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ABSTRACT 

 

 

 

 

 

 

At first, the classical particle motion of a general form will be interpreted in terms of the 

Hamiltonian densities, the kinetic energy density, the potential energy density and the sum of those, 

the total energy density. Secondly, the conditions for such Hamiltonian densities, which certainly 

will give rise to a classical particle motion, are then derived. The uniqueness of this density 

representation of Newton mechanics of a particle in terms of the equation of the Hamilton density 

becomes confirmed this way. The Hamiltonian densities given by the Schrödinger equation are 

studied next with this density representation of the classical mechanics as a tool. Those densities are 

found to be such Hamiltonian densities of a particle, which certainly will give rise to a classical 

particle motion obeying the classical mechanics. Thus a bijection between the wave mechanics and 

the classical particle system can be established. The classical particle trajectories obtained for such 

a Newtonian system are then discussed. The following working hypothesis is being used. Due to the 

bijection, the particle trajectories must be stochastic variables. Consequently, the location of the 

particle on a given trajectory must be a stochastic quantity. The reason is that the probability 

distribution given by the wave function must be unaltered. The probability to find a particle at a 

certain location on the trajectories is given by the wave function. Beneath of the information given 

by the wave mechanics, the properties of the particle on these trajectories are physical observables 

at certain observed points of the trajectories, because those properties are observables in an 

equivalent mechanical system. The constants of motion of the particle on the trajectory are exactly 

the quantum numbers of the corresponding eigenstate. Therefore the amount of information 

available from the quantum mechanical system is increased. The concept of the wave-particle 

duality and the concept of the complementarity principle become explained quantitatively and 

precisely in a natural way as a consequence of this bijection. The bijection to the classical particle 

system is obtained for both the time independent Schrödinger equation and the time dependent 

Schrödinger equation. The particle trajectories for a spherically symmetric Schrödinger equation are 

obtained. The particle trajectories for the hydrogen atom (hydrogen like atom) in the ground state 

and in the 2p-states are solved and can be compared with Compton scattering experiments. The 

nucleus 17O  is considered as the next example. The trajectories for the valence neutron are 

Abstract
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computed using Woods-Saxon shell model wave function giving rise to explicit expression for the 

kinetic energy of the neutron as a function of the nuclear radius. This data can be compared with 

experiments in the direct knock out reaction of the valence neutron in the reaction 1617 O)np,p(O  for 

instance. Thus, the nuclear shell model potential could then be extracted from such an experiment 

as a result. As an application of the time dependent theory, the particle trajectories for the one-

dimensional linear harmonic oscillator in the time dependent polarized state of the ground state and 

the first exited state are obtained. 
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I. INTRODUCTION 

 
 

 

 

 

 

Attempts have been made in order to improve the wave mechanics. This work is not an attempt to 

improve the quantum mechanics. It is an attempt to gain a better understanding of the wave 

mechanics, possibly enhance the amount of information to be observed from a quantum mechanical 

system and hopefully sharpen the picture to be obtained from a quantum mechanical system. 

 

In Sec. II the classical particle motion of a general form is interpreted in terms of the energy density 

fields, the Hamiltonian density given as a sum of the kinetic energy density and potential energy 

density. The inambiquity of this interpretation is studied further in Sec. III. The question, what kind 

of Hamiltonian densities can interpret a classical particle motion, is studied there. The conditions 

for such a Hamiltonian density, given as a sum of the kinetic energy density and the potential 

energy density, which certainly gives rise to a classical particle motion, are described in Sec. III. 

Because the general classical particle motion is thus being formulated without any ambiguity in 

terms of the Hamiltonian densities, it is possible to compare the classical particle motion with those 

systems, where this kind of a representation is the usual procedure.  

 

One well known system that is often interpreted in terms of the kinetic energy density, potential 

energy density and total energy density, is the Schrödinger equation. In Sec. IV the results of Sec. II 

and Sec. III are used. The equation of the Hamiltonian density obtained from the Schrödinger 

equation turns out to satisfy the conditions found in Sec. III. Hence, a classical particle motion can 

be determined for this system. Thus a bijection can be established between the Schrödinger 

equation and a certain space-time system obeying Newton mechanics. Because of this bijection, 

homomorphism exists between these systems. In Sec. V the classical particle trajectories of this 

space-time system are discussed briefly as consequences of this homomorphism. 

 

The spherically symmetric time independent Schrödinger equation will be discussed in Sec. VI, 

such as the hydrogen atom for instance. Section VII is devoted to the time dependent Schrödinger 

I. Introduction



8 Field theoretic approach that forms a bijection between the wave mechanics and a space-time system obeying classical mechanics

equation and to the equivalent classical system in this situation. Sections VIII, IX, and X discuss the 

hydrogen atom in its ground state, and in the 2p-states. In Sec. XI the polarized time dependent state 

of the linear harmonic oscillator is discussed as an application of the Sec. VII. The nucleus O17  will 

be discussed in Sec. XII. 

 

The classical harmonic oscillator is discussed in the Appendix as an application of the novel 

representation of the classical motion of the particle. 

 

It will be mentioned already here, that a measurement of the particle coordinate for instance, would 

mean in this work a single observation of the particle position, a single click of the detector 

observing this quantity. The expectation value of this observable is the average of these observed 

values and this expectation value is often quoted with the phrase measurement. In this work a single 

click of the detector observing a given physical observable will be called a measurement of this 

observable. 
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II. CLASSICAL PARTICLE MOTION INTERPRETED IN TERMS OF THE ENERGY 

DENSITY FIELDS 

Consider a conservative system, where the particle has the total energy E, the potential energy  

),( tU x and the kinetic energy  ),( tK x such, that 

(1).),(),( EtKtU  xx                           

We should find the expression of the potential energy density in terms of the potential energy 

),( tU x .  Evidently that would involve finding first the closed equipotential surfaces )(S  , where 

the volume enclosed by the surface is denoted by  . Then the potential energy difference between 

two surfaces )(S and )(  dS of this kind and differing only infinitesimally from each other 

would be 

(2).)()(  UdUdU
                                                                                                 

On the other hand, the potential energy density )(Vden , which is a constant on the surface can be 

defined as 

(3).)(  dVdendU                         

The potential energy density obtained this way will be called subsequently the relative potential 

energy density )(Vden . This relative potential energy density can be obtained as the derivative 

(4).)(



d
dUVden                           

Defining the kinetic energy density in this way as well, will result the relative kinetic energy density 

as 

(5).)()(  VdenTden                           

This equation is obviously true everywhere and the two important equations are obtained 

(6),0),(),(  tVdentTden xx                           

(7).),(),( tVdentTden xx                           

II. Classical particle motion interpreted in terms of 
the energy density fields
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These equations do not have any reference to some actual motion involving a given total energy and 

initial conditions of the particle motion. The kinetic energy ),( tK x  had its dependence on E as  

(8)                                                                                                                .  ),(),( tUEtK xx                           

That dependence disappeared by differentiation. Consider again the equation for the relative fields 

(9)                                                                                                      .   0),(),(  tVdentTden xx                           

Dividing the total energy E by the total volume tot  of the system will define the total energy 

density ),( tE x by 

(10)                                                                                                                        .   ),(
tot
EtE 

 x                       

The contribution of the kinetic energy to the total energy in a classical system is the expectation 

value (the time average) of the kinetic energy. Denote the expectation value of the kinetic energy of 

a classical particle by K  and so, the average kinetic energy density of the system is 

(11)                                                                                                                        .  ),(
tot
KtK 


 x                      

The average potential energy density is the time average of the potential energy U 

(12)                                                                                                                         .  ),(
tot

UtU 


 x                      

The total average energy density ),( tE x  becomes then defined as 

 (13)                                                                                                  .  ),(),(),( ttt UKE xxx                       

The addition of these numbers into the equation covering the relative densities (6) gives rise to the 

equation of the Hamiltonian density 

    (14)                                                      .  ),(),(),(),(),( tttVdenttTden EUK xxxxx                        

The bracketed expressions define the kinetic energy density ),( tx  and the potential energy 

density ),(V tx  in the following way 

(15)                                                                                                   , ),(),(),( ttTdent K xxx                        

(16)                                                                                                  .  ),(),(),(V ttVdent U xxx                        

The equation of the Hamiltonian density takes the form 

(17)                                                                                                          .  ),(V),( t,t)(t E xxx                        

 

This equation includes the information of the actual classical motion such, that the total energy is E 

and in addition, it is also telling that the expectation values of the kinetic energy and the potential 

energy are K  and U , respectively.  
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(18)                                                                                                            ,   ),(
0





tot

K dtK x                       

 (19)                                                                                                              ,  ),(
0





tot

U dtU x  

and                                                                                                       

(20)                                                                                                                       .   UKE   

                                                                                                                     

The relative energy densities measure the deviation of the actual density from the average. It is also 

obvious that there are infinitely many Hamiltonian densities of this type that can produce the same 

actual motion of the particle. Suppose the average kinetic energy density becomes defined as 

),(),( t
tot
Kt KK xx 




    such, that   



tot

K dt
0

(21)                                           .  0),(x                        

The average potential energy density in turn is written as 

),(),( t
tot

Ut UU xx 



    such, that   (22)                                              . 0),(

0





tot

U dtx                      

 

When the kinetic energy and potential energy densities become defined as 

(23)                                                                                                    , ),(),(),( ttTdent K xxx                       

(24)                                                                                                   , ),(),(),(V ttVdent U xxx                       

and 

(25)                                                                                                  ,  ),(),(),( ttt UKE xxx                        

the equation for the Hamiltonian density will take the form 

    (26)                                    .   ),(),(),(),(),(),( ttttVdenttTden UKUK xxxxxx                       

The relative potential energy density ),( tVden x  is obtained by subtracting the average potential 

energy density from the potential energy density. The relative kinetic energy density ),( tTden x  is 

obtained by subtracting the average kinetic energy density from the kinetic energy density. 

Obviously the same relative densities are found as earlier. The same motion as earlier is obtained. 

 

The densities ),( tK x  and ),( tU x might represent the environment, the external system, 

turbulences, the medium, where the mechanical system is embedded in.  This environment is such, 
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that the mechanical system remains unaltered, whenever ),( tK x  and ),( tU x  fulfils the 

conditions given in Eqs. (21) and (22) , respectively. 

 

The question, how to find the motion of the particle, if the information of the particle motion is 

given entirely in the form of the Hamiltonian density  

(27)                                                                                                           , ),(V),( t,t)(t E xxx                        

will be discussed in the next Sec. III. Answer to the question will evidently involve the steps of this 

Sec. II but in reverse order. 
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III. THE CLASSICAL PARTICLE MOTION OBTAINED FROM THE EQUATION OF 

THE HAMILTONIAN DENSITY 

 
 

 

 

 

A. The description of the system 

 

Consider a conservative system, where the particle has the kinetic energy density ),( tx , the 

potential energy density ),(V tx  and the total average energy density ),( tE x  such that the 

equation of the Hamiltonian density is 

(28)                                                                                                    .  ),(V),( t,t)(t E xxx                              

The total average energy density ),( tE x  must be separable into two parts. The part ),( tU x  is 

arising entirely from the potential energy and ),( tK x  is arising from the kinetic energy of the 

system and 

(29)                                                                                              . ),(),(),( ttt UKE xxx                             

The total energy of the system is a constant and given by the volume integral of ),( tE x  over all 

the space 

(30)                                                                                                               .  ),(
0





tot

E dtE x                            

The expectation values of the kinetic energy and the potential energy of this particle motion are 

independent of the time and given by the integrals 

(31)                                                                                                        ,   ),(
0





tot

K dtK x                           

(32)                                                                                                         ,  ),(
0





tot

U dtU x                           

 (33)                                                                                                                   .   UKE                          

 

 

 

 

III. The classical particle motion obtained from 
the equation of the Hamiltonian density
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B.  The solution of the classical particle motion 

 

Restricting the consideration to the systems of this kind, a classical particle motion will be always 

obtained as will be shown next. The relative energy densities measured as deviations from the 

averages can be found as 

    (34)                                                                        , 0), (),(V),(),(  tttt UK xxxx                           

where the bracketed expressions  

(35)                                                                                              , ),(),(),( tttTden K xxx                             

and 

(36)                                                                                              , ),(),(V),( tttVden K xxx                            

will be called the relative kinetic energy density Tden and the relative potential energy density 

Vden, respectively. 

 

These relative densities satisfy the equations 

(37)                                                                                                  ,   0),(),(  tVdentTden xx                             

(38)                                                                                                       .  ),(),( tVdentTden xx                             

 

The next thing to do, is to form the indefinite integral of the equation covering the relative energy 

densities, while the differential element of the integration is a differential volume element d . The 

primitives of the integrals are defined to be zero at boundary of the system. This differential volume 

element d will be defined by the equidensity surfaces of the potential energy density Vden. 

Obviously these are also the equidensity surfaces of Tden as well. 

 

Consider a closed surface  )(S such that the function Vden is a constant on this surface, the 

volume enclosed by the surface being denoted by  . Consider then another surface infinitesimally 

close to the earlier surface such, that the function Vden is a constant on this surface as well. 

Consider the volume of this surface and denote the volume enclosed by this surface by  d . 

Then the potential energy difference between the two surfaces is 

(39)                                                                                                             ,  ),(  dtVdendU x                            

where ),( tx is a point on the surface  )(S . Thus, the indefinite integral

 




)(

)(2),(
S

tCdtVden x  

is the value of the potential energy function on the surface  )(S . This surface is one of those 
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surfaces, where the potential energy is a constant. The constant of integration C2(t) may depend 

only on time and is to be determined through the conditions of the motion. Forming the indefinite 

integral of the equation 

(40)                                                                                                      0),(),(  tVdentTden xx                            

will result 

(41)                                      . )(3)(2),()(1),(
)()(

tCtCdtVdentCdtTden
SS


































 



xx

                     

     

Interpreting the bracketed expressions as the kinetic energy and the potential energy, due to Eq. 

(39), the constant C3(t) is the total energy of the system, and the total energy is a constant in time.  

(42)                                             .  )(2),()(1),(
)()(

EtCdtVdentCdtTden
SS


































 



xx                          

Because the primitives of the integrals are assumed to vanish at the boundary of the system, 

(43)                                                                                                                     .  )(2)(1 EtCtC   

Given the potential energy at all equipotential surfaces  )(S defines the potential energy function 

in fact everywhere: 

(44)                                                                                    ,  )(2),(),(
)( 















 

S

tCdtVdentU x'x                        

where ),( tx is a point on the surface  )(S . Similarly, the kinetic energy is found to be 

(45)                                                                                 ,  )(1),(),(
)( 















 

S

tCdtVdentK x'x                         

where ),( tx  is a point on the surface  )(S . 

 

Given the potential energy function, the equation of the motion can be written as 

(46)                                                                                                           ),()(
2

2

t(t)U
dt

tdm xx
                         

Consider the initial conditions for instance at boundary of the system and according to the equation 

(47)                                                                                                                    .  )0(2)0(1 ECC   

There are two distinguishable cases to be discussed next.    
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If the physical system is such, that the particle would initially enter into the system in the 

asymptotic region at the boundary of the system and then, later on, would scatter out from the 

system in the asymptotic region at boundary of the system, the kinetic energies for the incoming 

and out coming particle must be the same in the conservative system. This asymptotic kinetic 

energy is obviously the expectation value of the kinetic energy K  and we must have 

C1(0)= K , and  C2(0)= U .  The trajectory of the particle is an open orbit. 

 

If the physical system is such that the particle is moving on a closed orbit, the particle would have 

turning points at the boundary and the condition for the kinetic energy must be chosen accordingly.  

  

The equation of motion for )(txx   can be solved in both cases and so, the expression for the 

kinetic energy )(tEK ) can be found as a function of time,  

(48)                                                                                                      . 
2

)(
2
1)( 






 t

dt
dmtEK x                            

On the other hand, the kinetic energy was given by Eq. (45),  

(49)                                                                                                                  . )),(()( ttKtEK x    

                                                                                                             

Using Eqs. (48) and (49) the constant of integration C1(t)  can be fully determined.  Substituting the 

particle trajectory to the computed integral, the value of C1(t)  is obtained immediately as 

 

(50)                                                                      . 

)()(
),()()(1

t

d
S

tVdentEtC K

xx
x'


















                             

The value of C2(t) is consequently 

(51)                                                              . 

)()(
),()()(2

t

d
S

tVdentEEtC K

xx
x'


















                             

 

 

Finally, the potential energy U and the kinetic energy K can be written as follows, 

(52)                                                                                  ,  )(2
)(

),(),( tCd
S

tVdentU 


  x'x               

and 
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(53)                                                                                ,  )(1
)(

),(),( tCd
S

tVdentK 


  x'x                     

 

where ),( tx is any point on the arbitrary surface )(S . The constants of integration, C1(t) and 

C2(t), are given by Eqs. (50 and (51), respectively. 

 

 

C. The conditions for the Hamiltonian density 
 

The conditions of the equation for the Hamiltonian density are given by the Eqs. (30) -(33). Those 

could look arbitrary.  However, as will be shown next, those conditions will simply guarantee, 

somewhat surprisingly, that the equation of the Hamiltonian density obtained this way will be 

exactly the one found in Sec. II for the classical particle motion of a general form. That equation 

became defined there in Sec. II with aid of the Eqs. (10) -(17). 

 

The following definitions will be made first 

(54)                                                                                                       ,  
tot
K

tot
K

KK 






                         

 (55)                                                                                                                 ,  KK tot
K





    

and                                                                                                       

(56)                                                                                                                 .    
tot
K

KK 


                        

Defined in this way, the density K  is such, that the condition given by the Eq. (21) is satisfied, 

i.e., 

 (57)                                                                                                                        .  0
0





tot

K d                        

Writing the identity  

(58)                                                                                            ,  
tot
K

tot
K

KK 






                        

and observing, that by definition KTden   ,  the expression of the kinetic energy density   is 

found to be 

(59)                                                                                                            . Ktot
KTden 
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A similar consideration as the one above, will yield also the potential energy density V  as 

 (60)                                                                                                          .  V Utot
UVden 



                       

In this Eq. (60) the average potential energy density is written as 

(61)                                                                                                                    .  UU tot
U





                        

The density U  in the Eq.(61) is given by 

(62)                                                                                                                     .  
tot

U
UU 


                       

Also this density U  satisfies the condition given by the Eq. (22), i.e., 

(63)                                                                                                                          .  0
0





tot

U d                       

 

The substitution of the expressions of   , V , U  and K  of Eqs. (59), (60), (61), and (55), 

respectively, into the equation of the Hamiltonian density given by the Eqs. (28) and (29) ,yields 

(64)             .  



 







 







 








 




 UKUK tot
U

tot
K

tot
UVden

tot
KTden                 

Cancelling K  and U  from this equation, the remaining equation for the Hamiltonian density 

is given by 

 

(65)                                                                  .  


































tot

U
tot
K

tot
UVden

tot
KTden

                                                          

This is exactly the same equation for the Hamiltonian density, which was obtained for the classical 

particle motion of a general form in Sec. II, being interpreted there in Eqs. (10)-(17). The 

uniqueness of the representation of the classical particle motion in terms of the equation of the 

Hamiltonian density is confirmed. 
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IV. THE TIME INDEPENDENT SCHRÖDINGER EQUATION 

 

 

 

 

 

 

The time independent Schrödinger equation will be written as 

(66)                                                                                                         .  )()()( xx   EVT


                         

The total energy in the eigenstate )(x  is written as a sum of the expectation values of the potential 

energy and the kinetic energy 

(67)                                                                                                                           .   VTE


                        

The probability density is denoted by )(x  and expressed as 

(68)                                                                                                                .  )()()( * xxx                            

Multiplying the Schrödinger equation from the left by )(* x  and substituting  VTE


 
will result 

(69)                                                              .  )()()()()(* xxxxx   VTVT


                         

The following definitions will be made below. The kinetic energy density )(x , the potential 

energy density )V(x , the average total energy density  )(xE , the average potential energy 

density ) (xU , and the average kinetic energy density )(xK , respectively, are defined in the 

following way: 

(70)                                                                                                           , )()()( * xxx   T


                          

(71)                                                                                                                   ,   )()V( xx V


                           

(72)                                                                                                                  ,  )()( xx  EE  

(73)                                                                                                               ,  )()( xx  VU


                          

(74)                                                                                                               ,  )()( xx  TK


                          

and 

(75)                                                                                                      .  )()()( xxx UKE                            

 

The equation of the Hamiltonian density will follow using the Schrödinger equation, as follows, 

(76)                                                                                                            .  )()(V)( xxx E                           

IV. The time independent Schrödinger equation
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The equations (72), (73), (74), and (75) yield finally, using the eqs. (30), (31), (32), and (33), 

(77)                                                                                                                             ,  TK


                          

(78)                                                                                                                             ,   VU


                         

and  

(79)                                                                                                                     .  UKE                          

 

These conditions satisfy quite obviously the requirements of Sec. III, given by Eqs. (28)-(33), for an 

equation of the Hamiltonian density of a classical particle, obeying the laws of the Newton 

mechanics. The conditions written down there are fulfilled. Classical particle motion can be 

obtained as was done in Sec. III. The derivations of the earlier Sec. III are not repeated here. 

 

To begin with, the relative densities are 

   (80)                                                                                                  , )()( xx  UVVden


                         

(81)                                                                                . )()()()( * xxxx   KTTden


                         

The next step is to form the indefinite integral of both sides of the equation 

(82)                                                                                                              0)()(  xx VdenTden                         

such, that the differential element of the integration is d  (see Eq. (39) for the definition) and the 

primitives of the integrals are chosen to be zero on the boundary of the system, 

(83)                                                          .  32)(1)(
)()(

CCdVdenCdTden
SS


































 



xx                        

 

The identification of the expressions inside the brackets as the kinetic energy and the potential 

energy will fix the constant on the right hand side to be C3=E. The constant of the integration on 

the left has been divided into two parts, C1 and C2, just for convenience. The exception of the 

general case considered in the earlier Sec. III is, that the relative energy densities are independent of 

time. For this reason the constants of integration are also taken to be independent of time.  

 

Consider the case mentioned in Sec. III, when the particle was assumed to enter and to leave the 

boundary of the system at the asymptotic speed on an open orbit.  The asymptotic kinetic energy is 

K and hence the constants of integration are found immediately,  
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(84)                                                      .  )()(
)()(

EUdVdenKdTden
SS


































 



xx  

The potential energy U and the kinetic energy K are obtained on the surface )(S . The values of the 

potential energy U and the kinetic energy K are constant on this surface. In the expressions below 

the radius vector x  in U and K is an arbitrary vector such, that its end point is on the surface ),(S  

  (85)                                                                                    ,  )(
)(

)(
 




UdUVU
S

S



x

and
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Extending the computation such, that the surfaces )(S  will fill the whole space, the potential 

energy and the kinetic energy functions are obtained everywhere in the space. 

Using the boundary conditions, the asymptotic kinetic energy being K , the equation of the 

motion can be solved and the trajectories )(tx  of the particle can be evaluated using the equation of 

the motion, 

(87)                                                                                                                .  ))(()(
2

2

tU
dt

tdm xx
                   

 

On the other hand, it is obvious, that if this system of classical mechanics is fully known, the 

following functions, the kinetic energy K of Eq. (86) and the potential energy U of Eq. (85) are also 

known functions. The quantum mechanical system can be constructed using the method described 

in the earlier Sec. II.  The approach described in Sec. II will yield the relative densities Vden and 

Tden.  Because Vden is related with the density )(x  by the Eq. (80), 

  (88)                                                                                                        ,  )()( xx  UVVden


                   
the probability density )(x , and hence, the wave function can be determined. 
 

Thus, the present description offers a bijection from the wave mechanics to a system in the space-

time obeying the laws of the classical mechanics. 
 

However, the phrases like the motion, the trajectory, the propagation on the trajectory, could be 

misleading. Some discussion about the physical significance of these concepts will be presented in 

the next section. 
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V. THE PARTICLE TRAJECTORIES 

 

 

 

 

 

 

It will be mentioned repeatedly here, that a measurement of the particle coordinate for instance, 

would mean in this work a single observation of the particle position, a single click of the detector 

observing this quantity as was mentioned already in Sec. I. It does not mean the expectation value. 

 

It is absolutely impossible to conclude exactly the physical significance of the particle trajectories 

without specific experimental guidance and so the discussion about the physical significance would 

remain on the level of speculation. The following working hypothesis will be used instead. 

 

The particle does not propagate smoothly along these trajectories in the space-time, but the 

trajectory itself and the more so, a specific point on the trajectory is a stochastic variable. The 

reason is that the probability distribution is given by the wave function and the probability 

distribution must remain unaltered in all circumstances. The probability to find the particle on some 

point on the trajectory is given by the wave function. The current description is nothing but 

quantum mechanics; this is what the current working hypothesis is stating in brief.  The probability 

distribution is not altered, the expectation values remain unaltered, and those are given by the wave 

mechanics. The constants of motion of the particle on the trajectory are exactly the same as the 

quantum numbers in the corresponding eigenstate. 

 

Further, once found localized at a certain point on the trajectory, the position and the velocity of the 

particle are both measurable and predictable simultaneously according to the specific trajectory in 

question. This is true on some point on some trajectory of the present description; the number of 

possible trajectories in the system can be infinite. If the trajectories belonging to a given eigenstate 

fill the whole space-time we have the situation that could have been described in the wave 

mechanics by the concept of the wave particle duality. In addition to the information given by the 

wave mechanics the system has predictable particle-like properties observable all over the space-

time. Examples of systems of this kind to be considered later in this work are the hydrogen atom in 

the 1s-state and the linear harmonic oscillator in a polarized time-dependent state.  

V. The particle trajectories
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On the other hand, in some other state, the particle trajectories might not extend all over in the  

space-time. The hydrogen atom in the 2p-state to be considered later is one example of this kind of 

a system. This is the situation that might have been described up to now in the wave mechanics by 

the concept of the complementarity principle. In other words, according to this work, beneath of the 

wave mechanical description, this kind of a system has predictable particlelike properties in some 

well defined regions of the space-time.  

  

One could also speculate that the particle trajectories might also serve as gates into a certain state of 

the system. If a localized particle has coordinates and momenta corresponding to a certain point on 

the trajectory of a certain quantum mechanical state, the particle might get delocalized immediately 

into that state in question. This guess is not being included in the working hypothesis about the 

physical significance of the particle trajectories. 
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VI. THE TIME INDEPENDENT SPHERICALLY SYMMETRIC SCHRÖDINGER 

EQUATION 

 

 

 

 

 

Consider again the equation for the densities, Eq. (82), 
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Substitute first 
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 [see Eqs. ( 77) and (78 )]. 

 

The equation (91) gets simplified by noticing, that the equation is true if u(r) is the solution of the 

radial Schrödinger equation. Because   lmlm YY *  may in this case be anything, and   lmlm YY *  depends 

only on  , the equation is true for all values of   between 0 and   and so we have 
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From  Eq. (92) follows, that it is enough to consider radial relative energy densities Vden(r) and 

Tden(r) only. Denote 

  (93)                                                                                                2)()()( ruVrVrVden nl


                           

and  

 

(94)                                                                                                                 )()( rVdenrTden                            

The surfaces of constant density are the same for both Tden and Vden. Below, d  is denoting the 

infinitesimal volume difference between two infinitesimally different equidensity surfaces of the 

relative radial potential energy density Vden.  How to obtain this differential volume element will 

be discussed in detail later in the case of the hydrogen atom. The integration will yield the potential 

VI. The time independent spherically symmetric 
Schrödinger equation
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energy U and the kinetic energy K on the spherical surfaces S( ). These surfaces S( ) are also 

surfaces, where the potential energy is a constant. The potential energy is found to be 
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)(
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where 

(96)                                                                                                                       . 2)()( rur nlnl                            

The kinetic energy is obtained simply with aid of the potential energy, 
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Because of the spherical symmetry, the Lagrangian of the system becomes 
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Because the Lagrangian has spherical symmetry, the classical particle orbit will be in a plane. For 

this reason    is the polar angle in that plane and   is a constant. The spherical polar coordinate r 

of the particle takes now the role of the polar radius in that plane. The value of     will be chosen 

below. Because   is a cyclic coordinate, the angular momentum, defined as the generalized 

momentum corresponding to  , is a conserved quantity.  Among the initial conditions there is the 

conservation of the angular momentum: 

(99)                                                                                  )1(22  llconstant
dt
drm 
                            

 

Let the unit vector  n   be the normal vector of the plane of the motion such, that  

(100)                                                                                                                            , )sin(zn                            

nLn  )1(22 ll
dt
drm 
    and so   (101)                                    . )1(22  llL                            

The value of     =constant, the spherical coordinate of the particle, will be fixed such, that  

(102)                                                                                        .  )()sin( m
dt
dsignLz  
L                             

The initial condition for the radial velocity may be obtained directly from the expression of the 

kinetic energy as 

(103)                                                                                   .   
2

)1(
2
1)( 2

22

rm
ll

dt
drmrK













                         



Field theoretic approach that forms a bijection between the wave mechanics and a space-time system obeying classical mechanics 27VI. The time independent spherically symmetric Schrödinger equation

The trajectories of the particle are solvable simply by solving the following first order equations 

(and choosing the signs accordingly). 
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It is worth of noticing, that the constants of motion of the classical particle motion found in this 

section, are exactly the same as the quantum numbers in the quantum mechanical state. 
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VII. THE TIME DEPENDENT SCHRÖDINGER EQUATION 

 

 

 

 

 

 

Consider the time dependent Schrödinger equation 
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The energy densities will be obtained by multiplying from the left by *  and forming then the 

complex conjugate of the equation obtained so far. The aim is to resolve the real and imaginary 

parts of the energy densities. 
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Denote 

(109)                                                                                                                        .  *                                  
The expression of the kinetic energy density is complex and the imaginary part is simply  

(110)                                                                                                                        .   
2

j
i  

Here is the explicit expression of the kinetic energy density: 
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Similarly, the total energy density includes an imaginary part being 
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The total energy density can be written as 
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The equation considering the imaginary part of the energy densities is simply the continuity 

equation multiplied by
2
i . It is automatically satisfied, when   is a solution of the time dependent 

VII. The time dependent Schrödinger equation
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Schrödinger equation. Because the imaginary kinetic energy is not an observable, it is enough to 

consider the real part of the energy densities. If it would be necessary to construct, for some reason, 

the quantum mechanical state starting from the classical mechanics, then also this imaginary part 

could be used in order to help getting the complex phases of the wave function correctly. 

 

The equation for the real parts of the energy densities is 
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Denote the total average energy on the right hand side of Eq. (114) density by ),( tE x  . This 

density satisfies then the equation: 

(115)                                                                      .  ),()(
2
1 ** tVTT E x 


                            

The expressions of the kinetic energy density and the potential energy density, respectively, can be 

found from the Eq. (115) as follows  
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and  
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On the other hand, instead of Eq. (115),  ),( tE x  can be written as the right hand side  

of Eq. (114): 
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Next, the total average energy density ),( tE x  will be expressed as a sum, 
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to be calculated using the expression  
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Writing the wave function as a superposition of the eigenstates 

(121)                                                                , )()(),(
2

22

1

11


tEitEi

ecect


 xxx                                 
the expression of ),( tE x  given above by Eq. (120) can be evaluated. 
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 Even though this expression (121) is a truncated form of the general expression of the wave 

function ),( tx ), this restriction will cause no loss of generality in the conclusions and in the 

algorithm that is being developed. Extension to the general superposition of the eigenstates will be 

transparent. This truncated form of the wave function must not be understood as an approximation. 

 

The parts arising from the kinetic energy and from the potential energy will be separated in the 

expression of the total energy density ),( tE x  by denoting /)( 12 EE   and defining: 
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and 
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Above, the energy of the eigenstate 1  is being denoted by 1E , and has been expressed as a sum of 

the expectation values in that state as 

(125)                                                                                                                                        .  111 VTE 
                                                                                                                           

Of course, 

(126)                                                                                                                                      .   222 VTE 
 

Now we have the equation 
(127)                                                                                                               ,  ),(),(V),( ttt E xxx 

 

where ),( tx  is the kinetic energy density,  ),(V tx  is the potential energy density and  ),( tE x  

the average total energy density. The average total energy density can be written as 

(128)                                                                                                          . ),(),(),( ttt UKE xxx 
                                                                                                   

The terms in the sum in Eq. (128), given by Eqs. (123) and (124), separate the contributions of the 

kinetic energy and the potential energy in the expression of the average total energy density given 

by Eq. (122). The quantum mechanical expectation value, like the one of the kinetic energy operator  
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T


 for instance, T


 might include off-diagonal matrix elements of the eigenstates in a general case. 

Because the following identification must be done 
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and consequently  KT


, in general. However, here is precisely the system described in  
Sec. III. When the energy E of the classical system is identified to be  HE


, one obtains 

 

(131)                                                                                                                     .  EHUK 


 

The conditions for the Hamiltonian density, which are given by the Eqs. (28)-(33) in Sec. III,  are 

all satisfied. A classical particle motion can be obtained in this system. The method, written down 

in Sec. III, will be used for this purpose. 

 

First, the relative energy densities Vden and Tden must be determined,  
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The consideration may proceed exactly in the same way as in Sec. III. The next step is to form the 

indefinite integral of the both sides of the equation 

(134)                                                                                                               .  0),(),(  tVdentTden xx
                                                                                                     

The differential element of the integration is d  [defined earlier by Eq. (39) in Sec. III]. The 

primitives of the integrals are chosen to be zero on the boundary of the system. The constants of the 

integration may depend on time. 
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Interpreting the expressions inside the brackets as the kinetic energy and the potential energy of the 

system, the constant of the integration )(3 tC  represents the total energy of the system. The total 

energy of this classical system is EH   as was discussed above in Eq. (131). Then, 
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and                                                                                                      
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Because the primitives of the integrals are taken to vanish at the boundary of the system, one 

obtains 
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(139)                                                                                           ,   )(2
)(

),(),( tCd
S

tVdentU 


  x'x

                                                                                                                                                        

Such a computation as the one above, will yield the potential energy U, and the kinetic energy K, 

for that matter, at any point ),( tx  on the surface )(S . Hence, the potential energy is found in 

fact everywhere. 

 

This is the case of Sec. III, when the particle would enter into the system across the boundary of the 

system at asymptotic speed and it would also leave the system across the boundary at asymptotic 

speed. That speed is given by the expectation value of the kinetic energy K  of the classical 

system defined above in Eq. (129). The equation of the motion reads: 
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together with the condition on the boundary of the system:  
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As can be seen, the constant of integration C2(t) has no effect on the particle motion. Once the 

trajectory )(tx  of the particle is obtained, the kinetic energy )(tEK  of the particle as a function of 

time can be determined as  
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On the other hand, the kinetic energy is given by the Eq. (140) as   

(144)                                                                                                                       , )),(()( ttKtEK x                    

and so, the constant of integration C1(t)  can be determined.  Substituting the particle trajectory into 

the computed integral of the equation (7.33), the value of C1(t)  is obtained immediately as  
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The value of C2(t) is consequently 
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When C1(t) and C2(t) are given by the Eqs. (145) and (146), respectively, the potential energy 

function and the kinetic energy function of the classical particle can be written as follows, 
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In these equations the point ),( tx is any point on the arbitrary surface )(S . However, the 

constants of integration C1(t) and C2(t) were obtained using a certain trajectory, with given initial 

conditions. 

 

On the other hand, if the classical system is known, the functions U and K given in the Eqs. (147) 

and (148) are fully known.  The quantum mechanical state can be obtained as follows. The 

application of the approach of Sec. II would first yield the functions ),( tVden x , and ),( tTden x , 

which are independent of the constants of integration C1(t) and C2(t).  The following two equations 

are obtained with these known functions on the left hand side, 
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In addition, there is the continuity equation 

(151)                                                                                                                                   
t




j                       

It is obvious, that the superposition of the wave function can be resolved using these three 

equations. 

 

Thus the present description offers a bijection from the wave mechanics to the space-time system 

obeying classical mechanics also in the case of the time dependent Schrödinger equation. 

 

As an application of this section, the linear harmonic oscillator in a polarized state of the ground 

state and the first exited state as a function of time will be considered later in Sec. XI. 
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VIII. THE GROUND STATE OF THE HYDROGEN ATOM 

 

 

 

 

 

 

The Coulomb potential is spherically symmetric and hence the computation of the trajectories of the 

electron in the hydrogen atom will proceed as was described in Sec. VI. The Coulomb potential is 

written as 
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The energy levels of the hydrogen atom are given by 
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where a is the Bohr radius 

(155)                                                                                                         .   1010529172.0 ma                        

The radial wave function for the ground state of the hydrogen atom is 
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This wave function is subject to the normalization condition 
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The expectation value of the potential energy is 
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The relative potential energy density is (see Fig.1) 
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VIII. The ground state of the hydrogen atom
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and the relative kinetic energy density is in turn 

(160)                                                                                                                    .  )()( rVdenrTden   
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FIG. 1. The relative potential energy density times a as a function of x=r/a. Two equidensity 

surfaces are indicated with two horizontal lines. The horizontal axis is in eV.  
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FIG. 2. The inverse function of the potential energy density as a function of the potential energy 

density times a. The horizontal axis is in units x=r/a and the vertical axis is in eV.  
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In this essentially one-dimensional case the differential element  d  in Eq. (95) is the difference in 

the lengths of the segments connecting points of equal density in Fig. 2. Denote by rmin and rmax 

the positions of the minimum and the maximum of the function Vden(r) and denote by rzero the 

position of the zero-point of this function. An algorithm will be developed next, which is suitable to 

compute the potential energy U(r), and the kinetic energy K(r). 

 

Denote by )0,(fx   the branch of the inverse function of Vden in Fig. 2, when 0<r<rmin, and 

denote by )1,(fx   the branch of the inverse function of Vden in Fig. 2, when rmin<r<rmax . 

Denote the values of the relative potential energy density Vden(r) at rmin and rmax  by εmin and 

εmax , respectively. 

 

Then d  is obtained here, for convenience, as a function of , the potential energy density as 
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Then the potential energy as a function of   in the interval 0<r<rzero  can be written as  
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where d  was chosen to be negative. Integrating by parts yields 

 


 
0
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Because )(rVden  when 0<r<rzero, the potential energy as a function of r in the interval 

0<r<rzero can be obtained by the following substitution: 

(164)                                                              .   0     , )1),(()( rzerorwhenVrVdenVrU                             

Denoting by )2,(fx   the branch of the inverse function in Fig. 2, when rmax<r<∞ , the 

potential energy in that interval takes the form 
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where  d  was chosen to be negative again. The whole potential energy function as a function of r 

will be obtained by the following substitution: 

(166)                                                      .          ,  )2),(()(  rrzerowhenVrVdenVrU       

The kinetic energy is then 

(167)                                                                                                              .   )()( rUErK                                
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The trajectories are now easy to obtain using Eq. (104). The particle trajectories simply pass 

radially through the atom and the angular momentum is zero. The total energy of the classical 

particle is exactly the total energy of the eigenstate. The results of the computation are shown in the 

graphs in Fig. 3, Fig. 4, and Fig. 5 below.  
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FIG.3. The kinetic energy in the 1s-state in eV as a function of r/a. The horizontal dashed line is the  

expectation value of the kinetic energy. 
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FIG. 4.  The positive radial velocity divided by the  speed of light, the vertical axis,  as a function of  

r/a, the horizontal axis.  
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FIG. 5. The vertical axis: the radial distance of  the particle from the origin in units of the Bohr 

radius on a trajectory, as a function of time. The horizontal axis: the time in attoseconds. 
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IX. THE 2p, m=0 STATE OF THE HYDROGEN ATOM 

 

 

 

 

 

 

In the 2p-state of the hydrogen atom, the relative radial potential energy density is  
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The total energy is 
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The expectation value of the kinetic energy is 
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and the expectation value of the potential energy is in turn 
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The computation of the potential energy and the kinetic energy will proceed in a manner similar to 

the 1s-state. Both U(r) and K(r) can be found using the same algorithm as in the 1s –state. The 

kinetic energy is graphed below in Fig. 6. The kinetic energy of the radial motion can be seen in 

Fig. 7 below. 
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FIG. 6. The vertical axis: the kinetic energy of the electron in the 2p-state as a function of r/a.  The 

energy is in eV. The horizontal line is the expectation value of the kinetic energy. 

IX. The 2p, m=0 state of the hydrogen atom
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FIG. 7.  The kinetic energy of the radial motion in eV is plotted as a function of r/a in the graph. 

The radial kinetic energy becomes zero at the distance 1r  from the origin. Due to the angular 

momentum conservation the particle trajectory cannot get closer to the origin than 1r . The radius 1r  

is in the 2p-state about 1.7 times the Bohr radius.  

 

Following the discussion of Sec. VI, the Lagrangian of the system is written as  
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2
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rU
dt
drm

dt
drmL 













                        

and 00    or    0   for particles in the upper or lower half space, respectively. 

Because   is a cyclic coordinate, 

(173)                                                                                                                   ,  22 
dt
drm                        

i.e., the angular momentum is a constant of the motion.  

 

The initial conditions of the motion starting at ( 0r , 0 ) at t=0 can be written as 

(174)                                                                                          ,  )(
2
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2
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0
2

0
2

0
2

0 rKrmvrm                          

(175)                                                                                                                 .  20
2

0  rm                        

The total angular momentum is set to be 2   , thus defining 
dt
d  for the given total angular 

momentum.  The initial radial velocity is 0vr  and the initial value of  
dt
d   is 0 . The angular 

momentum squared is 22  . The path of the particle will be always in some plane through the 

origin such, that the plane is perpendicular to the xy-plane and hence zL  = 0. This is why 00    or  
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 0  as was discussed Sec. VI. The particle could propagate on the trajectory either with positive 

angular velocity 0
dt
d  or with negative angular velocity 0

dt
d , always zL  = 0. The geometric 

shape and the time dependence of the trajectory is always the same in all 2p-states. A typical 

trajectory can be seen in Fig. 8. 

 

Here is an example of the complementarity principle of the quantum mechanics: Beneath of the 

picture predicted by the wave mechanics, the particle has in this L=1, m=0 state mechanical 

properties of a classical particle, when localized outside the sphere of the radius 1r . See Fig. 8 

below. It has mechanical properties of a classical particle in the following sense. When localized at 

certain point in the space-time, its velocity and position are given by the trajectory passing through 

that point. The probability to find the particle on some of these trajectories is given just by the 

probability density of the wave function and is 1-P( 1r )=0.759 . The probability to find the particle 

inside the sphere is accordingly P( 1r )=0.241. 
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FIG. 8.  A typical trajectory in the 2p-state. The circle is representing the sphere of the radius 1r . 

Only the tangential point of the circle belongs to the trajectory. The coordinates in the plane of the 

trajectory are measured in units of the Bohr radius a. 
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X. THE 2p, m=1 STATE OF THE HYDROGEN ATOM 

 

 

 

 

 

 

The knowledge of K(r) in the preceding section enables one to solve the equations of motion in the 

case of the m=1 and m=-1 states too. The differences are due to the different initial conditions. 

 

Consider the m=1 state. The Lagrangian is the same as in the m=0 state, 

(176)                                                                             ,  )(
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2
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rU
dt
drm

dt
drmL 













                        

but 
40
      or  

4
3

0
 

    for particles in the upper or lower half space, respectively. The 

trajectories have the same form of the time dependence and the same geometric shape as in the m=0 

case, but the trajectories are now in planes making the angle 
40
    or 

4
3

0
 

   with the z-axis. 

The choice of this angle was explained in Sec. VI.  The total angular momentum is set to be  2 , 

the choice of the sign defining 
dt
d  for a given total angular momentum.  The angular momentum 

squared is then 22  . In this m=1 trajectory the particle has always a positive angular frequency 

0
dt
d  such that zL  = , as was explained in Sec. VI.  The particle is propagating always to the 

same direction on the trajectory. In m=0 state both directions of the particle motion existed on the 

same trajectory.  

 

 

 

 

 

X. The 2p, m=1 state of the hydrogen atom
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FIG. 9. The particle can have mechanical properties of a classical particle outside the sphere and 

outside the cones opening above and below the sphere. When localized outside those regions, the 

electron is at the same time found at some trajectory at some specific point of the trajectory. The 

particle trajectory is always in a plane, which is some tangent plane of the opening cones. These 

particlelike properties are given by the knowledge of the trajectories described earlier. The 

probability to find the particle on some of these trajectories is given by the wave function. The 

probability to find the electron inside the sphere is P( 1r )=0.241. The probability to find the particle 

inside the conic regions mentioned above is cP = 0.088 and so the total probability is 

P( 1r )+ cP =0.329 . The probability to find the particle on some of the trajectories is slightly smaller 

than in the m=0 state being now 1- P( 1r )- cP =0.671 .  
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XI. THE LINEAR HARMONIC OSCILLATOR IN THE POLARIZED STATE 

 
 

 

 

 

 

Consider the one-dimensional linear harmonic oscillator. The Schrödinger equation is 

(177)                                                                                                              ,  )()( xuExuH 


                            

where 

(178)                                                                                               .  
2
1

2
2

2

22

xk
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m
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In order to facilitate the numerical computation, some specific choice of the parameters is 

necessary. That choice is 

(179)                                                                                                                                   ,  1                             

(180)                                                                                                                                 ,  
4
1

m                             

and 

(181)                                                                                                                                    .  1k                             

The wave function of the ground state is 

(182)                                                                                                   .   4
2

2

1)(0
x

exu








                            

The wave function of the first exited state is 

(183)                                                                                                     .  4
2

2
)(0

x
exxu








                           

The energy of the ground state is 

(184)                                                                                                                                 .   10 E                            

The energy of the first exited state is 

(185)                                                                                                                                  .  31E                            

XI. The linear harmonic oscillator in the polarized state
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Writing 
2

0 

E  and 

2
31 


E ,  the angular frequency 2 . The expectation values of the 

kinetic energy in the ground state and in the first exited state, respectively, are 
2
10 T  and 

2
31T . 

The expectation values of the potential energy in the ground state and in the first exited state, 

respectively, are in turn 
2
10 V  and 

2
31V .  

 

Let the oscillator be in a polarized state 

(186)                                                        . )(1)sin()(0)cos(),(
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tEitEi

exuexutx






                               

Following the steps written down in Sec. VII, the expressions of the energy densities are obtained 

first. Substituting the numerical values of E0, E1, , and  , the probability density can be written 

as 

  (187)                             .  
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The average total energy density ),( txE  is 
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The average kinetic energy density and the potential energy density respectively can be written as 
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(190)              ,  
2

)2cos()cos()sin(2)sin(
2
3)cos(

2
1),(

2
222

2









 


x

U
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and  

(191)                                                                                                .  ),(),(),( txtxtx UKE                           

The average total energy density is now being separated in two parts, the parts arising entirely either 

from the kinetic energy or from the potential energy. 

 

The potential energy density is written as 

(192)                                                                                                            ,  ),(
2
1)V( 2 txxx,t                          
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and the kinetic energy density can be found easily, 

(193)                                                                                                       .  )V(),()( x,ttxx,t E                          

The expectation values of the total energy E , the kinetic energy K and the potential energy 

U of the classical system are identified to be 

(194)                                                                                                          ,  )sin(3)cos( 22  E                       

(195)                                                                                                    ,  
2

)sin(3)cos( 22  
K                      

(196)                                                                                                     .  
2

)sin(3)cos( 22  
U                      

 
The relative potential energy density Vden(x,t) and the relative kinetic energy density  

Tden(x,t)= -Vden(x,t)  can be obtained as was explained in  Sec. VII. The graph of 

Fig. 10 is displaying the relative potential energy density, when 
4
   and 99.0

4


t . 

4 2 0 2 4

0.15

0.1

0.05

0.05

0.1

 
FIG. 10. The relative potential energy density Vden plotted against x, when  = /4 and 

t=0.99· /4. 

 

In order to calculate the potential energy, the same algorithm, which was developed in Sec. VIII in 

the case of the ground state of the hydrogen atom, can be applied in this one-dimensional case. That 

algorithm requires the inverse function of the function ),,(  txVden . Denoting by 

(197)                                                                                                                               ),,,( jtgx   
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the thj  branch of the inverse function such, that for instance )0,,,(  tgx   is the inverse function 

to be used for values of x in the interval  1,extr , where extr1 is denoting the x-coordinate of the 

extremum of the function ),,(  txVden  with the smallest value of x. The graph in Fig. 11 is 

displaying the inverse function for all values of x. In that graph extr1 denotes the x-coordinate of the 

extremum lowest in the graph. Denote by zero1 the zero-point of the function ),,( txVden such that 

the x-coordinate is the smallest. The x-coordinate of the zero-point of the function ),,( txVden  

lowest in the graph is denoted by zero1 in the graph of Fig. 11.   
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FIG. 11. The inverse function of the relative potential energy density ),,(  txVden , when 

 = /4 and t=0.99· /4. 

 

The potential energy, for instance in the interval  1, zero  , will be obtained first by calculating 

the potential energy denoted now by V  as a function of the relative potential energy density  . 

Applying the algorithm developed in Sec. VIII one obtains for    1zerox  , 

(198)                     .  ))0,,,()1,,,,(())0,,,()1,,,,((),,(
0
 


 dtgtgtgtgtV                      

The potential energy function, denoted now by ),,(  txV , is then obtained  as a function of x by 

substituting ),,(  txVden  into the expression of ),,(  tV  yielding 

(199)                                                1   ,  ),),,,((),,( zeroxwhenttxVdenVtxV          

This potential energy function is now the primitive of the indefinite integral vanishing at the 

boundary of the system in the infinity. The constants of the integration are to be determined next. 
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The following graph Fig. 12 is the potential energy function ),,(  txV  , when the constant of the 

integration C2(t) defined in Sec. VII is identically zero. 
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FIG. 12. The vertical axis: the potential energy of  the particle as a function of the particle 

coordinate x. The graph is obtained by setting the constant of the integration C2(t)=0. The graph is 

describing the situation  = /4 and t=0.99· /4. 

 

Following the procedure developed in Sec. VII, the equation of the motion is to be solved next. The 

boundary conditions are such that the kinetic energy at the infinity must be 

(200)                                                                                             .   
2

)sin(3)cos( 22  
K                            

In order to solve the equation of motion, the force acting on the particle must be determined, 

(201)                                                                                               .  ),,(),,(
dx

txdVtxF                               

This force is being displayed in Fig 13. As can be seen, the force is zero at large distances from the 

origin. The equations of motion have been solved for a positive velocity of the particle, with 

application of the boundary condition in the infinity. The results are shown in Figs. 14, 15, and 16. 
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FIG. 13. The force acting on the particle as a function of x. The graph is obtained, when  = /4 

and t=0.99· /4. 
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FIG. 14. The kinetic energy plotted as a function of time on the particle trajectory with positive 

velocity, when 4/  . The horizontal line is the expectation value of the kinetic energy. Because 

the constants of integration C1(t) and C2(t) are known now, the potential energy may be 

determined. See the graph of Fig. 15 for the potential energy. 
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FIG. 15. The potential energy plotted as a function of time on the particle trajectory with positive 

velocity, when 4/  .  The horizontal line is the expectation value of the potential energy. 

 

The kinetic energy 

(202)                                                                                                       ,  )(
2
1)(

2









dt
tdxmtEK                           

is being displayed in Fig. 14 as a function of the position x on the particle trajectory. The potential 

energy is shown in Fig.15 as a function of time on the particle trajectory. 

 

In Fig. 16 the velocity difference of the particle and a fictitious particle is shown. The fictitious 

particle moves with the same asymptotic velocity the particle has on the boundary of the system. 

The graph has been obtained as a function of the position x. The boundary condition 

(203)                                                                                               ,   
2

)sin(3)cos( 22  
K                             

is satisfied, as can be seen from the graph. 
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FIG. 16. The vertical axis: the velocity difference of the particle and a fictitious particle . The 

fictitious particle is moving with the same positive asymptotic velocity the particle has on the 

boundaries of the system.The graph has been obtained as a function of x, when 4/  .   

 

The graphs seen in Fig. 17 are in fact interesting. The graph denoted by xin is describing the particle 

trajectory obtained in a state ),( tx .The particle is propagating with negative velocity on this 

trajectory. The graph denoted by tx t is describing the particle trajectory, which would be obtained 

in a state ),( ttx   , when 
6


t  . The particle is propagating with positive velocity on that 

trajectory.  The trajectories intersect, when x=0.314.  At x=0.314 the particle trajectory has in a 

state ),( tx  the velocity vin=-2.761. Suppose that velocity would be instantly changed at that 

position to be 807.2tv , which is the velocity of the particle going to the positive direction in the 

trajectory xin at that point x=0.314, where the trajectories intersect. Two interesting questions arise. 

Would the particle get delocalized into a state, which has the properties of the state ),( ttx  ? If 

that will happen, what kind of circumstances that would require?  
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FIG. 17.  The graph denoted by xin(t), the solid line, is describing the particle trajectory obtained in 

the state ),( tx and the particle is propagating with negative velocity as a function of time. The 

graph denoted by tx (t), the dashed line, is describing the particle trajectory that would be obtained 

in the state ),( ttx   and the particle is propagating with positive velocity. 
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XII. The nucleus 17O
55 

 

XII. THE NUCLEUS  O17   

 

The nucleus O17  will be considered as the next example. The valence neutron is in the 2/51d  shell. 

The radial wave function is obtained using the Woods-Saxon shell model potential 

dr
rdg

r
rVrgVU ls

)(1)()( 2
0  sl                                                                                     (203) 

where VVls  44.0   and V is left as a free parameter to be deduced from the experimental neutron 

separation energy   -4.14 MeV. This choice will give 7.51V  MeV. The function g(r) is given by 

  1)/)exp((1)(  aRrrg                                                                                                      (204) 

where 3/1
0 ArR  , 25.10 r  fm , a = 0.65 fm. See e.g.  [1] for the parameterisation. 

 

Similar calculation as in Sec. X yields the kinetic energy and so the speed as a function of r, the 

nuclear radius. See Fig. 18, Fig.19 below.  The radial kinetic energy becomes negative at distances 

less than rlimit = 2.675 fm. The particle cannot get localized at distances closer to the origin 

because of the centrifugal barrier. 

 

The velocity of the neutron in the nucleus can be measured directly in the framework of the direct 

knockout reaction  OnppO 1617 ),( . Theoretically the easiest geometry is obtained, when the projectile 

proton is measured on the beam axes in the forward direction and the knocked out neutron is observed 

perpendicular to the beam at polar angle 90 degrees. The conservation of the energy and momentum 

give 
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Here   is the polar angle of the initial neutron velocity and inv  is initial speed of the neutron before 

the collision. Similarly fnv , ipv , fpv  denote the final speed of the neutron, the initial speed of the 

projectile proton and the final speed of the projectile proton, respectively. The neutron and proton 

masses are denoted by nm  and pm , respectively. The neutron separation energy is nE . The speeds 

fpv  and fpv  are measured in coincidence, the condition of the coincidence being the equations 

(205). The angle   becomes determined from these equations. The next step is to write down the 

conservation of the angular momentum, while the incoming proton and the outgoing proton carry 

no angular momentum. Let  denote the polar angle of the radius vector of the initial neutron. The 

conservation of the angular momentum implies then 

)1()cos(

)cos()sin(





llrvm

rvmrvm

fnn

fnninn




                                                                                  (206)

The position of the initial neutron becomes defined through the equations (205). This experiment 

will evidently determine inv as a function of r to be compared with the theoretical prediction Fig. 18 

below. 
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FIG. 18.  The speed of the valence neutron in units of the speed of light as a function of r in fm. 
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FIG. 19. The radial probability density, r in fm. The limiting radius rlimit, the dashed line. 
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XIV. CONCLUSIONS 

 

 

 

 

 

 

The present approach gives the proof that a bijection exists between two systems. The other system 

is given by the Schrödinger equation in the form of the wave mechanics and the other system obeys 

the Newton mechanics. Particlelike properties are known to exist in quantum systems. On the other 

hand, the uniqueness of the classical particle motion obtained from the given equation of the 

Hamilton density was proven in this paper. Therefore, due to this uniqueness, if particlelike 

properties are found in a quantum mechanical state, those are most probably given by the equation 

of the Hamilton density obtained from the Schrödinger equation.  For example, a knockout reaction 

of the particle with by a direct impact could probably reveal those particlelike properties. In any 

case, we should be able to enhance the information that is obtained from the experiments in 

comparison with the information obtained from the wave mechanics only. How the observables in 

the wave mechanical system and in the equivalent classical system are correlated, cannot be 

concluded exactly without experiments. Some interpretations of this correlation were presented in 

this work using a working hypothesis. In brief, the working hypothesis was that beneath of the usual 

quantum mechanical description of the system in the form of the wave mechanics, the system has 

predictable particlelike properties. These particlelike properties can be predicted by the particle 

trajectories, which may fill either the whole space-time or only some predictable regions of the 

space-time. The probability to find the particle is always given by the wave function, no matter the 

particle is found on some trajectory or not. For this reason the particle does not actually propagate 

along a trajectory, but the trajectory and the location of the particle on the trajectory are stochastic 

variables.  

 

 

 

XIII. Conclusions
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APPENDIX 

 
A. Mechanical system in an external field 

 
1. The description of the system 

 

Suppose we are given for a certain particle of mass m in the interval –a<x<a  the average energy 

density 
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Here ) ,( txU  is the contribution of the potential energy to the average energy density and ),( txK  

the contribution of the kinetic energy respectively. The total energy E, the expectation values of the 

kinetic energy K , and the potential energy U , respectively, are given below: 
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Given the kinetic energy density, 
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and the potential energy density, 
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the equation of the Hamiltonian density can be written as: 

A10                                                                                                       .  ),(),(V),( txtxtx E                          

 

This system is obviously such, that the conditions of Sec. III for an equation of the Hamiltonian 

density of a classical particle obeying the laws of the Newton mechanics are fulfilled [see Eqs. (28)-

(33)]. Classical particle motion can be obtained as in Sec. III. 

 

The boundary conditions for the motion are obviously such, that the kinetic energy must be zero at 

the end points of the interval. 

 

 

2. The solution of the particle motion 

 

The next step in solving the physical system is to define the relative energy densities as  

A11                                                                                                 , ),(),(V),( txtxtxVden U                           

and 

A12                                                                                                   ),(),(),( txtxtxTden K                           

The two important equations covering the relative energy densities are obtained as 

A13                                                                                                      , 0),(),(  txTdentxVden                            

A14                                                                                                         .  ),(),( txVdentxTden                             

These equations concerning Tden and Vden contain the same information as the equation 
A15                                                                                                     ,  ),(),V(),( txtxtx E                                

when applied together with the Eqs. (A4)-(A7).  

 

The next thing to do is to form the indefinite integral of the equation covering the relative energy 

densities, while the differential element of the integration is a volume element (segment length 

element in this one dimensional case) such, that the primitives are zero at the boundaries of the 

system. This volume element will be defined by the equidensity surfaces of the potential energy 
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density Vden. These are also the equidensity surfaces of Tden as well. In order to construct these 

surfaces the inverse function of the potential energy density Vden is required. Denoting 

A16                                                                                                                        ),( txVdenU                              

 the relative potential energy density can be written  
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As can be seen, in this application the relative potential energy density becomes independent of 

time. The inverse function is of course independent of time as well and can be written as  
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Denoting 
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and 
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the inverse function of the function Vden is ready to use. Consider a closed surface )(S ) such that 

the function Vden is a constant on this surface, the volume enclosed by the surface is denoted by  . 

Consider then another surface infinitesimally close to the earlier surface such that the function Vden 

is a constant on this surface. Consider the volume of this surface and denote the volume enclosed by 

this surface by  d . Then the potential energy difference between the two surfaces is 

A21                                                                                                                         )(  dxVdendU                      

In this example the volume is a segment length and the infinitesimal volume difference is the 

infinitesimal segment length difference. The surface )(S is in this one dimensional example 

represented by the end points of the segment.   

 

When the relative potential energy density is U , the end points of the segment in question are at 

distance )0,()1,( UU ff     from each other. The infinitesimal length difference d can be 

computed as a function of  U   as  

  A22                                                                                                   .  )0,(')1,(' UUU dffd                      
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Substituting )0,( Uf  from Eq. (A19) and )1,( Uf   from Eq. (A29) into Eq. (A22) yields  

A23                                                                                                                     ,22
Ud

kk
d 






 

                     

A24                                                                                                                                  . 4
Ud

k
d                     

 

The next thing to do, is to carry out the indefinite integral of the equation 

A25                                                                                                                  , 0)()(  xVdenxTden                     

    A26                                                                        . 32)(1)( CCdxVdenCdxTden                        

 

Because in this application Tden and Vden are independent of time the constants of integration are 

also independent of time. The two constants of integration C1 and C2 are written separately just for 

convenience. The second expression in the brackets is to be considered as a potential energy. 

Likewise the first bracketed expression is the kinetic energy. Then C3 is the total energy and it is set 

to be C3=E. 

 

Denoting by U the potential energy of the particle and substituting the expressions (A27) and (A28) 

into the expression of the potential energy, which is given by Eq. (A26), yields the expression of 

)( UU   given in Eq. (A29) below. Let 
A27                                                                                                                                 , )( UxVden                         

and 

A28                                                                                                                                  , 4
Ud

k
d                     

then 

A29                                                                                                          ,    24)(
0
 
U

Cd
k

U UUU



                    

yielding 

A30                                                                                                                     .  22)(
2

C
k

U U
U 




                    

Substituting now for U  in this equation (A.30) the expression of U  of  Eq. (A17) results 

A31                                                                                                                         .  2
2

)(
2

CxkxU 


                    



Field theoretic approach that forms a bijection between the wave mechanics and a space-time system obeying classical mechanics 67Appendix

Consider the particle inside the interval –a<x<a  with the total energy E  and subject to the 

boundary conditions K(-a)=K(a)=0 . The kinetic energy is of course K(x)=E-U(x)  and the 

substitution of U(x) into this expression yields 

A32                                                                                                                  ,  2
2

)(
2

CxkExK 




 

A33                                                                                                               2
22

)(
22

CxkakxK 







                                                                                                         

Because of the boundary conditions K(-a)=K(a)=0  the constant of integration C2=0. The final 

result is that the potential energy of the particle is 

A34                                                                                                                                  ,  
2

)(
2xkxU 



                                                                                                                               

and the kinetic energy is 

A35                                                                                                                     .  
22

)(
22 xkakxK 




                    

A fairly simple system was embedded in these fields given at the beginning of this section, a 

classical particle motion in the harmonic oscillator potential.  

 

 

B. The classical harmonic oscillator 

 

Let the oscillator potential energy be  

A36                                                                                                                                  .  
2

)(
2xkxU 



                                                                                                                  

The derivation of the potential energy density will involve finding first the closed surfaces S(Ω) 

with constant potential energy on the surface. Then the potential energy difference between two 

surfaces differing only infinitesimally from each other would be 

A37                                                                                                              .   )()(  UdUdU
                                                                                                

On the other hand, 

A38                                                                                                                      ,   )(  dVdendU                    

Because of Eq. (A38) the relative potential energy density can be obtained as the derivative 
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A39                                                                                                                              .  )(



d
dUVden                    

In this one dimensional case the closed surface will be presented with the end points of a segment 

and the differential element  d  will be presented by the infinitesimal change in the length of this 

segment. In order to estimate this change, the inverse of the potential energy 
2

)(
2xkxU 

  
can be used. That inverse function is  

A40                                                                                                      .    
0       

k
U2

0       
k
U2



















xwhen

xwhen
x                     

Denoting in Eq. (A40) above  

A41                                                                                                                        ,  
k
U2)0,( 

Ug                     

and 

A42                                                                                                                         ,    
k
U2)1,( 

Ug    

the infinitesimal change of the length )0,()1,( UgUg   of the segment can be written as 

A43                                                                                                        ))0,(')1,('( dUUgUgd                      

The derivative 
d

dU  is found from Eq. (A43) as 

A44                                                                                                                            ,  
2

Uk
d
dU




                    

and consequently, the relative potential energy density (A39) can be written as a function of U as 

A45                                                                                                                       
2

)( UkUVden                      

Substituting now for U in Eq. (A45) its expression in terms of x, given by Eq. (A36), will yield the 

relative potential energy density as a function of x. This relative potential energy density is 

independent of the actual motion, independent of the total energy and independent of the initial 

conditions of the motion. 

A46                                                                                              .    
0       

2

0       
2)(
















xwhenxk

xwhenxk

xVden                      

Because 
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A47                                                                                                                 ,  0)()(  xVdenxTden                     

the relative kinetic energy density is obtained 

A48                                                                                                                      )()( xVdenxTden                       

More explicitly this can be written 

A49                                                                                                  
0       

2

0       
2)(
















xwhenxk

xwhenxk

xTden                      

 

The next step is to obtain the potential energy density and the kinetic energy density, )(V x and 

)(x , respectively.  For that purpose the knowledge of the actual motion is required. The motion is 

assumed to happen in the interval –a<x<a   such, that K(-a)=K(a)=0  and 
2

2akE 
  

 

Let the average total energy density )(xE  be a constant and 

A50                                                                                                         .  
42

)( ak
a

E
tot
ExE








                     

The total energy is 

A51                                                                                                                         .   UKE                     

For a classical harmonic oscillator a half of the total energy E is due to the potential energy and the 

other half from the kinetic energy. The expectation values of the classical motion are 

        A52                                                                                                                              ,   
4

2akK 


                                                                                                           

A53                                                                                                                              .    
4

2akU 
                    

The average kinetic energy density and the average potential energy density can be written as 

A54                                                                                                                                ,  
8

)( akxK


                    

A55                                                                                                                                .  
8

)( akxU


                     

These numbers are just the expectation values (time averages) of the potential energy and the 

kinetic energy divided by the volume (the length of the interval, which is 2a). Adding these 

numbers into the equation binding Tden and Vden yields 

A56                                                                        .   )())()(())()(( xxxVdenxxTden EUK                     
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The kinetic energy density )(x  and the potential energy density )V(x of the actual motion are 

identified as the bracketed expressions in Eq. (A56), yielding 

A57                                                                                         ,   
0        

82

0        
82)V(






















xwhenakxk

xwhenakxk

x                     

A58                                                                                           . 
0        

82

0        
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xwhenakxk

xwhenakxk

x                      

 

The equation of the Hamiltonian density takes finally the form 

A59                                                                                                                  ,   )(V)( x(x)x E  

where 

A60                                                                                                             ,  )()()( xxx UKE   

and )(x , )V(x , )(xK , and )(xU  are given by Eqs. (A58), (A57), (A54), and (A55), 

respectively. 

 

Here is an example, how a classical particle motion in a conservative system can be interpreted in 

terms of the equation of the Hamiltonian density: The kinetic energy density, the potential energy 

density, and the total energy density such, that the total energy is E and the expectation values (the 

time averages) of the kinetic energy and the potential energy are K and U , respectively. The 

former example considered the same oscillator and the same motion in fact, in such a medium, that 

the motion of the oscillator did not get distorted at all.  
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