

Vesa-Matti Yli-Heikkilä

Home surveillance with Raspberry Pi

Bachelor thesis

Spring 2015

School of Technology

Automation Engineering

2

SEINÄJOEN AMMATTIKORKEAKOULU

Opinnäytetyön tiivistelmä

Koulutusyksikkö: SeAMK Tekniikka

Tutkinto-ohjelma: Automaatiotekniikka

Suuntautumisvaihtoehto: Sähköautomaatio

Tekijä: Vesa-Matti Yli-Heikkilä

Työn nimi: Kodin valvonta Raspberry Pi:llä

Ohjaaja: Alpo Anttonen

Vuosi: 2015 Sivumäärä: 50 Liitteiden lukumäärä: 7

Opinnäytetyössä tutkittiin Raspberry Pi:tä ja sen mahdollisuuksia toimia
kotitalouden tiedonkeruu- ja prosessointiyksikkönä. Raspberry Pi suorittaa kodin
valvontaa keräämällä siihen liitetyiltä 1-Wire DS182S20-antureilta lämpötilatietoja
SQLite-tietokantaan.

Kodin valvontaan sisältyvät myös kuvakaappaukset Pi NoIR-kameramoduulilla.
Kerätty tietokanta on esitetty havainnollisessa ja helposti ymmärrettävässä
kaaviomuodossa, jota ylläpidetään Apache2 HTTP-palvelinohjelmistolla.

Avainsanat: Raspberry Pi, 1-Wire, tiedonkeruu, SQLite, Apache2.

3

SEINÄJOKI UNIVERSITY OF APPLIED SCIENCES

Thesis abstract

Faculty: School of Technology

Degree programme: Automation Engineering

Specialisation: Electric Automation

Author: Vesa-Matti Yli-Heikkilä

Title of thesis: Home Surveillance with Raspberry Pi

Supervisor: Alpo Anttonen

Year: 2015 Number of pages: 50 Number of appendices: 7

This bachelor’s thesis is a research on Raspberry Pi and its possibilities to work as
a data processing and logging unit in a household use. Raspberry Pi performs
home surveillance and gathers temperature information data from the attached 1-
Wire DS18S20 sensors to an SQLite3 database.

The picture capturing with the Pi NoIR camera module is also a part of the home
surveillance. The gathered temperature data is presented in an easily readable
line chart form which is hosted by the Apache2 HTTP server.

Keywords: Raspberry Pi, 1-Wire, data logging, SQLite, Apache2.

4

CONTENTS

Opinnäytetyön tiivistelmä .. 2

Thesis abstract ... 3

CONTENTS .. 4

TABLES AND FIGURES... 6

ABBREVIATIONS .. 7

1 INTRODUCTION... 8

2 THEORETICAL OVERVIEW ... 9

2.1 Linux .. 9

2.1.1 History of Linux ... 9

2.1.2 Linux compared to Windows... 10

2.1.3 Raspbian Wheezy ... 10

2.2 Introduction to Raspberry Pi... 11

2.2.1 Available versions of Raspberry Pi .. 12

2.2.2 Programming languages .. 13

2.2.3 General Purpose Input Output (GPIO) .. 13

2.2.4 Raspberry Pi NoIR Camera module .. 16

2.3 1-Wire technology and DS18S20 temperature sensors 17

2.4 Python programming language .. 18

2.5 SQLite3 .. 19

2.6 Apache2 ... 19

3 IMPLEMENTATION OF A HOME SURVEILLANCE SYSTEM20

3.1 Setting up Raspberry Pi ... 20

3.2 Creating the 1-Wire network .. 24

3.3 Measuring the temperatures and creating the database 26

3.3.1 Measuring the temperatures ... 27

3.3.2 Setting up the database for measured data 28

3.3.3 Creating a Python script to measure and store the data 30

3.4 Installing the Apache2 HTTP server ... 33

3.5 Controlling the GPIO pins with Python .. 35

3.5.1 Controlling the LED with the GPIO .. 35

5

3.5.2 Controlling the heating element .. 37

3.6 Taking advantage of Raspberry Pi's camera module 38

3.6.1 Installing the Pi NoIR camera module ... 38

3.6.2 Taking the first pictures and videos with the Pi NoIR camera 39

3.6.3 Creating a Python script for taking pictures.................................. 40

3.7 Creating scheduled tasks with Cron.. 41

3.8 Creating a website interface... 42

3.9 Optimization ... 46

4 SUMMARY...47

REFERENCES...48

APPENDICES ..50

6

TABLES AND FIGURES

Figure 1. Raspberry Pi model B+... 11

Figure 2. Pi NoIR camera module.. 16

Figure 3. Raspberry Pi in protective enclosure ... 20

Figure 4. Raspi-config .. 21

Figure 5. The keyboard configuration, setting the layout to the Finnish “fi” 23

Figure 6. Testing the DS18S20 temperature sensors through the GPIO 25

Figure 7. External power supply wiring diagram.. 26

Figure 8. Checking the DS18S20 temperature sensors serial numbers 27

Figure 9. Reading the temperature .. 28

Figure 10. Finished database structure .. 29

Figure 11. LED wiring diagram .. 36

Figure 12. Installing the Pi NoIR camera module .. 39

Figure 13. Line chart code generated with criteria... 44

Figure 14. Activity diagram of the website .. 45

Table 1. Different versions of Raspberry Pi (Element14 [Ref. 22.2.2015].).......... 12

Table 2. GPIO connector's pin layout on Raspberry Pi Model B+ 14

Table 3. List of special purpose GPIO pins ... 15

Table 4. Technical specifications of the DS18S20 sensor.................................. 18

Table 5. Example of the crontab command (The Geek Stuff [Ref. 16.3.2015].) ... 42

7

ABBREVIATIONS

RasPi Raspberry Pi, a single chip computer.

Kernel Kernel is the heart of the operating system which handles

the communication between the user and hardware.

Root The administrator user account.

USB Universal Serial Bus.

MicroSD Micro Secure Digital.

GPIO General Purpose Input/Output. A serial communication

port on Raspberry Pi.

SQL Structured Query Language.

HTTP The Hypertext Transfer Protocol.

HTML Hypertext Markup Language.

CSS Cascading Style Sheets.

LCD Liquid-crystal display.

LED Light Emitting Diode.

IP Internet Protocol.

URL Uniform Resource Locator.

8

1 INTRODUCTION

Small single chip computers are becoming more and more popular because of

their low purchasing prices and their potential in the performance sector. That is

what makes them interesting devices for many practical purposes. (Monk 2013,

Introduction.)

One of these purposes is a data logging. Data logging means collecting infor-

mation from sensors and saving it for the later analyzing. After the data has been

analyzed, it can be used to control a device or it can be displayed for observation

purposes.

The purpose of this thesis work is to find out possibilities for using the Raspberry

Pi single chip computer in a household surveillance. The thesis's goals are to cre-

ate and design an automated surveillance system which is data logging the tem-

perature data from DS18S20 1-Wire temperature sensors and capturing the pic-

tures which are taken with the Pi NoIR camera module. The gathered data is sup-

posed to be easily accessible via internet browser for observing purposes. The

graphical user interface aims to clear visualization and real time data updating.

The bachelor’s thesis consists of two main parts: theoretical and implementation

parts. The theoretical part contains short introductions to the devices and the soft-

ware which are used in this bachelor’s thesis. The implementation part of the the-

sis covers the device and software installations. It also includes configurations for

the installed software and the actual Python programs. The programs which are

made in this thesis can be found in the appendices section.

9

2 THEORETICAL OVERVIEW

This chapter introduces the devices and software which are used in this bachelor's

thesis. The chapter also contains short introduction to the Linux operating system

which is used in this thesis.

2.1 Linux

Linux is a free open source operating system and it belongs to the Unix operating

systems. Actually Linux means the kernel itself which is the heart of the operating

system and handles the communication between the user and hardware. Normally

Linux is used to refer to the whole Linux distribution. (Upton, E. & Halfacree, G.

2012, 28.)

Linux distribution is a collection of software based on the Linux Kernel. It consists

of the GNU-project's components and applications. Because Linux is an open

source project, anyone can modify and distribute it. That is the reason why there

are many variations of Linux distributions. Most popular distributions are Ubuntu,

Red Hat Linux, Debian GNU/Linux and SuSe Linux. (Kuutti, W. & Rantala, A.

2007, 2.)

2.1.1 History of Linux

Linux is a Unix compatible operating system where the operating system's kernel

has been reprogrammed. Because of the compatibility most of the free applica-

tions programmed for Unix are also available for Linux. In 1973 Unix was repro-

grammed in C programming language instead of the assembly code. At that point

Unix reached its current outfit. Unix supported multiple users and it was also easy

to transfer to new digital machines. Later Unix was given to Universities for further

development. (Kuutti, W. & Rantala, A. 2007, 5-6.)

Linux got started in the early 1990s when Linus Torvalds got tired of MS-DOS op-

erating system and decided to create a new operating system for the Intel's cheap

10

x86 processors. At the time there was already available Minix operating system for

microcomputers. However, mainly for teaching purposes created Minix was not

good enough for Torvalds. (Kuutti, W. & Rantala, A. 2007, 5-6.)

In October 1991 Linus Torvalds released the first unofficial Linux and the first offi-

cial Linux version was released in March 1994. Nowadays Linus Torvalds is still

partly developing and supporting the kernel's further development. (Kuutti, W. &

Rantala, A. 2007, 5-6.)

2.1.2 Linux compared to Windows

When comparing Linux and Windows as operating systems, one of the major dif-

ferences are that Linux is an open-source project and Windows is a closed-source

project. In the closed-source project the users sees only the finished product but

do not know how it has been done. In open-source projects everything is made

fully visible to the public. (Upton, E. & Halfacree, G. 2012, 13-14.)

In practice this can be seen in Linux's easy customization for different platforms.

This process is called porting. There are several distributions ported to the Rasp-

berry Pi's BCM2835 chip. One of the distributions is called Raspbian Wheezy. (Up-

ton, E. & Halfacree, G. 2012, 14.)

2.1.3 Raspbian Wheezy

Raspbian Wheezy is a free operating system based on Debian distribution. It is

created by a small team of developers who are fans of Raspberry Pi. Raspbian is

optimized for the Raspberry Pi's hardware and it comes with over 35 000 packag-

es and pre-compiled software. Raspbian is still under active development and it

aims to improve the stability and performance of the Debian packages. (Raspbian

[Ref. 15.2.2015])

Raspbian is officially recommended for beginners and it includes the graphical

desktop environment called LXDE. Raspbian Wheezy is one of the fastest ways to

setup and get the RasPi running. (McManus, S. & Cook, M. 2013, 20.)

11

2.2 Introduction to Raspberry Pi

Raspberry Pi is a credit-card sized, fully featured computer which runs the Linux

operating system (Figure 1). Raspberry Pi has all the necessary connection ports

where user can plug peripheral devices. A monitor can be plugged through an

HDMI, a mouse and a keyboard to the USB ports and for the speakers Raspberry

provides a 3.5mm audio jack. In the model B+ there is also an Ethernet socket for

the internet connection. (Monk 2013, 1.)

Figure 1. Raspberry Pi model B+

All in all it is a capable little computer which can be used for the same tasks which

can be done with a normal desktop computer. For instance, reading emails, surf-

ing on the websites, word-processing or watching high-definition videos. Also it is

very popular in different kind of electronic projects and as a tool for learning the

programming. (Raspberry Pi Foundation [Ref. 1.2.2015].)

Raspberry Pi is relatively cheap and the prices are starting from 25 $. Because of

its cheap starting price some components are not included and they need to be

bought separately. For example, it does not have any kind of protective enclosure

and the micro-USB power supply is not included either. (Monk 2013, 1.)

12

The idea of Raspberry Pi came from the computer laboratory of Cambridge Uni-

versity where the designer Eben Upton noticed in 2006 that the students who ap-

plied to study computer sciences started to have less programming experience

than the students of the past years. Six years later the first Raspberry Pi was re-

leased in February 2012. (McManus, S. & Cook, M. 2013, 10.)

2.2.1 Available versions of Raspberry Pi

At the moment there are several different versions available of Raspberry Pi. The

newest version is the Raspberry Pi 2 Model B. It is the second generation Rasp-

berry Pi and it was published in February 2015. (Raspberry Pi Foundation [Ref.

22.2.2015]) The different versions and their technical specifications are shown in

the Table 1.

Table 1. Different versions of Raspberry Pi (Element14 [Ref. 22.2.2015].)

Model Raspberry Pi 2 B Raspberry Pi B+ Raspberry Pi A+

Processor BCM2836 ARMv7 BCM2835 ARMv6 BCM2835 ARMv6

CPU frequency 900 MHz 700 MHz 700 MHz

RAM 1 GB SDRAM 512 MB SDRAM 256 MB SDRAM

Storage MicroSD MicroSD MicroSD

Power Draw &

Voltage Voltage

600mA - 1.8A @5V 600mA - 1.8A @5V 600mA - 1.8A @5V

GPIO 40 pin 40 pin 40 pin

HDMI Yes Yes Yes

USB 2.0 4 Ports 4 Ports 1 Port

Ethernet Port Yes Yes No

Audio 3.5mm audio jack

and composite video

3.5mm audio jack

and composite video

3.5mm audio jack

and composite video

Models & specifications

13

2.2.2 Programming languages

There are considerable numbers of programming languages which have been

adapted for Raspberry Pi. Python programming language is recommended by The

Raspberry Pi foundation especially for the beginners. Basically any programming

language which can be compiled for ARMv6 can run on the Raspberry Pi. There-

fore the users are not restricted to use only the Python. On the Raspberry Pi there

are preinstalled several languages for example C, C++, Java, Scratch and Ruby.

(Raspberry Pi Foundation [Ref. 5.2.2015].)

2.2.3 General Purpose Input Output (GPIO)

Raspberry Pi has two rows of pins on one side of it. These pins are called GPIO

connector. The GPIO connector allows attachment of electronic hardware to the

Raspberry Pi. It is an alternative option for a USB port. (Monk 2013, 115.)

The pins which are labeled as GPIO can all be used as general purpose in-

put/output pins. It means that they can be defined to be either an input or an out-

put pin. (Monk 2013, 115.)

The GPIO connector varies little bit in different Raspberry Pi models. In the earlier

models B and A the GPIO connector consisted of 26 pins. In the model B+ the

GPIO consists of 40-pin connector where the first 26 pins are same as in the earli-

er versions. (Adafruit 2015.) Table 2 shows the GPIO connector's pins on the

Raspberry Pi model B+.

14

Table 2. GPIO connector's pin layout on Raspberry Pi Model B+

The pins are listed from top left corner, so that odd numbers are at the left side

and even numbers are at the right side. Some of the GPIO connector's pins have

extra labels after the pin name. They are markings for special features. For in-

stance, GPIO2 and 3, have the labels of SDA and SCL. These pins are data and

clock lines for a serial bus type. This serial bus type is called I2C and it is popular

for communicating with peripherals such as temperature sensors and LC displays

(LCD). (Monk 2013, 116.) Table 3 shows the GPIO pins with the special purpos-

es.

15

Table 3. List of special purpose GPIO pins

When using the GPIO as an input there are two states, it can be either "1" or "0".

These states are described as voltage levels. The voltages which are above the

1.7V gives the first state "1" and the voltages below 1.7V gives the second state

"0". For instance, if the GPIO gets the voltage of 1.65V it's input state would be

"0". (Monk 2013, 116.)

Instead if the GPIO pin is defined to be an output there are also two states. These

states are logical 1 and 0. When the GPIO pin is at the logical state 1, it means

that the voltage level is then 3.3V. The logical state 0 is describing the voltage lev-

el of 0V. All the GPIO pins are 3.3V pins and connecting them to higher voltage

could damage Raspberry Pi. (Monk 2013, 116.)

The maximum current from any of the GPIO pin is 16mA. This means that the pins

can be used for controlling only small devices or lights which consumes low cur-

rent. For instance, normal LED's (light-emitting diode) maximum current is approx-

imately 10mA and it can be attached to the GPIO when there is a resistor con-

nected to serial. (McManus, S. & Cook, M. 2013, 327.)

Pin # Label

GPIO2 SDA

GPIO3 SCL

GPIO9 MISO

GPIO10 MOSI

GPIO11 SCLK

GPIO14 Tx

GPIO15 Rx

ID_SD

ID_SC

SPI, Serial periphereal interface

Clock

Data line

Explanation

Special purpose GPIO pins

Reserved for Pi plates

SPI

SPI

Transmit pin for the serial port

Receive pin for the serial port

Reserved for Pi plates

16

2.2.4 Raspberry Pi NoIR Camera module

As mentioned earlier there are existing additional components for Raspberry Pi

which can be bought separately. One of these additional components is a Pi NoIR

camera module. (Figure 2)

Figure 2. Pi NoIR camera module

NoIR comes from the words "No Infra-red". It means that Pi NoIR camera module

does not have an infra-red filter. Because of that the pictures which are taken in

daylight looks strange but it gives the ability to see in the dark with an infrared

lightning. (Raspberry Pi Foundation [Ref. 25.3.2015].)

The camera module itself is a small sized, it can be compared to a 20 Cent coin as

shown in the Figure 2. The camera has a maximum resolution of 5 megapixels

(2592×1944 pixels). It uses an Omnivision 5647 sensor and has a fixed focus lens

on board. The camera module is also capable of recording full high definition vide-

os. (Raspberry Pi NoIR Camera Board [Ref. 25.3.2015].)

The camera module is a compatible with all the Raspberry Pi models and it can be

accessed through MMAL and V4L APIs. At the moment there exists numerous

17

third-party libraries built for the camera module. One of these libraries is a

Picamera Python library. (Raspberry Pi Foundation [Ref. 25.3.2015].)

2.3 1-Wire technology and DS18S20 temperature sensors

Single wire (1-Wire) technology is a serial protocol which uses a single data line

and a ground line for the communication. The communication inside the 1-Wire

bus is controlled by the 1-Wire master device which controls the slave devices

such like sensors attached to the 1-Wire bus. Each 1-Wire device has a unique

identification number on it which is also called device address. Mostly the 1-Wire

devices does not have a pin for a power supply and they will get their power from

the 1-Wire bus. This connection method is known as parasite powering. (Linke, B.

2008.)

Typical 1-Wire network consists of master, and one or more slave devices con-

nected to the 1-Wire bus. The 1-Wire protocol supports two different communica-

tion speeds. In a standard mode the communication speed is 15,4 kbps and in

overdrive mode it is 125 kbps. (Maxim Integrated [Ref. 15.3.2015].)

The DS18S20 1-Wire temperature sensors (Table 4) are manufactured by the

Maxim Integrated Company. The DS18S20 provides 9-bit Celsius temperature

measurements in an operating range from -55 Celsius to +125 Celsius degrees.

The sensor can derive power directly from the data line (DQ). This wiring method

is known as parasite powering. It eliminates the need for an external power supply.

Each of the DS18S20 sensors have the unique 64-bit serial number which allows

multiple sensors to work on the same 1-Wire bus. (DS18S20 Datasheet 2015, 5.)

18

Table 4. Technical specifications of the DS18S20 sensor

2.4 Python programming language

Python programming language is developed in the late 1980s at the National Re-

search Institute by Guido van Rossum. Python has grown in popularity, and it is

widely used commercially. (Upton, E. & Halfacree, G. 2012, 152.)

Python is a flexible and powerful programming language but still it is easy to learn

and follow. The clear syntax of Python makes it a valuable tool for users who

wants to learn programming. This is one of the reasons why it is recommended by

the Raspberry Pi Foundation. Python is published under an open-source license

and it is available for different operating systems. Python runs on Linux, OS X and

Windows computer systems. (Upton, E. & Halfacree, G. 2012, 152.)

Cross-platform support guarantees that the programs which are written in Python

are also compatible in other platforms. There are few exceptions where the pro-

grams are not compatible. For instance, when the Python is addressed to use the

specific hardware such like Raspberry Pi's GPIO. (Upton, E. & Halfacree, G. 2012,

152.)

19

2.5 SQLite3

SQLite3 is a free SQL (Structured Query Language) database engine software. It

can be used for private and commercial purposes. That is one of the reasons why

it is widely used in different kinds of applications and projects. SQLite3 does not

have a separate server process like many other SQL databases. It reads and

writes to ordinary disk files, and the complete SQL database is contained in a sin-

gle disk file. (SQLite [Ref. 18.2.2015].)

For its small size SQLite3 is very capable and compact database engine, with all

features enabled the library size can be less than 500 KB. It is very carefully tested

before new releases are made. That is a part reason why SQLite3 has a reputa-

tion for being a very reliable tool. SQLite3 is supported by international developers

who are working on SQLite3 full time expanding the capabilities and improving its

reliability and performance. (SQLite [Ref. 18.2.2015].)

2.6 Apache2

Apache2 is an open-source HTTP server project which is highly configurable and

extensible with third-party modules. The server can be customized by writing

modules and using the Apache module API. It is the project of the Apache Soft-

ware Foundation and it runs on all modern operating systems. Apache was

launched in 1995, and since 1996 it has been the most popular web server on the

Internet. (The Apache2 project [Ref. 19.2.2015].)

Apache is in under active development and encourages to user feedback. Many

frequently asked features have been implemented. The Apache project's goals are

to provide a secure, efficient and extensible server that provides HTTP services in

sync with the current standards. (The Apache2 project [Ref. 19.2.2015].)

20

3 IMPLEMENTATION OF A HOME SURVEILLANCE SYSTEM

This chapter contains the device and software installations, creating a 1-Wire net-

work for measuring temperatures and creating a graphical user interface. The

graphical user interface is based on a website which is hosted by Apache2 HTTP

server.

3.1 Setting up Raspberry Pi

As said earlier Raspberry Pi comes without any peripheral devices. The first thing

to do is to unpack RasPi and protect it with an enclosure (Figure 3). Raspberry Pi

can be installed to the protective enclosure without using any tools. The enclosure

has plastic clips which are holding the Raspberry Pi in its place.

After Raspberry Pi has been installed to enclosure and well protected, all the nec-

essary peripherals can be attached to it. Just like any other computer, Raspberry

Pi needs some basic devices such as display which is connected via the HDMI

cable, the mouse and the keyboard, and the internet connection cable.

Figure 3. Raspberry Pi in protective enclosure

21

Before plugging the power cable, MicroSD-card should be checked if it is flashed

and prepared with an operating system. Also it is recommendable to create a

backup folder of the MicroSD-card just in case of complications.

The MicroSD-card can be checked with a card-reader. The card-reader can be

found from most of the laptops and desktop computers. Insert the MicroSD-card

into the card-reader and check that there is something stored in the MicroSD-card.

If everything looks good, take the MicroSD-card and plug it into the Raspberry Pi.

Now the power cable can be connected.

Raspberry Pi does not have any kind of power switch so it will start up immediately

when the power cable is connected to it. At the start up text starts to flow on the

monitor and shortly after that there appears a configuration menu. The configura-

tion menu is called Raspi-config (Figure 4). In Raspi-config it is possible to change

some of the settings on Raspberry.

Figure 4. Raspi-config

22

The most important settings that should be checked in Raspi-config are:

 Expand Filesystem, where it is necessary to check that RasPi can use the

whole memory capacity of the MicroSD-card. Otherwise the memory can

run out fast.

 Internationalisation Options, where it is possible to choose between differ-

ent languages and the time zones.

 Advanced Options, if the internet cable has been plugged in, it is possible to

update RasPi to the latest version available. (McManus, S. & Cook, M.

2013, 38.)

It is recommendable that users who do not have so much experience with Linux

operating systems should choose the English language because then help and

advice can be found more easily from the internet.

It is possible to get back to the Raspi-config and change the settings also after the

first setup by typing the following command into the terminal:

sudo raspi-config

After making the changes on the Raspberry Pi's settings, the settings can be ac-

cepted by choosing the Finish option. Now the terminal view should appear and it

might be asking for the username and the password. The username in Raspian

Wheezy is by default pi and the password should be raspberry. Notice that these

are written in small letters. The Linux is letter case sensitive and it wil l recognize

the difference between small and capital letters.

The next step is logging in to Raspberry and instead of the graphical environment

there will be a command console flashing. However, the graphical environment, or

so called desktop view, can be started by entering the command:

startx

23

Now Raspberry will be loading for a while and a few seconds later there will ap-

pear a more user friendly desktop view. It is recommended to learn how to use the

command console as it makes some of the actions faster than doing them in the

desktop view.

So far the basic configurations are made for the Raspberry. There might still be

some things that are not working correctly. For instance, the keyboard layout might

be defined to be in UK style which is the default keyboard layout setting on Rasp-

berry Pi. This can be frustrating and annoying. The layout can be changed easily

by opening the LXTerminal which opens the command console. Open the key-

board file in the command console with the nano text editor by typing the following

command:

sudo nano /etc/default/keyboard

The keyboard configuration file (Figure 5) will appear and it can be modified. The

keyboard layout can be changed by replacing the XKBLAYOUT value as shown in

Figure 5. After the file is edited it can be saved by pressing CTRL + O key combi-

nation.

Figure 5. The keyboard configuration, setting the layout to the Finnish “fi”

24

3.2 Creating the 1-Wire network

This chapter describes how to setup a 1-Wire network and how to attach the

DS18S20 temperature sensors to it. The 1-Wire bus is created by using the GPIO

connector on Raspberry Pi.

When creating 1-Wire bus for the first time it is recommendable to create the 1-

Wire bus in a test environment. It lowers the risk of complications and makes it

easier to test different programs and wirings. It also gives a better overview of how

everything is working.

There are two different wiring possibilities for the DS18S20 temperature sensor.

The sensor can use an external power supply, where the VDD pin is in use or it

can be connected with the method of a parasitic power supply, where the sensor

takes the power from the DQ pin.

According to the DS18S20 datasheet the 1-Wire bus requires a pull-up resistor.

The impedance for the pull-up resistor should be approximately 5k Ohms.

(DS18S20 Datasheet 2015, 10.)

25

The pieces of equipment and the tools used to create the test environment are:

– breadboard

– jump wires

– ribbon cable 40 pin

– pull-up resistor (4700 ohm)

– datasheet for DS18S20 sensor.

Figure 6. Testing the DS18S20 temperature sensors through the GPIO

In Figure 6 the temperature sensors are placed to a breadboard. The benefit of the

breadboard is that it does not require any soldering. It is a fast and an easy way to

modify the wirings. The breadboard itself has been connected to the RasPi with

the 40 pin ribbon cable. The Figure 7 presents the wiring diagram with the external

power supply method.

26

Figure 7. External power supply wiring diagram

3.3 Measuring the temperatures and creating the database

This chapter demonstrates how to read and measure the temperatures from the

DS18S20 1-Wire temperature sensors. The temperature data is then stored into

the SQLite3 database for later use. SQLite3 is being used in this bachelor's thesis

as a database engine.

27

3.3.1 Measuring the temperatures

Before starting to measure the temperatures, it is necessary to create an external

power supply connection which is shown in Figure 7. In the next step two addition-

al kernel modules need to be loaded. These modules are called w1_therm and

w1_gpio. The modules are preinstalled in the Raspbian distribution and they can

be manually loaded by entering the following commands to the terminal:

sudo modprobe w1_gpio
sudo modprobe w1_therm

Where the w1_gpio module is a 1-wire bus master driver and the w1_therm mod-

ule is the temperature conversion module for the Maxim DS18*20 and DS1825

based temperature sensors. (The Linux Kernel Archives, 2013.) After loading the-

se modules the 1-Wire bus can be explored by entering the command:

cd /sys/bus/w1/devices/ //Opens the W1 devices folder
ls //Lists the files in current folder

Now there appear some directories (Figure 8) which are named with sensors serial

numbers. These serial numbers will be used later in a Python script so it is useful

to write them down. In case that there will not appear any directories, check the

wirings and repeat the steps mentioned above.

Figure 8. Checking the DS18S20 temperature sensors serial numbers

28

The current temperature in a room can be read by opening one of the directories

shown in /sys/bus/w1/devices and opening the w1_slave file. This is done with

following commands:

cd 10-000802e614ec
cat w1_slave

The current temperature will be printed on a terminal where the value of "t=" is

presenting the temperature in degrees Celsius. However, the value of "t=" can

seem a bit strange at first because it does not have a comma after the first two

numbers. In Figure 9 the temperature is presented as “t=21750” which would be

21,75 degrees Celsius. The next chapter will present how to create the SQLite3

database where the measured data from the temperature sensors can be stored.

Figure 9. Reading the temperature

3.3.2 Setting up the database for measured data

In this bachelor's thesis SQLite3 is used to store the measured data from the tem-

perature sensors because of its compactness and reliability. Also it does not re-

quire any kind of configuration.

The SQLite3 database program needs to be installed to the Raspberry and it can

be done by typing the following command in the terminal:

sudo apt-get install SQLite3 //Install the SQLite3

29

After the SQLite3 installation, there are two possibilities to create the database.

The first possibility is to use the SQLite3's command shell or the second possibility

is to install an external application for creating and browsing the databases.

Using the external application turned out to be easier for handling the databases

and for observing the stored data. In this bachelor's thesis the external application

called SQLite database browser (Figure 10) is used to create the database for

temperature sensors. SQLite database browser can be installed like any other

Linux program by using the apt-get install command. After installing the SQLite

database browser it can be started from the Programming section.

The next step is to create a new database called temperatures. The program pro-

pose to create a table and requests name for the table. The table can be named

as “temperatures”. Then the table needs new fields called Date, Time, Room and

Temperature and their field types are DATE, TIME, TEXT and NUMERIC. Re-

member finally to save all the changes to the database.

Figure 10. Finished database structure

30

3.3.3 Creating a Python script to measure and store the data

So far the temperatures have been measured manually by using the terminal and

the temperatures database is created where the measured data will be stored. The

next step is to create a Python script which reads the temperature data from the

sensors and stores it to the database.

It is possible to write Python scripts with any of the preinstalled text editors such

like LeafPad. However, when it comes to the more complicated scripts it is rec-

ommended to use a Python editor to avoid unnecessary syntax errors. The PyDev

program has been used in this bachelor's thesis as the Python editor.

The first step is to create a new script file called monitor.py. The first line of the

script is a "shebang" line. This line indicates how the script should be executed.

#!/usr/bin/env python

After inserting the shebang line the SQLite3 library needs to be imported to the

script. This can be done with following Python command:

import sqlite3

Importing the SQLite3 library makes it possible to use SQLite3 commands in the

Python script. After importing the library global variables can be defined. The glob-

al variables in this case are: room names, the sensor id-numbers and the data-

base location.

#Rooms where the sensors are:
sensor1_room="Kitchen"
sensor2_room="Garage"

#Sensors ID-numbers:
sensor1_ID="/sys/bus/w1/devices/10-000802e614ec/w1_slave"
sensor2_ID="/sys/bus/w1/devices/10-000802e67b6f/w1_slave"

#Database name
dbname='/var/www/temperatures.db'

31

These global variables are sent to the getTemperature-function, which opens the

w1_slave file from the sensor_ID location. The data in w1_slave file is then stored

into the text variable.

def getTemperature(ID, sensor_room):
 tfile=open(ID)
 text=tfile.read()
 tfile.close()

At this point the text variable also includes unnecessary details which are not es-

sential. The text variable is parsed in the next few lines of Python code.

At the first, the text variable is split with the new lines and the second line is se-

lected. Then the second line is split into the words by referring to the spaces. The

temperature is located at the 10th word and it is selected. The line and word num-

bering starts from zero and that is the reason why the second line is called with [1]

and the 10th word is selected by calling [9]. (Kirk, M. 2012.)

#Split the text with new lines and select the second line
secondline= text.split("\n")[1]

#Split the line into words and select the 10th word
temperaturedata= secondline.split(" ")[9]

Now the 10th word is selected and it still includes the marking "t=", so the first two

characters of the 10th word need to be deleted. The string variable also needs to

be converted to a number by using the float() command. The decimal point should

be also placed on its place. (Kirk, M. 2012.)

temperature=float(temperaturedata[2:])
sensor1_data = temperature/1000

32

At this point the sensor's temperature data is stored into variable called sen-

sor1_data. This measured temperature data can be now inserted into the data-

base. The connection to the database can be now opened and the cursor can be

created with the following commands:

#Connect to the temperature database
db=sqlite3.connect(dbname)
cur = db.cursor()

After the connection to the database has been created, the sensor1_data can be

inserted to the database. The data is inserted into the table called temperatures,

where four columns exists: Date, Time, Room and the room's Temperature.

cur.execute("INSERT INTO temperatures
VALUES(date('now','localtime'), time('now','localtime'), (?),
(?));", (sensor_room, sensor_data,))

It is important to remember to commit all the changes which have been done in

database and afterwards to close the database connection.

db.commit() #Commit changes in database
db.close() #Close connection

Now the getTemperature-function can be called as many times as there are sen-

sors connected to the 1-Wire bus. In this case there are two sensors and the func-

tion is called twice in a main-function.

def main():
 getTemperature(sensor1_ID, sensor1_room)
 getTemperature(sensor2_ID, sensor2_room)

When calling the main-function, it sends the sensor-ID and the sensor's room vari-

ables to the getTemperature-function. The getTemperature-function stores the

current temperature data to the database at the moment when it is called. Finally

remember to save the script into /home/pi location. After saving the script it can be

ran through the terminal by calling it:

python monitor.py

33

After running the script several times, check the database if it is receiving the data

which is sent through the script. The database can be browsed with the SQLite

Database browser program. Open the temperatures.db database with the SQLite

Database browser and then click the Browse Data tap. The stored data should

appear into the screen.

3.4 Installing the Apache2 HTTP server

The Apache2 HTTP server is used to publish the temperature data on a website.

The website is supposed to show the measured data in a form which can be easily

observed over an internet browser.

The Apache2 server needs to be installed to Raspberry and it can be done in the

terminal by typing:

sudo apt-get install apache2

After the installation, the server needs to be configured before it can be used to

run Python scripts. This can be done by editing the Apache's configuration files. In

the terminal, open the configuration file called 000-default by typing the following

command:

sudo nano /etc/apache2/sites-enabled/000-default

In the 000-default configuration file search for the code <Directory "/urs/lib/cgi-

bin"> and add a cgi-script handler to below this section of the code.

AddHandler cgi-script .py

The configuration file needs to be saved after the changes are made.

After editing the configuration file the Apache2 service needs to be restarted in

order for changes to take the effect. The service can be restarted by entering the

following command in the terminal:

sudo service apache2 reload

34

At this point the Apache2 server is able to execute the Python scripts. However,

there is still some configuration to do. The Apache2 uses by default a user called

www-data which belongs to a group www-data. This can cause some error mes-

sages while starting the Apache2 service.

There are two possibilities to fix this problem. The first possibility is to create the

new user called “www-data” and the second possibility is to change the Apache2's

user. In this bachelor's thesis the Apache2's user is changed to "Pi". It can be

changed by opening the Apache2's configuration file called envvars with the nano

editor.

cd /etc/apache2/ // Opens the Apache2 directory
sudo nano envvars // Opens the configuration file envvars

In the envvars configuration file search for the lines:

export APACHE_RUN_USER=www-data

export APACHE_RUN_GROUP=www-data

Replace the text “www-data” in both lines to the text “pi” and save the envvars

configuration file. Then the Apache2 service needs to be restarted again. Now

configuration for the server is finished. The locations for the website files and the

Python scripts are located at:

/var/www/ // Location for the html files
/usr/lib/cgi-bin/ // Location for the executable scripts

The Apache2 HTTP server can be accessed from the web-browser by using the

Raspberry Pi's IP-address or alternative option is to use a localhost. The IP ad-

dress is possible to check from the terminal with the following command:

ifconfig

35

Notice that in this point the Apache2 server might not be able to take the connec-

tions which are coming outside of the home network. This can occur if a router is

not properly configured. The router might block the Apache2's communication if a

port number 80 is not assigned to be open. In this case check your router's model

and search the router specific instructions for port forwarding and follow the in-

structions.

3.5 Controlling the GPIO pins with Python

This chapter discovers the GPIO connector and how it can be used in controlling.

The first experiments with the GPIO were to light up a LED (light-emitting diode)

through the Python Shell.

The second experiment is little bit more complex and it demonstrates the control-

ling loop of an heating element. The heating element will start to heat the room

when room's temperature is getting below the pre-defined lower limit and stops

heating when the temperature in the room reaches the second pre-defined upper

limit.

3.5.1 Controlling the LED with the GPIO

This is the first experiment with the GPIO connector and it demonstrates how to

use it in controlling. This experiment requires a LED and a resistor. The resistor's

resistance can be calculated from the Ohm's law which is shown in Formula 1.

36

Defining the resistance from the Ohm's law:

 (1)

 (2)

Where

 U is voltage

 R is resistance

 I is current

The resistors above 212 Ω are suitable and can be used for lightning the LED di-

rectly from the GPIO. The wiring for the LED and resistor is shown in Figure 11.

Figure 11. LED wiring diagram

After the wirings are done the Python library called python-rpi.gpio needs to be

installed. This library allows controlling the GPIO pins. It can be installed with the

following command:

sudo apt-get install python-rpi.gpio

37

When the installation is finished, open up a Python Shell from the terminal as root

user and import the RPi.GPIO library.

import RPi.GPIO as GPIO

Next thing to do is to set the mode to use the pin numbers from the ribbon cable

board and define one of the GPIO pins to be an output. For instance the GPIO 17:

GPIO.setmode(GPIO.BCM) # Ribbon cable board
GPIO.setup(17, GPIO.OUT) # Defines the GPIO17 to be output

Now it is possible to control the GPIO17 pin to high and low. The LED will light up

when the pin 17 is set to high and when it is set to low the LED will turn off.

GPIO.output(17, GPIO.HIGH) # Turns the GPIO17 to high
GPIO.output(17, GPIO.LOW) # Turns the GPIO17 to low

3.5.2 Controlling the heating element

In this experiment two LEDs are controlled according to the current temperature in

a room. The two LEDs are presenting the states of the heating element. The green

LED is lighten up when the heating is activated in the room and the red LED is

indicating that the heating is turned off.

This experiment need two temperature limits before its working principle is rea-

sonable. The first low limit value defines lowest acceptable point for the room's

temperature when it is time to start the heating element. The second limit is the

upper limit which defines when it is time to shut down the heater.

A Python script starts as usual by loading modules which are necessary. This time

RPi.GPIO and time modules need to be loaded at the beginning of the script. The

GPIO pins 17 and 18 are used and they must be set as output pins. The pins 17

and 18 are controlling the red and green LEDs. The room's current temperature is

received in a getTemperature-function. The function's working principle is similar

than in the monitor.py script, which is discovered in the chapter 3.3.3.

38

In the beginning of a main-function the starting temperature is defined by calling

the getTemperature-function, and it is then compared to the heating limits. In case

that the starting temperature is lower than the heating on limit the green LED will

light up.

starting_temp=getTemperature(sensor_ID)
starting_temp=float(starting_temp)

 if starting_temp <= temp_limit_on:
 GPIO.output(17, GPIO.LOW) #Turn off the red LED
 GPIO.output(18, GPIO.HIGH) #Light up the green LED

The green LED is turned on as long as the room's temperature reaches the heat-

ing off limit. The room's temperature is checked in certain intervals.

while(temp < temp_limit_off):
 time.sleep(10) #Waiting time in seconds
 temp=getTemperature(sensor_ID) #check room temp
 print ("Heating on, temperature currently: %s" % temp)

3.6 Taking advantage of Raspberry Pi's camera module

This chapter is about the Pi NoIR camera module's installation to the Raspberry

Pi, and observing the built in functions which are made for it. At the end of this

chapter a Python script is created to take resized pictures. The pictures are named

with current timestamp and saved to an own directory.

3.6.1 Installing the Pi NoIR camera module

The Raspberry Pi's NoIR camera module board comes in anti-static plastic bag. It

is fast and easy to install. The camera module can be mounted to the protective

case's cover, where is reserved slot for the camera. (Figure 12) It is screwed with

two small screws, and the ribbon cable is connected to the Raspberry Pi's camera

connection port. The connection port is located between the 3.5mm audio jack and

the HDMI socket. The connection port's clip has to be pulled up before plugging

the camera module's ribbon cable on its place.

39

Figure 12. Installing the Pi NoIR camera module

After mounting the camera module, it is required to enable the camera module

from the Raspi-config configuration tool and then Raspberry Pi has to be rebooted

so that the changes will take effect.

3.6.2 Taking the first pictures and videos with the Pi NoIR camera

In Raspbian there are built in functions for the camera module. With these built in

functions it is possible to take pictures and record videos, just to try out proper

function of the camera module. One of these built in functions or commands is

called “raspistill”.

raspistill -v -o first_image.jpg

After typing the command above into terminal a preview window is started up. The

preview window is running for 5 seconds, and then Raspberry takes the picture,

and saves it to the file called first_image.jpg. Parameters -v stands for verbose

information during the run and with the -o parameter it is possible to give filename

for the output file.

40

Other simple and useful parameters which can be added into raspistill command

are:

– image width -w

– image height -h

– image quality -q

– flip the image vertically -vf

– flip the image horizontally -hf

– image rotation -rot

A complete parameter list can be found from the RaspiCam documentation.

(RaspiCam Documentation. 2013. 5-18.)

3.6.3 Creating a Python script for taking pictures

First things to consider before creating the script which takes the picture and

stores it automatically are: where the picture is stored, finding the right parameters

for the picture so that the image quality and size does not suffer too much.

After a while, some limitations for the pictures are found. The size and quality are

reduced to minimize the picture size on the hard drive. The Quality of 75% and the

resolution of 1280x720 pixels are sufficient. With these parameters the picture size

on the hard drive is around 500KB. That is good starting point, and trade-off be-

tween picture quality and available space for picture saving.

All the pictures which are taken by the Python script will be saved to the own folder

with current timestamp filename. The folder is located at /var/www/camera/.

Apache2 is hosting the folder so that the pictures are available on the website.

Creating the script starts with placing the shebang information and importing the

necessary libraries. These libraries are datetime, picamera and time.

#!/usr/bin/env/ python

import datetime
import picamera
import time

41

On the second step a function called takePicture should be defined. It does not

take any input variables. The function consists of three parts. The first part is the

general settings, where the location to the saved pictures and the filename are

defined.

def takePicture():
 location="/var/www/camera/" #Location to the files
 date=datetime.datetime.now() #Get current date
 file_name=date.strftime("%Y-%m-%d %H%M") #Format the string

The second part of the function is defining the settings for the picture size and it

starts also the preview mode.

 #configuration for the pictures
 camera = picamera.PiCamera()
 camera.resolution = (1280,720)
 camera.start_preview()

In the last part of the function, the preview mode is kept on for a certain time to

warm up the camera. After the warm up time, the function captures the picture and

saves it to the predefined location. The picture is named with current timestamp.

At the end of the script the preview mode is stopped and the camera is closed.

 time.sleep(2) #Camera warm up time

 # Capture the picture and saved it with the current date
 camera.capture("%s%s.jpg" % (location,file_name), quality=75)
 camera.stop_preview()
 camera.close()

3.7 Creating scheduled tasks with Cron

Raspbian Wheezy has powerful task scheduler, which can be used to perform

tasks automatically. It is known as Cron. Cron uses a cron table, which is also

called crontab. It is a list of commands that user wants to be performed. Cron table

takes several parameters which defines how often the task will be performed.

(Computer Hope [Ref. 16.3.2015].)

42

Cron table can be displayed and edited by typing the commands below in terminal:

crontab -l // Displays the cron table
crontab -e // Opens the cron table in editor view

An example of the cron table is shown in Table 5. The job script.py is scheduled to

be performed on June 10 at 8:30 AM. The first column in Table 5 shows the mi-

nute when the script is performed. The second and third columns defines the hour

and day of the month when the script is performed. The last two columns defines

the day of the week when the script is performed and the path to the script. Insert-

ing the scripts which have been created earlier to the cron table allows tempera-

ture monitoring and taking pictures in certain time interval.

Table 5. Example of the crontab command (The Geek Stuff [Ref. 16.3.2015].)

3.8 Creating a website interface

This chapter presents the idea how to implement Python elements and how to

create a website interface. Creating the website interface is time consuming and

challenging. This bachelor's thesis uses an open source website template which is

downloaded from dreamtemplates.com. The reason why the premade template is

used in this bachelor's thesis is that it saved time and programming work. The

template is little bit modified so that it suits better for the thesis purposes.

The website's front page consists of three main elements: a top menu, a left navi-

gation bar and a main column. On the left navigation bar, lays a feed box where

the website visitor sees current date, time when the website is updated, current

temperature, minimum and maximum temperature of the day.

Minute Hour
Day of

Month
Month Day of week Command

30 8 10 6 * /home/example/script.py

30th minute 8:00 AM
10th day of

month
June

At every

day of week
Path to the script

Example of cron table

43

The feed box is a Python script displayed in an iframe element. The iframe is an

HTML element which shows another content from a different source. In this case it

shows the MinMax.py script.

#HTML code part from a index.html
<iframe src="/cgi-bin/MinMax.py" name="Temps" marginwidth="0"
marginheight="0" align="middle" frameborder="1" height="250"
scrolling="no" width="186"></iframe>

The MinMax script consists of as many functions as there are displayed data in the

feed box. The main-function is gathering the data from other functions which re-

trieves the data from the temperatures database. Each of the functions which are

called in the main-function returns one of the displayed feeds. The main-function

also includes the HTML code and CSS styling for the feed-box element.

The pictures which are taken with the Pi NoIR camera module are stored into a

camera section. The pictures are taken every 15 minutes and named with current

timestamp.

In a monitoring section visitor sees a graphical visualization of the rooms tempera-

tures. The rooms temperature data can be observed within certain intervals. The

interval for the observed temperatures can be changed from the left navigation

bar. The first radio button group determines the time interval and the second radio

button group determines the room which is showed in a line chart. The visitor can

track the temperature data points from the curve by moving the cursor on the line.

(Figure 13)

44

The time scale can be selected within current date and the past 7 days options.

On the room selector the visitor can choose between three options. The first option

shows both rooms in the same line chart. This option is set by a default option

when the website loads. The second and third options changes between a garage

and a kitchen rooms.

Figure 13. Line chart code generated with criteria

The actual line chart code is based on the JavaScript code and it is embed in the

website. The chart code is generated by the Google charts which provides a wide

collection of charts and figures which can be used on the websites for data visuali-

zation.

Implementing the line chart code with the Google charts is simple. All it requires is

loading Google chart libraries, creating the data-table which is presented in the

45

line chart and creating a chart object with an id. The chart can be customized to its

final look with a JSFiddle tool. The last thing to be done is to create a <div> ele-

ment with the same id which was chosen in a chart object.

The Python script needs to generate this data table for the line chart. The data

table is based on the criteria which have been sent from the website. For instance,

the data table needs to be different when the observer chooses a different time

scale.

The criteria from the website are sent to the Python script by the get-method. The

criteria are then read in the Python script by using a cgi-module. With the cgi-

module it is possible to get the values from an HTML form. Below is shown an ex-

ample of the get-method passing the HTML form criteria to the Python script.

#URL code passing the criteria to the Python script
http://yourdomain/cgi-
bin/script.py?time_selector=2&room_selector=1

Figure 14. Activity diagram of the website

46

The activity diagram (Figure 14) shows how the main-function gathers the infor-

mation and creates the data-table based on the criteria. The main-function up-

dates the HTML forms, creates a div element for the chart, and finally all the in-

formation gathered in the main-function is fed into the PrintPage-function. The

PrintPage-function literally prints the new HTML page. This page is then showed

for the website visitor who is observing the temperature line chart.

3.9 Optimization

Optimization is the final part of the bachelor work. It aims to improve the efficiency

of the actual programs and to shorten the website's loading time. One of the major

optimizations is to define how many data points are presented in the temperature

line chart. At first the temperature was measured every 15 minutes. This produced

in total 672 data points in a time scale of the last seven days. (Formula 3)

Defining the number of data points:

 (3)

 (4)

Where

 M Minutes in an hour

 H Hours in a day

 Observing time scale

 How often the script is performed

A fast way to shorten the website's loading time in this situation is to lower the

number of data points by changing the time interval of temperature measurements

in Cron. Increasing the time interval to 30 minutes halves the data points to 336.

Another possibility to reduce the data points without changing the measuring inter-

val would be calculating the average temperatures in a certain time and using the

average values in the line chart's data table.

47

4 SUMMARY

The outcome of the thesis was a completely automated home surveillance system

for a low purchasing price. The capability of the Raspberry Pi was astonishing. It

has potential for many practical tasks. However, the implementation requires a lot

of knowledge and research before it can be exploited. Raspberry Pi is a capable

product for a hobbyists and people who are interested in computer science. How-

ever, basic knowledge of programming is helpful.

The thesis meets well the requirements which were given. The surveillance sys-

tem turned out to be reliable, easily accessible and, what was most important, it

was also user friendly. The graphics of the temperature data exceeded all expec-

tations.

Data logging with 1-Wire devices is made quite simple but presenting the gathered

data in a nice form can be a time consuming and complex task. The home surveil-

lance system mainly focused on temperatures but combining more elements, for

instance observing power consumption, would create a complete surveillance sys-

tem for a household.

This project was interesting in many ways and there are many features that could

still be improved. Taking the optimization of the graphical user interface even fur-

ther would fasten the website and it would require less disk space which, in this

project, was limited to the size of a micro-SD card. Because of the tight schedule

the heating element does not have visualization on the website.

In the future the household measurements will become more popular, and there-

fore, these kinds of automation applications might grow in popularity.

48

REFERENCES

Kuutti, W. & Rantala A. 2007. Linux. Jyväskylä: WSOY.

McManus, S. & Cook, M. 2013. Raspberry Pi For Dummies. Hoboken: John Wiley
& Sons, Inc.

Monk, S. 2013. Programming the Raspberry Pi: Getting Started with Python. USA:
The McGraw-Hill Companies.

Upton, E. & Halfacree G. 2012. Raspberry Pi User Guide. Chichester: John Wiley
& Sons, Inc.

Adafruit. 2015. GPIO Port. [WWW-article]. Adafruit Industries. [Ref. 25.3.2015].
Available: https://learn.adafruit.com/introducing-the-raspberry-pi-model-b-plus-
plus-differences-vs-model-b/gpio-port

Computer Hope. No date available. Linux and Unix crontab command. [WWW-
article]. Computer Hope. [Ref. 16.3.2015]. Available:
http://www.computerhope.com/unix/ucrontab.htm

DS18S20 Datasheet. 2015. [PDF-document]. Maxim Integrated. [Ref. 25.3.2015].
Available: http://datasheets.maximintegrated.com/en/ds/DS18S20.pdf

Element14. No date available. Raspberry Pi Model B+. [Website]. Element14
Community. [Ref. 22.2.2015]. Available:
http://www.element14.com/community/community/raspberry-pi/raspberry-pi-
bplus?ICID=rpi2-comp-chart

Kirk, M. 2012. Raspberry Pi Temperature Sensor Tutorial. [WWW-article]. Univer-
sity Of Cambridge, Computer Laboratory. [Ref. 22.2.2015]. Available:
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature

Linke, B. 2008. Overview of 1-Wire Technology and Its Use. [WWW-document].
Maxim Integrated. [Ref. 10.2.2015]. Available:
http://www.maximintegrated.com/en/app-notes/index.mvp/id/1796

Maxim Integrated. No date available. 1-Wire Tutorial. [Video]. Maxim Integrated.
[Ref. 15.3.2015]. Available: http://www.maximintegrated.com/en/products/1-
wire/flash/overview/

Raspberry Pi Foundation. No date available. FAQ. [Website]. Raspberry Pi Foun-
dation. [Ref. 25.3.2015]. Available: http://www.raspberrypi.org/help/faqs/

https://learn.adafruit.com/introducing-the-raspberry-pi-model-b-plus-plus-differences-vs-model-b/gpio-port
https://learn.adafruit.com/introducing-the-raspberry-pi-model-b-plus-plus-differences-vs-model-b/gpio-port
http://www.computerhope.com/unix/ucrontab.htm
http://datasheets.maximintegrated.com/en/ds/DS18S20.pdf
http://www.element14.com/community/community/raspberry-pi/raspberry-pi-bplus?ICID=rpi2-comp-chart
http://www.element14.com/community/community/raspberry-pi/raspberry-pi-bplus?ICID=rpi2-comp-chart
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature
http://www.maximintegrated.com/en/app-notes/index.mvp/id/1796
http://www.maximintegrated.com/en/products/1-wire/flash/overview/
http://www.maximintegrated.com/en/products/1-wire/flash/overview/
http://www.raspberrypi.org/help/faqs/

49

Raspberry Pi NoIR Camera Board. No date available. [Website]. Adafruit Indus-
tries. [Ref. 25.3.2015]. Available: https://www.adafruit.com/products/1567

Raspbian. No date available. FAQ. [Website]. Raspbian. [Ref. 15.2.2015]. Availa-
ble: www.raspbian.org

RaspiCam Documentation. 2013. [PDF-document]. Raspberry Pi Foundation. [Ref.
15.3.2015]. Available: http://www.raspberrypi.org/wp-
content/uploads/2013/07/RaspiCam-Documentation.pdf

SQLite. No date available. About SQLite. [Website]. SQLite. [Ref. 18.2.2015].
Available: www.sqlite.org/about.html

The Apache2 project. No date available. What is the Apache HTTP Server Pro-
ject?. [Website]. The Apache Software Foundation. [Ref. 19.2.2015]. Available:
http://httpd.apache.org

The Geek Stuff. 2009. Linux Crontab: 15 Awesome Cron Job Examples. [WWW-
article]. The Geek Stuff. [Ref. 16.3.2015]. Available:
http://www.thegeekstuff.com/2009/06/15-practical-crontab-examples

The Linux Kernel Archives. 2013. [Website]. The Linux Kernel Organization. [Ref.
26.3.2015]. Available: https://www.kernel.org

https://www.adafruit.com/products/1567
file:///I:/Downloads/www.raspbian.org
http://www.raspberrypi.org/wp-content/uploads/2013/07/RaspiCam-Documentation.pdf
http://www.raspberrypi.org/wp-content/uploads/2013/07/RaspiCam-Documentation.pdf
file:///I:/Downloads/www.sqlite.org/about.html
http://httpd.apache.org/
http://www.thegeekstuff.com/2009/06/15-practical-crontab-examples
https://www.kernel.org/

50

APPENDICES

APPENDIX 1. Frequently used commands

APPENDIX 2. Activity diagram of the website

APPENDIX 3. Monitor.py program

APPENDIX 4. Heating.py program

APPENDIX 5. Camera.py program

APPENDIX 6. MinMax.py program

APPENDIX 7. Selector.py program

1(1)

APPENDIX 1. Frequently used commands

sudo Gives the root privileges.

raspi-config Enters to the Raspi configuration menu.

startx Starts the graphical environment.

reboot Reboots the system.

shutdown Shutdown the system.

cd Change a directory.

cp Copy the file.

rm Remove the file.

mkdir Create a directory.

rmdir Remove a directory.

mv Change the name of directory.

ls Short listing of directory contents.

chown Change the file owner and group.

chmod Change the file access permissions.

ifconfig Query and configuration of TCP/IP network settings.

cat Reads the content of a file.

crontab Opens the cron table.

1 (1)

APPENDIX 2. Activity diagram of the website

1 (1)

APPENDIX 3. Monitor.py program

1(2)

APPENDIX 4. Heating.py program

2(2)

1(1)

APPENDIX 5. Camera.py program

1(2)

APPENDIX 6. MinMax.py program

2(2)

1(7)

APPENDIX 7. Selector.py program

2(7)

3(7)

4(7)

5(7)

6(7)

7(7)

