
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timo-Pekka Kemppainen 
 

Data Archive Project 
 

 

Helsinki Metropolia University of Applied Sciences 

Bachelor of Engineering 

Media Engineering 

Thesis 

28 April 2015  

 



 Abstract 

 

 

Author(s) 
Title 
 
Number of Pages 
Date 

Timo-Pekka Kemppainen 
Data archive project 
 
31 pages  
28 April 2015 

Degree Bachelor of Engineering 

Degree Programme Media Engineering 

Specialisation option  

Instructor(s) 
 

Aarne Klemetti, Senior Lecturer 

 
 
In the modern world, digital data archiving and accessing is an issue that needs tailored 
solutions. This thesis gives one example of designing and implementing a data archiving 
solution using time tested technologies. 
 
Helsinki Metropolia University of Applied Sciences had a need to archive their contracts in 
digital format instead of using old file cabinets. Specifications were created together with the 
customer at the start of the project. The project was to produce a complete product for the 
end user to work with. 
 
The project followed a principle where the end user created ‘user stories’ which were used 
to create product specifications. Database designs were created using user requirements.  
A server side implementation was done with the PHP scripting language and MySQL data-
base. A Web based user interface was selected for simplicity. 
 
The project was more of a learning experience and did not produce a usable product for the 
end user. All material produced in the project can be used as future reference for database 
design and PHP implementation. Other notable points include usage of pre-existing frame-
works and development environment setup. Database design and creation scripts can be 
used as a basis for future projects. 
 
In conclusion the project primarily provided guidance about workload management. 
 
 
 
 

Keywords PHP, MySQL, LAMP 



Abstract 

 

 

Tekijä 
Otsikko 
 
Sivumäärä 
Aika 

Timo-Pekka Kemppainen 
Tiedon arkistointisovellus 
 
31 sivua 
27.4.2015 

Tutkinto Bachelor of Engineering 

Koulutusohjelma Media Engineering 

Ohjaaja Lehtori Aarne Klemetti 

Insinöörityön päämääränä oli tuottaa toimiva ohjelmisto sopimusten digitaaliseen arkistoin-
tiin. Asiakkaan kannalta ohjelmiston tärkeimmät ominaisuudet olivat kattava tiedon etsintä, 
metadatan tallennus ja helppokäyttöisyys. Projektin tavoitteet päätettiin yhdessä asiakkaan 
työryhmän kanssa. 
 
Projektin mittakaava luotiin asiakaslähtöisessä ’käyttäjälähtöisen kehityksen’ kehitysmal-
lissa, jossa asiakastyöryhmä otettiin tuottamaan käyttäjätarinoita. Käyttäjätarinoiden tavoit-
teena oli luoda kattava yleiskuva siitä, mitä ohjelmistolta vaadittiin. 
 
Insinöörityössä tuotettiin MySQL-tietokannan suunnitelmat asiakkaan toiveiden perusteella. 
Tietokantasuunnitelmaa seuraten luotiin testiympäristössä toimiva toteutus. Tietokantaa kä-
sittelevät osat luotiin PHP-ohjelmointikielellä, mikä mahdollisti web-pohjaisten ratkaisujen 
käyttämisen käyttöliittymässä. 
 
Projektissa onnistuttiin tuottamaan toimivat tietokantasuunnitelmat, palvelimella toimiva tie-
tokanta sekä PHP-komentosarjoja tiedonkäsittelyyn. Projektissa ei onnistuttu tuottamaan 
kokonaista toimivaa tuotetta asiakkaalle. 
 
Projektissa saadut kokemukset osoittivat kokonaisen ohjelmiston luomisen tyhjästä erittäin 
suureksi työksi. Valmiita ohjelmistokirjastoja käyttämällä olisi voitu säästää paljon aikaa ja 
ehkä mahdollistaa projektin onnistuminen. Insinöörityö toimi oppimisprojektina, joka tuotti 
referenssimateriaaliksi sopivan tietokantasuunnitelman sekä palvelinkomentosarjoja. 
 
 
 
 
 

Avainsanat PHP, MySQL, LAMP 

 

  



 

 

 

Abstract

 

1. Introduction      1 

2. Theoretical Background    2 

 

2.1 LAMP     2 

2.2 Relational Database    2 

2.3 Temporal Relations    3 

2.4 MySQL     4 

2.5 PHP     4 

 

3. Methods and Materials     6 

3.1 Project Start    6 

3.2 User Stories    9 

3.3 Database Design    9 

3.4 Database Implementation   10 

3.5 PHP Layer Implementation   11 

3.6 Project Halt and Issues   12 

4. Results       14 

4.1 Database    14 

4.2 Code     18 

 

5. Discussion      26 

5.1 Database Design & Implementation   26 

5.2 Code Design & Implementation   27 

5.3 Customer Relations    27 

5.4 Project Management    28 

 

6. Conclusions       29 

References      30 

  



1 

 

 

 

1. Introduction 

The purpose of the project was to produce a working database solution for Tutkimus-, 

Kehitys- ja Innovaatiotoiminta (TKI) department at Helsinki Metropolia University of Ap-

plied Sciences, located in southern Finland. A solution was needed to allow faster access 

to different projects in which Metropolia is participating. Currently the TKI department is 

using file cabinets to store information about projects. 

 

The TKI department is responsible for keeping track of all the past, present and the future 

projects at Metropolia. This information is used by the school management to decide 

where to invest their money. Such projects can be simple such as updating workstations 

at school. 

 

Data Archive Project was important for several reasons. The TKI group had need for a 

tailored solution to store documents electronically. To understand the project needs 

properly, it was critical to keep close contact between the developer and customer. The 

customer needed robust tools to control data searches and required specially tailored a 

user interface. Because of this, the project was decided to be built from scratch instead 

of using readymade software. 

 

The technologies chosen for this project were all robust and time tested. All of them have 

been used by the Information Technology industry for years and they were very well 

documented. This allowed quick development and removed risk from projects overall 

success. 

 

Scope of this project was to implement a database on a live server, along with data 

access layer, business logic and an HTML 5 based graphical user interface. This web 

application would help the TKI department greatly by eliminating the need to browse 

manually through project archives, locate projects and do all estimation calculations by 

hand. 

 

The goal was to have a complete web application, done completely free of charge, from 

ground up by a student in one year.  

  



2 

 

 

2. Theoretical Background 

 

2.1 LAMP 

 

LAMP (Linux, Apache, MySQL, PHP) is an acronym that comes from technologies that 

are together used to provide a basis for any dynamic web application. The acronym was 

created by Michael Kunze in an article written for a German IT magazine. All LAMP tech-

nologies are free to use. [2,8.]  

 

The technologies are the following: 

 

Linux is a UNIX based operating system that gives a basis for all other technologies. 

Linux is not mandatory and other operating systems can be used instead [2,8]. 

 

Apache is a popular web service platform that provides an interface with server side 

scripts and clients [2,8]. 

 

MySQL is a free database management system [2,9]. (See section 2.4 for more infor-

mation about MySQL.) 

 

PHP Hypertext preprocessor is a server side scripting language that outputs HyperText 

Markup Language (HTML) [2,9]. (See section 2.5 for more information.) 

 

2.2 Relational Database 

 

Relational data is a set of information that is related to other information with an identifier. 

In relational databases, all data is stored in data tables. A data table can be described 

as rows and columns. Each column holds a single typed value and each row holds data 

for a single entry in a table. To have a relational database, two tables are minimum re-

quirement.  For example if a table is created that holds information about teachers, the 

columns in the table could be Name, Teacher ID and Salary. Each row would hold an 

entry for single teacher. [5, 143.]  

 

It is possible to define some columns uniquely. This means that two rows can have the 

same value in the column defined as unique. For example Teacher ID could be a unique 

column. This means that a single teacher could be identified by ID alone, even though 



3 

 

 

there might be teachers with the same name. [5,150.] Teacher ID could also be defined 

as a key column (which would automatically mean it is unique). A key column means 

that other tables can refer to this table by using values in the key column. [5,150-154.] 

 

The second table could be about the courses offered by the school with columns: Course 

name, Course ID, Teacher ID and Credit points. Course ID could be a unique key value. 

Instead of writing the teacher manually on each row, it is possible to relate these two 

tables using a primary key and a foreign key pair. The teacher ID in the course table can 

be designated as a foreign key which takes values from the teacher table’s Teacher ID.  

 

This way the course table and teacher table are related. If information on the teacher 

table is changed, for example a teacher receives a pay rise, this does not cause a prob-

lem where two tables would have different information [5,151-154]. 

 

It should be noted that in relational databases, each cell should be atomic. Atomic means 

that a cell only contains basic data that cannot be divided into components. In the exam-

ple given above, the name column would contain both the first and the last names. The 

columns should be divided so that one column holds information for the first name and 

the other column holds information for the last name [5,147].  

 

2.3 Temporal Relations 
 

Temporal relations or temporal database means database where information is related 

to the time component. For example in healthcare, patient information needs to be kept 

intact so doctors can see what treatments have been given and when [5,819]. 

One example of temporal database is Valid Time relation. Valid time can be described 

as a perioid of time when the entry is considered to be true. 

 

 For example an employee salary can change during his/her time in a company. The 

employee can get a pay rise but for taxing purposes the company might want to keep 

track of previous salaries in given time period. In practice, valid time is used as an two 

column in a database. The column valid_start_time indicates us point in time when the 

entry started and valid_end_time tells when the entry becomes old [5,822]. 

 



4 

 

 

When the entry gets old or is updated in valid time relations, the column valid_end_time 

is closed by adding a current point in time. In case of an update, a new row is inserted 

with modified data and a new time period [5,825]. 

 

It should be noted that since there are multiple entries with the same ID, it is not possible 

to mark it as unique and to use as a primary key. A primary key is a combination of an 

ID and valid_start_time to identify latest certain entry [5,825]. 

 

2.4 MySQL 

 

MySQL is a database that works with scripting languages. It is regarded as medium-

scale and is suited for medium sized web applications. [1, 21.] MySQL allows multiple 

users over multiple threads to access relational data [2,13]. 

 

The term MySQL was created by a Sweden based TcX DataKonsult company as an 

internal project. The project gained popularity since it was released for public and soon 

it was spinned into a own separate company.  

 

The first release was in 1996 and it lacked most of the sophisticated features of standard 

enterprise databases but MySQL was designed with performance and scalability in mind. 

This proved more important for users than unused features of enterprise databases 

[4,621]. 

 

MySQL supports multiple tools for management. One of the popular tools is the 

phpMyAdmin graphical management tool written in PHP [2,14]. 

 

The popularity of MySQL is due to its flexibility, solid performance and useful features. 

MySQL can be deployed into multiple operating systems, including Windows platforms, 

Mac OS X and many Linux distributions. It also has ready-made application programming 

interfaces for most popular programming languages like: C, C++, Java, Perl, PHP and 

Ruby [4,622]. 

 

2.5 PHP 

 

PHP is a web server based programming language that works well in web development 

[1,10]. PHP works closely with HTML by having easy tools for data input and output. PHP 



5 

 

 

code is always executed on the server side and its output is pure HTML. This means that  

the end user does not know what underlying PHP code actually does. PHP code can 

only be viewed by accessing the script files on the server itself. It is also very newcomer 

friendly while incorporating advanced features for senior developers [1,11]. 

 

All scripting languages have ready-made tools to access databases and PHP is no ex-

ception. PHP works well with popular MySQL database [1,16]. PHP is free to use and 

works well with Apache servers [1, 20]. 

 

PHP can be described as open and forgiving. It is loosely typed, meaning all variables 

and pointers can be assigned any type value or reference instead of strictly assigning 

single type for single variable. Originally PHP was used as procedural language but as 

language was developed, Object-orientated features were added to programmer tools in 

later PHP versions [3, xix]. 

 

<HTML> 

 <head> 

 </head> 

 <body> 

  <?php 

   echo("Hello all"); 

  ?> 

 </body> 

</HTML> 

 

 

<HTML> 

 <head> 

 </head> 

 <body> 

  Hello all 

 </body> 

</HTML> 

 

Listing 1. Example PHP code and its output. 

 



6 

 

 

Listing 1 shows how PHP code can be integrated into html code. First set of HTML tags 

shows a PHP script and the second set shows its output. It is important to note how PHP 

code is formatted under <?php ?> tags to tell the server to parse everything in between 

as a script. 

 

3. Methods and Materials 

 

3.1 Project Start 

 

Project was started when developer was contacted by one of senior lecturers in Metropo-

lia University of Applied Sciences. Tutkimus-, kehitys- ja innovaatiotoiminta (TKI) group 

in Metropolia was in need of database solution for storage of project information. 

 

Developer contacted TKI-group representative and she gave me their first attempt at 

database creation. After studying Microsoft access database for a week, developer 

agreed on a meeting with TKI group. In meeting developer gathered information by dis-

cussing with group members about their needs. 

 

The initial contact revealed that the TKI group needs were not that urgent but they vi-

sioned quite extensive application that could synchronize with other Metropolia systems. 

Since first meeting only gave developer a piece of information what TKI group actually 

wanted, it was decided to gather user stories by using Google Drive public documents. 

Access was given to whole group including customer. 

 

As user stories were added, the scope of the project became more apparent. The cus-

tomer wanted easy to use application that could handle storage of project metadata, 

original documents and various queries which would fetch data by multiple different pa-

rameters. 

 

For convenience purposes it was decided that application would only work in the 

Metropolia intranet. Creating secure web application would only complicate project need-

lessly. 

 

More meetings were held about closer details of user stories and different Metropolia 

systems what customer wanted to include in project. It was decided that application uses 

its own user control system. 



7 

 

 

 

 

Tools 

 

Tools chosen for this project were quite simple. Eclipse was chosen as the development 

editor for several reasons. It was free software. It had a plugin for PHP development 

which provided advanced tools for language debugging, project file management and 

task listing. 

 

Eclipse also worked with the virtual Apache server used in project quite well. Code could 

be debugged in runtime and the editor had all ready-made PHP libraries installed. 

Eclipse text editing features were also part of the reason to choose Eclipse. Options to 

edit the text view were extensive and editor pointed out syntax issues immediately. [7.] 

 

Due to the nature of PHP being a server side scripting language, a virtual server was 

required for development. Normally PHP cannot be tested locally unless the Apache web 

server is running locally. This was remedied by installing free software called XAMPP. 

XAMPP provides easy to install virtual web server that has Apache and MySQL capabil-

ities. [8.] 

 

The Reason to use XAMPP was simple. Acquiring virtual server from school proved 

problematic, development environment needed to be outside of school (for conven-

ience), installing a secondary computer with LAMP would be time consuming and point-

less considering that the final platform would be in the Metropolia intranet. 

 

Database planning was done with Libre Office Draw. Libre Office is a free competitor for 

the Microsoft Office family. The Libre Office package contains tools for document editing, 

an Excel equivalent and drawing tools. [9.] 

 

The Dropbox service was used for data backup and files transfer between workstations. 

[10.] 

 

Environment 

 

Development environment was selected to be local. It was important that project could 

be developed outside school, which ruled out virtual servers in the intranet. The project 



8 

 

 

was also developed at multiple workstations so environment was required to be easy to 

setup. 

 

Money was also an issue because project had no funding, all solutions needed to be no 

cost solutions. This practically meant that all workstations needed to be already availa-

ble. A Decision to use a personal computer and a workstation at work was made. 

 

Environment involved installation of Eclipse, XAMPP and document manipulation tools. 

After installing XAMPP, virtual servers were tested and Eclipse workspace was pointed 

under htdocs folder of XAMPP allowing PHP script execution from the editor. [11.] 

 

All working files were backed up to Dropbox except for code binaries and database. Code 

binaries were backed up manually and all temporary data in the database was expend-

able. [10.] 

 

Workflow 

 

The work was divided into several parts. The first part was designing the database using 

the Libre Office Draw software. User stories were used in drafting. The work mainly con-

sisted of creating database tables and designing relations. 

 

The second part was database implementation to the XAMPP MySQL server. The crea-

tion was based on trial and error. All SQL creation commands were created by hand and 

placed into correct order so relations could be formed by SQL engine.  

 

The third part consisted of PHP layer creation, database I/O and overall infrastructure. 

The PHP layer was divided into input code, output code and tool code. The input code 

handled everything that was supposed to go into the database, the output was a semi-

dynamic querying system and tool scripts provided development tools, such as the Pop-

ulate Database Script (used to create dummy data for testing).  

 

The Fourth part was the HTML layer with AJAX commands. HTML was written with  the 

Eclipse editor. 

 

 

 



9 

 

 

 

 

3.2 User Stories 

 

User stories were collected from customer using Google Drive (back then Google Docs). 

The reason for this was simple. It is hard to remember everything that is needed in con-

tact meetings. Online document could be edited as soon as new idea emerged. This 

allowed every needed detail to be recorded the very instant the customer remembered 

it. 

 

User stories were strictly formatted. Customer had to fill in rows of the following columns: 

“Kuka haluaa tehdä”, “Mitä haluaa tehdä”, “Miksi haluaa tehdä” and “Prioriteetti”. Loosely 

translated they mean: “Who wants to do”, “What he/she wants to do”, “Why he/she wants 

to do” and “Priority”. 

 

Since the project aimed to have different levels of users, there was a need to distinguish 

different users from each other and what said users could do. The “Who wants to do” 

column sorted out all different roles the customer wanted to have. 

 

It was also needed to know what customer wanted to do with application. The “What 

wants to do” column collected individual actions customer might want from the software. 

Each of the items was a single action that the user could do. This made it easy to create 

business logic from direct customer input. 

 

3.3 Database Design  

 

The database was designed to revolve around projects. All related permits and metadata 

would be tied to the project table by using special Join Tables in between. All tables were 

also designed to be temporal, the Join Tables would take care of keeping correct ver-

sions of metadata tied to the correct version of the project. 

 

Since metadata and permits were their own tables, this allowed the same instance to be 

used in multiple projects. This also removed confusion where multiple instances of the 

same metadata would have to be added and maintained. Maintenance of multiple 

metadata entries would have been tedious and error prone process. 

 



10 

 

 

Each primary table included at least: ID, valid_starttime and valid_endtime. Current in-

stance could be identified by combining id and valid_starttime.  When the instance was 

being replaced, valid_endtime would be filled in with a point of time and new table entry 

would be created with valid_starttime using the same point of time. 

 

Updating primary tables would also require updating of related join tables. For example 

if the ProjectPartner table was modified by creating a new row and closing old row’s 

valid_endtime, ProjectPartner_In_Project would have to be updated to reflect a new pro-

jectpartner_id and projectpartner_vst (vst is acronym for valid_starttime). 

 

Documents would be stored on their own database table. The table would include all 

related metadata and directory where the document was stored. The documents itself 

were not stored in the database and would have to be backed up separately. The reason 

to leave documents out of the database was optimization. Fewer actions required by 

database seemed logical. 

 

Updating the document would happen by uploading a file into the server, creating a new 

row with metadata and updating related join tables. This would preserve old files, so they 

could be accessed when something went wrong or when their data would be needed. 

 

The EndUser table is the only one that is not related to the project directly. Multiple users 

could be created and each entry can be temporal. This would allow users to change their 

metadata. EndUser would be used to log into the website and used to see who had made 

the most recent change. 

 

3.4 Database Implementation 

 

Database implementation began by deciding the table creation order. All tables were 

interconnected through a series of join tables and table creation order became crucial 

because of foreign key dependencies. The first created table was EndUser, since all 

other primary tables were pointing at the ‘ID’ column in the EndUser table. To allow tem-

poral relations to work, primary key was combination of ‘id’ and ‘valid_starttime’. In col-

umns where character input was required VARCHAR(255) type was selected to allow 

variable character lengths up to 255 characters. [12.] 

 



11 

 

 

All other primary tables were created after ‘EndUser’. Foreign key references were 

pointed to the ‘EndUser’ table columns ‘id’ and ‘valid_starttime’. At this point, the se-

quence in which all primary tables were created did not matter. 

 

After the primary tables were created to the database, the Join Tables could be created. 

The Join Tables did not have primary keys and were connected to primary tables through 

two foreign keys. Each pointed to respective tables ‘id’ and ‘valid_starttime’ columns. 

 

After all tables were created, a PHP was created to populate all tables with dummy data. 

This script was run in order to test if relations were working correctly. The script would 

go through each primary table and assign random amount of rows. Each row was popu-

lated by gibberish, random arrangement of letters. After the primary tables were popu-

lated, the script would add random join table connections. 

 

Database queries were tested against dummy data. The first test was to query one pro-

ject, then to see separately all related primary tables. This was achieved by using INNER 

JOINS to query data. 

 

After manual queries were proven to be working, PHP query scripts were created by 

using manual queries as a basis for development. 

 

3.5 PHP Layer Implementation 

 

PHP files were divided by their functionalities into several categories: database access 

functions, common function files, class files, test files and tools. 

 

Database access functions are simple script files where each file has a singular function. 

For example insert.php would handle insertion to database while fetch.php would pass 

queried data to end user. Reason to divide files by function was to ease AJAX imple-

mentation. By giving AJAX simple files to call, client side code would be much simpler, 

when compared to a situation where AJAX would need to call multiple files and process 

data itself. 

 

Common function files included all common actions that the server was required to do. 

For example all database related sequences were stored here for easy access in all files. 

This would allow rapid PHP script development and reuse of code.  



12 

 

 

 

Each programming class was divided into their own files. This allows easier script 

maintenance and removed need to include unnecessary code into memory while scripts 

are running on the server. Examples of class files include Log.php, which would take 

care of all logs written by server. Logged actions include user actions, server mainte-

nance actions and possible errors. 

 

As stated in the database implementation part, database development required script 

files to test database functionalities. Testing that code works lowers the amount of mis-

takes, which results in better working code. Also catching possible mistakes early on 

made them easier to fix. Test file examples also included AJAX testing while server was 

keeping track of sessions. 

 

Tools were created in order to ease some development processes. Early in the develop-

ment, database design was not final. This resulted in multiple database wipes. The Prob-

lem arose from populating the database. Temporary testing data needed to be inserted 

again after each wipe. This proved to be slow and tedious process, which lead to creation 

of populateDatabase.php script file. The script inserted temporary data with relations for 

testing. 

 

The PHP layer was iterated multiple times during the development. The first iteration was 

base files that could be reused in upcoming iterations. Such files included common files, 

session management and database access. On later iterations The PHP layer structure 

become more refined. The latest iteration changed how layer was accessed by introduc-

tion of database access functions. 

 

3.6 Project Halt and Issues 

 

The project was halted nine months into development. There are multiple reasons for 

halting which included, project scope, reform of customer team and personnel problem. 

 

As with modern projects, scope of this particular project was defined to be quite narrow.  

The original scope only included an extremely simple interface to the database. As the 

project went forward and user stories were collected, interface requirements became 

more complex with each user story iteration. This increased the workload beyond one 

thesis. 



13 

 

 

 

Reform of a customer team caused some communication problems. It was unclear if the 

team had been disbanded by school completely or just reformed. This caused the devel-

oper to stop development to determine what to do if customer team was disbanded com-

pletely. Increased project scope could be remedied by assigning more students.  

 

Unfortunately finding extra persons with enough knowhow or even motivation proved to 

be a daunting task. Several students were added to the project team but no one was 

competent enough to ease the workload. 

 

The combination of these issues resulted in the project that could not be completed with 

available resources. Because of this, project was axed. 

  



14 

 

 

4. Results 

 

4.1 Database 

 

This project managed to produce database design to be suitable for Metropolia TKI 

group, implement said database and create working queries. 

 

Listing 2 illustrates how project table was created. As with every table, id is defined as 

NOT NULL, meaning id must be inserted in order to avoid failure when linking tables. 

Most of the columns are defined as varchar(255). This gives more freedom to the end 

user since any string between 0-255 characters can be inserted. Columns valid_starttime 

and valid_endtime are related to temporality. Because of this they use DATETIME to 

exact point of time. 

 

CREATE TABLE Project 

( 

id INT NOT NULL, 

identifier varchar(255), 

diary_number varchar(255), 

projectcode varchar(255), 

project_name varchar(255), 

acronym varchar(255), 

focuse_areas varchar(255), 

metropolia_coordinator varchar(255), 

degree_program_related varchar(255), 

start_day DATE, 

end_day DATE, 

inspector varchar(255), 

inspected_day DATE, 

funding_application varchar(255), 

funding_application_signed_day DATE, 

deniend_application varchar(255), 

targeted_budget varchar(255), 

offer varchar(255), 

invitation_to_tender varchar(255), 

invention_announcement varchar(255), 



15 

 

 

ethical_estimates_on varchar(255), 

general_project_information varchar(255), 

valid_starttime DATETIME, 

valid_endtime DATETIME, 

user_id INT, 

user_vst DATETIME, 

PRIMARY KEY (id, valid_starttime),  

FOREIGN KEY (user_id, user_vst) REFERENCES EndUser(id, 

valid_starttime) 

); 

 

Listing 2. Project table creation SQL. 

 

Id and valid_starttime are designated as primary key, this allows temporal relations since 

other tables will access the latest row version automatically. Foreign keys point at 

Enduser table and the latest iteration of user. 

 

Listing 3 shows an example of a join table. Join tables keep track which versions of tables 

are related to each other. Each time a table row is updated, join tables are updated to 

reflect the latest version of the row. For example if the Project table had an update on a 

single project, a new row would be created. Since all tables must have id and valid_start-

time, a join table can be updated to the latest iteration by an SQL update command 

 

CREATE TABLE ExternalStakeHolder_In_Project 

( 

project_id INT, 

project_vst DATETIME, 

ESH_id INT, 

ESH_vst DATETIME, 

FOREIGN KEY (project_id, project_vst) REFERENCES Project(id, 

valid_starttime), 

FOREIGN KEY (ESH_id, ESH_vst) REFERENCES ExternalStakeHolder(id, 

valid_starttime) 

); 

 

Listing 3. Join table SQL example. 



16 

 

 

Document storage table in listing 4 required multiple iterations. The original idea of file 

storage was to upload all files directly into database. This idea was later re-evaluated in 

order to ease the load on the database server. 

 

CREATE TABLE Document 

( 

id INT NOT NULL, 

document_name varchar(255), 

document_type varchar(255), 

document_role varchar(255), 

document_data_id INT, 

sign_day DATE, 

valid_starttime DATETIME, 

valid_endtime DATETIME, 

user_id INT, 

user_vst DATETIME, 

PRIMARY KEY (id, valid_starttime), 

FOREIGN KEY (user_id, user_vst) REFERENCES EndUser(id, 

valid_starttime), 

FOREIGN KEY (document_data_id) REFERENCES Document_data(id) 

); 

 

Listing 4. Document table creation SQL. 

 

Files would be sent to standard fileserver in the latest iteration and they would be stored 

in Document table. It can be seen that this table does not follow the latest design iteration 

and would require more work in order to work with file server. Currently Document table 

would store reference to file location in database to document_data_id. 

 

Single query was created to pull a single project out of the database. The main idea was 

that the user could see a list of projects and all data from a single project. These goals 

were defined before user stories were created and they diverge from the final goal of the 

project. The whole query is very long and only snippets are shown here. 

 



17 

 

 

Listing 5 shows the beginning of a large SQL query. The main points in listing 5 are ‘AS’ 

commands. With SQL queries, it is possible to select something and give it an alias for 

later use. 

 

SELECT 

project.id AS "project.id", 

project.identifier AS "project.identifier", 

project.diary_number AS "project.diary_number", 

project.projectcode AS "project.projectcode", 

project.project_name AS "project.project_name", 

 

Listing 5. Snippet of project query SQL. 

 

The code snippet in listing 6 shows how join tables are used to pull correct rows from 

two tables. 

 

INNER JOIN ( 

projectpartner_in_project 

 INNER JOIN 

 projectpartner 

 ON 

 projectpartner.id = projectpartner_in_project.project-

partner_id AND 

 projectpartner.valid_starttime = projectpartner_in_pro-

ject.projectpartner_vst 

) 

ON 

project.id = projectpartner_in_project.project_id AND 

project.valid_starttime = projectpartner_in_project.project_vst 

 

Listing 6. Inner join example of project query SQL. 

 

SQL database design and implementation almost met project requirements. End user 

defined queries are still missing. 

 

 



18 

 

 

4.2 Code 

 

Code implementation in this thesis project did not meet user the requirements but could 

be produced groundwork results that can be used as reference. Produced code include 

the database access layer written in PHP, business logic layer written in PHP and the 

client layer written in HTML 5 and Javascript. 

 

Figure 1 shows how scripts were stored on the server side. The common folder contains 

all scripts that are common everywhere else, such as database access scripts, common 

functions and common regular expression functions. 

 

 

 

Figure 1. Server folder structure. 

 

The folder databaseFunctions contains procedural functions for single database com-

mands (such as insert, update and fetch). All documentation stored by users would be 

placed inside the files folder. Js folder contains all Javascript files.  

 

The logs folder contains all logs made by server side scripts. Each user event is logged 

and all errors are collected. The folder phpClasses contains all programming classes 

created in this project. It should be noted that most of the code in this project is proce-

dural, and object oriented programming has not been used properly.  

 

Two folders, testfiles and testInterface, contained temporary files used in development 

and they would be removed from the final product. The tools folder contained scripts that 

are used as development tools, such as populateDatabase.php. 



19 

 

 

Listing 7 demonstrates an array conversion function from common functions. This par-

ticular function converts associative arrays into numbered arrays. This was used to cycle 

through arrays using integers. 

 

//converts associative array to numbered one 

function convertAssocToNum($array){ 

 $i = 0; 

 $numberedArray = array(); 

 foreach($array as $num){ 

  $numberedArray[$i] = $num; 

  $i++; 

 } 

 return $numberedArray; 

} 

 

Listing 7. Example function from common functions. 

 

include_once("../phpClasses/Log.php"); 

include_once("../common/dbConnect.php"); 

include_once("../common/functions.php"); 

include_once("../common/dbFunctions.php"); 

 

if(isset($_POST['fetch'])){ 

 switch($_POST['fetch']){ 

  case "projectList": 

   echo(json_encode(queryProject-

List($DBH))); 

   break; 

  case "project": 

   echo(json_encode(queryPro-

ject($DBH, $_POST['id']))); 

   break; 

 } 

} 

 

Listing 8. Example from fetch.php 



20 

 

 

Listing 8 demonstrates how simple database functions are. Function checks what the 

user wants to fetch from the database, calls for a general queryProject() function, 

changes return value into JSON format and sends information back to the user. Because 

of time constraints, some of the database functions are completely empty. It is currently 

impossible to insert data into the database using insert.php. This implementation is also 

missing data validation. It is possible to inject scripts into server from client side. Further 

development is needed in order to secure server. 

 

/* 

 * Closes old entry by closing timestamp and inserting new one. 

Requires id. 

 */ 

function updateEntry($DBH, $innoDBH, $table, $id, array $columns, 

$return = false){ 

 try{ 

  $timestamp = getTimeStamp(); 

  $fixedColumns = selectWhichCol-

umnsToUpdate($DBH, $innoDBH, $table, $id, $columns); 

   

  $fixedColumns[1][searchNumAr-

ray("valid_starttime", $fixedColumns[0])] = $timestamp; //change 

timestamp 

  $insertStatement = insertEntry($DBH, $table, 

$fixedColumns, true); 

   

  $statement = " 

  UPDATE $table SET 

  valid_endtime = '" . $timestamp . "' 

  WHERE 

  valid_endtime IS NULL AND id=$id; 

   

  "; 

  if($return){ 

   $statement .= updateRelat-

edJoins($DBH, $innoDBH, $table, $id, $timestamp, true); 

   return $statement; 



21 

 

 

  }else{ 

   $STH = $DBH->exec($statement); 

   $STH = $DBH->exec($insertState-

ment); 

   $log = new Log(); 

   $log->log($statement); 

   $log->log($insertStatement); 

   updateRelatedJoins($DBH, $innoDBH, 

$table, $id, $timestamp); 

   return true; 

  } 

 }catch(Exception $e){ 

  $log = new Log(); 

  $log->error($e); 

  return false; 

 } 

} 

 

Listing 9. How database entries are updated.  

 

Function in Listing 9 would select correct columns to be updated, create SQL queries for 

an update, update columns, update related join tables and log results into .txt files. 

 

This project also produced multiple Javascript files. The main idea in Javascript was to 

use AJAX to access database, thus removing wait time from page loads. Jquery library 

was used to help out webpage manipulation and AJAX queries.  

 

Javascript functions are roughly divided into two categories: database related AJAX que-

ries and webpage manipulation scripts. Webpage scripts would alter information on a 

webpage on realtime while AJAX queries would work on the background with the server 

to provide required information to the user. 

 

 

 

 

 



22 

 

 

class Filehandler extends Log{ 

  

 function __construct(){ 

  parent::__construct(); //initialize error 

logging 

  //check if current days folder has been cre-

ated and create one if not 

  if(!file_exists("../files")){ 

    try{ 

    

 mkdir("../files"); 

    }catch(Exception $e){ 

      $this->er-

ror($e); 

    } 

  } 

 } 

  

 //stores file into files folder 

 //is tied to documentId 

 function storeFile($documentId, $fileTempName, $file-

Name){ 

  if(!file_exists("../files/$documentId")){ 

    try{ 

     if(file_ex-

ists("../files/$documentId/" . $fileName)){ 

      throw 

new Exception("File $fileName already exists"); 

     }else{ 

    

 mkdir("../files/$documentId"); 

     move_up-

loaded_file($fileTempName, "../files/$documentId/" . $fileName); 

     $this->Log("Up-

loaded File: $fileName"); 

     } 

    }catch(Exception $e){ 



23 

 

 

     $this->er-

ror($e); 

    } 

  } 

 } 

  

 //returns link to specified file 

 // prolly not needed because js should already have file 

directory from db 

 function retrieveFile($documentId, $fileName){ 

  return("../files/$documentId/$fileName"); 

 } 

  

} 

 

Listing 10. Filehandler class 

 

The Filehandler class in listing 10 is a special class created for this project. It is based 

on another class called Log, the purpose of which is to write log files into the server. 

Initializing filehandler causes it to create correct folder for the files.  

 

When storing a file, Filehandler will check if the file has been already been inserted into 

the system and insert file. The current implementation does not handle file updating. The 

business logic behind here is that the updated file would be stored under a different 

document id and the old file would be left intact as a reference.  

 

This system works well until server needs to be scaled up. There is no way to divide files 

between different hard-drives. 

 

function populateDB($DBH, $innoDBH){ 

   

 

 for($i = 0; $i < 100; $i++){ 

 echo("//<br>"); 

 $projectId = fetchNextFreeId($DBH, 'project', 'id'); 

 echo("projectId " . $projectId . "<br>"); 



24 

 

 

 $projectData = array( 

 array("id", "valid_starttime", "identifier", "di-

ary_number", "projectcode", "project_name", "acronym", "fo-

cuse_areas", "metropolia_coordinator", "degree_program_related" 

), 

 array($projectId, getTimestamp(), generateRandomWord(), 

generateRandomWord(), generateRandomWord(), generateRandom-

Word(), generateRandomWord(), generateRandomWord(), generateRan-

domWord(), generateRandomWord()), 

 array("int", "datetime", "varchar", "varchar", "var-

char", "varchar", "varchar", "varchar", "varchar", "varchar") 

 ); 

 insertEntry($DBH, 'project', $projectData); 

  

 for($i = 0; $i < rand(0,10); $i++){ 

  $contractId = fetchNextFreeId($DBH, 'con-

tract', 'id'); 

  $contractData = array( 

  array("id", "valid_starttime", "lname", 

"fname", "sign_day"), 

  array($contractId, getTimestamp(), generateR-

andomWord(), generateRandomWord(), generateRandomDate()), 

  array("int", "datetime", "varchar", "var-

char", "date") 

  ); 

  insertEntry($DBH, 'contract', $contractData); 

  joinTables($DBH, $innoDBH, "project", $pro-

jectId, "contract", $contractId); 

  echo("contractId " . $contractId . "<br>"); 

 } 

 

Listing 11. Part from populated function from tools. 

 

The idea behind the populate database script in listing 11 was to create tool that inserts 

temporary data into the database in order to test querying. The script creates from 0 to 



25 

 

 

100 projects into the database, each with 0 to 100 related tables together with join tables. 

All table rows are filled in with a random sequence of numbers and letters. 

 

A lot of code was produced for this project. Attention had to be given into the backend 

server code, client code and usability. This resulted in fractured nature of code. For ex-

ample Javascript code contains quite an amount of temporary solutions and outright mis-

takes. Some database access scripts are completely unusable (such as insert.php) and 

most of the code is not as reusable as it could be. Also object orientated programming 

could have been used more efficiently. 

 

All functions to control data from and to the database are ready. File insertion is the only 

part which would require refactoring (it is currently in the old implementation where the 

files would be stored inside database itself). 

  



26 

 

 

5 Discussion 

 

5.1 Database Design & Implementation 

 

Database design was problematic in the beginning. There are several reasons for this, 

such as developer inexperience, changing requirements and setting up development en-

vironment. The only prior knowledge about database development came from a course 

called ‘Database management’. Everything else had to be studied separately. Putting 

learned concepts into practice also proved problematic in the beginning. Database error 

messages are hard to debug and finding mistakes can be a daunting task.  

 

In every project, requirements change all the time. One of the mistakes in this project 

was not to take this into account while designing the database. It is not possible to antic-

ipate every change required completely, but by creating good overall design helps when 

the customer starts to plan details and changing project goals. It was also problematic to 

keep every detail in check when requirements started to change. Good visualization 

would have helped to keep the project focused. 

 

The Development environment was full of beginner mistakes. There was no easy way to 

rapidly test the implemented design. Because of this, trying out database implementation 

or just testing ideas was quite slow. Automation of database population solved some of 

the issues. Also, the development environment lacked proper servers and everything 

(such as design, coding and server simulation) was done on a single machine. 

 

The most problematic part in design was the temporality aspect. Since all data had to be 

logged, this meant that the number of rows would increase at a rapid rate. Database 

scripts were never tested against a huge amount of data. It can be assumed that query 

times would increase at the same pace with inserted data. Since users were added quite 

early in the development cycle, the ‘user’ table has wrong temporal implementation. 

 

 

 

 

 

 

 



27 

 

 

5.2 Code Design & Implementation 

 

Code design suffered from the same issues as the database. The developer only had 

some experience doing PHP code, mainly from previous school courses. Object orien-

tated programming was known but it was not utilized in this project properly. This would 

have made the database access layer easier to implement. 

 

Most of the code components were not created to be reused and were mostly created 

by quickly prototyping. This backfired each time the customer changed the project spec-

ifications. Revising code would have also simplified data queries. Each time data was 

queried from the server, a different algorithm was used. Maintaining these algorithms to 

keep up with changing requirements proved tedious. 

 

At first, all client side calls would have called a single PHP file, where a huge amount of 

‘if’ code blocks and ‘elseif’ code block happened. At halfway through development, this 

proved too cumbersome to maintain and the PHP access layer was divided into multiple 

files. This also simplified the AJAX layer calls (no need for a huge amount of parameters 

in each call). 

 

After using other programming languages, PHP development feels really slow. This 

comes from PHP’s need to run on a server. Although Ruby on Rails is also run on a 

server, normal Ruby code can be run locally for quick testing of programming logic. This 

would have helped with simple programming questions, like how to go through multiple 

dimensions of nested arrays. 

 

5.3 Customer Relations 

 

The relationship with the customer group had a great start. Early meetings were useful 

in getting a grasp of the scope of the project and helped the customer to explain what 

they wanted. Creation of user stories also helped conveying the customer vision. 

 

The biggest problems with customer relations were caused by time constraints. Lack of 

energy coupled with increasing demands were a lot to handle. The customer cannot be 

blamed for this. It is natural that features start to come in after all parties get more ac-

quainted. In retrospect, this could have been avoided with some common sense. 

 



28 

 

 

Customer relations became problematic when not enough progress had been made in 

agreed time and the developer was afraid of confronting the customer group. This re-

sulted in delayed response times and emotional distance between two parties. Eventu-

ally all customer relations boiled down to the developer lacking resources to provide what 

the customer wanted. 

 

5.4 Project management 

 

After working for a software company for several years, it can be said that this particular 

thesis project did not have any kind of project management. For example the project did 

not have a proper version control system in place. Different versions of files were handled 

by copy pasting old files into different parts of the same hard drive. This meant that if the 

hard drive were to fail during development, there would have been no way to restore files 

and all work would have been lost. Also doing versioning by hand is tedious work. 

 

The project also lacked a proper task system. All code tasks were only in the head of the 

developer. This practically meant that new people who would have started working on 

this project, would have had absolutely no idea what to do next. 

  



29 

 

 

 

6 Conclusions 

 

The main goal of this project was to produce a working database solution for the TKI 

department at Metropolia. This project did not result in a working product but it laid 

groundwork if such a project were attempted in the future. This thesis can be used as 

reference for future database development. 

 

This project produced a complete database with complete tools for the data access layer 

on the server side, with unfinished implementation for responsive AJAX. Finishing this 

project would require finishing touches to the backend, completely redoing the frontend 

and the user experience.  

 

Carrying out a project like this again would require creating new user stories, new data-

base implementation and a data access layer based on this implementation. The devel-

opment environment should use version control and future development could also be 

done using Ruby on Rails. 

 

No further action is recommended for this project. 

  



30 

 

 

References 

 
[1] Zhao S. Dynamic Website Implementing PHP and MySQL. Espoo: EVTEK University 
of Applied Sciences; 2003. 
 
[2] Wu H, Zheng W. Building a Website with LAMP. Espoo: Metropolia University of Ap-
plied Sciences; 2008. 
 
[3] MacIntyre P, Danchilla B, Gogala M. Pro PHP Programming. Berkeley CA: Springer 
Ebooks, Apress; 2011. 
 
[4] Gilmore WJ. Beginning PHP and MySQL: From Novice to Professional. Berkeley CA: 
Springer eBooks, Apress; 2008. 
 

[5] Elmasri R, Navathe SB. Fundamentals Of Database Systems. Addison-Wesley; 

2000.  

 

[6] Yurdakul S. Tietoturvallinen Web-Ohjelmointi. Metropolia University of Applied Sci-

ences; 2013. 

 

[7] Eclipse Plugin Documentation [online]. Ottawa, Canada. Eclipse Foundation. 

URL: http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.pla-

form.doc.user%2Fconcepts%2Fconcepts-25.htm. 

Accessed 26 March 2015. 

 

[8] XAMPP [online]. Apache Friends. 

URL: https://www.apachefriends.org/index.html?ModPagespeed=noscript. 

Accessed 26 March 2015. 

 

[9] Libre Office [online]. Kaufbeuren, Germany. The Document Foundation. 

URL: http://www.libreoffice.org/discover/libreoffice/. 

Accessed 26 March 2015. 

 

[10] Dropbox [online]. San Francisco, United States. Dropbox, Inc. 

URL: https://www.dropbox.com/business/why-dropbox-for-business. 

Accessed 26 March 2015. 

 

[11] Apache FAQ [online]. Apache Friends. 

URL: https://www.apachefriends.org/faq_windows.html?ModPagespeed=noscript. 

Accessed 26 March 2015. 



31 

 

 

 

[12] MySQL Reference Manual [online]. Redwood City, United States. Oracle, Inc. 

URL: http://dev.mysql.com/doc/refman/5.0/en/char.html. 

Accessed 26 March 2015.



 

 

 

 

 


