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The contemporary domain of Digital Signal Processing is in constant influx and trying to 
find new applications that will benefit the everyday life of ordinary people. In modern tech-
nology, most of the electronic processes use DSP algorithms in order to collect analogue 
information that is continually present all around us and convert it into a digital form. The 
need of understanding the basics of how these processes occur, has inspired to implement 
a DSP application for educational and testing purposes.  
 
The purpose of this thesis is to analyse the different filtering algorithms for DSP and how 
are they implemented using Matlab. Furthermore, the study attempts to apply one of these 
algorithms in a convenient way to implement a basic, user friendly, graphic equalizer. At 
the same time, the study attempts to focus on comprehensive and practical ways of learn-
ing and understanding the use of the DSP Filtering. 
 
The equalizer is implemented using Matlab and the tools that this software brings in con-
cerning the DSP area. The use of Matlab on DSP has become a standard method for stu-
dents due to its relative easiness to use and understand.  
 
The equalizer designed consists of a set of filters working together in its different own do-
main of frequencies to create the effect equivalent of an analogue equalizer. This applica-
tion allows processing input audio data, control the parameters of the filters and displaying 
the graphical representation of the filter channels on the screen of a computer running 
Matlab.  
 
The students are now able to introduce an audio signal to the application. They are also 
able to manipulate this audio signal using the equalizer functions, as well as change the 
output result of this signal audible. This will help to understand the practical way to use the 
filters and their particular behaviour. 
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Nykyaikainen digitaalisen signaalinkäsittelyn ala laajenee jatkuvasti ja pyrkii löytämään 
uusia sovelluksia, jotka hyödyttävät tavallisten ihmisten arkea. Suurin osa modernin tekno-
logian sähköisistä prosesseista käyttää DSP-algoritmeja saadakseen analogista tietoa, 
joka on jatkuvasti läsnä kaikkialla, muuntaen sen digitaaliseen muotoon. Tarve ymmärtää 
miten nämä prosessit esiintyvät, on innoittanut kehittämään DSP-sovelluksen opetus- ja 
testitarkoituksiin. 
 
Tämän työn tarkoituksena oli analysoida eri DSP:n suodatus-algoritmeja sekä sitä, miten 
ne on toteutettu käyttäen Matlabia. Lisäksi tutkimus pyrki käyttämään yhtä näistä algorit-
meista käytännöllisellä tavalla, jotta voitaisiin toteuttaa käyttäjäystävällinen ja graafinen 
taajuuskorjain. Tutkimuksessa keskityttiin kattavasti ja käytännöllisesti tapoihin oppia ja 
ymmärtää DSP-suodatuksen käyttöä. 
 
Taajuuskorjain toteutettiin Matlabin ja sen ohjelmiston DSP-työkalujen avulla. Matlabin 
käytöstä DSP:ssa on tullut vakiomenetelmä opiskelijoille johtuen sen suhteellisen helposta 
käytettävyydestä ja ymmärtävyydestä.  
 
Suunniteltu taajuuskorjain koostuu suodatin-valikoimasta, jotka työskentelevät yhdessä 
niiden eri taajuuksien toimialueilla, tarkoituksenaan luoda vaikutus vastaavaan analogi-
seen taajuuskorjaimeen. 
 
Tämä sovellus mahdollistaa sisään tulevien äänisignaalien käsittelyn, suodattimien para-
metrien hallinnan ja vastaavien graafisten suodatinkanavien esittämisen Matlab-
tietokoneen näytöllä. 
 
Opiskelijat voivat nyt ladata äänisignaalin sovellukseen. Käyttäjät pystyvät myös käsittele-
mään äänisignaalia taajuuskorjaimen toiminnoilla sekä muuttamaan signaalien ulostuloa. 
Tämä auttaa ymmärtämään käytännöllistä tapaa suodattimien käytössä sekä niiden yksi-
tyiskohtaista käyttäytymistä. 
 

Avainsanat Tietokoneavusteinen signaalinkäsittely, Matlab 
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1 Introduction 

The signals found in the surrounding environment, and world around us in general, are 

essentially presented in an analogue form.  This means that they are the representa-

tion of variations in physical quantities in any given time. These parameters include 

electricity, temperature, light, sound and pressure among others.  

 

For these “natural” signals to be suitable for microprocessors they must be converted 

into a digital form through a process called Digital Signal Processing (DSP). In order to 

accurately represent these signals they need to go through certain types of prede-

signed sampling and quantisation techniques based on different mathematical tech-

niques.  

 

Using DSP methods has numerous advantages over the traditional analogue methods, 

including greater accuracy, performance, flexibility, speed and cost. One of the com-

mon tools used together with the DSP is called Matlab.  

 

Matlab is software that is easy to learn and understand allowing students to do most of 

the operations used on DSP, with the option of plotting and seeing on screen the 

graphical representation of processed signals. Another important characteristic about 

Matlab is that it includes an option for creating specific applications that will create 

shortcuts for solving certain fixed calculations in a simpler and faster manner. Finally 

interaction with and data processing from any external device is made possible by the 

basic serial over USB communication method used with Matlab. 

 

The facilities that Matlab brings in its extensive area of engineering includes the capa-

bility of graphical implementation of functions with the GUI (Graphical User Interface) 

that make an easy, faster and more friendly way to interaction.  

 

This is very useful for studying the way we can use algorithms instead of external cir-

cuits based of discrete components and operational amplifiers on e.g. filtering process. 

The different ways in which we can apply an algorithm, can be used to define how the 

information must be processed. Also, as the result can be displayed in graphical form, 

it is possible to visualize how the signal has been changed during the process. This, in 

turn, is helpful in understanding how signals behave in the so called natural world.  
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2 Theory about Digital Signal Processing Applied to Audio Equalization 

In order to understand the extensive area of the Digital Signal Processing (DSP), it is 

necessary to have at least a basic understanding how it works. The core of the process 

deals with transforming the analogue signals into their digital equivalents. This is done 

with the help of Analogue to Digital (A/D) converters. 

 

An A/D converter is a piece of hardware that converts an analogue signal into a digital 

one. Analogue signals pass through an input and through the processing are trans-

formed into a form consisting of a combination of numbers that come through the out-

put. Another similar procedure is the Digital to Analogue (D/A) converter, which often 

takes places at the end of DSP, these two are practically impossible to achieve through 

virtual systems or computer software. Sampling, quantization and coding steps are 

required in order to make the process of conversion possible.  [1,281.] 

 

Below is an example of how process of digitalization occurs when taking a small frag-

ment of LF signal. 

 

Figure 1     Process of sampling and quantization, reprinted from Ulrich (2006) [1,282] 

 

As Figure 1 shows, sampling and quantization of the signal has transformed it into a 

string of numbers which appear at the bottom of the figure.  It is important to note that 
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the digital expression in the output used a 5 bit code, meaning that the clock pulse fre-

quency is 5 times the sampling.  

 

The analogue signal which is continuous in time and amplitude must go through a 

basic process in order to be converted in to a digital one. This is acquired by putting it 

into a binary expression using zeros (0) and ones (1), by performing an analysis or 

making the results discrete valued.  A discrete signal, which means that the signal is 

discrete in time but continuous in amplitude, is obtained through sampling. For the sig-

nal to be called digital it must be discrete in time and in amplitude; this is obtained 

through quantization, as shown in the Figure 2. Quantization is a process in which one 

sets specific values into a limit range of amplitude parameters of processed discrete 

signals. When comparing the original signal with the resulting after the process of 

quantization, we realize that the signals are not strictly identical because the presence 

of error of quantization. Error of quantization depends of the number of bits used on the 

conversion to the signal from analogue to digital and it is generally one-half of a low 

significant bit. The quantization error could be quantified by evaluating the Signal to 

Quantization Noise Ratio (SQNR) that it is in few word equal to: SQNR = 

(1.76+6.02B) where B is the data representation in binary bits. 

 

 

 

 

 

 

Figure 2. Diagram block of digitization process modified from Priyabrata (2010) [2,12]. 
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It is important to consider how to avoid distortion due to the overlapping of the frequen-

cy bands. This is also knows as aliasing. One way to avoid it is to limit the bandwidth of 

the spectrum with the help of an antialiasing filter. The theorem exposed by Nyquist-

Shanon, consist of a low pass filter (antialiasing filter) that confirms that the signal 

bandwidth is smaller than the half of the sampling frequency (Fs). It would be consider-

ably more convenient to verify this before the signal has gone through the process of 

sampling.  

The Shanon theorem has the following mathematical notation:  

 

𝑥(𝑡) = ∑ 𝑥(𝑘𝑇) sin 𝑐 (
𝜋

𝑇
(𝑡 − 𝑘𝑇))𝑘∈𝑍  .    (1) 

 

Where k is an integer and T is the sampling period. 

 

2.1 Simple Signal Processing Operations 

 

There are three basic operations when dealing with signals that apply to digital filters: 

delay, scaling and addition. These operations are combined and implemented in order 

to obtain the desired result signal at the output of the process. The delay operation, 

which generates a duplicate of the original signal but delayed in time to, is implemented 

first. So, if : x(t), then y(t) = x(t-to).  

Scaling on the other hand, is a simple multiplication of the given signal by a constant 

“a”, so y(t)= ax(t).  

Finally the addition is the operation in which two or more signals join together forming a 

new signal: y(t)=x1(t)+x2(t). [4, 4.] 

 

2.2 Digital Filters 

 

According to Priyabrata, the process of selecting frequencies or range of frequencies in 

a given signal and the attenuation of the frequency components outside the chosen 

range is called filtering. [2, 25].  In general the signals we receive are mixed with other 

kinds of undesired signals called noise, so the filter is a discrete processor in which the 

signal desired at output is the result of the signal with the noise attenuated [3,103].  

The frequency range allowed to pass through the filter is called Pass Band, and the 
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range where the signal is cancelled is the Stop Band. The separation area between 

passband and stop band is called Cut-off frequency.   

 

Digital filtering is one of the most powerful tools in DSP. The characteristics of a digital 

filter can easily be changed under software control and this characteristic brings flexibil-

ity and stability to its use. DSP filters are easy to simulate and design and they don’t 

drift due to component modifications. There is available a wide array of adaptive filters 

applications, including echo and noise cancellation, speak recognition and etc. There 

are four elementary filters that will be considered here, and a brief description of each 

of them is available on the table below. 

 

Table 1.    Elementary filters description 

Filter Name Simplest Math. 

Expression 

Description Graph. representa-

tion 

Low Pass 

Filter (LPF) 

1

2
(1 + 𝑧−1) 

allow low-frequency compo-

nents of ƒp. 

 

High Pass 

Filter (HPF) 

1

2
(1 − 𝑧−1) 

allow high-frequency com-

ponents of ƒp. 

 

Band Pass 

Filter (BPF) 

1

2
(1 − 𝑧−2) 

pass frequencies inside a 

specific range. 

 

Band Stop 

Filter (BSF) 

1

2
(1 + 𝑧−2) 

attenuate frequencies inside 

a specific range 

 

*All Pass 

Filter (APF) 

𝑧−𝑁 pass all frequencies uniform-

ly in gain and change the 

phase relationship. 

 

 

In the Table 1, ƒp represents the passband edge frequency. In the band pass filter, 

there is two band pass edge frequencies where ƒp1< ƒp2. All the frequencies between 

this ranges are allowed and all band stop frequencies (ƒs.) above ƒs1 and below ƒs2. are 

blocked. The band stop filter, on the other hand, allows all the frequencies above ƒp2 

and below ƒp1 and blocks all those which are inside ƒs1 and ƒp2. 

 

 

ω 

|H(ω)| 

ω 

|H(ω)| 

ω 

|H(ω)| 

ω 

|H(ω)| 
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2.2.1 FIR and IIR Digital Filters  

 

Digital signal filters are divided into two fundamental types based on their impulse re-

sponse.  

 

The Finite Impulse Response (FIR) filter has an impulse response in which the number 

of non-zero samples are finite. It is represented in terms of the phase response, also 

linear and time invariance. It is a filter of easy design and considerable computational 

intensivity. It is a feed-forward filter without feedback. Each output sample is a sum of 

weighted input samples. The mathematical representation of a FIR is the convolution 

of: 

 

𝑦(𝑘) = ℎ(𝑘) ∗ 𝑥(𝑘);     (2) 

 

𝑦(𝑘) = ∑ ℎ(𝑚)𝑥(𝑘 − 𝑚);

𝑁−1

𝑚=0

                                                                                              (3) 

       

So, the transfer function is given by: 

 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
= ℎ0 + ℎ1𝑧

−1 + ⋯+ ℎ𝑁−1𝑧
𝑁−1.   (4) 

 

The FIR filter has a finite impulse response, and due to this it is considered stable. The 

stability is guaranteed because the poles of the system are located inside of the unit 

circle on the z-domain. In other words, the poles of the z-domain transfer function are 

located in the origin [5,124].  
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Re(z)

Im
(z

)

Pole-Zero 
Diagram

n

h(n)

0 1 2

1

Impulse 
Response

 

 

Figure 3.    Impulse Response and stability characteristics of an FIR filter 

 

In the left side of the Figure 3 is the basic given finite impulse response and on the right 

side the unit circle with the real and imaginary axes with the poles (X) and zeros (O) 

inside.   

 

The Figure 4 gathered from Markovic and Brodersen (2012) [5,117] shows an example 

of the architecture implemented for an FIR filter, where the output signal requires N 

number of multiply-accumulates for each output. 

  

  

h(0) h(1)... ...h(N-2) h(N-1) y(n)

x(n) x(n-1) x(n-N+2) x(n-N+1)

+

Z-1 Z-1 Z-1

 
 
Figure 4. Example of an FIR filter structure, gathered from Markovic and Brodersen              

(2012) [5,117]  
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A series of additions and multiplications represent the N-tap finite impulse response 

function.    

 

The Infinite Impulse Response (IIR) filter is generally based on the idea of classical 

analogue filters. It has an impulse response in which the number of non-zeros samples 

are infinite. IIR filter is recursive: this means that it presents feedback and that the out-

put is based on the combination of feed-forward inputs and feedback outputs.  

 

𝑦(𝑘) = ∑ ℎ(𝑚)𝑥(𝑘 − 𝑚)

𝑁−1

𝑚=0

;                                                                                             (5) 

𝑦(𝑘) = ∑ 𝑎𝑚𝑥(𝑘 − 𝑚) − ∑ 𝑏𝑚𝑦(𝑘 − 𝑚)

𝑀

𝑚=1

𝑁

𝑚=0

;                                                            (6) 

 

𝐻(𝑧) =
∑ 𝑎𝑚𝑧−𝑚𝑁

𝑚=0

1 + ∑ 𝑏𝑚𝑧−𝑚𝑀
𝑚=1

;                                                                                               (7) 

 

The z-transform of IIR is: 

 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝑎0 + 𝑎1𝑧
−1 + ⋯+ 𝑎𝑁𝑧−𝑁

1 + 𝑏1𝑧−1 − ⋯− 𝑏𝑀𝑧−𝑀
;                                                                (8) 

 

The architecture of the IIR transfer function in the z-domain could be represented as 

shown in the Figure 5 below. 

 

Z-1

+

Z-1

+

Z-1

+

Z-1

+

x(n) y(n)

k

a1 b1

aN-1 bM-1
 

Figure 5.    An IIR Architecture, modified from Markovic and Brodersen [5,125] 
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As shown in the Figure 5 modified from Markovic and Brodersen (2012) [5,125], the left 

side represents the feed-forward part of the IIR filter characteristic. It is also the numer-

ator represented in H(z). The right section on the other hand represents the feedback 

property of IIR. This is also the denominator in the z-domain transfer function [6, 91-

108]. 

  

IIR filters are considered computationaly efficient and non-linear. The stability can be 

checked by applying the principle of stability on the equation (9) below: 

 

∑ ℎ(𝑘) =
1 − 𝑎𝑁+1

1 − 𝑎
; 𝑎𝑛𝑑 

𝑁 ↑ ∞ 

|𝑎| < 1
−→ {

𝑖𝑓 𝑎 < 1 → 𝑠𝑡𝑎𝑏𝑙𝑒
𝑖𝑓 𝑎 > 1 → 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

} ;                             (9)

𝑁

𝑘=0

 

 

2.3 Dealing with DSP in the Matlab world 

 

Matlab has become an important tool in the DSP area. This is due to the fact that it can 

involve an extensive number of operations without a deep knowledge of programming 

or high elaborated commands on the command window. A vast data base provides a 

wide range of information, just with the help of “help” –command. For example when 

working with signals it is important to have a background knowledge about a process 

called the Fourier Transform. The Fourier Transforms are easily executed with the help 

of fft command in order to calculate the Discrete Fourier Transform (DFT) on the 

analysed signals. An example of the use of fft command line is on the Appendix 1, 

modified from Engelberg’s (2008) [7, 48]. The respective graphical results elaborated 

on Matlab and transformed with the command “print -djpeg comp.jpg” are 

shown in the Figure 6. 
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Figure 6     Construction of a signal, Fourier analysis and Discrete Fourier Transform 

 

We can observe the comparison of the signal y(t)=e^-|t| and the Fourier transform 

Y(f)=2/[(2*pi*F)2+2].  

 

 With Matlab it is possible to check the stability of a digital system by analysing the z-

plane and the relation between poles and zeros inside the unit circle, where coordi-

nates are in the real and imaginary planes corresponding to x- and y axes. 

 

 A normal way to find the zeros and poles of a linear system is demonstrated by the 

following mathematical expression: 

 

𝐻(𝑧) =
𝑏0+𝑏1𝑧−1+⋯+𝑏𝑁−1𝑧−(𝑁−1)

1+𝑎1𝑧−1+⋯+𝑎𝑀𝑧−(𝑀−1) ;    (10) 

 

𝐻(𝑧) = 𝑧𝑀−𝑁 𝑏0𝑧𝑁−1+𝑏1𝑧𝑁−2+⋯+𝑏𝑁−1

𝑧𝑀−1+𝑎1𝑧𝑀−2+⋯+𝑎𝑀−1
.   (11) 

 



11 

 

For example for represent graphically the zeros and poles on the z-plane is possible 

with:  

 

b = [0.2  0.3  0.4  0.5  0.6]; 

a = [1  -0.3  0.5  0.07  0.9]; 

zeros = roots(b) 

poles = roots(a) 

 

The result is represented as shown in listing 1. 

 

zeros = 

 

   0.3369 + 1.2587i 

   0.3369 - 1.2587i 

  -1.0869 + 0.7653i 

  -1.0869 - 0.7653i 

poles = 

 

   0.6757 + 0.8080i 

   0.6757 - 0.8080i 

  -0.5257 + 0.7314i 

  -0.5257 - 0.7314i 

 

Listing 1. Poles and zeros values on Matlab command prompt for an unstable filtering 

 

In the figure 7, on the left side of the figure we observe the corresponding position of 

the zeros and two poles in the region of convergence; as well as two more poles inside 

the unite circle on the pole-zero plot. This represents an unstable system.  But on the 

right side of the same figure, numerator and denominator are given different values for 

the transfer function: the graphic shows that the poles and zeros inside the unit circle. 

This kind of a system is considered stable. 
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Listing 2 below portrays the values of the transfer function corresponding to the b part 

of the figure 7.   

 

d = [0.1 0.2 0.3 0.2 0.1]; 

c = [0.9  -0.1  0.5  0.02  0.04]; 

zeros = roots(d) 

poles = roots(c) 

zplane (d,c) 

 

zeros = 

 

  -0.5000 + 0.8660i 

  -0.5000 - 0.8660i 

  -0.5000 + 0.8660i 

  -0.5000 - 0.8660i 

 

poles = 

 

   0.0976 + 0.6854i 

   0.0976 - 0.6854i 

  -0.0421 + 0.3016i 

  -0.0421 - 0.3016i 

 

Listing 2.  Poles and zeros values on Matlab command prompt for an stable filtering 

 

2.3.1 Digital Filtering on Matlab 

 

The theoretical part concerning digital signal filtering is very broad and rather compli-

cated in many parts and cases. For this reason some parts are occasionally supported 

with practical examples. 
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Figure 7.  The pole-zero plot 
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As mentioned before, there are four elementary filters: Low-pass, high-pass, band pass 

and band stop. These four can be used inside the two groups of the fundamental filters 

according to their impulse response. 

The filter order is designed with “N” and it determines if the filter is a low-order or a 

high-order filter and in Matlab this value place a cutoff frequency value.   

 

Let’s take some examples from the Matlab documentation. If we want to implement a 

low pass and high pass FIR filter of order 10 with a -6dB frequency of 9.6 kHz and a 

sampling frequency of 48 kHz, the command line comes as shown below in linting 3: 

 

 

d=fdesign.lowpass('N,Fc',10,9600,48000); 

designmethods(d) 

Hd = design(d); 

% Display filter magnitude response 

fvtool(Hd); 

 

_____________ 

 

d=fdesign.highpass('N,Fc',10,9600,48000); 

designmethods(d) 

Hd = design(d); 

% Display filter magnitude response 

fvtool(Hd); 

 

 

Listing 3. FIR low-pass and high pass filter implementation in Matlab 
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Executing the line commands on Listing above, we get the plot in the frequency domain 

as shown in the figure 8 below. 

 
 

In the next example in listing 4, we consider band pass and band stop filters using 

sampling frequency at 10 kHz, and two -3dB frequencies of 1 kHz and 2 kHz. There 

are a 10 order filter. 

 

d = fdesign.bandpass('N,F3dB1,F3dB2',10,1e3,2e3,1e4); 

Hd = design(d,'butter'); 

fvtool(Hd)   

 

------------- 

 

d = fdesign.bandstop('N,F3dB1,F3dB2',10,1e3,2e3,1e4); 

Hd = design(d,'butter'); 

fvtool(Hd); 

Hd = design(d,'butter'); 

Listing 4. IIR band pass and band stop filter implementation on Matlab.  
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Figure 8. Low pass and high pass filter designed in FIR window method 
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Again, executing the line commands on Listing 4 above, we get the plot in the frequen-

cy domain as shown in the figure below. 

 

Matlab also allows to implement different filters including butterworth (butter), che-

bychev (cheby1, chevy2) as well as elliptic (ellip) filters, that can be both, ana-

logue or digital [6,57].  

 

Through applying these concepts we can give an example about filtering a sinusoidal 

signal with noise injected in it as illustrated in the Figure 10 below. The signal was gen-

erated following the instructions series below in listing 5: 

 

x = cos(2*pi*12*[0:0.001:1.23]); 

x(end) = []; 

[b a] = butter(2,[0.6 0.7],'bandpass'); 

filtered_noise = filter(b,a,randn(1, length(x)*2)); 

 

x = (x + 0.5*filtered_noise(500:500+length(x)-1))/length(x)*2; 

 

 

Listing 5. Implementation of a noisy signal 
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Figure 9. Band pass and band stop filter representation. 
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As we can observe in the Figure 10, result of the execution of the commands above, is 

the representation of a sinusoidal wave form with a clearly presence of interference.  

 

 

 

Figure 10.  Noisy signal to be filtered 

 

In order to have a better perspective on how the noise affects the signal in the figure 10 

above, we could plot the magnitude spectrum of the signal considering its frequency 

domain. 

 

X_mags = abs(fft(x)); 

figure(10) 

plot(X_mags) 

xlabel('DFT Bins') 

ylabel('Magnitude') 

 

Listing 6. Magnitude spectrum implementation of the noisy signal 
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As the result of applying the command lines above in listing 6, Matlab plots the graphic 

of the magnitude spectrum of the corrupted signal, in which it is possible to distinguish 

the sinusoidal signal and the noise in a separate range in the DFT scale. In the figure 

11 below there is two larger peaks that presents the main signal and two different sig-

nals between 300 and 900 approximately that represents the noise. 

 

 

Figure 11. Magnitude spectrum of a noisy signal 

 

The first peak from 0 to 0.1 in the figure 11 illustrates the sinusoidal part of the signal 

while the part between 300 to 500 (DFT Bins) represents the noise we want to cancel 

or attenuate.  Next let’s plot the first half of the DFT in which the normalised frequency 

axes is represented.   

 

num_bins = length(X_mags); 

plot([0:1/(num_bins/2 -1):1], X_mags(1:num_bins/2)) 

xlabel('Normalised frequency (\pi rads/sample)') 

ylabel('Magnitude') 

 

Listing 7. DFT first half plotting sentence 
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Applying the commands cited in the listing 7, Matlab plots the results as shown in figure 

12 in which just an specific area of the DBT between cero to approximately 600  is tak-

ing in to consideration. 

  

Figure 12 is a representation of the first peak and the noise in a closer form, so this 

way we can appreciate this two main parameters for the next steps on filtering. 

 

 
Figure 12. Normalized frequency plot. Signal and noise representation. 
 
 
 

The units for normalized frequency in Matlab is given by π radians per sample (π 

rads/sample).  Here the noise occupies the range between 0.5 to 0.8 units of the nor-

malized frequency. The information these values gives us help us to design the filter 

that is ideal for reducing the unwanted noise on the signal. 

 

While there are many different filtering techniques, here it is shown how to design a 

filter using the butterworth design. Firstly, we have to introduce the line: 

 

 [b a] = butter(2, 0.3, 'low'); 
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Where the first value corresponds with the order of the filter, the second parameter is 

the cutoff frequency and the last indicates the type of filter to be implemented.  As a 

result we receive back three coefficients for: 

 
 
 b = 0.1311   0.2622   0.1311;  

a = 1.0000  -0.7478  0.2722; 

 
 
With these values it is possible make the diagram of the filter following the common 

architecture of a IIR filter. 

 

 

 
Figure 13.  IIR Low pass filter diagram 
 
 
The figure 13 above illustrates the recursive implementation of a low-pass filter with the 

respective coefficients of “b” and “a”. 
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In the magnitude spectrum graphic below, the red curve represents a second order low 

pass filter where a 0.3 cutoff value corresponds to ~0.7 in the magnitude axes which in 

turn is the correspondent to -3dB. 

 

 
Figure 14.  A comparison of three different filters. 
 
 
As the figure 14 shows, this kind of filter leads only to a small decrease because the 

range of noise is within its admitted signal region. 

 

The next example is also a low pass filter but with a higher order of 20. Here we can 

see that the frequency drop at the same cutoff frequency is sharper. It thus leaves the 

noise region outside of the admissible signal zone.  

 

A band stop filter is designed to cancel the region between 0.5 and 0.8 so that we can 

denominate the rejected band region. In this case a small amount of noise is still pre-

sent in the output. The reason for this is that there is a small amount of noise still pre-

sent before and after the rejected band region that can not be totally eliminated. 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalised frequency ( rads/sample)

M
a
g
n
it
u
d
e

 

 

Noisy Signal

Secon order Low pass filter 

High order low pass filter

Band stop filter



21 

 

A more accurate filter could be designed by giving even higher order value (e.g. 30). 

This would, however, involve a compromise in its efficiency as the processor needs 

more resources in order to make sampling calculations and/or to assign two different 

normalized values for frequencies. 

 

The figure 15 below shows how the signal with noise looks like after the different steps 

of filtering mentioned above.  

 

 

 
Figure 15.  A comparison of the filtered signals using low pass and band stop filters 

 
 

As mentioned earlier, the figure 15 demonstrates that the output signal resulting from a 

high order low pass filter is much cleaner in comparison with the second order one. 
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The other two filtering design techniques are called chebychev and elliptical. Their 

graphical representations for magnitude spectrum are shown in the figure below.

 

Figure 16.  Comparison of three different filtering design techniques. 
 

All the instructions for Matlab regarding the design techniques and the analysis before 

are included in the Appendix 2. [7.] 

 

2.3.2 DSP Algorithm Implementation 

 

In both recursive and non-recursive DSP, the algorithm implementation is based on 

DFT or differential equation. These algorithms would be used in two specific areas: in 

filtering algorithms and in signal analysis algorithms. Their implementation is possible 

by using hardware, firmware or software. This thesis focuses on the analysis of filtering 

algorithms implemented in software (Matlab). 

 

In order to avoid certain problems in non-computable structures on a given transfer 

function, some matrix representations must be considered. As is the case mentioned 

by Mitra [4,600], if analysing a cascaded digital filter structure by giving the values di-

rectly in the order they appear, the result will not appear to be computable to the sys-
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tem. Thus, it will be necessary to make some variations into the order in which the co-

efficients are implemented.  

 

The figure 17 below represent the diagram of a cascaded digital filter structure modified 

from Mitra. It will help to understand how the computability condition works. 

 

 

 

Figure 17.  Cascaded filter structure 

 

As the figure 17 above shows, there are certain values from W1 to W5 and correspond-

ing equations are shown in the listing 8. 

 

 

Eq.in frequency domain Eq. in Time Domain 

W1(z) = X(z) - αW5(z), 

W2(z) = W1(z) – δW3(z), 

W3(z) = (z)-1 – W2(z), 

W4(z) = W3(z) + εW2(z), 

W5(z) = (z)-1 W4(z), 

Y(z) = β(z) + γW5(z), 

w1[n] = x[n] – α w5[n], 

w2[n] = w1[n] – δw3[n], 

w3[n] =w 2[n – 1], 

w4[n] = w3[n] – εw2[n], 

w5[n] = w4[n – 1], 

y[n] = β [n] – γw5[n], 

 

Listing 8. Description of a non-computational algorithm. 

  



24 

 

 

 

[
 
 
 
 
 
𝑤1[𝑛]
𝑤2[𝑛]

𝑤3[𝑛]
𝑤4[𝑛]
𝑤5[𝑛]
𝑦[𝑛] ]

 
 
 
 
 

=

[
 
 
 
 
 
𝑥[𝑛]
0
0
0
0
0 ]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 0
1 0 −𝛿
0 0 0

0 −𝛼 0
0 0 0
0 0 0

0 𝜀 1
0 0 0
𝛽 0 0

0 0 0
0 0 0
0 𝛾 0 ]

 
 
 
 
 

[
 
 
 
 
 
𝑤1[𝑛]
𝑤2[𝑛]

𝑤3[𝑛]
𝑤4[𝑛]
𝑤5[𝑛]
𝑦[𝑛] ]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 0
0 0 0
0 1 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
1 0 0
0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝑤1[𝑛 − 1]
𝑤2[𝑛 − 1]

𝑤3[𝑛 − 1]
𝑤4[𝑛 − 1]
𝑤5[𝑛 − 1]
𝑦[𝑛 − 1] ]

 
 
 
 
 

 

 

As can be seen from the example above, whether algorithm is computational or not, 

can be checked by taking into consideration the diagonal in the matrix. If the values of 

the diagonal – and also above the diagonal – are not zeros, the presence of delay­free 

loops makes the structure non computable. 

 

Following this pattern, re­ordering results in a matrix representation, in which the diag-

onal, and the elements above the diagonal, are zeros:  

w3[n]; w5[n]; w1[n]; w2[n]; w4[n]; y[n]. 

 

 

[
 
 
 
 
 
𝑤3[𝑛]
𝑤5[𝑛]
𝑤1[𝑛]
𝑤2[𝑛]

𝑤4[𝑛]
𝑦[𝑛] ]

 
 
 
 
 

=

[
 
 
 
 
 

0
0

𝑥[𝑛]
0
0
0 ]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 0
0 0 0
0 −𝛼 0

0 0 0
0 0 0
0 0 0

−𝛿 0 1
1 0 0
0 𝛾 𝛽

0 0 0
𝜀 0 0
0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝑤1[𝑛]
𝑤2[𝑛]
𝑤3[𝑛]
𝑤4[𝑛]

𝑤5[𝑛]
𝑦[𝑛] ]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0

1 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝑤3[𝑛 − 1]
𝑤5[𝑛 − 1]
𝑤1[𝑛 − 1]
𝑤2[𝑛 − 1]

𝑤4[𝑛 − 1]
𝑦[𝑛 − 1] ]

 
 
 
 
 

 

 

Before the transfer function process, it is also important to check the structure in order 

to avoid errors. 

This is possible through a filter analysis with the support of Simulink library and the 

signal processing toolbox. The instruction can be implemented in command window or 

by designing a piece of program in the command editor. 

 

Through Mitra’s [4,612] example, the impulse response samples implemented on Sim-

ulink will be displayed and the input and output figure sequence of the given transfer 

function using instructions on command window. 

 

𝐻(𝑧) =
0.0662272(1+3𝑧−1+3𝑧−2+𝑧−3)

1−0.93561423𝑧−1−0.10159107
 ;    (12) 
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For a filter implementation based on the Simulink technique, it is necessary to insert 

the values of the above equation to the corresponding places in the window as shown 

in the figure 18 below. After the process it is possible to choose between different plot-

ting options and display extra information about the implemented filter.  

 

 

 

 

The listing 10 below illustrates the structure of a lowpass IIR filter implemented on 

command line in which the first part corresponds to the random signal and the second 

part is the filtered signal. 

 

% Illustration of Filtering by a Lowpass IIR Filter 

% Generate the input sequence 

k = 1:51; 

w1 = 0.8*pi; w2 = 0.1*pi; 

A = 1.5; B = 2.0; 

x1 = A*cos(w1*(k-1)); x2 = B*cos(w2*(k-1)); 

x = x1+x2; 

% Generate the output sequence by filtering the input 

si = [0 0 0]; 

num = 0.0662272*[1 3 3 1]; 
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den = [1 -0.9356142 0.5671269 -0.10159107]; 

y = filter(num,den,x,si); 

% Plot the input and the output sequences 

subplot(2,1,1); 

stem(k-1,x); axis([0 50 -4 4]); 

xlabel('Time index n'); ylabel('Amplitude'); 

title('Input sequence'); 

subplot(2,1,2); 

stem(k-1,y); axis([0 50 -4 4]); 

xlabel('Time index n'); ylabel('Amplitude'); 

title('Output sequence'); 

 

Listing 10. IIR Low pass filter 

  

The behaviour of the low pass IIR filter implemented following the command line tech-

nique on the listing 10 gathered from Matlab help documentation, can be interpreted by 

observing the figure 19 below. Here the output signal is the result of filtering process of 

an “imperfect” input signal. 
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Figure 19.  Input and output IIR filtering sequence, Matlab plot. 

  

2.4 Audio Equalization (EQ) 

 

Audio equalizers (EQ) are commonly used to adding, removing or modifying frequen-

cies from specific audio signals. An equalizer is a system designed to change the char-

acteristics of the tone of a given input audio signal on purpose by modifying the fre-

quency response through an assortment of filters until the desired frequency spectrum 

is achieved. Two most important applications are corrective and enhancive EQ’s. 

 

Corrective EQ is commonly used for restoring sound, improving frequency response in 

halls or closed rooms, compensating bad recording and so on. Enhancive EQ is used 

for making the sound different from the original by making some “effects” or just im-

proving the sound quality according to the situational conditions. 

 

In technical terms, a “curve” is an element capable of assigning gain to a certain fre-

quency ranges in both directions: referring as a boost when the gain is in positive direc-

tion or as a cut or attenuation when the gain is in the negative direction. This thesis 
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considers the study of two types of curves that both determine the type of equalizer: 

shelving-curve and bell-curve that will be presented below. 

 

In the figure 20 below, a shelving-curve which attenuates or increases frequencies be-

low or above a specific frequency can be observed.   

 

 

Figure 20.  Low and High Shelving Curve 

 

The figure 20 shows the different possibilities of defining a shelving curve. The curves 

on the left hand side of the figure 20 boost or attenuate the frequencies below a given 

point in the frequency-range and are thus referred as Low Shelf curve. On the contrary, 

the High Shelf curve boosts or attenuates frequencies above the given reference point 

and can be observed on the right hand side of the figure 20. 

 

The second type of curve that also determines the type of equalizer is called Bell curve. 

Characteristic to this kind of curve is that it will boost or cut a frequency range around a 

pointed center frequency as illustrate the figure 21, where the center frequency has the 

most effect. It is called Bell curve because it decreases towards the outer frequencies 

and thus gives the EQ curve a form of a bell. 

 



29 

 

 

Figure 21.  Representation of a Bell curve 

 

2.4.1 Types of Equalizers 

 

The Q represents the bandwidth of the frequency-band. This is the relation between 

the center frequency (cf) and the bandwidth (bw), and some manufacturers also call it 

“the Quality”. The Q parameter is present in every EQ types but it could be equal to 

one, in this case the Q parameter does not taking in to consideration. 

 

𝑄 =  
𝑐𝑓 

𝑏𝑤 
.      (13) 

 

A low value of Q means a wide bandwidth and a high value of Q indicates the presence 

of a narrow bandwidth.  

The Gain parameter (boost/cut) amplifies or filters the selected frequencies in the band. 

The gain can cut or attenuate frequencies to -24dB and/or amplify or boost frequencies 

up to +24dB. Digital Equalizers offer higher boost/cut parameters. 

 

Here is a first a brief description of different types of equalizers based on their curves 

and later a deeper analysis on the graphic equalizer.  

 

 

 Fixed Frequency EQ: consists on a set of filters with only one control on the 

gain parameter. This can be either shelving or bell. 
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 Sweepable EQ: This can be also shelving or bell with controls of two parame-

ters, the frequency and the gain. 

 

 Parametric EQ:  This is one of the more flexible equalizers. It has three control 

parameters that allows it to 1) sweep some specific frequencies on the audio 

band, 2) control the gain of the audio on a range of frequencies; and 3) control 

the bandwidth (Q). The frequency parameter sets the frequency for the EQ-

band often between 20 – 20000 Hz, at a center point of a required bell-curve 

and/or at a start point frequency of the shelve curve. 

 

 

 Graphical EQ: This is an audio control that allows the user to change the gain of 

the specific selected frequency bands based on the visual corresponding fre-

quency diagram representation.  

 

There are three types of filters that are more used included on the section of parametric 

equalizers: Bell filter, shelf filter and pass filter. The Bell filter consist of a bandpass 

filter with variable parameters on center frequency (20 – 20000 Hz), gain (±15 dB) and 

Q (0.5 – 3). Shelf filters include for example treble and bass controls, and like was 

mentioned earlier in section 2.4, with the help of this filter it is possible to control the 

gain and cutoff frequency over a range of frequencies (high or low). Pass filters on the 

other hand are used for noise reduction: they are basically low or high pass filters with 

fixed cutoff frequencies. [8, 734.] 

  

2.4.2 Graphic Equalization 

 

The graphic equalizers are mainly formed of a series of bell shaped equalization bands 

fixed in frequency. This kind of EQ is controlled with a fader for boost or cut the fixed 

frequencies. 

The fixed frequency selection of the graphic EQ is often regulated by a standard (SI-

standard) for example either 8, 10, 15 or 31 bands. 

 

Table 2. Possible 10 – Bands Graphic Equalizer frequencies 

10 – Bands Graphical Equalizer frequencies in Hertz: 

31 63 125 250 500 1000 2000 4000 8000 16000 
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The ten bands equalizer mentioned on table 2 above will be considered for the imple-

mentation of an equalizer with less bands. As table 2 shows there are ten possible 

bands with different center frequencies. For the implementation of a 5-bands EQ, it is 

possible to consider the values of frequencies between the center frequencies of the 

mentioned 10-bands. Another variation could be taking the first and last frequencies for 

shelving filter controls (bass and treble controls) and 8-bands for bell filtering. 

 

The figure 22 below illustrates the common structure of filtering with a set of five bell 

filters controlling random fixed frequency bands. 

 

 

Figure 22.  5-Bands Graphic EQ representation. 

  

2.4.3 EQ Analogue vs. EQ Digital 

 

In the analogue frame the characteristics of frequency, gain and Q-factor are controlled 

interactively by the user with the help of variable resistors. Analogue EQ’s are divided 

into passive and active ones based on their component types. The Passive equalizers 

use passive electronic components such as capacitors and inductors, and basically 

works by attenuating all the frequencies by a certain amount, except for those frequen-

cies needing to be boosted which are less attenuated. The boost process done by a 
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second amplification step that adds gain evenly to the signal. The selected frequency is 

now boosted because it was not evenly attenuated. This kind of equalizers produce a 

pleasant sound with very low noise levels. The drawback is, that it is heavy and often 

expensive.  

 

Active equalizers use active electronic components and the boosting process is done 

by a feedback loop: sending the selected frequency back to the amplifier and creating 

phasing. Active EQ is relatively low cost, lighter in weight but still creates an acceptable 

levels of noise. 

 

The digital Equalizer parameters are controlled by the modification of the characteris-

tics of the digital filters coefficients. They present high precision and have the capability 

of achieving more boost and cut. In other words, they generate less noise and phase-

shift than the analogue ones. 

 

According to Ifeachor and Jervis [8, 735], the process of equalization can be done by 

using basic filters described earlier. Generally their use and take into account the theo-

ry concerning Butterworth and Chebyshev filters. Their variations in the s-plane transfer 

function are described below: 

 

𝐻(𝑠) =
𝑠2+𝐴𝑠+𝜔𝑛

2

𝑠2+𝐵𝑠+𝜔𝑛
2 ;      (14) 

 

𝐻(𝑠) =
𝑠2+2𝐴𝑠+𝐴2

𝑠2+2𝐵𝑠+𝐵2 ;      (15) 

 

𝐻(𝑠) =
𝐴2𝑠2+2𝐴𝜔𝑛

2𝑠+𝜔𝑛
4

𝐵2𝑠2+2𝐵𝜔𝑛
2𝑠+𝜔𝑛

4 ;    (16) 

 

Where 

 

𝐴 =
1

(𝑅 + 𝑟)𝐶
(3 −

1

𝐾
) ; 
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𝐵 =
1

(𝑅 + 𝑟)𝐶
(3 +

1

𝐾
) ; 

 

In the above equations the following parameters are described:  R and C correspond to 

constant values, r is the frequency shifting, and K is the boost/cut parameter. 

 

In order to implement the digital equivalent equalization, the s-planes transform func-

tion must be changed to the corresponding z-transfer function. 

 

𝐻(𝑧) =
𝑎𝑧2+𝑏𝑧+𝑐

𝑑𝑧2+𝑒𝑧+𝑓
;     (16) 

 

Where 

 

𝑎 = 𝑃2 + 𝐴𝑃 + 𝜔𝑛
2;   

𝑏 = 2𝜔𝑛
2 − 2𝑃2; 

𝑐 = 𝑃2 − 𝐴𝑃 + 𝜔𝑛
2; 

𝑑 = 𝑃2 + 𝐵𝑃 + 𝜔𝑛
2; 

𝑒 = 2𝜔𝑛
2 − 2𝑃2; 

𝑓 = 𝑃2 − 𝐵𝑃 + 𝜔𝑛
2; 

𝑃 =
𝜔𝑛

𝜔𝑝
;  𝜔𝑝 =

2

𝑇
tan (

𝜔𝑛𝑇

2
) ; 

 

 

3 Audio Equalization Using Matlab 

 

The implementation of the EQ for this thesis is based on the idea to create a tool to 

support the theory of DSP. Thus, simplicity is a primary factor. Another important issue 

to take into consideration is that the EQ is focused on educational proposes, therefore 

some modifications are done to the behaviour that a “normal” EQ has.    

 

The number of bands selected for the EQ, is based on some of the most used audio 

applications found on the common smart telephones and/or tablets on the market. 

These common audio applications use a 5-band EQ, with range of frequencies from 60 
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– 14000 Hz and gain control of ±15dB. These will be taken as a reference for the de-

sign and implementation of the EQ. 

 

The interface of the EQ was designed with the GUI Matlab tool in order to get a friendly 

and more comprehensive interaction with the EQ controls, as well as trying to introduce 

a user friendly way to make changes in the filter parameters. The EQ window shows 

five controllers which enable to set the EQ filter values and through them to modify the 

characteristics of the sound. The changes in the quality will be appreciated and clearly 

heard when playing the modified sound through the speakers. 

 

The values of the analogue transfer function H(s) and its corresponding z-domain 

transfer function H(z) are based on the Chebyshev filter specifications. The Chebyshev 

II is recommended for use due to the practical characteristics it has in terms getting the 

correspondent analogue transfer functions H(s) [8, 395.] and primordially because the 

filter is without a presence of passband ripple. 

 

The Chebyshev II filter in Matlab generates an IIR digital filter with extra features de-

pending of the arguments given on the syntax as cited below. The Matlab documenta-

tion describes in detail the use of this filter:       

 

hd    = design(d,'cheby2') 

hd    = design(d,'cheby2',designoption,value,designoption,value,...) 

 

The syntax used for the equalizer needs the specification of the behaviour of the curve 

given by the correct filtering process. Therefore the command used is: 

  

[b,a] = cheby2(n,R,Wst,'ftype') 

 

The n is the order of the filter, R is the stopband ripple and Wst or Wn is the normalized 

cutoff frequency. The 'ftype' parameters used for the EQ are: 1) One lowpass filter 

(‘low’) for the first step called C1, creating a low-shelf curve in the beginning of the 

spectrum analysis. 2) Three band pass filters (‘bandpass’) in C2, C3, and C4 with bell-

curve in the middle and 3) One high pass filter (‘high’) with a high-shelf curve at the end 

for C5 . 
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Figure 23.  EQ-ator block diagram implementation using Simulink   

  

The figure 23 above shows the block diagram for the 5-bands EQ, called EQ-ator. The 

left side illustrates the first block representing the input audio signal from a *.wav sound 

file. This is the process of loading the audio data located on the local disc or media 

files. The parameters used for this step are: Fs = 44100 Hz, and 1024 samples per 

audio channel. This audio signal goes to each one of the five different filters in the next 

five blocks.  

 

The blocks Cn are the filters C1-C5. They have a frequency range based on the exam-

ple of the figure 22, and the parameters described in the table 3 below. 

 

Table 3. Reference frequencies and filter type for the 5-Band EQ 

Cn Freq. range [Hz] Filter type 

C1 
60 
 

Chevy2(n,R,Wn,’low’) 

C2 
230 
 

Chevy2(n,R,Wn,’bandpass’) 

C3 
910 
 

Chevy2(n,R,Wn,’bandpass’) 

C4 
4000 
 

Chevy2(n,R,Wn,’bandpass’) 

C5 
14000 
 

Chevy2(n,R,Wn,’high’) 

  

 

The gain control for boosting or attenuation of the frequency ranges are described as 

“Cn controls”.  This scalar value of gain is controlled through a slider (fader) on the 

screen during a simulation. Another way to set the values for Cn controls is writing the 

desired value between -15 to +15 on the correspond space below the slider.  
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The audio signals of each of the filters mentioned come together in the next step of the 

block diagram with the sum parameter. The result signal is send through the last pro-

cess step to the computer’s audio device.   

It is possible to see the curve representing the position of sliders in a spectrum analys-

er which displays the fixed number of the frequency in Hz over magnitude in dB of the 

respective channels C1-C5. 

 

After executing the EQator.m file on Matlab, the window showed in the figure 24 ap-

pears on screen.   

 

 

Figure 24. EQ-ator equalizer implemented on Matlab 

 

The above figure 24 illustrates a 5-bands equalizer window implemented on GUI 

Matlab called EQ-ator. The five sliders control the respective range of frequencies de-

scribed below each slider. After the sliders are set to their chosen positions, the graph-

ical representation is executed by clicking the “plot” button. The audio file is loaded 

after clicking on the “load” button, and window of the figure 25 below appears on 

screen. 
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Figure 25. Audio file loading window for the EQ-ator  

 

The permitted format for the audio files is *.wav. This is because the Matlab uses “wa-

vread” audio input command. It is recommended to changes to “audioread” for future 

references.  

4 Results 

 

The goal of this thesis, that is to analyse different filters and apply them to an audio 

equalizer implemented on Matlab, to understand how DSP theory works on a practical 

way, which is achieved at the end of this project. 

 

The equalizer called EQ-ator brings the option to load a .wav audio file and listens this 

audio for a few seconds. This short reproduction of the audio file characteristic comes 

from the need to, first, avoid an excessing noise at the laboratory for a longer time re-

production when dealing with this application on the DSP class, and Secondly because 

there is a defect on the implementation on Matlab commands, that only allows to play 

the audio sound without distortion caused by a possible overlapping, by using the 

command “player.playblocking”, and this command blocks all the functions of the 

equalizer (including the stop bottom),  until the entire song was completed. This “de-

fect”, on the other hand, suits well with the purpose of the equalizer.   
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The figure 26 below shows the behaviour of the EQ working with the gain parameters 

switched at ±14.25 with the purpose of appreciation of how the sliders works at differ-

ent positions and its respective curve at the spectrum analyser.   

       

 

Figure 26.  EQ parameters alternating at ±14.25 dB 

 

The following text shows up after executing the EQator.m file on the command window: 

 

>> EQator 

file name: 

Bach2.wav 

Warning: WAVREAD will be removed in a future release. Use AUDIOREAD 

instead.  

> In wavread at 62 

  In EQador>equalizer_play at 516 

  In EQador>play_Callback at 510 

  In gui_mainfcn at 95 

  In EQador at 42 

  In 

@(hObject,eventdata)EQator('play_Callback',hObject,eventdata,guidata(h

Object))  

processing 

playing finished 
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5 Conclusions and Recommendations 

 

The first challenge faced in EQ implementation is to find suitable filters that will work 

well together in the required frequency ranges. The choice of correct filters and the 

ranges in which these filters give the desired results was achieved by trying each of 

them during the implementation process, as well as making variations on the ranges of 

frequency in the command editor until the curve seemed regular in the spectrum ana-

lyzer.  

 

One particular feature on this EQ is found in the controller C5: the characteristics of the 

high pass filter was difficult to fit into the correct range. Due to this problem the curve of 

the filter invaded the previous frequency range. Nevertheless, the results are between 

the desired parameters as the curve in the figure 27 below illustrates. 

 
 

 
Figure 27.   Behaviour of the C5 filter 

 
In the future, it is good to know that there are some websites giving examples regard-

ing the equalizer implementation using Matlab, but unfortunately they do not always 

work unless several changes are made. But, regardless of these issues, the examples 

can be used as practical reference points in understanding how to start with the differ-

ent tools that Matlab brings in concerning the DSP area.  
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Fourier and DFT on Matlab, gathered from Engelber’s (2008) [7, 48] 

 

>> t=[-1000:1000]/10; 

>> y=exp(-abs(t)); 

>> subplot(2,2,1) 

>> plot(t,y,'k') 

>> title('a) The Signal') 

>> z=fft(y); 

>> f=[0:2000]/(2001/10); 

>> subplot(2,2,2) 

>> plot(f,(200.1/2001)*abs(z),'--k') 

>> title('b) The DFT') 

>> subplot(2,2,3) 

>> plot(f,2./((2*pi*f).^2+1),'-k') 

>> title('The Fourier Transform') 

>> title('c) The Fourier Transform') 

>> subplot(2,2,4) 

>> plot(f,(200.1/2001)*abs(z),'--k',f,2./((2*pi*f).^2+1),'-

k') 

>> title('d) Fourier Transform vs. DDT') 

>>print -djpeg comp.jpg 
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Table 1. Example of Array Operations on Matlab  

Operation Symbol Example Remarks 

Sum or 

difference 

+ or 

- 

[
1 3
3 4

] + [
0 −2
1 3

] = [
1 1
4 7

] 

[1 2 3]-2 = [-1 0 1] 

Dimensions 

must be the 

same  

Matrix 

product 

* 
[
1 2 0
3 4 2

] ∗ [
0 −1
1 2

−1 1
] = [

2 3
2 7

] 

3*[1 2 3]= [3 6 9] 

Inner Dimen-

sions must be 

the same 

Array 

Product 

.* [
1 2
3 4

] .∗ [
0 −1
3 2

] = [
0 −2
9 8

] 

3.*[1 2 3]= [3 6 9] 

Dimensions 

must be same 

Transpos-

es 

´ 

 

 

 

.´ 

[
2 3 4
5 6 7

]
′

= [
2 5
3 6
4 7

]; 

[1 + 2𝑗   3 − 4𝑗]′ = [
1 − 2𝑗
3 + 4𝑗

] 

[
2 3 4
5 6 7

] .′ = [
2 5
3 6
4 7

] ; 

[1 + 2𝑗   3 − 4𝑗].′ = [
1 + 2𝑗
3 − 4𝑗

] 

j=(-1)^1/2. 

Rows become 

columns. 

Exponenti-

ation 

.^ 2.^[1 2 3]=[2 4 8] 

[1 2 3].^2 = [1 4 9] 

[
0 1 2
3 4 5

] .^  [
0 1 2
2 1 0

] = [
0 1 4
9 4 1

]  

Dimensions 

must be the 

same 

Backlash \ a*b=c, where 𝑎 = [
5 3
2 2

]  𝑎𝑛𝑑 𝑐 = [
1
2
] 

b=a\c = [
5 3
2 2

] \ [
1
2
] = [

−1
2

] 

Solves sets of 

linear equa-

tions 

 

Table modified from Stearn (2003) [3,6]
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Example of filtering on Matlab 
 
 
%% Example of filtering on Matlab 
%generate the signal with noise 
x= cos(2*pi*12*[0:0.001:1.23]); 
x(end) = []; 
[b a] = butter(2,[0.6 0.7],'bandpass'); 
filtered_noise = filter(b,a,randn(1, length(x)*2)); 
x = (x + 0.5*filtered_noise(500:500+length(x)-1))/length(x)*2; 
 

% Ploting the noise signal  
subplot (2,2,1) 
plot(x) 
title('Noisy signal') 
xlabel('Samples'); 
ylabel('Amplitude') 

  
%Implement a second order filter (butterworth design technique) 
[b a] = butter(2, 0.3, 'low') 

  
%filter the signal  
x_filtered = filter(b,a,x); 

  
%plot the filtered signal 
subplot (2,2,2) 
plot(x_filtered,'r') 
title('Filtered Signal - Using Second Order Butterworth') 
xlabel('Samples'); 
ylabel('Amplitude') 

  
%higher order filter 
[b2 a2] = butter(20, 0.3, 'low') 

  
%filter and plot the result 
x_filtered2 = filter(b2,a2,x); 
subplot(2,2,3) 
plot(x_filtered2,'g') 
title('Filtered Signal - Using 20th Order Butterworth') 
xlabel('Samples'); 
ylabel('Amplitude') 

  
%band stop filter 
[b_stop a_stop] = butter(20, [0.5 0.8], 'stop'); 

  
%plot filtered signal 
x_filtered_stop = filter(b_stop,a_stop,x); 
subplot(2,2,4) 
plot(x_filtered_stop,'c') 
title('Filtered Signal - Using Stopband') 
xlabel('Samples'); 
ylabel('Amplitude') 

  
%plot magnitude spectrum of the signal 
X_mags = abs(fft(x)); 
plot(X_mags) 
xlabel('DFT Bins') 
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ylabel('Magnitude') 

  
%plot first half of DFT (normalised frequency) 
num_bins = length(X_mags); 
plot([0:1/(num_bins/2 -1):1], X_mags(1:num_bins/2)) 
xlabel('Normalised frequency (\pi rads/sample)') 
ylabel('Magnitude') 

 
%plot the frequency response (normalised frequency) 
H = freqz(b,a, floor(num_bins/2)); 
hold on 
plot([0:1/(num_bins/2 -1):1], abs(H),'r'); 
 

%Plot the magnitude spectrum and compare with lower order filter 
H2 = freqz(b2,a2, floor(num_bins/2)); 
figure(10) 
hold on 
plot([0:1/(num_bins/2 -1):1], abs(H2),'g'); 

 
%plot the band stop filter magnitude spectrum 
H_stopband = freqz(b_stop,a_stop, floor(num_bins/2)); 
figure(10) 
hold on 
plot([0:1/(num_bins/2 -1):1], abs(H_stopband),'c'); 

 
% comparison with other filter design techniques (chebyshev and ellip-

tical) 
[b_butter a_butter] = butter(4, 0.2, 'low'); 
H_butter = freqz(b_butter, a_butter); 

  
[b_cheby a_cheby] = cheby1(4, 0.5, 0.2, 'low'); 
H_cheby = freqz(b_cheby, a_cheby); 

  
[b_ellip a_ellip] = ellip(4, 0.5, 40, 0.2, 'low'); 
H_ellip = freqz(b_ellip, a_ellip); 

  
%plot each filter to compare 
figure(11) 
norm_freq_axis = [0:1/(512 -1):1]; 
plot(norm_freq_axis, abs(H_butter)) 
hold on 
plot(norm_freq_axis, abs(H_cheby),'r') 
plot(norm_freq_axis, abs(H_ellip),'g') 
legend('Butterworth', 'Chebyshev', 'Elliptical') 
xlabel('Normalised Frequency'); 
ylabel('Magnitude') 

  
%plot in dB 
figure(12); 
plot(norm_freq_axis, 20*log10(abs(H_butter))) 
hold on 
plot(norm_freq_axis, 20*log10(abs(H_cheby)),'r') 
plot(norm_freq_axis, 20*log10(abs(H_ellip)),'g') 
legend('Butterworth', 'Chebyshev', 'Elliptical') 
xlabel('Normalised Frequency '); 
ylabel('Magnitude (dB)
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EQ-ator equalizer implementation in Matlab: 

Command editor  

 

function varargout = EQator(varargin) 
% EQator M-file for EQator.fig 
%      EQator, by itself, creates a new EQator or raises the existing 
%      singleton*. 
% 
%      H = EQator returns the handle to a new EQator or the handle to 
%      the existing singleton*. 
% 
%      EQator('CALLBACK',hObject,eventData,handles,...) calls the lo-

cal 
%      function named CALLBACK in EQator.M with the given input argu-

ments. 
% 
%      EQator('Property','Value',...) creates a new EQator or raises 

the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before EQator_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property ap-

plication 
%      stop.  All inputs are passed to EQator_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows on-

ly one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help EQator 

  
% Last Modified by GUIDE v2.5 24-Apr-2015 02:00:48 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @EQator_OpeningFcn, ... 
                   'gui_OutputFcn',  @EQator_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before EQator is made visible. 
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function EQator_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to EQator (see VARARGIN) 
global stop C Fs; 
stop=1; 
Fs=44100; 

  
C=zeros(1,5); 
set(handles.C1_var,'min',-15); 
set(handles.C1_var,'max',15); 
set(handles.C1_var,'value',0); 
set(handles.C1_var,'SliderStep',[0.025,0.05]); 
set(handles.C1_val,'string',num2str(0)); 

  
set(handles.C2_var,'min',-15); 
set(handles.C2_var,'max',15); 
set(handles.C2_var,'value',0); 
set(handles.C2_var,'SliderStep',[0.025,0.05]); 
set(handles.C2_val,'string',num2str(0)); 

  
set(handles.C3_var,'min',-15); 
set(handles.C3_var,'max',15); 
set(handles.C3_var,'value',0); 
set(handles.C3_var,'SliderStep',[0.025,0.05]); 
set(handles.C3_val,'string',num2str(0)); 

  
set(handles.C4_var,'min',-15); 
set(handles.C4_var,'max',15); 
set(handles.C4_var,'value',0); 
set(handles.C4_var,'SliderStep',[0.025,0.05]); 
set(handles.C4_val,'string',num2str(0)); 

  
set(handles.C5_var,'min',-15); 
set(handles.C5_var,'max',15); 
set(handles.C5_var,'value',0); 
set(handles.C5_var,'SliderStep',[0.025,0.05]); 
set(handles.C5_val,'string',num2str(0)); 

  
equalizer_plot(); 
% Choose default command line output for EQator 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes EQator wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = EQator_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on slider movement. 
function C1_var_Callback(hObject, eventdata, handles) 
% hObject    handle to C1_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range 

of slider 
global C; 
C(1)=get(hObject,'value'); 
set(handles.C1_val,'string',num2str(C(1))); 

  
% --- Executes during object creation, after setting all properties. 
function C1_var_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C1_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 

  

  
% --- Executes on slider movement. 
function C2_var_Callback(hObject, eventdata, handles) 
% hObject    handle to C2_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range 

of slider 
global C; 
C(2)=get(hObject,'value'); 
set(handles.C2_val,'string',num2str(C(2))); 

  
% --- Executes during object creation, after setting all properties. 
function C2_var_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C2_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: slider controls usually have a light gray background. 
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if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 

  

  
% --- Executes on slider movement. 
function C3_var_Callback(hObject, eventdata, handles) 
% hObject    handle to C3_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range 

of slider 
global C; 
C(3)=get(hObject,'value'); 
set(handles.C3_val,'string',num2str(C(3))); 

  
% --- Executes during object creation, after setting all properties. 
function C3_var_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C3_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 

  

  
% --- Executes on slider movement. 
function C4_var_Callback(hObject, eventdata, handles) 
% hObject    handle to C4_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range 

of slider 
global C; 
C(4)=get(hObject,'value'); 
set(handles.C4_val,'string',num2str(C(4))); 

  
% --- Executes during object creation, after setting all properties. 
function C4_var_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C4_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 

  

  
% --- Executes on slider movement. 
function C5_var_Callback(hObject, eventdata, handles) 
% hObject    handle to C5_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range 

of slider 
global C; 
C(5)=get(hObject,'value'); 
set(handles.C5_val,'string',num2str(C(5))); 

  
% --- Executes during object creation, after setting all properties. 
function C5_var_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C5_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 

  

  
% --- Executes on button press in plot_H. 
function plot_H_Callback(hObject, eventdata, handles) 
% hObject    handle to plot_H (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global C Fs; 
equalizer_plot(); 

  
function equalizer_plot() 
global C Fs; 
[a,b]=coef(); 
H=0; 
for i=1:5 
    H=H+10^(C(i)/20)*abs(freqz(b{i},a{i},1024)); 
end 
f = Fs*[0:1023]/2048; 
semilogx(f,20*log10(H)); 
xlabel('Frequency [Hz]'); 
ylabel('Magnitude [dB]'); 
title('Audio Equalizator'); 
axis([10 Fs/2 -21 21]); 
grid on; 

  
function [a,b]=coef() 
global Fs; 
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%1.Filter 
Fp1=198/(Fs/2);                      
 [b1,a1]=cheby2(4,48,Fp1,'low'); 

  
%2.Filter 
Fp2=[46,747]/(Fs/2);                    
 [b2,a2]=cheby2(4,51,Fp2,'bandpass'); 

  
%3.Filter 
Fp3=[200 3000]/(Fs/2); 
 [b3,a3]=cheby2(4,50,Fp3,'bandpass'); 

  
%4.Filter 
Rp4=0.5; 
Rs4=30; 
Fp4=[1070 6000]/(Fs/2); 
 [b4,a4]=cheby2(4,45,Fp4,'bandpass'); 

  
%5.Filter 
Rp5=0.5; 
Rs5=30; 
Fp5=1800/(Fs/2);                   
 [b5,a5]=cheby2(4,49,Fp5,'high'); 
a={a1,a2,a3,a4,a5}; 
b={b1,b2,b3,b4,b5}; 

  
% --- Executes on button press in reset_H. 
function reset_H_Callback(hObject, eventdata, handles) 
% hObject    handle to reset_H (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global Fs C; 
C=zeros(1,5); 
%Fs=44100; 
Fs=48000; 
set(handles.C1_val,'string',num2str(0)); 
set(handles.C2_val,'string',num2str(0)); 
set(handles.C3_val,'string',num2str(0)); 
set(handles.C4_val,'string',num2str(0)); 
set(handles.C5_val,'string',num2str(0)); 

  
set(handles.C1_var,'value',0); 
set(handles.C2_var,'value',0); 
set(handles.C3_var,'value',0); 
set(handles.C4_var,'value',0); 
set(handles.C5_var,'value',0); 

  
equalizer_plot(); 

  

  
function C1_val_Callback(hObject, eventdata, handles) 
% hObject    handle to C1_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global C; 
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C(1)=str2num(get(hObject,'string')); 
minn=get(handles.C1_var,'min'); 
maxx=get(handles.C1_var,'max'); 
if(C(1)<minn || C(1)>maxx) 
    C(1)=get(handles.C1_var,'value'); 
    set(hObject,'string',num2str(0)); 
else 
    set(handles.C1_var,'value',C(1)); 
end 
% Hints: get(hObject,'String') returns contents of C1_val as text 
%        str2double(get(hObject,'String')) returns contents of C1_val 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function C1_val_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C1_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function C2_val_Callback(hObject, eventdata, handles) 
% hObject    handle to C2_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of C2_val as text 
%        str2double(get(hObject,'String')) returns contents of C2_val 

as a double 
global C; 
C(2)=str2num(get(hObject,'string')); 
minn=get(handles.C2_var,'min'); 
maxx=get(handles.C2_var,'max'); 
if(C(2)<minn || C(2)>maxx) 
    C(2)=get(handles.C2_var,'value'); 
    set(hObject,'string',num2str(0)); 
else 
    set(handles.C2_var,'value',C(2)); 
end 

  
% --- Executes during object creation, after setting all properties. 
function C2_val_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C2_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function C3_val_Callback(hObject, eventdata, handles) 
% hObject    handle to C3_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of C3_val as text 
%        str2double(get(hObject,'String')) returns contents of C3_val 

as a double 
global C; 
C(3)=str2num(get(hObject,'string')); 
minn=get(handles.C3_var,'min'); 
maxx=get(handles.C3_var,'max'); 
if(C(3)<minn || C(3)>maxx) 
    C(3)=get(handles.C3_var,'value'); 
    set(hObject,'string',num2str(0)); 
else 
    set(handles.C3_var,'value',C(3)); 
end 

  
% --- Executes during object creation, after setting all properties. 
function C3_val_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C3_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function C4_val_Callback(hObject, eventdata, handles) 
% hObject    handle to C4_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of C4_val as text 
%        str2double(get(hObject,'String')) returns contents of C4_val 

as a double 
global C; 
C(4)=str2num(get(hObject,'string')); 
minn=get(handles.C4_var,'min'); 
maxx=get(handles.C4_var,'max'); 
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if(C(4)<minn || C(4)>maxx) 
    C(4)=get(handles.C4_var,'value'); 
    set(hObject,'string',num2str(0)); 
else 
    set(handles.C4_var,'value',C(4)); 
end 

  
% --- Executes during object creation, after setting all properties. 
function C4_val_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C4_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function C5_val_Callback(hObject, eventdata, handles) 
% hObject    handle to C5_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of C5_val as text 
%        str2double(get(hObject,'String')) returns contents of C5_val 

as a double 
global C; 
C(5)=str2num(get(hObject,'string')); 
minn=get(handles.C5_var,'min'); 
maxx=get(handles.C5_var,'max'); 
if(C(5)<minn || C(5)>maxx) 
    C(5)=get(handles.C5_var,'value'); 
    set(hObject,'string',num2str(0)); 
else 
    set(handles.C5_var,'value',C(5)); 
end 

  
% --- Executes during object creation, after setting all properties. 
function C5_val_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C5_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in load. 
function load_Callback(hObject, eventdata, handles) 
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% hObject    handle to load (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

 
global file_name; 
%file_name=uigetfile('*wav','Choise a .wav file'); 
file_name=uigetfile('*wav','Select Audio File.wav'); 
% --- Executes on button press in play. 
function play_Callback(hObject, eventdata, handles) 
% hObject    handle to play (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
global stop file_name C; 
stop=1; 
equalizer_play(); 

  
function equalizer_play() 
global stop file_name C; 
disp('file name:'); 
disp(file_name); 
[x,Fs]=wavread(file_name); 

%[x,Fs]=audioread(file_name); 

  
[a,b]=coef(); 
%l_sector=2*Fs; 
%Nb=round(length(x)/l_sector); 
l_sector=length(x); 
Nb = 1; 

  
y=0; 

  
for i=1:floor(Nb) 
    disp('processing'); 
    sector=x((i-1)*l_sector+1:i*l_sector); 
    for k=1:5 
        y=y+filter(10^(C(k)/20)*b{k},a{k},sector); 
        if(stop==0) 
            break; 
        end      
    end 
    %wavplay(y,Fs,'async'); 

     
    player=audioplayer(y,Fs); 

    
   player.playblocking; 

    
    y=0; 
    if(stop==0) 
        break; 
    end    
end 

  
disp('playing finished'); 

  
% --- Executes on button press in stop. 



Appendix 3 

11 (11) 

 

 

function stop_Callback(hObject, eventdata, handles) 
% hObject    handle to stop (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global stop; 
stop=0; 

  

  
% --- Executes on slider movement. 
function slider6_Callback(hObject, eventdata, handles) 
% hObject    handle to slider6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range 

of slider 

  

  
% --- Executes during object creation, after setting all properties. 
function slider6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to slider6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 


