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sen jälkeen, sen voi ajaa menestyksekkäästi. Se voi skannata viivakoodin hyvin, saada sisältöä ja kirjoitaa viiva-

koodeja. sen voi myös yhdistää palvelimeen ja vastaanottaa elintarvikeiden tietoa FoodAurora 
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Abstract 
      
Today hand-held devices such as tablets and smart phones are developing and increasing. These kinds of devices 
which include a number of extra features have opened a door to a wide range of commercial possibilities. Nowa-
days, normally smart phones already include a camera, the internet access and a processor like PCs include. Smart 
phones can offer some services like PCs.  With more applications working inside, it is possible to use them to ac-
complish daily sessions, such as listening to music and watching videos online. 
 
In this case, there was one android application that fell into this category, a barcode scanner for food. The purpose 
of this thesis was to practice android development, to learn web development, to integrate the external library into 
an android project and to understand how they worked between the client and server. 
 
During the project, several methods were used. Firstly, based on the development platform of the android studio, 
android programming was used. Secondly, a local database server with XAMPP was used. Thirdly, a web service 
was built between the application and the web server which was not in the same domain. Thus, HTTPCLIENT was 
used for connection and communication. Finally, JSON was used as the data exchange object between the applica-
tion client and the web server. 
 
Finally, a lot of information such as scanning barcode and receiving food information from foodaurora was gained 
about communication between the application and the server. After testing the application, it can run successfully 
and scan barcode well, get contents and type on barcodes. It can also access server and receive food information 
from FoodAurora. 
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1 INTRODUCTION 

 

1.1 Motivation 

 

Nowadays, Smartphones are sold and used very widely. At the same time, the related products and 

services are offered. So smartphones have many functionalities, they can work with a variety of 

sensors, installable applications and have the Internet access. And it also can get interaction with 

the Internet of Things (IOT). IoT means some different information sensing equipment, such as ra-

dio frequency identification devices, infrared sensors, global positioning systems, laser scanners and 

various other devices and the Internet combine to bullid a large network. The aim is to have all the 

items are linked to the network, to facilitate the identification and management, to offer service and 

get much value by exchanging data with the manufacturer and some connected devices. Based on 

the embeded computing system, each thing can be identified uniquely. (Wikipedia IOT 2015.) So in 

this field, these related industries scenarios get a potential for a large number of consumer-oriented 

services which can trigger a new service market for the IOT. Meanwhile, more and more consumers 

use smartphones, and their Internet life will not only on a web, but also most on a mobile, not only 

keeping their activities on the internet. However, so lots of products and services are offered, so 

how to identify single products uniquely. This is done by the global trade item number (GTIN) which 

is an identifier for trade items developed by comprising among others of the former EAN Interna-

tional and Uniform Code Council (GS1), this kind od identifiers are used for searching product infor-

mation in a database which may be  held by the manufacturer, some retailer and other entity.  The 

European article number (EAN) also has same kind of functionality to offer to support this service 

which is used to Distinguish different products which even has same package, but different amounts 

inside.  (Wikipedia GTIN 2015.) 

 

 

1.2 Project Description 

 

The functionalities can be implemented after completing the whole project as follows: 

 

 Firstly, it needs to develop the basic structure of the android application based on the an-

droid studio. It should include three basic activities to display, which is to show interface, 

camera scanning and product details.  

 Secondly, Zebra Crossing which is an open source library to trigger camera and handle the 

barcode is added to read barcode information.  

 Thirdly, it can be used to connect the web to access an online database by Api offered  

 

Thus, the purpose of the whole project is to develop an android application that is consumer-

oriented. This application would offer the service as a personal shopping assistant which allows con-

sumers to scan product information from an external database, they can send and share information 

on the social network or e-mail.  
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2  BARCODE  

 

2.1 Barcode types 
 

Nowadays, there are many different barcode types that exist for many different purposes. Normally, 

they can be divided into 1D and 2D barcodes. 

 

The reason why so many different types of barcodes exist is that most of them need to use in a 

wide range of operational areas. Thus, it is important and also efficient to select the most suitable 

barcodes to meet the requirements of a special field. 

 

2.1.1 Linear 1D Barcodes 
 

There are many different types of Linear Barcodes as Figure 1 shows. It encodes the information in 

horizontally, so they are also called one-dimensional barcodes (1D). Most people may think bar-

codes are columns of varying width lines that are attached on the back of products. It includes EAN-

13/UPC-A, Code 128, Code 39, EAN-8 etc. As more data is encoded, 1D barcodes gets longer, and 

they grows, this is also the reason why the space of 1D is inefficient. (Omniplanar BarcodesDefini-

tion 2015.) 

 

’ 

FIGURE 1. One kind of barcode which is a CODABAR code 

 

2.1.2 2D Barcodes (Stacked) 
 

PDF417 is one of the most popular 2D codes because of its ability to be read with slightly modified 

handheld laser or linear CCD scanners. CCD means a charge-coupled device (CCD) which is a semi-

conductor device, capable of the optical image into a digital signal. Tiny implanted on the CCD pho-

tosensitive substance called pixels (Pixel). The more pixels on a CCD contains, the more it provides 

the screen resolution is higher. Like film, but it convert an optical signal into an electric charge sig-

nal. There are many rows of photodiodes which can sense light, and can convert an optical signal 

into an electrical signal, after amplification and sampling by the external analog-digital conversion 

circuit is converted into a digital image signal. (Wikipedia CCD 2015.).  It is 2-dimensional stacked 

barcode created by Symbol Technologies in 1991. PDF stands for Portable Data File and 417 means 

the 17 modules of 4 bars and spaces that make up each code. Each symbol also has started and 

stopped bar groups that allow the code to be easily identified as Figure 2 shows.  (Omniplanar-

Barcodes Definition 2015.) 
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Two-dimensional barcodes are known under names like PDF417, or Codablock F 

 

FIGURE 2. A 2D Stacked Barcode PDF 417 sample 

 

 

2.1.3 2D Barcodes (Matrix Codes) 
 

A Data Matrix code as figure 3 shows is a two-dimensional matrix barcode which consists of black 

and white square modules arranged in either a square or rectangular pattern. It is a high-density, 

two-dimensional (2D) symbology that encodes text, numbers, files and actual data 

bytes, also including Unicode characters and photos. The length of the encoded data de-

pends on the symbol dimension used. Error correction codes are added to increase symbol strength: 

even if they are partially damaged, they can still be read. (Omniplanar-Barcodes Definition, 2015) 

 

 

FIGURE 3. One kind of a 2D barcode (QR) 

 

 

 

 

 

 

2.2 Barcode Glossary 
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The following Table 1 shows explanation of the terms which are used in a barcode. (TEC-IT, 11 

2015.) 

 

TABLE 1. Barcode Glossary 
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3 ARCHITECTURE OF THE PROJECT 

 

3.1 Architectural Design 

 

Accessing data on a web server’s database can be accomplished by using JSON HTTPREQUESTS. 

But there are limitations imposed by cross-domain scripting. The client applications which requests 

data from a web server using JSONHTTPREQUESTS can easily retrieve data if the web server is on 

the same domain. 

 

However, it will have restriction for any requests from the client application to a server in a different 

domain as Figure 4 shows. Sometimes it is not easy to know what kind of data formats used in ex-

ternal database server. One way is that it can access external database server by using interface 

based on own web server. 

 

 

FIGURE 4. Here is a bad way for Accessing database 

 

So the way to design the architecture of the project is formed according to the Model-View-

Controller software architecture (MVC). 

 

Model View Controller or MVC as it is popularly called, is a software design pattern for developing 

web applications. A Model View Controller pattern is made up of the following three parts: (MSDN 

Microsoft   ASP.NET MVC Overview 2015.) 

 

 Model –It represent logical structure, the underlying of data in a application. It does not 

contain the information about the user interface. Model can be used in any data formats, 

such a model can provide data for multiple views, because the code is applied to the model 

can be written only once can be reused by the multiple views, so it can reduce repetitive 

code 

 View - which is a collection of classes representing the elements in the user interface (all of 

the things the user can see and respond to on the screen, such as buttons, display boxes, 

and so forth) 
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 Controller - The controller is used to respond user input and calls the model and view to 

complete the user's needs, so when clicking hyperlinks in Web pages and send HTML form, 

the controller itself does not output anything and do anything. It just receives the request 

and decides which model to call members to process the request, and then decide which 

view to display the returned data.  

 

MVC can isolate the application logic from the user interface layer and supports separation of con-

cerns. Here the Controller receives all requests for the application and then works with the Model to 

prepare any data needed by the View. The View then uses the data prepared by the Controller to 

generate a final presentable response. The MVC abstraction can be graphically represented as show-

ing in Figure 5. 

 

 
FIGURE 5. The Instructions of  MVC architecture. (RAJESH 2015.) 

 

 

For this thesis project case, writing some PHP scripts as a web service which reads data from 

MYSQL and sends as JSON object. The HTTPCLIENT API can invoke this PHP web service and parse 

the JSON object. The way of it can implement as Figure 6 shows: 
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FIGURE 6. The architecture of whole project working 
 

 

3.2 Web Service 

 

With the introduction of a Web application layer, and from a normal mobile which may has low 

bandwidth, no enough memory and power client to insert, high power and high bandwidth server 

with more memory than it needed to run a significant amount of processing - Among them, pro-

cessing and communications expenses they spend a small part of the environment on the client. 

Meanwhile, split system, so as to get more control of business rules, the structure of the database, 

and things outside of version. Once the database so that mobile clients connect directly, the overall 

design of the delivery system is "married " to a database structure, almost all the changes will break 

backward compatibility with clients may be reluctant to upgrade their applications.  (Tutorials Point, 

2015) 

 

Conversely, it is better to add a Web Service between application and external server allows it to in-

terface to a mobile client in a more handled and flexible approach: for example, the old interface in 

the appropriate position. And it also can add another one to work in Synchronization and then-

restructur databse, and it does not need to break a single client. If perfect design principles are 

made inside when designing the web service based on the mature server-side infrastructure which is 

put in some place, it can reduce some costs. For example, might get caching and proxy services are 

free of charge. (Tutorials Point 2015.) 

 

Finally, the new door will be opened to other developers who maybe expose this application to plat-

forms that you could not offer yourself services, and lead good position to your company. 

 

A web service consists of several methods which are advertised for use by the general public. To 

make it possible for every application to access a web service, some web service protocols are used 

to support these services, including REST, SOAP, JSON-RPC, JSON-WSP, XML-RPC, and so on. Data 

can be exchanged in any formats by using a web service, but there are two most popular formats 

for data exchange as follows: 
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 XML:  Standard format for data exchange among applications, in order to avoid datatype-

mismatch problems. 

 JavaScript Object Notation (JSON): Text-based open standard for representing data.  

 

In order to make client more lightweight, it is better way to use a web service layer. The advantage 

is very important to end-users: 

 

 It can reduce payments for users with metered plans by using less bandwidth 

 It can increase the battery life by using less CPU on the device 

 More efficient and good user experience 

 

3.3 JSON 
 

To be general, the JSON nodes start witt a curly bracket or a square bracket or. The difference be-

tween {and [ is, the curly bracket ({) shows JSONObject, however the square bracket ([) represents 

starting of a JSONArray node. So it should be clear to know how to access these nodes, the suitable 

method needs to call to access the data. 

 

Firstly, JSON node starts with [ , then GETJSONARRAY ( ) method should be used. if the node 

starts with { , the GETJSONOBJECT () method should be called. (MSDN Microsoft, 2015) 

So it is good to know JSONArray and JSONObject, such as one JSONArray may include some 

JSONObjects. It needs to call different methods above to get data. 

 

In this project, it focuses on the JSON data-exchange format. Data in JSON is represented using 

simple value pairs, for more-complex data by using the associative arrays. Strings in JSON represen-

tation as Figure 7 shows: 

 

 
FIGURE 7. JSONObject and JSONArray. (Wingnity web basics 2014.) 

 

 

http://www.slideshare.net/wingnity?utm_campaign=profiletracking&utm_medium=sssite&utm_source=ssslideview
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3.4 HTTP 
 

3.4.1 The principles of HTTP 
 

Before accessing the server, it is good to konw how HTTP work. (Apache HttpClient 2008) 

 

 Firstly, build connection between the client and the server. 

 Secondly, the client sends a request to the server. 

 Thirdly, the server sends a response to the client after receiving a request from the client 

 Finally, close the connection after accessing it. 

 

 

 

3.4.2 Android HTTPCLIENT 
 

Based on the class of HttpClient, it can support the HTTP as Figure 8 shows. It can be created ob-

ject of HttpClient to execute and call the method of HTTP GET and HTTP POST.as Fogure 8shows 

(Zaloni 2011.) 

 

 Initiate the object of HttpClient by the class DefaultHttpClient. 

 Creating the object of HttpGet, pass the URL which needs to request to HttpGet by the Con-

struction menthod. 

 Sending HttpGet request by calling EXECUTE (), and return the object of HttpReponse. 

 It returns the response message by the method of GETENTITY () which implement from 

HttpResponse. (Developer.android 2015.) 

      

Http clent-server interaction 

 

 

 

              FIGURE 8. Client/Server interaction by HTTP.  

 

The Way to implement these to access web showed as fllows. Here two ways which are used to 

send HTTP REQUEST by calling the GET and POST. The difference between GET and POST: (Devel-

oper.android 2015.) 

 

 The parameters which are requested is passed as one part of URL, so that the length of URL 

is limited less than 2048 char. 

 If using HTTP POST to send request, it has no limits of length for url 
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            DefaultHttpClient httpClient = new DefaultHttpClient(); 

            HttpEntity httpEntity = null; 

            HttpResponse httpResponse = null; 

              
 
 

            Checking http request method type 

 
            if (method == POST) { 

                HttpPost httpPost = new HttpPost(url); 

           if (params != null) { 

                    httpPost.setEntity(new UrlEncodedFormEntity(params)); 

                } 

                httpResponse = httpClient.execute(httpPost); 

  

            } else if (method == GET) { 

          
                if (params != null) { 

                    String paramString = URLEncodedUtils 

                            .format(params, "utf-8"); 

                    url += "?" + paramString; 

                } 

                HttpGet httpGet = new HttpGet (url); 

                httpResponse = httpClient.execute(httpGet); 

            } 

            httpEntity = httpResponse.getEntity(); 

            response = EntityUtils.toString(httpEntity); 

  

        }  
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4 ZXING-OPENSOURCE LIBEARY 

 

ZXing is an open source, 1D / 2D barcode image processing library implemented in Java in a variety 

of formats, it contains ports which links to other languages. Zxing can be used to complete bar code 

scanning and decoding based on the phone's built-in camera. 

 

4.1 The formats which ZXING supports 

 

 

The ZXING library supports the following formats: (ZXING.NET 2014.) 

 

Numeric barcodes:  

 

 EAN-13: the international barcodes which is used for retail products ; 

 EAN-8:  a barcodes which is specific to small products;  

 UPC-A: for Canada  and United States;  

 

Bi-dimensional barcodes:  

 

QR code: barcodes which is used for materials management and order confirmation  

 

4.1.1 The ZXING for Android 

 

Firstly, the ZXING library is integrated to the android application, because the whole library is a little 

complicated, so here some packages given that it needs. The features of each package and files are 

as follows: (GITHUB 2015.).  These Classes are related to bulid barcode scanner on the device. And 

the  

 

 CaptureActivity-To start an Activity for scanning 

 com.google.zxing.client.android.camera----to control the camera on the smartphone 

 ViewfinderView----to control the view in camera frame for scanning 

 CaptureActivityHandler- to decode the different classes, to call other Thread to decode info 

it can scan from barcode 

 DecodeThread-thread for decoding. 

 

 

 

4.2 Some classes for configuring and starting camera 

     
4.2.1 Starting camera on the device 
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Before starting camera on the device, some permission needs to add to file which is AndroidMan-

ifest.xml  

 

<uses - permission android: name="android.permission.camera"></uses-permission> 

<uses-feature android: name="android.hardware.camera.autofocus" /> 

<uses-permission android: name="android.permission. vibrate"/> 

<uses-feature android: name="android.hardware.camera" /> 

 

 

 

So firstly, it needs to initiate the camera when trigger camera.  

The main method which is INITCAMERA is used to initiate the camera 

 

@Override 

    protected void onResume() { 

        super.onResume(); 

        SurfaceView surfaceView = (SurfaceView) findViewById(R.id.preview_view); 

        SurfaceHolder surfaceHolder = surfaceView.getHolder(); 

        if (hasSurface) { 

            initCamera(surfaceHolder); 

        } else { 

            surfaceHolder.addCallback(this); 

            surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); 

        } 

        decodeFormats = null; 

        characterSet = null; 

  

        playBeep = true; 

        AudioManager audioService = (AudioManager) getSystemService(AUDIO_SERVICE); 

        if (audioService.getRingerMode() != AudioManager.RINGER_MODE_NORMAL) { 

            playBeep = false; 

        } 

        initBeepSound(); 

        vibrate = true; 

    } 

 

4.2.2 The Class of CameraManager 

  
It is a Class which manage camera on the device. It is also the only one class which keeps touch 

with barcode scanner. The following codes which is used to drive the back camera of the 

smartphone, and it shows what to do with this method 
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Camera theCamera = camera; 

    if (theCamera == null) { 

      theCamera = new OpenCameraManager().build().open(); 

      if (theCamera == null) { 

        throw new IOException(); 

      } 

      camera = theCamera; 

} 

 

4.2.3 Getting the configuration and reading the parameters of camera 

 
 

    try { 

                  configManager.setDesiredCameraParameters(theCamera, false); 

        } catch (RuntimeException re) { 

 

               It will get some exceptions when Driver failed  

 

            Log.w(TAG, "Camera rejected parameters. Setting only minimal safe-mode parameters"); 

            Log.i(TAG, "Resetting to saved camera params: " + parametersFlattened); 

             

            if (parametersFlattened! = null) { 

                parameters = theCamera.getParameters(); 

                parameters.unflatten(parametersFlattened); 

                try { 

                    theCamera.setParameters(parameters); 

                    configManager.setDesiredCameraParameters(theCamera, true); 

                } catch (RuntimeException re2) { 

                    // Well, darn. Give up 

                    Log.w(TAG, "Camera rejected even safe-mode parameters! No configuration"); 

                } 

             

 
4.3  Building the preview and scanning windows 

 

Firstly, the camera has its own interface of the preview, what all need to do is to build a scanning 

window to lead users put the barcode focus on  scanning filed, so that it can read information cor-

rectly. 
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So how to build the scanning window is handled by the class of CaptureActivityHandler which has 

one method of RESTARTPREVIEWANDDECODE (), then by calling a method of DRAWVIEW-

FINDER () in the class of Activity to build the scanning window.  

 
Here are the codes of RESTARTPREVIEWANDDECODE () 

 

private void restartPreviewAndDecode() { 

    if ( state==State. SUCCESS) { 

      state == State.PREVIEW; 

      cameraManager.requestPreviewFrame(decodeThread.getHandler(), R.id.zxinglegacy_decode); 

      activity.drawViewfinder(); 

    } 

  } 

 
And it will call the method of DRAWVIEWFINDER () in the class of Activity 

 

Public void drawViewFinder() 

{ 

viewfindView.drawViewfinder(); 

 

}       

 

4.4 Screen capture and decode 

 
After the scanning window is build, then scanning the barcode. Firstly, the method of CAM-

ERA.SETONESHOTPREVIEWCALLBACK () is to check and trigger the event for screen capture. 

Then, the scanning event is monitored by the CAMERA.PREVIEWCALLBACK ().  

 

final class PreviewCallback implements Camera. PreviewCallback { 

 

  private static final String TAG = PreviewCallback.class.getSimpleName(); 

 

  private final CameraConfigurationManager configManager; 

  private Handler previewHandler; 

  private int previewMessage; 

 

  PreviewCallback(CameraConfigurationManager configManager) { 

    this.configManager = configManager; 

  } 
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  void setHandler(Handler previewHandler, int previewMessage) { 

    this.previewHandler = previewHandler; 

    this.previewMessage = previewMessage; 

  } 

 

 

The following Method of ONPREVIEWFRAME () is used to send decode message to the class of 

DecodeHandler when the preview interface is opened, at the same time, the byte array of DATA [] 

is passed to the callback function. The code is implemented as follows: 

 
 

  @Override 

  public void onPreviewFrame (byte [] data, Camera camera) { 

    Point cameraResolution = configManager.getCameraResolution (); 

    Handler thePreviewHandler = previewHandler; 

    if (cameraResolution! = null && thePreviewHandler! = null) { 

      Message message = thePreviewHandler.obtainMessage (previewMessage, cameraResolution.x, 

          cameraResolution.y, data); 

      message.sendToTarget (); 

      previewHandler = null; 

    } else { 

      Log.d (TAG, "Got preview callback, but no handler or resolution available"); 

    } 

  } 

 
Finally, after get message for decoding, the class of DecodeHandler call its function of DECODE 

(). 

 

private void decode (byte [] data, int width, int height) { 

    long start = System.currentTimeMillis (); 

    Result rawResult = null; 

    PlanarYUVLuminanceSource source = activity.getCameraManager ().buildLuminanceSource (data, 

width, height); 

    if (source! = null) { 

      BinaryBitmap bitmap = new BinaryBitmap (new HybridBinarizer (source)); 

      try { 

        rawResult = multiFormatReader.decodeWithState (bitmap); 

      } catch (Exception e) { 

         

      } finally { 

        multiFormatReader.reset (); 
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      } 

    } 

 

    Handler handler = activity.getHandler (); 

if (rawResul! = null) { 

 

      long end = System.currentTimeMillis (); 

      Log.d (TAG, "Found barcode in " + (end - start) + " ms"); 

      if (handler! = null) { 

        Message message = Message.obtain (handler, R.id.zxinglegacy_decode_succeeded, rawRe-

sult); 

        Bundle bundle = new Bundle (); 

        bundleThumbnail (source, bundle);         

        message.setData (bundle); 

        message.sendToTarget (); 

      } 

    } else { 

      if (handler! = null) { 

        Message message = Message.obtain (handler, R.id.zxinglegacy_decode_failed); 

        message. sendToTarget (); 

      } 

    } 

  } 

 

 

4.5 Decoding results handled 
 

After, the decoding process is finished, then the method of DECODE () OF DecodeHandler will send 

messages to the class of CaptureActivityHandler, If decoding successfully, then the method of HAN-

DLEDECODE () in the class of CaptureActivity will process the scanning results according to the 

Classification.  

 

At first, Parsing rawResult, then creating corresponding ResultHandler according to differ-

ent type of result. 

 

  public void handleDecode (Result rawResult, Bitmap barcode, float scaleFac     tor) { 

    inactivityTimer.onActivity (); 

    lastResult = rawResult; 

 

    boolean fromLiveScan = barcode! = null; 

   if (fromLiveScan) { 
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       Then not from history, so beep/vibrate and we have an image to draw on 

 

      beepManager.playBeepSoundAndVibrate (); 

      drawResultPoints (barcode, scaleFactor, rawResult); 

      } 

 

     handleDecodeExternally (rawResult, barcode); 

       } 

 

 

Then Call these two methods which are HandleDecodeInternally and handleDecodeExternally to 

process the ResultHandler 

 
 
4.6  Display the results  

 

     CameraManager must be initialized here, not in onCreate(). This is necessary because we don't 

want to open the camera driver and measure the screen size if we're going to show the help on first 

launch. That lead to bugs where the scanning rectangle was the wrong size and partially 

 

    cameraManager = new CameraManager(getApplication()); 

 

    viewfinderView = (ViewfinderView) findViewById(R.id.zxinglegacy_viewfinder_view); 

    viewfinderView.setCameraManager(cameraManager); 

 

    resultView = findViewById(R.id.zxinglegacy_result_view); 

    statusView = (TextView) findViewById(R.id.zxinglegacy_status_view); 

 

    handler = null; 

    lastResult = null; 

 

    resetStatusView(); 

 

    SurfaceView surfaceView = (SurfaceView) findViewById(R.id.zxinglegacy_preview_view); 

    SurfaceHolder surfaceHolder = surfaceView.getHolder(); 

if (hasSurface) { 

 

The activity was paused , it does not mean it will be stopped, so the surface still be keep there. 

Thus, surfaceCreated () does not be called, so initial the camera is here. 
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      initCamera(surfaceHolder); 

} else { 

 

      Install the callback and wait for surfaceCreated() to init the camera. 

 

      surfaceHolder.addCallback(this); 

      surfaceHolder.setType(SurfaceHolder. SURFACE_TYPE_PUSH_BUFFERS); 

    } 

 

    beepManager.updatePrefs(); 

    ambientLightManager.start(cameraManager); 

 

    inactivityTimer.onResume(); 

 

    Intent intent = getIntent(); 

 

    SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(this); 

 

    source = IntentSource.NONE; 

    decodeFormats = null; 

    characterSet = null; 

 

    if (intent! = null) { 

 

      String action = intent.getAction(); 

      String dataString = intent.getDataString(); 

 

      if (Intents.Scan.ACTION.equals(action)) { 

 

        Scan the formats the INTENT requested, and after reading barcodes ,then return the result to 

the calling activity. 

 

        source = IntentSource. NATIVE_APP_INTENT; 

        decodeFormats = DecodeFormatManager.parseDecodeFormats(intent); 

        decodeHints = DecodeHintManager.parseDecodeHints(intent); 

 

   if (intent.hasExtra(Intents.Scan.WIDTH)&&intent.hasExtra(Intents.Scan.HEIGHT)) { 

          int width = intent.getIntExtra(Intents. Scan. WIDTH, 0); 

          int height = intent.getIntExtra(Intents. Scan. HEIGHT, 0); 

          if (width > 0 & & height > 0) { 

            cameraManager.setManualFramingRect(width, height); 
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          } 

        } 

        String customPromptMessage=intent.getStringExtra(Intents.Scan.PROMPT_MESSAGE); 

        if ( customPromptMessage! = null) { 

          statusView.setText (customPromptMessage); 

        } 

 

      } else if (dataString! = null && 

                 dataString.contains (PRODUCT_SEARCH_URL_PREFIX) && 

                 dataString.contains(PRODUCT_SEARCH_URL_SUFFIX)) { 

 

        Scan products and send the result to mobile Product Search. 

 

        source = IntentSource. PRODUCT_SEARCH_LINK; 

        sourceUrl = dataString; 

        decodeFormats = DecodeFormatManager.PRODUCT_FORMATS; 

 

      } else if (isZXingURL(dataString)) { 

 

        source = IntentSource. ZXING _LINK; 

        sourceUrl = dataString; 

        Uri inputUri = Uri.parse(dataString); 

        decodeFormats = DecodeFormatManager.parseDecodeFormats(inputUri); 

        decodeHints = DecodeHintManager.parseDecodeHints(inputUri); 

 

   } 

 

      characterSet = intent.getStringExtra(Intents.Scan.CHARACTER_SET); 

 

    } 

   

  

 

    Here it scan the formats which is the intent requested, and return the result to the calling activi-

ty. 

 

          source = IntentSource.NATIVE_APP_INTENT; 

         decodeFormats = DecodeFormatManager.parseDecodeFormats(intent); 

         decodeHints = DecodeHintManager.parseDecodeHints(intent); 

         if (intent.hasExtra(Intents. Scan.WIDTH) && in-
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tent.hasExtra(Intents.Scan.HEIGHT)) { 

           int width = intent.getIntExtra(Intents. Scan. WIDTH, 0); 

           int height = intent.getIntExtra(Intents.¨Scan. HEIGHT, 0); 

           if (width > 0 && height > 0) { 

             cameraManager.setManualFramingRect(width, height); 

           } 

         } 

         if (intent.hasExtra ( Intents. Scan.CAMERA_ID)) { 

           int cameraId = intent.getIntExtra ( Intents. Scan. CAMERA_ID, -1); 

           if (cameraId >= 0) { 

             cameraManager.setManualCameraId(cameraId); 

           } 

         } 

          

         String customPromptMessage = intent.getStringExtra(Intents. ScanP-

ROMPT_MESSAGE); 

         if (customPromptMessage! = null) { 

           statusView.setText(customPromptMessage); 

         } 

       } else if (dataString != null && 

                  dataString.contains("http://www.google") && 

                  dataString.contains("/m/products/scan")) { 

  Scan only products and send the result to mobile Product Search. 

         source = IntentSource.PRODUCT_SEARCH_LINK; 

         sourceUrl = dataString; 

         decodeFormats = DecodeFormatManager. PRODUCT_FORMATS. 

 

                                   } 

 

Barcode will save the analyzed results to Intent When “source == Inten-

tSource.NATIVE_APP_INTENT”. Then return to the object which belongs to Application dis-

play interface. 
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5 IMPLEMENTATION OF THE PROJECT 

 
5.1 Android Application  

 

The main developing tools that were used are: 

 

 Android Studio. (Android Developer, 2105) 

 Dreamweaver for writing PHP scripts acting as a proxy. 

 XAMMP for local MySQL server to host databases and data. (Xampp, 2015) 

 

The main components of the applications are:  

 

 The ZXING library (imported in the local resources of the application). 

 The core of ZXING. (GITHUB, 2015) 

 Api connector which is used to build connection between the application and the 

database server by using HttpClient. 

 
5.2 Android application development 

 

Firstly, the Android project is created and named “Foodscanner”, and given the main layout as Fig-

ure 9 shows, when pressing the scan tag button, this button will trigger and start CaptureActivity to 

get the camera interface, and then it will read the barcode to get information on the barcode, such 

as the contents on Bar code, the type on Bar code.  

 
 
5.2.1 Activity_main.layout 

 

Now, it needs to create a layout to show the interface of the main activity as Figure 9 shows. 
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FIGURE 9. The main layout when launching 

 
        
5.2.2 The implementation of codes 

 

Here is the button event to trigger an activity of SimpleScannerActivity to start the camera on the 

device. 

 

@Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

        scanbtn = (Button) findViewById(R.id.button1); 

 

         scanbtn.setOnClickListener (newView.OnClickListener () { 

 

            @Override 

            public void onClick(View v) { 

                 

                Intent intent = new Intent(MainActivity.this, SimpleScannerActivity.class); 

                startActivity(intent); 

            } 

        }); 
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   } 

 

When SimpleScannerActivity is triggered, it will start the camera on the device, and then basic scan-

ning camera frame is made as Figure 10 shows. After it scan the barcode, it will get the contents on 

barcode and the type of barcode shuch as EAN_13. It also shows them in the following area as Fig-

ure 9 shows which are “Barcode” and “Type”. 

 

 

FIGURE 10. Camera frame for scanning barcode 

 

 

 

5.2.3 Testing project 

 

After finishing the whole project, the project was debugged. Here are some results as follows. 

One barcode attached on a product as Figure 11 shows, it is used for testing. 
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FIGURE 11. Barcode for testing 

 

 

Testing application on a real device, and pressing the following button (READTAG) as Figure 12 

shows. 

 

 

FIGURE 12. Press button to start scan 
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Here getting the results the following two pictures as Figure 13 and Figure 14 shows: 

 

 

FIGURE 13. Scanning barcode 

 

 

FIGURE 14. Scanning results from testing barcode  
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5.2.4 Accessing the Food Aurora Web Server 
 

Before connecting remote database server, the permission accessing Internet should be added to 

file (AndroidManifest.xml) 

 

<uses-permission android:name="android.permission.INTERNET"/> 

 

Here some parts of web service to get all food information from Food aurora web by API they offer 

It can show the all food in the ListView as Figure 15 shows.  

 

 

FIGURE 15. The listview for all  food information  

 

When the each item is clicked, it can show more information about each food as Figure 16 shows. 
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FIGURE 16. The Single food details  
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6 IMPROVING THE PROJECT  

Based on this basic project, there should be a lot of things that can be implemented.  Such as add-

ing the user registration and login, and sharing the information on food to some social networks. It 

would be better to improve the resolution of the camera, autofocus, and or macro lens to obtain ac-

curate and fast decoding. In that case it can increase user experience if visual clues on how to align 

the barcode image for the best capture and barcode reading are given. Besides adding new hard-

ware, the image capture of the camera could also be improved. Except for the camera, some parts 

also need to challenge such as power consumption for the device, and also the efficiency of algo-

rithms needs to improve to make sure that the application can run stably. If a much bigger food da-

tabase server can be offered, some functions can be added, for example comparing some infor-

mation and prices of similar food products online when scanning some barcodes attached on food 

products. 

 



         
         34 (36) 

7 CONCLUSION 

 

The application can scan barcodes successfully and access the web server on FoodAurora. It was a 

very good experience to get more practical skills through this project. More professional skills are 

gotten to know, such as the web service, how to use JSON to access the external database with the 

help of PHP scripts, and also get to know how to integrate the library project to the application.  

 

With the basic design of project architecture, the food scanner works very close to how it is ex-

pected. Because the provided camera has low resolution, even though it can autofocus, however it 

was often difficult to capture barcode image quickly and determine the exact cause of problems. But 

anyway, after extensive testing it works with good results. Thanks to efficient images conversion 

and decoding processes, the whole process runs predictably within reasonable time constraints; al-

most in a few seconds. Although decoding often takes up the majority of the process, the time it 

takes is usually constant. Thus, the network access may be considered. If the network can not be 

connected stably, it may produce uncontrollable results. Barcode decoding on the device should be 

definitely possible with a perfect implementation. Finally, the quality of the camera is also to be con-

sidered. 
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