, as can be seen in 

Figure 27, smoothing quite effectively removes the spikes. 

 

Choosing a narrower bin width would smooth the otherwise spiky histogram in much the 

same way as smoothing by running average, as is demonstrated in Figure 28. 

 

  

    

 

Figure 28 Histograms plotted with different bin sizes; the use of a wider bin width 
smoothes the distribution in much the same way as taking the running av-
erage; in the pictures, the range from 0.1 to 2,000 was divided into 1,000, 
500, 250, and 125 logarithmic bins respectively 

 

CE diameter (µm) 

CE diameter (µm) CE diameter (µm) 

CE diameter (µm) 

𝑞
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𝑞
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250 bins 125 bins 
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Using the ×5-magnification, the smallest diameter to be measured accurately according 

to Table 4 is 6.5 µm, which represents 110 pixels. Particles smaller than this size do not 

provide shape information, because the images are too pixelated for the accurate calcu-

lation of CE diameter. However, they do still provide size information, and excluding them 

causes the number distribution 𝑞0
∗(𝑥) to be truncated. This can be seen in Figure 29.  

 

            

 

Figure 29 Number-based distribution truncated according to the lower limit of 
6.5 µm (left), and distribution left uncut (right).  

 

If only the volume-weighted distribution is of interest, the inclusion or exclusion of fines 

makes little difference, but if number-based resolution is required, particles below 6.5 µm 

ought not to be excluded. 

 

6.2.3 Large particles 

 

The presence of large particles – such as agglomerates – is problematic for the volume-

weighted distribution. There are two main reasons for that. 

 

Firstly, image analysis is reliable only for spherical particles, and when the CE diameter 

of a large non-spherical particle is measured according to its projected area and volume-

weighted, the volume of the corresponding sphere can be distinctly larger than the true 

volume of the particle. Figure 30 below illustrates the issue. 

CE diameter (µm) CE diameter (µm) 

𝑞
0∗
 

𝑞
0∗
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Figure 30 Volume-weighting causes a noticeable overestimation of particle size for 
non-spherical particles 

 

As it has been observed that most large particles are non-spherical, it can be generalised 

that the contribution of large particles to the volume-weighted distribution is overempha-

sised. Furthermore, as the width of the wet cell is approximately 260 µm, it can be stated 

with certainty that any particles larger than that cannot be spherical. 

 

Another problem is related to the way the histograms are constructed. Large particles 

appear as spikes separate from the main distribution (Figure 31). From the theoretical 

point of view, this would mean that all the large particles are concentrated at the peaks 

and that there would be no large particles between the peaks. It is clear that such con-

clusions cannot be made on the basis of only a few particles.  

 

3D particle, shaped 

like a flake 

Projected area 
CE diameter for the 

projected area 

Sphere based on 

the CE diameter  
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Figure 31 Large particles appearing as spikes separate from the main distribution; in 
this case, only seven particles out of over 130,000 were larger than 100 µm 

 

Furthermore, large particles have a profound effect on all volume-weighted statistical 

values, rendering them completely useless. Even the mode value may change, as it is 

obtained by taking the highest peak of unsmoothed distribution; thus, one of the separate 

peaks might be higher than the mode of the main distribution. 

 

These things considered, large particles should be excluded from the measurement. It 

is best accomplished manually because adjusting a fixed exclusion point would be un-

suitable for several kinds of distributions. 

 

At best image analysis can provide qualitative information of large particles. As this qual-

itative information reveals whether large particles are agglomerates or impurities, it is 

probably more useful than quantitative information. If quantitative information is needed, 

one potential method would be sieving. 

 

 

 

 

 

 

CE diameter (µm) 

𝑞
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6.3 Documentation of results 

 

Measurement results are documented as described in Chapter 4.6.2. The standard ISO 

13322-1 provides a comprehensive list of aspects that ought to be included in a particle 

size measurement report. However, for in-house measurements the standard need not 

be followed to the letter, and only useful values and files are communicated to the re-

questors. This chapter presents some points worth noticing when using the reported val-

ues. 

 

6.3.1 The mode 

 

The mode was not available by default in the Morphologi software, and Malvern was 

asked to provide a custom calculation for the mode. This calculation was implemented 

to the report page. However, the algorithm only finds the highest value on the un-

smoothed distribution, that is the bin with the highest relative quantity. This values does 

not always represent the mode of the smoothed distribution, which is demonstrated in 

the picture below. 

 

Unless Malvern introduces an algorithm for finding the mode of a smoothed distribution, 

the reported mode value has to be verified manually and requestors should be wary of 

mode values that appear to be out of place. 
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Figure 32 A distribution before and after smoothing over the default eleven points. 
The mode on the unsmoothed curve is 78 µm; on the smoothed curve it is 
91 µm. 

 

6.3.2 The span  

 

Distribution width has been characterised by the span, as defined in Equation (27). How-

ever, this quantity cannot be used as a reliable measure of distribution width, because it 

is not independent of the location of the distribution. If a distribution is moved any dis-

tance 𝑎 along the abscissa, the span is changed thus: 

 

𝑥90,𝑟 − 𝑥10,𝑟
𝑥50,𝑟

→
(𝑥90,𝑟 + 𝑎) − (𝑥10,𝑟 + 𝑎)

𝑥50,𝑟 + 𝑎
=
𝑥90,𝑟 − 𝑥10,𝑟
𝑥50,𝑟 + 𝑎

 

 

Therefore, it is the case that span can be different for size distributions of identical width. 

Furthermore, there are no references for the span in any of the sources used in this 

thesis and only a few references were found online. Thus, it can be concluded that the 

span is neither a well-established concept nor a reliable measure of distribution width. 

 

One potential use for the span would be in quality control, if it is expected that the product 

has an unvarying size distribution. Should any characteristics of the distribution change, 

CE diameter (µm) CE diameter (µm) 

𝑞
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𝑞
3∗
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the span would be altered accordingly. The span therefore reveals only whether or not 

distributions differ from each other, but it does not specify what the difference is. Simi-

larly, the quantity is also usable for screening purposes and for comparing distributions. 

 

In order to be a usable measure of distribution width alone, the span should be inde-

pendent of any transference along the abscissa. The easiest way to accomplish this is 

to use only the numerator 𝑥90 − 𝑥10 as a measure of width, or if the relationship with the 

median is required, then (𝑥90 − 𝑥10) (𝑥
50
− 𝑥10)⁡⁄ would be a solution. 

 

A more statistically rigorous quantity would be the standard deviation. The Morphologi 

software provides standard deviation only for number-based distribution 𝑞0(𝑥); thus, it 

has not been incorporated into reports of the volume-weighted distribution 𝑞3(𝑥). How-

ever, the formulae for the estimator of standard deviation of any 𝑞𝑟(𝑥)-distribution that 

were presented in Section 3.3.3 are relatively simple. Malvern was requested to deliver 

a custom calculation based on the formula given in Equation (13). 

 

6.3.3 The mean diameters and the percentiles 

 

The mean diameters 𝐷̅1,0 and 𝐷̅4,3 represent the mean diameters of the 𝑞0(𝑥)- and 𝑞3(𝑥)-

distributions respectively. As the transformed distributions 𝑞0
∗(𝑥) and 𝑞3

∗(𝑥) are plotted 

instead, the reported values do not correspond directly to the plotted graphs. Although 

this has little practical significance, it might be a potential source of confusion, if the dif-

ference is not acknowledged. 

 

For the volume-weighted distribution, the percentiles are usually representative. For the 

number-based distribution, however, the percentiles are often out of place because they 

are based on a truncated distribution; see the discussion in Section 6.2.2. 
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7 ISO and BS standards-based assessment 

7.1 Estimation of statistical error 

7.1.1 Theoretical background 

 

The standard ISO 14488 presents the total error as a sum of two parts: the fundamental 

error and the segregation error. 

 

The fundamental error is a result of the discrete nature of particles. As particles are sub-

ject to random variations of sizes and other properties, samples exhibit randomness as 

well. Fundamental error depends on sample amount; the larger the sample, the smaller 

the error because of random variations. (ISO 14488:2007(E)) 

 

The segregation error is related to the segregation of particles in any of the sampling 

steps. It cannot be predicted theoretically, but has to be determined experimentally by 

taking multiple subsamples at different points of the sampling process. (ISO 

14488:2007(E)) 

 

The fundamental error can be estimated by the standard error of the relative quantity of 

a histogram bin. Assuming that particles have been dispersed at random (see Sec-

tion 7.3 for further information) and that there are no experimental errors, every particle 

has an equal probability of being sampled and the sampling probability of any one parti-

cle is independent of other particles. Under such assumptions, the mathematics of Pois-

son distribution can be applied to estimate the standard error. Using the ISO-notation for 

histograms presented in Section 3.4.1, the standard error for the size proportion ∆𝑄𝑟,𝑖 is 

given by the equation below. (BS 3406-4:1993) 

 

 

𝑆 (∆𝑄𝑟,𝑖) = √
∆𝑄𝑟,𝑖

2

𝑛𝑖
(1 − 2∆𝑄𝑟,𝑖 + 𝑛𝑖∑

∆𝑄𝑟,𝑖
2

𝑛𝑖
𝑖

) (28)  

 

The approximate 95% confidence interval is then obtained from the equation 

 

 ∆𝑄𝑟,𝑖 ± 2 𝑆 (∆𝑄𝑟,𝑖). (29)  
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For the estimation of segregation error the whole sampling process presented in Figure 

9 ought to be evaluated, each sampling step separately. However, the sampling is per-

formed according to a sampling plan, and for the purposes of this thesis, the segregation 

error is assumed to be negligible. 

7.1.2 Assessment and conclusions 

 

A typical pilot sample containing 40,000 particles was chosen as the basis for the esti-

mation of standard error. Using the default bin width of 1,000 bins from 0.1 µm to 

2,000 µm, both number-based and volume-weighted histograms were made. The 95% 

confidence interval was determined using Equations (28) and (29), and plotted with curve 

representation of the histogram. All plots were smoothed over eleven points to reduce 

spikiness and to ease comparison. The results are presented in Figure 33 and Figure 

34. 

 

The effect of fundamental error on the number-based distribution is barely noticeable. 

This was to be expected, as measured population sizes are quite large. For the volume-

weighted distribution, however, the effect becomes more noticeable owing to the increas-

ing contribution and decreasing number of particles. Samples that are heavily skewed 

toward larger size are more susceptible to large standard error – especially if the tail is 

thin, as then there will be less particles to be measured. The effect of distribution width 

on the required sample size is discussed in further detail in the next chapter. 

 

The fundamental error can be assumed insignificant – provided a large enough sample 

population. Therefore, the main source of error is non-uniform sample dispersion at any 

of the sampling steps during sample preparation. While the whole sampling process has 

not been evaluated, the effect of sample dispersion during a measurement is discussed 

further in Chapter 7.3. 

 

This discussion is based entirely on the number of particles measured and makes no 

assumptions about the underlying distribution; thus, every bin is considered inde-

pendently. An alternative, and perhaps a more useful way of estimating required sample 

size and determining confidence level is based on the assumption of log-normality. This 

way is presented in the next chapter. 
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Figure 33 The number-based distribution, with 95% confidence interval marked in 

red, assuming a standard error according to Poisson distribution; the con-
fidence interval is very narrow and of constant width 

 
Figure 34 The volume-weighted distribution, with 95% confidence interval marked in 

red, assuming a standard error according to Poisson distribution; the con-
fidence level is very narrow at first, but increases towards larger size 
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7.2 Estimation of minimum sample size 

7.2.1 Theoretical background 

 

The effect of sample size on the relative error of mean diameters was studied by Masuda 

and Iinoya in 1971. They proposed a theoretical model that can be used to estimate the 

minimum number of particles required for a certain confidence level. The validity of the 

theoretical formula was further tested experimentally for the publication of the standard 

ISO 13322-1 in 2004. The experiments confirmed that the minimum number of particles 

required can indeed be estimated by theoretical calculations. The theory and the exper-

iments can be found in more detail in the standard. (ISO 13322-1:2004(E)) 

 

Assuming a log-normal distribution, the required number of particles 𝑁∗ for a given con-

fidence level can be calculated using the equation 

 

 lg(𝑁∗) = −2 lg(𝛿) + lg(𝜔), (30)  

 

where 𝛿 is the admissible error, i.e. the highest error that can be tolerated, and ω is a 

parameter that depends on the mean diameter examined. For the volume-weighted 

mean diameter 𝐷̅4,3 it is given by the equation 

 

 𝜔 = 36𝑢2𝜎2  (18𝜎2 + 1), (31)  

 

where 𝜎 = ln(𝜎g), and 𝜎g is the geometric standard deviation as defined in Equation (14). 

(ISO 13322-1:2004(E)) 

 

The parameter 𝑢 is related to the confidence level 𝑃 by the equation below. 

 

 
Φ (−|𝑢|) ≈

1 − 𝑃

2
 (32)  

 

If one desires to find out the confidence level for a given combination of sample popula-

tion, admissible error and geometric standard deviation, it can be accomplished by rear-

ranging Equation (32) to equation 
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 𝑃 ≈ 1 − 2Φ (−|𝑢|), (33)  

 

where 𝑢 = (𝛿√𝑁) (𝛼𝜎√2𝑐2𝜎2 + 1)⁄ ,where⁡𝛼 = 6, and⁡𝑐 = 3⁡for⁡the⁡𝐷̅4,3.  (ISO 13322-

1:2004(E)) 

 

7.2.2 Assessment and conclusions 

 

In order to assess the minimum population of 10,000 particles specified in the currently-

used method, seven pilot samples and two laboratory catalysts were selected. They are 

presented in Table 10 with their respective minimum populations according to above 

formulae; the minimum population is represented graphically as a function of geometric 

standard deviation in Figure 35. 

 

Table 10 Number of particles required for various catalysts, for 𝛿 = 0.05, and 𝑃 = 

0.95 (𝑢 = 1.65) 

Sample 𝜎g 𝜎 𝜔 𝑁∗ 

Pilot 1 2.059 0.722 750 300,000 

Pilot 2 2.121 0.752 870 349,000 

Pilot 3 1.303 0.265 21 9,000 

Pilot 4 1.411 0.344 51 21,000 

Pilot 5 1.445 0.368 64 26,000 

Pilot 6 1.541 0.433 110 45,000 

Pilot 7 1.311 0.271 24 9,000 

Lab 1 2.034 0.710 700 281,000 

Lab 2 1.282 0.249 18 7,000 
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Figure 35 Graphical representation of the required sample size 𝑁∗⁡as a function of 
geometric standard deviation 𝜎g, for 𝛿 = 0.05, and 𝑃 = 0.95 (𝑢 = 1.65) 

 

The measured populations and confidence levels for the examined samples are pre-

sented in Table 11. 

 

Table 11 Number of particles measured and their confidence levels when 𝛿 = 0.05 

Sample 𝑁 𝑃 (%) 

Pilot 1 47,883 57 

Pilot 2 12,806 29 

Pilot 3 35,463 100 

Pilot 4 126,536 100 

Pilot 5 205,640 100 

Pilot 6 115,386 100 

Pilot 7 103,862 100 

Lab 1 36,747 52 

Lab 2 125,772 100 

 

The results imply that because of the huge variations in the geometric standard devia-

tions, all samples cannot be measured with equal precision, if the sample populations 

are assumed to be approximately equal. On the basis of the values in Table 10, the 

minimum population of 10,000 may not be sufficient with most samples. 

𝜎g 

𝑁
∗
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The number of particles present in a scanned area depends on the concentration of the 

oil slurry as well as the size of the area itself. If the sample population were to be in-

creased, it would be better to increase the area rather than the concentration, since too 

highly concentrated slurries may have particles touching each other. Nevertheless, the 

measured populations in Table 11 have been considerably larger than 10,000 and with 

a few exceptions a confidence level of 100% has been obtained, and it can be concluded 

that the area and targeted weight percent are sufficient. 

 

The assumption of log-normality may not hold true for most samples; compare the plots 

in Figure 36 and Figure 37. In reality smaller particles are often more numerous than 

larger particles, resulting in a thick tail or even a second rise at lower particle sizes of the 

distribution curve. However, a great number of small particles can be identified as noise 

or they fall beneath the 6.5 µm limit, and they will eventually be excluded from the data. 

Furthermore, the purpose of the theoretical calculations is not to quantify the error of 

each measurement, but to give a serviceable approximation of the required number of 

particles, which can be used as a basis in method development. 
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Figure 36 The log-normal distribution with different spreads characterised by the ge-

ometric standard deviation 

 
Figure 37 Plotted distributions of some of the samples used in sample size evalua-

tion; the assumption of log-normality is rough at best 
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7.3 Homogeneity of frame counts 

 

One essential quality criterion presented in the standard ISO 13322-1:2004(E) is the 

requirement that particles ought to be uniformly distributed among all frames. As only a 

portion of the sample plate is measured, a non-uniform distribution might lead into an 

area bias. 

 

7.3.1 Standard’s recommendations 

 

If particles are uniformly distributed among all frames, the variances of each and every 

frame should not differ from each other too much.  This can be tested by performing the 

F-test on a set of two frames and the Bartlett’s χ2-test on a set of more than two frames 

under the null hypothesis that the variances are equal. The acquired p-value should not 

exceed the chosen significance level. (ISO 13322-1:2004(E)) Both tests are easily avail-

able in many statistics software as a built-in feature. 

 

ISO 13322-1 also suggests that Student’s t-tests be carried out for every combination of 

two frames and frames that have a p-value higher than the desired admissible error un-

der the null hypothesis that the variances are uniform should be rejected. (ISO 13322-

1:2004(E)) However, since the number of frames is as high as 1,000, circa 500,000 tests 

would have to be carried out, which is not realistic. Thus, the standard is not applicable 

for routine use in this case. In addition, the Morphologi software does not come with the 

built-in algorithm for testing and rejecting frame counts. 

 

7.3.2 Assessment and conclusions 

 

The set of samples used in previous chapter was also used to assess the homogeneity 

of frame counts. The scanned area of 599 mm2 is divided into a total of 1064 frames in 

38 rows and 28 columns. Because the number of frames is very high, contiguous frames 

were compiled into 4 larger rectangular frames and the tests required by the standard 

were performed on them. 

 

Three pilot samples Pilot 8, Pilot 9, and Pilot 10 were selected for Bartlett’s test. The 

results are presented in Table 12. The first two samples yielded a p-value close to zero, 
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but the last one yielded a p-value of 0.98. Thus, under the null hypothesis that the vari-

ances are equal, only the last sample passes the test. However, although there are sta-

tistically significant differences between the frames in the first two samples, a visual com-

parison of number-based density distributions 𝑞0(𝑥) and box plots of the groups reveals 

that there is most likely no practically significant difference. See Figure 38 for the plots. 

 

In conclusion, it can be stated that the standard is not very practical for estimating sample 

homogeneity. As automatic tests for homogeneity are not available, visual evaluation by 

the operator remains the best measure of particle dispersion in the sample. A new sub-

sample is to be prepared and measured, should non-uniform sample dispersion be sus-

pected. 

 

Table 12 The results of statistical tests of homogeneity, the pooled group is the 
combination of the four groups 

 

Pilot 9    Pilot 11 

Group Count Mean Std Dev  Group Count Mean Std Dev 

1 24,879 2.603 0.477  1 4,785 2.287 0.685 

2 25,229 2.601 0.482  2 4,536 2.308 0.688 

3 25,205 2.605 0.478  3 5,840 2.300 0.684 

4 25,043 2.597 0.483  4 4,802 2.358 0.684 

Pooled 100,346 2.602 0.480  Pooled 19,963 2.312 0.686 

Bartlett’s test p-value 0.1  Bartlett’s test p-value 0.98 

     

Pilot 10     

Group Count Mean Std Dev   

1 46,022 2.381 0.554   

2 44,876 2.392 0.546   

3 44,891 2.387 0.544   

4 43,768 2.386 0.551   

Pooled 179,557 2.386 0.549   

Bartlett’s test p-value 0.0   
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Figure 38 Comparative plots of the 𝑞0  (𝑥)-distributions and box plots for each group. 

Notice that the box plots are based on the natural logarithms of the diam-

eters, hence the unit ln  (µm). The edges of the boxes are at 25th and 75th 

percentiles, and the whiskers extend from 𝑝1 − 1.5   ( 𝑝1 − 𝑝2) to 𝑝2 +

1.5   ( 𝑝2 − 𝑝1), where 𝑝1 and 𝑝2 are the 25th and 75th percentiles respec-

tively; the outliers are plotted individually.  
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Part III. Development of two new methods 

8 The High-throughput Method 

 
Catalyst design requires systematic and frequent experimentation, which gives rise to 

the need for a method that is quick but nevertheless reliable. This chapter documents 

the development of a high-throughput method for ZN catalysts, hereinafter referred to as 

the quick method in this chapter. 

8.1 Method development 

8.1.1 Measurement parameters 

 
Speed was selected as the primary factor for development. Because the wet cell used 

in the currently-used method needs to be washed – a step that takes up a surprisingly 

large amount of time – the disposable microscope slides were selected instead. Fur-

thermore, the slide carrier can hold up to four slides, and thus multiple samples can be 

measured in one run. 

 

Another choice that significantly affects measurement time is the choice of objective. 

The fastest is the ×2.5 because one measurement frame covers such a large area; the 

trade-off, however, is decreased image quality and reduced sensitivity to fines. (See 

Table 4) As the primary interest lies in the volume-weighted size distribution and there 

is no need to obtain a large collection of high-quality images, the ×2.5-magnification 

was selected for further testing. The selected measurement area on the slide is shown 

in Figure 42. 

8.1.2 Threshold optimisation 

 

A set of images were collected and stored on the computer’s hard drive. Using the soft-

ware’s threshold estimation, an initial threshold level of 156 was obtained for the images. 

The same images were analysed using the threshold level 156, as well as the following 

levels: 135, 140, 145, 150, and 160. The results are presented in Table 13 and Figure 

39. 
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Table 13 Number of particles detected, and number-based and volume-weighted 
mean diameters for each threshold level examined 

Threshold 𝑁 𝐷̅1,0⁡⁡(µm) 𝐷̅4,3⁡⁡(µm) 

135 780 17.9 47.1 

140 913 17.1 46.8 

145 1,097 15.8 46.6 

150 1,273 15.0 46.5 

156 1,458 14.4 46.6 

160 1,605 14.1 46.3 

 

 

 

Figure 39 The effect of threshold level on the number-based distribution 

 

The results are as one might expect based on the discussion in Section 4.4.1. Increasing 

the threshold level also increases the total number of smaller particles detected, and 

decreasing the values supresses the distribution at lower particle sizes, hence empha-

sising the tail at larger sizes. 

 

Images were also viewed individually to see how particle boundaries were detected, and 

save for the most extreme threshold values, no particular difference was noticed. The 

level 150 was, therefore, selected for the method. Should the measurement parameters 

be changed, the threshold level should be re-evaluated. 
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8.1.3 Classification 

 

Yet another time-consuming task is data handling. In the ideal world all data handling 

would be automated and thus user-independent and fast. If all particles are spherical, 

circularity (see Equation (23)) or HS circularity (see Equation (24)) can be used as a 

basis for exclusion of touching and incomplete particles. Unfortunately there is no reliable 

way of distinguishing between large particles and bubbles.  

 

For quick classification and data handling, particles are classified into the following four 

classes; particles that are not in any of the classes are to be excluded (Table 14). 

 

Table 14 Image classes for the quick method 

Spherical 
CE Diameter < 60 µm 

HS Circularity > 0.85 

 

Spherical, large 
CE Diameter ≥ 60 µm 

HS Circularity > 0.80 

 

Non-spherical, solid 

HS Circularity < 0.85 

Solidity > 0.95 

Aspect ratio > 0.80 

 

 

The difference is HS Circularity for the two spherical classes is due to the fact that large 

particles are more likely to have smaller particles adjacent to the perimeter, thus reducing 

the circularity value. 

8.2 Comparison with the currently-used method 

 

Three lab samples were selected as the basis of comparative examination of the quick 

method. The samples were selected so that they represent samples with small, normal 

and large particle size, as can be seen in Figure 40. It was expected that the measure-

ment with a low magnification would perform poorly with the sample 1 that had mostly 

small particles, but have less effect on samples 2 and 3. 
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Figure 40 Volume-weighted distributions of the test samples; the test samples were 
selected so that there would be one with small particles, one with aver-
age-sized particles and one with relatively large particles 

 

8.2.1 Comparison using standard microscopy slides 

 

The samples were measured using the currently-used method and with the microscope 

slides using the ×2.5-magnification; bubbles were excluded manually. The results are 

presented in Figure 43 on page 69. 

 

For Sample 1, the results were very much alike, but for samples 2 and 3, the distributions 

obtained by the microscopy slides were noticeably broader. The reason for this is that 

the coverslip squeezed and broke the large particles; Sample 2 had less large particles 

than Sample 3, and therefore the effect was less noticeable. It became clear that normal 

microscope slides are unsuitable as sample plates, as shown in Figure 41. 
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Figure 41 Large particles in the sample three broken apart and squeezed by the co-
verslip, as well as an air bubble on the microscope slide (left); all particles 
are intact in the wet cell (right) 

 

Measurement without the coverslip was tested, but owing to the slurry spreading poorly 

on the slide, it would not be a feasible solution. They would also be an increased risk of 

slurry dropping down over the edge of the slide. 

 

8.2.2 Comparison using concave microscope slides 

 

Consequently, concave microscope slides that have a shallow depression in the center 

of the slide for retaining the sample were tested. As there is enough space in the depres-

sion, large particles remain intact. 

 

As the depression is circular, the measured area was also set circular, as opposed to 

the rectangle area on the normal slide. The measured areas on both the normal and 

concave slides are presented in Figure 42. As the slurry is held stationary in the depres-

sion, the use of coverslip was deemed unnecessary. Furthermore, abandoning the co-

verslip reduces bubble formation noticeably, and the few bubbles that do form are, nev-

ertheless, easily removed with the tip of the needle.  
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Comparison of results obtained by the wet cell, normal slide and the concave slide are 

presented in Figure 43 based on the volume-weighted distribution. 

 

  

 

Figure 42 Scanned areas marked in blue on the normal slide with a coverslip (left) 
and on the concave slide without a coverslip (right)  

 

 

 

 

Figure 43 The 𝑞3
∗(𝑥)-distributions obtained by different methods. (S1 = Sample 1, 

S2 = Sample 2, S3 = Sample 3, n.s. = normal slide, c.s. = concave slide, 
w.c. = wet cell) 

 

8.2.3 Sample dispersion on the concave slide 

 

A concern was that larger particles would slide down the depression, while smaller ones 

would be carried farther away from the centre of the concavity by the spreading oil phase. 

This would result in a bias towards larger particles. Furthermore, particles at the centre 

would be likely to be touching. 
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The composite image of the whole measurement area below suggests that – although 

larger particles seem to have a tendency to concentrate at the centre – the degree of 

aggregation at the centre is not very big (Figure 44). 

 

 

Figure 44 Combined image of the frames of the concave slide measurement 

 

8.3 Discussion and conclusions 

 

The original version with normal microscope slides was found unsuitable because it 

causes large particles to squeeze and it is very prone to bubble formation. Concave 

microscope slides turned out to be suitable, and the results were similar to those ob-

tained by the wet cell. 
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There is a noticeable trade-off when increasing the measurement speed. However, the 

initial tests suggest that the accuracy is fairly good, and the method is suitable for 

screening purposes. Quite surprisingly, measurement accuracy was fairly good even 

with Sample 1, which had mostly small particles. 

 

From the practical point of view, the use of the microscope slide holder has the benefit 

that four samples can be measured in one run. This saves a considerable amount of time 

needed in sample preparation. In fact, if none of the microscope slides had been found 

suitable, the whole concept of high-throuput method might have been found impractical, 

as the benefit of speeding up the wet cell measurement would hardly be justified, as it is 

not the measurement time itself that makes measurements take a long time to finish. 

Concave slides are more expensive than normal slides, so it is probably a good idea to 

wash them for reuse. 
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9 The Detailed Method 

9.1 Background 

 
The second new method to be developed, the detailed method is intended to collect a 

large number of high-quality images of SS particles, as well as to determine their size 

distribution. It should be available for both non-prepolymerised and prepolymerised cat-

alysts, the former of which is smaller in size and more challenging to handle because of 

its pyrophoricity and high reactivity. As SS particles have a partially transparent shell, 

the use of an optical instrument can reveal the internal morphology, which is of great 

interest in catalyst development. Pictures taken with an electron microscope only show 

the outer layer. See Figure 45 below. 

 

 

 
 

Figure 45 Top row: Morphology G3 images of non-prepolymerised and prepolymer-
ised SS catalyst particles showing internal morphology; Bottom row: SEM 
images of the same catalysts show only the outer layer 
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9.2 Method development 

9.2.1 Designs for the detailed measurement 

 

Three different designs were considered for the basis of the detailed method: 

 

(i) Merged-objective measurement for PSD and imagery 

(ii) Single-objective measurement for PSD and imagery 

(iii) Small-area measurement for imagery only 

 

The design (i) was considered first. However, as the merge point is the minimum CE 

diameter of the lowest objective, only the smallest particles are photographed with the 

higher objective, and the images obtained of larger particles are no better in quality than 

they would have been if the normal method had been used. Thus, this design was aban-

doned, but may be reconsidered in the future, if Malvern changes the software to allow 

merge point adjusting. 

 

Design (ii) is the scanning of a reasonably-sized area for a statistically sufficient sample 

population using a high objective. Small frame sizes and narrowed depths of field would 

lead into significantly increased measurements times; thus, the possibility to run the 

measurement overnight was examined. 

 

Design (iii) is otherwise similar to design (ii) except that it scans a considerably smaller 

area to save time, and the acquired images cannot therefore be used for the determina-

tion of particle size distribution, but are, however, sufficient for a morphological study. 

The PSD data would be gathered using the currently-used method; thus, two measure-

ments would be needed for one sample. 

 

9.2.2 Sample carrier 

 

The wet cell had been used for all prepolymerised samples and the slides for all non-

prepolymerised samples due their higher reactivity. However, the wet cell is better for 

samples in a suspension because it prevents more efficiently the suspension from mov-

ing. Furthermore, the use of coverslip can squeeze of break particles apart, as was 

shown in Section 8.2.1. 
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A risk assessment was carried out in regard of the use of the wet cell for non-prepoly-

merised samples, and the risks associated thereof were regarded small owing to the low 

concentration of the suspension. Therefore, the wet cell was selected to be used for both 

catalyst types. 

 

9.2.3 Acquisition of high-resolution imagery 

 

As the currently-used method uses the ×10-objective, the two higher objectives ×50 and 

×20 were tested for the collection of detailed images; the ×10-objective was used as a 

reference. A medium area was scanned using the ×20-objective for both non-prepoly-

merised and prepolymerised particles. As measurement time was very long, the meas-

urements were performed overnight. For the ×50-objective, only a small test area was 

scanned. In order to remedy the very shallow depth of field, z-stacking was used, as 

presented in the Table 15 below. 

 

Table 15 Used layers of z-stacking and the corresponding depths of field 

Magnification Number of layers DOF (µm) 

×10 3 24.4 

×20 4 20.6 

×50 6 15.3 

 

Captured images are presented from Table 16 through Table 21. Four representative 

images were selected at the 10th, 50th, and 90th percentiles of the volume-weighted dis-

tribution to allow the comparison of images of different size. Note, however, that the 

images themselves have the same size in the tables. 
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Table 16 Images of prepolymerised particles at three percentile points, obtained by 
the ×10-objective; the smallest particles are not very sharp 

𝑥90,3 

    

𝑥50,3 

    

𝑥10,3 

    

 

Table 17 Images of non-prepolymerised particles at three percentile points, ob-
tained by the ×10-objective; the smallest particles are not very sharp 

𝑥90,3 

    

𝑥50,3 

    

𝑥10,3 
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Table 18 Images of prepolymerised particles obtained by the ×20-objective; image  

𝑥90,3 

    

𝑥50,3 

    

𝑥10,3 

    

 

Table 19 Images of non-prepolymerised particles obtained by the ×20-objective 

𝑥90,3 

    

𝑥50,3 

    

𝑥10,3 
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Table 20 Images of prepolymerised particles obtained by the ×50-objective; there is 
no substantial improvement in image quality compared to the previous 
magnification 

𝑥90,3 

    

𝑥50,3 

    

𝑥10,3 

    

 

Table 21 Images of non-prepolymerised particles obtained by the ×50-objective 

𝑥90,3 

    

𝑥50,3 

    

𝑥10,3 
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9.3 Comparison of size distributions 

 

The 𝑞0(𝑥)- and 𝑞3(𝑥)-distributions based on the data collected by the overnight ×20 ob-

jective measurements were compared with corresponding distributions obtained using 

the currently-used wet cell x10-measurement. The comparative plots are presented in 

Figure 46 for non-prepolymerised particles and in Figure 47 for prepolymerised particles. 

The same filters were used to remove bubbles and particle aggregates. 

 

 

   
 

Figure 46 The number-based (left) and the volume-weighted (right) distributions of 
the catalyst before prepolymerisation, truncated at 1.0 µm 

 
For the non-polymerised catalyst the results are somewhat inconclusive. The plots are 

clearly different, but it is hard to determine the cause for the difference. The difference 

may be due to the lower magnification’s poorer thresholding. 

 
For the prepolymerised catalyst, however, the results are as expected. The higher mag-

nification enables more fines to be measured. Nevertheless, the increase in number-
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based resolution has little practical significance, and thus may not justify the excessively 

long measurement time in itself. 

 

  
 

 

Figure 47 The number-based (left) and the volume-weighted (right) distributions of 
the catalyst after prepolymerisation, truncated at 1.0 µm 

 

Although unrelated to method development, it is interesting to see how prepolymerisation 

spreads the number-based distribution towards larger sizes, lowering the higher peak of 

the non-prepolymerised distribution and accentuating the portion of smaller particles. 

The volume-weighted distribution, however, clearly shows that the distribution is moved 

towards larger size. This is good example of how looking at the number-based results 

may lead into seemingly counter-intuitive conclusions. 

9.4 Discussion and conclusions 

 
The difference in image quality between magnifications ×10 and ×20 was noticeable. 

From the images taken with the ×10-magnification, it was not perfectly clear whether 

small particles were compact or whether their pores were simply not showing, but the 
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images taken with the ×20-objective clearly indicate that smaller particles are indeed 

more compact. 

 

Furthermore, the higher resolution makes it easier to use image analysis techniques to 

quantify the porosity of the catalyst, which is among the most important topics of inter-

nal morphology. The Morphologi software is not capable of this, and the images should 

be exported into another program for any such analysis. The software is, however, ca-

pable of presenting distributions based on pixel intensity mean and standard deviation. 

See Figure 48 below. 

 

  

 

Figure 48 The number-based distributions of the prepolymerised sample based on 
diameters and intensity mean (right) and standard deviation (right) 

 

If small prepolymerised particles are more compact, their intensity mean should be 

higher and intensity standard deviation lower than that of larger particles, owing to a 

smaller number of pores appearing as dark spots. The scattergrams above seem to 

comply with the expectation. However, intensity mean and standard deviations are not 

very good measures of porosity, and the figure above should only be taken as an ex-

ample of what could be done, if the images were imported into some other software for 

the quantification of porosity. 

 

The choice between designs (ii) and (iii) depends on how many images are required for 

the image analysis; it has little practical effect on the volume-weighted size distribution. 

In the end, the detailed method is sort of an ad hoc method, and the parameters can be 

adjusted according to the requirements of the sample and project. 
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10 Conclusions 

 

The currently-used method is a serviceably good method, but care should be taken when 

samples contain non-spherical particles or large outliers. The inclusion of even one such 

large outlier may render the volume-weighted results unusable. Whilst samples from the 

pilot are usually of good quality, lab samples can be very different, ranging from large 

flakes and other non-spherical particles to small and perfectly spherical particles with a 

narrow size-distribution. The method is, therefore, more suitable for quality control than 

research, but this is the case with routine analyses in general. The key to reliable results 

is consistent data handling, even between different operators. 

 

The classification of particles into classes according to their shape descriptors is anything 

but fool-proof. For example, bubbles are often inseparable from dark spherical particles 

of the same size, and elongated particles are difficult to separate from chains of adjacent 

particles. Certain segmentation algorithms, such as the watershed currently offered by 

the software, could be used to improve particle detection. 

 

Standards such as the ISO standard ISO 13322-1 and the British standard BS 3406-

4:1993 present detailed mathematical theories and requirements for the assessment of 

particle size analysis using image analysis tools. However, these theories were found to 

be somewhat impractical, but may give serviceable estimates for the basis of method 

development. 

 

Of the two new methods, the quick method provides a quick assessment for ZN catalysts, 

but the trade-off has to be acknowledged. It works best, when particles are spherical and 

the distribution is relatively narrow with a mean size close to at least 60 µm. The method 

is ideal for screening purposes; should more detailed information be required, the cur-

rently-used wet cell method for ZN is to be used. Only time and experience will show the 

true usefulness of the quick method. 

 

The detailed method that was intended for collection of high-quality images for studies 

of internal morphology was shown to be suitable and applicable for prepolymerised cat-

alysts. First measurements have already suggested that smaller particles are more com-

pact than larger ones. Because of the darker colour of non-prepolymerised catalysts, it 

remains to be seen if any useful information can be obtained from the images thereof. 
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11 Summary 

 

The literature review presented in Chapter 3 Particle Size Analysis summarises the main 

concepts in the data handling of particle size analysis, such as the DIN/ISO and M-R-

notations and logarithmically transformed histograms 𝑞̅𝑟,𝑖
∗ . The chapter gives enough in-

formation to enable one to apply the concepts, and will therefore be useful for anyone 

working with particle size data. It is not, however, intended to give any detailed infor-

mation about the derivation of the equations; such information can be found in the cited 

references. Chapter 4 Image Analysis using Morphologi G3 serves as an introduction to 

the instrument, but not to image analysis in general. 

 

The second part Examination of the currently-used method gives valuable information 

about the currently-used method, which is also the most important of the available meth-

ods. It discusses several issues and potential improvements. Perhaps the single most 

important conclusion of the part is the unreliability of volume-weighting, when it is based 

on large and non-spherical particles. It will also serve as a basis in future method devel-

opment. 

 

Two new methods were developed in the third part Development of two new methods. 

Both developments resulted in a usable method that could be applied to the specific 

cases they were designed for. The high-throughput method will be used for screening 

purposes, and it is quick and easy to use. The detailed method is used for collecting 

high-resolution images of certain SS catalysts. The images will make it possible to quan-

tify porosity and other features of internal morphology. The detailed method was more of 

an ad hoc -method, but is easily modifiable for different purposes. 

 

Finally, all the method discussed in this thesis can be summarised for different catalyst 

types as follow 

ZN {
currenty-used

 high-throughput
 

 

SS{
prepolymerised⁡ {

⁡currently-used
detailed

⁡⁡non-prepolymerised⁡ {
⁡currently-used

detailed
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