
Benjamin Lindquist

Game Environment Texturing

Texture Blending and Other Texturing Techniques

Metropolia Ammattikorkeakoulu

Medianomi (AMK)

Viestintä

Opinnäytetyö

30.4.2015

Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Benjamin Lindquist
Peliympäristöjen teksturointi – Tekstuuriblendaus ja muut
teksturointitekniikat
63 sivua + 1 liite
30.4.2015

Tutkinto Medianomi

Koulutusohjelma Viestintä

Suuntautumisvaihtoehto 3D-animointi ja -visualisointi

Ohjaaja Lehtori Kristian Simolin

Opinnäytetyön tavoitteena on osoittaa, miten reaaliaikaisia peliympäristöjä voidaan
teksturoida sujuvasti ja tehokkaasti sekä millaisia menetelmiä tähän tarkoitukseen on
olemassa. Havainnollistan perinteisten teksturointimenetelmien rajoituksia ja tarjoan
sujuvampia vaihtoehtoja näiden tilalle. Olen tutkinut monia teksturointimenetelmiä
kattavasti lukemalla lukuisia lähteitä ja käyttämällä useita niistä sekä työssä että vapaa-
ajalla. Käyn läpi näiden eri menetelmien ominaisuuksia sekä niiden hyviä ja huonoja puolia
esimerkkien kautta havainnollistaen. Pääasiallisena aiheena käyn läpi tutkimustani
blendkarttojen käytettävyydestä reaaliaikaisen teksturoinnin yhteydessä, sekä paneudun
syvemmin siihen, miten kehitin reaaliaikaisen blendkarttoja hyödyntävän varjostinohjelman
Blenderissä Bugbear Entertainment Ltd:n Environment Art -tiimille. Lopuksi esittelen myös
muutamia muita vaihtoehtoisia teksturointimenetelmiä, kuten esimerkiksi modulaarista
teksturointia, joita olen tutkinut ja käyttänyt työelämässäni. Esittelen myös joitakin lupaavia
menetelmiä, joita olen tutkinut vapaa-ajallani, vaikka en vielä ole itse niitä käytännössä
soveltanut.

Monet opinnäytetyössä esittämäni menetelmät ovat tulleet tutuiksi työskennellessäni
Bugbear Entertainment- ja Remedy Entertainment peliyhtiöissä. Käytän pääasiassa tietoa,
jota olen oppinut Bugbear Entertainmentin Next Car Game: Wreckfestin sekä Remedy
Entertainmentin julkaisemattoman mobiilipelin kehityksen aikana. Opinnäytetyössäni
käyttämäni blendmateriaalitekniikat perustuvat pääasiassa työhöni Bugbearin Next Car
Game: Wreckfest -pelin parissa ja modulaariset teksturointi- ja mallintamistyötapani ovat
kehittyneet Remedy Entertainmentin mobiilipeliprojektin tuotannon aikana.
Opinnäytetyössäni hyödynnän muun muassa tätä työkokemustani ja saamaani opetusta
muilta alan ammattilaisilta vahvistaen tietojani eri lähteiden avulla.

Uskon tutkimustyöni eri teksturointimenetelmistä olevan hyötyä kenelle tahansa
reaaliaikaisesta grafiikasta kiinnostuneelle. Olisin halunnut jatkaa varjostimeni kehitystyötä,
jotta se olisi vielä yhtenäisempi Bugbearin blendvarjostimeen, mutta uskon, että tässäkin
kehitysvaiheessa siitä voi olla suurta apua. Kehittämäni varjostin on vapaasti ladattavissa
internetistä ja sitä voi käyttää Blender-ohjelmassa rajoituksetta. Siitä huolimatta, että
tekstuuriblendaus on kehittynyt monella tapaa ja monia uusia menetelmiä on ilmestynyt,
perinteinen tekstuuriblendaus on yhä varteenotettava menetelmä modernissa
teksturoinnissa.

Avainsanat 3D, teksturointi, peli, reaaliaikainen, grafiikka, blendkartta,
blendvarjostin, splat map, modulaarinen, proseduraalinen,
bugbear, remedy

Abstract

Author
Title

Number of Pages
Date

Benjamin Lindquist
Game Environment Texturing – Texture Blending and Other
Texturing Techniques
63 pages + 1 appendix
30 April 2015

Degree Bachelor of Culture and Arts

Degree Programme Media

Specialisation option 3D Animation and Visualization

Supervisor
Kristian Simolin, Senior Lecturer

This thesis demonstrates how real-time game environments can be textured smoothly and
efficiently and to pinpoint what kind of methods can be used for this purpose. I point out
the limitations of traditional texturing methods and propose more efficient alternatives to
them. I have gained a thorough understanding of many texturing methods by studying
several sources and by using the methods both at work and in my free time. I discuss the
properties as well as the pros and cons of these methods with reference to real-world
examples.

The thesis reports on the research I did regarding the usage of blend maps in real-time
texturing as well as an in-depth look into how I developed a real-time blend shader in
Blender, to be used for this purpose, for the Bugbear Entertainment Environment Art team.
Finally I present some other alternative texturing methods, such as modular texturing, that
I have researched and used in my line of work. I also highlight some promising methods
that I have studied during my free time but which I have not tried out myself yet.

I have gained an insight into the methods I discuss in the thesis through my work
experience at the Bugbear Entertainment and Remedy Entertainment game companies. I
mainly use knowledge I have gained during the development of Bugbear Entertainment's
Next Car Game: Wreckfest and an unreleased Remedy Entertainment mobile game. The
blend material techniques I have used in the thesis are primarily based on the work I did
for Bugbear's Next Car Game: Wreckfest and the modular texturing and modeling
techniques have mainly been acquired during the development of the mobile game project
for Remedy Entertainment. I rely on this work experience and the information I have
received from other industry professionals, while simultaneously backing this knowledge
with references to several sources.

I believe that my research into different texturing methods can be useful for anyone
interested in real-time graphics. I would have liked to develop my shader further to be even
more in line with the one used at Bugbear, but even at the state it is currently in, I feel that
it can be of great help. The shader is freely downloadable from the internet and it can be
used inside Blender without restriction. Traditional texture blending is still a viable method
for modern texturing even though texture blending has evolved a lot in several ways and a
lot of new alternative texturing methods have arisen.

Keywords 3D, texturing, game, real-time, graphics, blend map, blend
shader, splat map, modular, procedural, bugbear, remedy

Table of Contents

1 Introduction 1

2 Terminology 5

3 Basics of texturing 8

4 Texture blending 12

4.1 Alpha maps 12

4.2 Blend maps 16

4.3 Blend mask 21

4.4 Vertex blending 23

5 Blend map workflow improvement 25

5.1 Blend map creation workflow at Bugbear 25

5.2 Blend shader development 27

5.3 Blend shader dissection 29

6 Other environment texturing techniques 39

6.1 Modularity 39

6.2 Decals 44

6.3 Virtual Texturing 47

6.4 Procedural texturing 48

6.5 Layered materials 51

6.6 Photogrammetry 52

7 Conclusion 56

8 Sources 58

Appendices

Appendix 1. Blend shader

1

1 Introduction

This thesis examines different aspects of texturing real-time game environments and

demonstrates the challenges I have faced while creating content, such as large

environments, while working in the game development industry, as well as methods to

solve these challenges and texturing tasks in general. This thesis is mainly targeted at

3D artists, with the assumption that the readers have a basic understanding of

texturing, modeling and math and they know the terminology related to these fields. I

demonstrate the rigidity of traditional texturing methods and introduce different

techniques to do texturing more efficiently. To a great extent, I rely on my several years

of experience in the field of 3D graphics in general as well as my professional

experience in the game development industry at companies such as Bugbear

Entertainment and Remedy Entertainment. I will also refer to a select few sources.

Image 1. The Bugbear Entertainment logo (Bugbear Entertainment 2015a).

Bugbear Entertainment is one of the leading developers of destruction themed car

racing games and it is well-known for its high quality products. Bugbear

Entertainment's most notable accomplishments include such games as Rally Trophy,

the FlatOut series, Ridge Racer Unbounded and their most recent game, Next Car

Game: Wreckfest. Even though Bugbear's games strive to be believable they often

compromise realism in order to keep the complete chaos of the race fun and exciting.

My experience at Bugbear has mostly been related to an upcoming game called Next

Car Game: Wreckfest, which is a spiritual successor to the popular FlatOut series.

2

Image 2. A screenshot from Bugbear's upcoming game, Next Car Game: Wreckfest (Next Car

Game: Wreckfest 2015a).

The rights to the FlatOut name are not a property of Bugbear Entertainment and the

third installment in the series was actually developed by another studio. The third game

was not very well received and was generally quite harshly critiqued by the players and

reviewers alike. An actual FlatOut sequel by Bugbear is quite unlikely but Next Car

Game: Wreckfest means to appeal to the same target audience. Next Car Game:

Wreckfest is available, at the moment of writing, through Early Access on Steam and

features much of the same mayhem that made the FlatOut series so popular.

Image 3. The Remedy Entertainment logo (Remedy Entertainment 2015).

Remedy Entertainment is currently the largest AAA game development company in

Finland and one of the largest game development companies overall in Finland in

regards to revenue and number of employees. The company is known across the world

3

for its high quality games. With a very well received backlog of games, Remedy has

managed to be highly successful in the AAA action game market. Remedy mainly

focuses on immersive story-driven action games and it is the creator of several

successful games such as Max Payne and Alan Wake. The games have been

extremely popular with over 10 million copies sold worldwide. Remedy has previously

mainly concentrated on the AAA production of games, but in recent years it has also

started developing games for other platforms such as mobile phones. The most recent

mobile release, Agents of Storm, was Remedy's first in-house developed mobile

project. The second mobile project, which I was initially working on when joining

Remedy, eventually got canceled.

One of my main points of focus in this thesis concerns a flexible and powerful way of

texturing large environments. The technique is called splat mapping or blend mapping.

I will refer to this method as blend mapping throughout the thesis as that is the term I

am used to. I will demonstrate the flexibility and efficiency of this process as well as

discuss other methods to achieve similar end results. There are several more recent

methods that are more flexible than blend mapping and I will pinpoint and walk through

them as well. I will elaborate on the techniques used at Bugbear in the process of

creating blend maps and I will reflect on the problems of working this way as well as

techniques on how to further improve the workflow.

A part of my thesis will address a real-time texturing shader I developed for the

purpose of improving the workflow of creating blend maps during my time at Bugbear

Entertainment. I have learned a lot about different techniques regarding development

of convincing environments while working at Bugbear and several of the methods

demonstrated in this thesis have been put to the test during the development of

Bugbear Entertainment's upcoming game Next Car Game: Wreckfest.

Having worked for nearly two years at Bugbear, I was ready for new challenges. When

a former colleague asked me to join the ranks of a mobile team at Remedy

Entertainment, I felt this change of scenery was the right step to take at the time. At

Remedy Entertainment, I was also tasked with creating environments, but the

restrictions and techniques used during the development of the project were quite

significantly different from what I had gotten used to at Bugbear. I will go through these

techniques and address their benefits and drawbacks as well. One of the main

methods of environment creation in the game project I was working on when I joined

4

the company, was modular modeling and texturing for mobile. This approach to

creating larger environments efficiently was quite different as it mainly relied on the

diversity of the way I was able to use limited texture atlases to my advantage with a

clever texturing layout and modeling workflow.

5

2 Terminology

An alpha map, mask or stencil in the context of this thesis is an image commonly

containing gray-scale color information that defines where a specific texture or material

is rendered (3D Buzz 2008; Blender Wiki 2011).

A blend map - also known as a splat map - commonly refers to an RGB(A) image

texture containing masking information in each color channel that are used to define

where different textures or materials are rendered. Image formats that support an alpha

channel allow for even more textures or materials to be blended. Simply put a blend

map is a group of alpha maps packed into one image file. (Glasser 2005; L3DT

documentation 2013; Shader Forge Wiki 2014; Wikipedia 2013.)

Blend mapping refers to the method of using blend maps, vertex colors or some other

form of masking to texture terrains or assets. In the context of this thesis blend

mapping refers to RGB image based blending. (Glasser 2005; L3DT documentation

2013; Shader Forge Wiki 2014; Wikipedia 2013.)

A blend shader is what I call the shader I developed to visualize the painting of blend

maps.

The clipping planes define the distance from the in-engine camera at which the z-

buffer is calculated. The clipping plane has a near and a far value which defines the

volume in the camera frustum that is rendered as well as the accuracy of the z-buffer.

(Baker; GitHub 2013; Microsoft Developer Network 2015a.)

The camera or view frustum is the volume that is defined by the near and far clipping

planes. (Baker; GitHub 2013; Microsoft Developer Network 2015a.)

6

Image 4. View frustum is the volume defined by the near and the far clipping planes (GitHub

2013).

Mip mapping refers to the use of mip maps which are pre-calculated smaller versions

of the main texture that are used for texture filtering in order to avoid artifacts like moire

patterns (Computer Graphics Laboratory).

A node in the context of this thesis refers to a specific operation within a shader, based

on a visual scripting system (Blender Wiki 2014).

A node network - also sometimes called a noodle - is a group of nodes that lead to the

desired end result and can contain several different operations (Blender Wiki 2014).

A shader is a small computer program used to do shading. It describes the properties

of a vertex or pixel. The program tells the computer to draw something in a specific

way. (DirectX.com.)

7

A texel is a basic unit to describe a pixel in a texture image. Texel density refers to the

resolution or the amount of pixels that are mapped onto a specific area on a 3D model.

(Tamakuwala 2013.)

Texture streaming refers to a technique where a texture's highest mip level is being

loaded into memory when it is needed while other textures are unloaded to free up

memory accordingly (Hastings 2007).

A tileable texture is a seamless image that does not contain any visible interruptions

in the flow of the image. This texture can be used to create large surfaces by repeating

it multiple times, in other words, the texture is tiled. (Polycount Wiki 2014.)

UV coordinates refer to the X and Y coordinates in 2D texture space. A 2D image is

mapped onto a 3D model through the unwrapping or flattening of the 3D model into 2D

space and is assigned UV coordinates. (Polycount Wiki 2015a.)

Vertex blending refers to a method of using vertex colors for blending textures and the

vertex color refers to the color data each vertex in a 3D mesh can contain (Polycount

Wiki 2011).

Viewport in the medium of 3D computer graphics refers to the rectangular window

where the 3D objects can be viewed. Objects within the view frustum are projected to

the viewport and can be seen on screen. (GitHub 2013.)

A z-buffer determines which object or surface is rendered on top of another in 3D

space. A low bit depth or great distances can cause a problem called z-fighting. The z-

buffer is nonlinear and has a greater accuracy at close distances. The distance at

which objects or surfaces are rendered are defined by the clipping planes. (Baker;

Microsoft Developer Network 2015b.)

Z-fighting means that the calculations that determine which surface to render on top of

another are non-conclusive and that it can not be determined which object or surface

should be rendered in front of another. This results in one of the surfaces or objects

randomly showing through the other one and a visual flickering occurs. (Baker.)

8

3 Basics of texturing

In the early days of 3D graphics, different colors for surfaces could only be achieved by

having separate objects or surfaces that were assigned specific colors each. Edwin

Catmull invented the method of wrapping a 2D image onto a 3D object. This method

was called texture mapping and it allowed an artist to add a great deal of visual surface

variation without the need for multiple objects or surfaces. The image could either be

wrapped across the whole model, adding unique detail everywhere, or repeated

multiple times across the surface. (Animation Supplement 2012.)

Using a single large image to texture assets is still quite common if a large texture

budget is available or when creating smaller objects, but it can be a resource intensive

way of working and it is especially problematic when facing large scale texturing tasks.

Having large areas covered by a single gigantic texture is rarely a good idea, especially

in game development, as it generally means a great deal of memory and processing

power is needed to deal with that information. (Panda3D Manual.)

Image 5. A work-in-progress environment created by the user rouncer on gamedev.net. The

whole environment is a single large image painted by hand. (rouncer 2013.)

Such software as World Machine allow one-texture landscape generation which is

great, if one can afford it in the texture budget. Despite the resource heaviness, one of

9

the advantages of a single image method is that it allows for a much greater control for

the artists, as they can paint any detail where they want and are not restricted by

anything else than the resolution of the image in question.

(World Machine Software LLC 2013.)

Image 6. World Machine provides one-texture landscape generation.

10

Even though this kind of texturing has been something to use sparingly before, it has

been revisited in recent years as new kinds of texture streaming methods have been

developed. Methods like id Software's megatexturing allows for a lot of finer control by

the artist without having an enormous texture constantly stored in memory. This topic

will be covered in greater depth in chapter 6.3. (id Software 2009.)

Another quite common solution is to have a tileable texture cover the whole object or

terrain, which allows for a fairly high resolution as the image is repeated numerous

times over the surface. This method restricts the artist from larger scale control,

however, and oftentimes a distinctly visible repeating pattern can destroy the illusion of

a believable unified surface. (Animation Supplement 2012.)

Image 7. A screenshot from Thief II: The Metal Age. The repeating patterns of the tileable

textures are extremely noticeable. (Thief II: The Metal Age 2000.)

11

Table 1. The pros and cons of traditional texturing methods.

In order to have the flexibility of the large single image texturing method and the high

definition of the tileable texture method, one could try to combine these two methods in

some way. This is where blend mapping comes in.

12

4 Texture blending

Blending different textures or materials together to create large diverse surfaces is

quite an old method that is used extensively in the game industry even today. There

are different ways of blending textures or materials together, but they all strive to add

variety to surfaces without the need to create a single large texture that contains all the

required detail. (Glasser 2005; L3DT documentation 2013; Shader Forge Wiki 2014;

Wikipedia 2013.)

4.1 Alpha maps

Before more complex multi-channel blend maps are analyzed, a simple two-texture

blend will be looked at to make the principle easier to understand for anyone unfamiliar

with the subject. This simple version of a blend map is a single black and white image

called an alpha map, stencil map or mask. This black and white image is used to define

where two different specified textures or materials are rendered. For the sake of

simplicity, the technique will be explained in the context of a simple two-texture blend.

(3D Buzz 2008; Blender Wiki 2011.)

Image 8. An alpha map used to blend two different textures together.

13

One texture or material is defined to be rendered wherever white occurs in the alpha

map. The other texture is defined to be rendered wherever there is black. All the values

between black and white result in a blend of the two specified textures or materials.

Taking advantage of the gray values will make the transition from one texture to

another a lot smoother than simply using either fully black or white colors, so this

should be kept in mind when making organic transitions between different surfaces. As

an example, an artist might want to create a large field of grass with a path crossing it.

Using an alpha map, it could be defined that wherever a value of one occurs, a path

texture is rendered and wherever a value of zero occurs, a grass texture will be

rendered. This way the artist would not have to create a single large texture with both

the path and grass in the same texture file as in the case of the one-texture method.

Instead two separate textures could be set, one for the path and one for the grass.

These textures are then placed according to the information contained in the alpha

map. A bit of sand could also easily be blended in from the path over the grass areas

near the transition to the path to make the switch of textures more smooth and

believable. Using tileable textures allows repeating detail such as grass multiple times

over the surface resulting in a high definition with a relatively low memory hit. The

alpha map in itself does not necessarily have to be of a very high resolution as it is

simply used for the blending of the textures. There are, however, also some tricks for

adding additional detail to the blending if needed, which will be looked at in greater

detail in chapter 4.3. (3D Buzz 2008; Blender Wiki 2011.)

14

Image 9. An example breakdown of a simple blend of two different textures.

15

This method is a significant time saver and allows for a great deal of flexibility as only

the alpha map needs to be modified, if changes to the location or shape of the path are

required. Often the mesh geometry will contain detail for the path which would have to

be changed, but for prototyping and testing, just modifying an alpha map makes for

immensely fast iteration times. Color, density or type of material could also easily be

changed by simply modifying or changing out the grass color texture and the blended

terrain will update accordingly. (3D Buzz 2008; Blender Wiki 2011.)

Image 10. An example of how easily a completely different look can be created by changing the

ground textures and modifying the alpha map to take a bend instead of going in a straight line.

As can be seen from the last example even though the path takes a turn the tileable

cobblestones will not follow the direction of the bend. This is something that would be

countered with additional geometry and some clever unwrapping that will be covered in

chapter 5.3.

16

4.2 Blend maps

Blend maps are basically a collection of several alpha maps packed into a full RGB

color map. Each channel of the blend map acts as an individual alpha map. Any

information in a specific color channel will blend in the texture related to this channel at

that point and everything else will be specified by the other channels. These color

channels can be utilized to blend different textures or materials together to form a

larger unified surface, as in the previous example of the simple alpha map. Most

commonly, blend maps are used together with different tileable textures to achieve a

large texel density as well as variation. Having many different tileable textures blending

together will naturally add a lot more variation than could be achieved with just a single

tileable texture. The power of blending different textures together is that a very high

resolution result can be achieved while avoiding most of the visually noticeable tiling

due to the fact that variation is being added by blending in different textures. For even

more textures to blend between a 32-bit image that contains an additional channel, the

alpha channel, could be used. (Glasser 2005; L3DT documentation 2013; Shader

Forge Wiki 2014; Wikipedia 2013.)

17

Image 11. The different color channels of this blend map can be thought of as separate alpha

maps to make it easier to understand (Bugbear Entertainment 2013a).

18

Image 12. The final result of the blend map in the previous example used in Next Car Game:

Wreckfest (Next Car Game: Wreckfest 2015b).

There are some differences in how a game engine uses the blend map input. Some

shaders, such as the one used at Bugbear, normalize values that are not a pure red,

green or blue never to add up to more than the maximum value of a single color

channel. If some kind of normalizing did not take place, a pixel with the maximum value

in both the red and green channel, for example, would lead to the textures represented

by both channels being added together at maximum opacity. Adding both textures

together at maximum opacity would lead to undesirable, overblown results. Therefore,

a maximum value existing in two channels (255, 255, 0) will instead mix the two with

50% opacity. All three color channels maxed out (255, 255, 255), a combined value

resulting in white, would instead mix the three by 33%. The Bugbear shader does,

however, aim to only show one specific material at any given point, so in most cases

the materials are not blended linearly as in the previous two examples. A threshold set

in the shader determines, how sensitive the texture blending is. What this means in

practice is that a low value in a color channel will be ignored, if there is a large value in

another channel at the same point. So a specific point with the color value 10 for red,

10 for green and 255 for blue would only show the blue, as the other values are low

enough to be ignored. Had the value for the green channel been, say, 230, it would

probably have been slightly blended in, depending on the threshold set in the shader.

To simplify further, values that are close to each other are blended according to the

19

threshold set in the shader while much lower values will be ignored. In practice this

order-independent technique means that the order in which the textures are combined

does not matter for the final result. Pure values of a single color channel will naturally

only show the texture or material linked to that channel. (Shader Forge Wiki 2014;

Unreal Engine Docs 2014b.)

This is very similar, for example, to how landscape painting works in the Unreal Engine

when using weight based blending. Blending can be defined by a weight value that

always normalizes all the textures' blending values to a total value of one. Increasing a

material's weight value will decrease the weights of the other materials at that point.

This is basically the same technique as adding different color channels together and

normalizing the result. Blending textures by a weight value is also order-independent,

which means that the order of the materials does not matter for the final result. (Shader

Forge Wiki 2014; Unreal Engine Docs 2014b.)

There are other ways of blending textures that require for the textures to be ordered in

a specific manner to get the intended results. In the case of using blend maps with this

technique, a single pixel's total combined value can also be greater than the maximum

value of a single color channel as every channel is treated separately and layered on

top of each other instead of being combined. (Shader Forge Wiki 2014; Unreal Engine

Docs 2014b.)

20

Image 13. As can be seen in this image, the order of the textures matters when using this

technique (Shader Forge Wiki 2014).

In the previous example image, the color channels are painted separately and blended

in a specific order to get a layering functionality. As can be seen in the image, the

combined value where information exists in all channels looks overblown, but it does

not matter for the final result, as every channel is treated separately and no normalizing

is required. The layering functionality means that removing the green in this example

would reveal the red underneath as the red channel is defined to be underneath the

green. This method can be very useful when, for example, making terrain with snow on

top. Removing the snow would automatically show the underlying terrain texture

instead of having to paint it there manually. A drawback of this method is naturally that

painting more red on a specific area would not make the linked texture show, if it was

covered by green. Both methods have their benefits and it is up to the user to decide

which method works best for each situation. This is also why in the Unreal Engine, for

example, the user is allowed to choose which blending method to use. (Shader Forge

Wiki 2014; Unreal Engine Docs 2014b.)

21

4.3 Blend mask

Sometimes the transitions between the different textures or materials can look a little

too blurry or pixelated, if the resolution of the blend map is too low. A simple but

effective trick to avoid this lack of detail in the blend map can be to add something

called a blend mask. The blend mask aims to affect the transitions of the blend map.

The blend mask can be a small tileable texture with, for example, a noise pattern and

can either be a separate texture or stored in the tileable texture's alpha channel. The

mask texture does not have to look good in this case; the noise pattern simply acts to

break up the transition areas in a greater detail and hide the low resolution pixelation of

the blend map. As this blend mask is tileable, it can be repeated numerous times over

the terrain, which allows the artist to specify a higher resolution transition than what

might be realistically achievable by a single large uniquely mapped blend map. This

way of breaking up the transitions is a “one size fits all” method that won't take into

account the nature of the different materials or textures that are being blended.

(Erdőkövy 2013; McGuire 2010.)

Image 14. A blend mask that breaks up the blend map in transition areas (Bugbear

Entertainment 2013b).

22

Image 15. An example of how the blend mask affects the transition areas of the blend map

(Bugbear Entertainment 2014a).

The blend transitions might also look odd due to an unconvincing transition that does

not make physical sense. In this case just ramping up the resolution will not fix the

problem. For example, a brick wall transitioning smoothly into hanging foliage on the

wall does not make sense as the foliage would follow the shape of the bricks and

gather in the crevices before it covers the actual brick surface. A more sophisticated

way of using blend masks is to have a material-specific mask that is tailored to make

the transitions look convincing. In the case of a brick wall to foliage transition, a height

map could be used to affect the blending in such a way that the crevices of the bricks

get blended before the topmost surface of the bricks. (McGuire 2010; Yang 2013;

Cryengine Manual 2014a; Cryengine Manual 2014b.)

23

Image 16. An example of a height map controlled blending of textures. Note how the crevices of

the bricks are filled with foliage near the transition area, which makes the transition look natural.

(Cryengine Manual 2014.)

4.4 Vertex blending

In addition to texture-driven blend mapping, the vertex colors of a mesh can be used as

the base for texture blending. This method is called vertex blending. A 3D mesh can

contain color data in each of its vertices which can be utilized for different things such

as animation, or, in our case, texturing. The color data in the vertices can be used in

the same way a blend texture would be set up, but instead of having a bitmap image

contain the needed colors, the data would rather be stored in each vertex of the mesh.

(Polycount Wiki 2011.)

24

Image 17. An example of a simple vertex color blend made inside UDK (darktype 2012).

A drawback of using vertex colors is that in order to get enough fine control, this

method requires quite a lot of vertices. With a low vertex count, the transitions might

look quite rough as there is very little data to interpolate between. To overcome this

problem, there are different ways of filtering the vertex color data with, for example,

texture samples or procedural noise patterns mentioned earlier that break up the

transitions between the vertices. In this case, instead of countering the effects of a lack

of pixels, it is needed to fight the lack of detail brought by a low number of vertices. (Eat

3D 2012.)

25

5 Blend map workflow improvement

Blend maps have been used at Bugbear for years, but when I was working there, the

tools for the blend mapping workflow had not really been given much attention, so I

aimed to look into the issue by myself.

5.1 Blend map creation workflow at Bugbear

Large scale environments are a common task at Bugbear Entertainment when creating

race tracks. Sometimes the tracks are quite vast and at the same time they still need a

great amount of detail and visual fidelity to look convincing and pleasing to the player

up-close as well as from a longer distance. A blend map workflow comes in handy in

situations like these.

Image 18. The ground up-close as well as the terrain in the distance need to have enough detail

to be pleasing to the viewer (Next Car Game: Wreckfest 2015c).

An in-house implementation of blend maps has been developed to make larger

environment texturing tasks easier to accomplish. At the time of writing, Photoshop was

the main tool for painting blend maps at Bugbear. Arguably, it is a less than ideal way

of creating blend maps, as there is no way of telling where different materials are

placed other than by remembering which color corresponds to which material. Even if

26

the material corresponding to a specific color in the blend map is known, it is very hard

to visualize and results in a frustrating workflow of constant trial and error. This is why I

started experimenting with real-time viewport methods in Blender to make this process

easier to visualize by offering instant visual feedback of the end result while creating

the map.

Image 19. A blend map by itself is quite hard to visualize (Bugbear Entertainment 2013a).

27

5.2 Blend shader development

As Blender started out as a fairly simple 3D graphics software, a lot of features

available in other software have been missing from Blender. This has led to a lot of

tinkering and innovative thinking in the early days of its use. Even though Blender has

taken huge leaps in development since I started using it, this background has proved

useful on numerous occasions as it has encouraged me to always try out new things by

myself, even when one might easily feel it is too time consuming or challenging to do.

I started out by experimenting in Blender utilizing the node-based shader editor

available by default inside Blender.

Image 20. An example of a very simple shader made within Blender's node editor. The shader

only has a single UV mapped image texture with a diffuse component.

I was already familiar with Blender's capabilities of showing real-time feedback of the

assigned textures in different materials, but I was uncertain, if my idea could be

achieved the way I wanted. This knowledge of Blender's viewport capabilities did,

however, inspire me to start trying out different ways of masking out textures via the

node editor. Starting out, I aimed to understand the logic behind the way Bugbear's

game engine for Next Car Game: Wreckfest works with blend maps and I tried to mimic

28

this behavior inside Blender. I received a lot of help from my colleagues at Bugbear

and the other artists at the company were encouraging and curious about my

experiments. With various phases of testing and refining, I was finally able to come up

with a shader that was similar enough to the Bugbear shader to be usable.

The way Bugbear's engine works with blend maps allows the different color channels

to assign different materials according to the specific color channel within an image

texture. However, the shader does not support a blend map alpha channel, so only a

three-texture blend is possible with it. As the Bugbear shader works with materials, the

blue color channel could, for example, specify a sand surface that has an

accompanying diffuse, specular, glossy and normal texture defined in the shader. Even

though Bugbear's engine works with materials that have reflections and normal maps

blending into each other, I came to the conclusion that just visualizing the diffuse

texture blending would be sufficient in order to differentiate surfaces from each other.

The shader I developed also does not treat the blend maps exactly the same way as

the one used at Bugbear since I had to discover a lot of issues by myself. I made a

simpler version that met the needs I had at the time. I had not implemented

normalization of the color channels, which led to some discrepancies, but the main

point of the tool was to give some form of visual feedback and as such, I felt that the

shader I had developed was a better alternative than half-blindly painting inside

Photoshop. The instant visual feedback is not only incredibly useful in regards to the

shorter iteration times, but also being able to paint in a 3D-view directly on the mesh

makes it so much easier to visualize. As being able to visualize an environment is the

main thing an environment artist is supposed to do, the workflow for that visualization is

very important.

The setup in Blender is actually very simple, but initially I was struggling quite a lot,

since I did not look up online, if anyone else had done something similar in a node

editor. I later received some pointers from a colleague who had seen a similar setup

done by Ryan James Smith utilizing vertex colors in UDK (Smith). This helped me in

my efforts to understand how these kinds of shaders work in practice. Since then, I

have put a lot of effort into understanding how different texture blends can be achieved

and identifying the available methods. I have also developed different versions of my

shader, but the one I am demonstrating here aims to show the basic principle of a

blend shader inside Blender and how it can help in environment texturing.

29

Image 21. An overview of the blend shader inside Blender's node editor.

5.3 Blend shader dissection

In this chapter, I give a detailed account of how to set up the mesh in order to use the

blend shader, how the blend shader works, how it differs from the Bugbear shader and

give some pointers on how to make the best out of it.

The mesh using this blend mapping method benefits from having at least a couple of

UV channels. To work efficiently, even a third channel might be needed in some cases.

One of the channels is used for the tileable textures. This channel can be unwrapped

quite freely as preferred for the best visual result. Following terrain geometry while

unwrapping is a good way to avoid stretching and discontinuity though. A winding road

could be straightened and tiled, for example. Straightening the road in the UV map will

make a sandy road with tire tracks, for example, follow the curves of the road instead of

just tiling in the same world coordinate direction, as in the second example in chapter

4.1.

30

Image 22. A demonstration of the unwrapping described on the last page. The curved road has

been unwrapped so that it is perfectly straight in order for the tire tracks and other details in the

tileable textures to follow the shape of the road. (Bugbear Entertainment 2014b.)

The other UV channel is used for the blend map texture. In the case of creating a

terrain, it should be unwrapped from the top and laid out inside the 1x1 square of the

UV editor. This is important since the blend map texture generally should not be tiled

31

or overlapped, so that unique detail can be painted over the whole terrain. In the case

of having roads in the terrain, they can either be mapped onto the same blend map as

the terrain or they can be straightened out and mapped onto a separate blend texture.

As the roads usually require a lot of detail to look convincing and separate materials

are needed anyway, it is usually preferable to separate them from the rest of the

terrain.

Image 23. A separate blend map for the roads of a terrain. The roads have been straightened

out for efficiency. (Bugbear Entertainment 2014c.)

By straightening out the roads for the blend map, a lot of unused space can be saved

and a greater texel density can be achieved with a smaller texture. Although a

straightened texture is generally easier to paint in Photoshop, the problem with this

method for the roads is that dividing the long strips of road into individual smaller

pieces stacked beside each other makes it a lot harder to paint the blend map without

introducing texture seams. Each island would have to end and continue in the next

island with exactly the same color in the same location in order to produce a perfect

blend. This is extremely hard and time-consuming to do by hand in Photoshop, if a lot

of interesting surface variation is wanted in the blend.

32

Image 24. The road blend map with the UV map outlined on top and the seams marked with

different colors corresponding to how they are connected to each other. Note how each division

of the road might introduce a texture seam unless continued perfectly. (Bugbear Entertainment

2014c.)

Painting the same straightened and divided strip of road with the help of the blend

shader I developed would make this problem disappear altogether, as the actual road

mesh could be painted in the 3D-view and the strokes would automatically be

continued from one UV island to another. A single fast stroke could be painted instead

of tediously matching the stroke at the right edge of one UV island to the left edge of

another in Photoshop.

33

Image 25. This continuous tire track flowing from one UV island to another has effortlessly been

painted by using the blend shader in the 3D-view in Blender (Bugbear Entertainment 2014d).

The shader uses the blend map as one of the inputs and separates it into the individual

color channels in order to use them as masks for different tileable textures. Every color

channel in the blend map corresponds to a tileable texture. The tileable input textures

are given individual mapping data for location, scale and rotation to give the artist using

the tool more control of the texture mapping without modifying the UV mapping. This

was a feature we used at Bugbear which I implemented into my shader. It is quite

handy for making, for example, quick changes in the texture density.

34

Image 26. As seen in this image, the blend texture is separated into the individual channels

which are then multiplied by the texture that is desired to correspond to that channel. The

mapping node is for tweaking the tileable texture.

The way the blend shader is set up, a tileable texture is multiplied by the color channel

of the blend map that the texture is to be associated with. As an example, the green

channel in the blend map could be painted to control where the grass on the surface of

the mesh is drawn. In that case, the green channel of the blend map would be

multiplied with a user-chosen tileable texture of grass. As previously stated, each color

channel is like an alpha map with a scale from black to white. The white in the blend

map's green channel means the texture is multiplied by one and therefore draws the

texture with a 100% strength. A black value results in the texture being multiplied by

zero and means the texture will not show up at all. All the gray values in between work

as linear blends, blending in textures from whatever other color channel also has

information in that specific region. This process is done for every channel of the blend

map and each corresponding texture. These are then finally combined together with a

simple add operation. All the information lacking in a specific channel exists in another

channel as long as the image does not contain any black color. Adding the channels

back together will result in a nice blended terrain of the different textures where they

were painted.

An important detail for this shader is that it does not correct situations where the

combined value of the color channels add up to a larger value than the maximum value

of a single color channel. As a result, a blend map painted in such a manner will lead to

35

incorrect results. In this regard, the shader I developed differs considerably from the

one at Bugbear, as no normalizing takes place and no threshold is set to override low

values and everything is blended linearly instead. Usually this does not create serious

problems as long as the blend map is painted with pure red, green or blue values.

Image 27. After the tileable textures are multiplied by the respective blend map color channels,

the outputs are added together resulting in the texture blend.

There are some additional things that can be done to add even more visual fidelity to

the terrain. This single blend material only allows for three different surfaces and

sometimes even more variation on a single terrain is desired. A situation where a road

crosses a large terrain might be difficult to accomplish, if, for example, two slots are

already put to use for grass and sand on the terrain and some variation in the road is

desired as well. Using a single blend material with a blend texture containing three

color channels would not suffice to do this and the road would only get that one leftover

texture slot. In order to achieve some variation in the road with this method, the terrain

would have to be split into multiple blend materials assigned to different polygon

groups. The road could be separated into a different blend material. Separating into

different blend materials does not mean a separate blend map has to be painted

36

though. The same blend can be used but the textures assigned in the material can be

different from what is set up in the other material.

The initial reaction might be that this would offer a situation where one could have three

materials for the terrain as well as the road, but this would unfortunately lead to sharp

seams where the materials change from one to another. To avoid this problem, one

color channel is sacrificed for sharing a specific surface between the two materials. In a

hypothetical situation where the terrain edge facing the road is sand and corresponds

to the blue channel in the blend map, the same texture could be assigned to the road's

blue channel as well. By painting blue along the polygon seam, the transition between

the materials would be smooth. Although one color channel is sacrificed, this technique

adds one additional surface that could be used for variation in the road.

37

Image 28. An example of how sharing a texture, in this case assigned to the blue channel,

between two materials results in a smooth blend. The green channel textures are completely

different and thus result in a sharp seam where the material changes.

38

In case even more surface variation is needed, there are still additional techniques that

can be used to get the most out of the situation without adding more blend map

channels or materials. A separate uniquely mapped image texture with a color tint

could be overlaid on top of the terrain to add subtle variation. This is quite useful on

larger areas of grass, for example, where subtle color variations help break up the

repetitiveness of a single grass texture. Ambient occlusion data could also be baked

and multiplied on top of the terrain to give it more depth and realism.

Image 29. An example of how a color map and an ambient occlusion map can be added to the

final blend result.

39

6 Other environment texturing techniques

Despite the usability of blend mapping in environment texturing tasks, there are also a

lot of alternative and supplementary texturing methods. This chapter highlights some

additional texturing methods that are not necessarily a replacement for blend mapping

altogether, but some situations might require different approaches and awareness of

alternatives gives an artist a greater tool-set and flexibility to tackle these tasks.

6.1 Modularity

In addition to the previous texturing techniques, one could also create big detailed

environments by utilizing modular workflows. These techniques require a lot of thought

and planning, but can give incredibly rich results if done imaginatively. By using a

single texture atlas tailored for adaptable usage and creating geometry that utilize this

texture in the most varied way possible can give practically endless amounts of

variation. (Cowley 2012; Burgess & Purkeypile 2013.)

In the example of Tor Frick's one-texture environment, he utilizes the texture efficiently

and models the environment according to his texture's limits, constantly finding

different ways of making it even more efficient. He also manages his UV space

imaginatively and takes advantage of the different shader tricks and material

instancing, which allows him to create many different variations with the same texture.

All of this is possible thanks to the incredible flexibility of the Unreal Engine shader

editor and material system. His method is highly efficient in terms of memory usage,

but he admits to it being quite extreme regarding optimization and mainly a good

exercise that probably would not be suitable for production. This method taken to a less

extreme is, however, no doubt a method that can be utilized even in production and

can be a great resource for anyone who wishes to optimize their texture usage.

(Cowley 2012.)

40

Image 30. Tor Frick's one-texture environment (Frick 2011).

A slightly different approach involves creating many different modular pieces that fit

together but use different areas of the texture or have differing geometry to create

variation. Placing a brick wall in one area of a texture atlas and a concrete pillar in

another area of the texture would, with a bit of imagination, open up the possibility to

create literally dozens of different assets just from these two surfaces in the texture.

With this technique, a big set of pieces is created that can be used over and over again

while still giving a lot of detail and complexity and saving a lot of memory. (Eat 3D

2013.)

Image 31. A modular set created for Skyrim (Burgess & Purkeypile 2013a).

The team at Bethesda Game Studios has mastered the different techniques of modular

environment creation. They plan their modular kits meticulously and have the kit artist

41

work in parallel with the level designer testing out the kit as it is being developed. The

pieces the artist creates are being used in numerous ways that allow the level

designers to create countless unique environments with great speed. These techniques

have been used to a great extent in most of their recent games like Oblivion, Fallout 3

and Skyrim. (Burgess & Purkeypile 2013.)

Image 32. A dwarven dungeon in Skyrim created by using a modular set (Burgess & Purkeypile

2013b).

During my work on an unreleased mobile project at Remedy Entertainment, I have

worked together with a colleague on making big diverse environments utilizing many of

the same techniques described in this chapter. Tor Frick's one-texture environment and

his Modular Masterclass have been great inspirations in creating all of the modular

assets that we did during the development of the project (Cowley 2012; Eat 3D 2013).

My colleague initially created a fairly small set of assets such as roofs, walls, doors and

windows that could be combined in different ways to form various kinds of buildings. I

eventually took over the tileset, as we called it, and expanded and improved it further. I

created a lot of new tiles that, at the end, allowed us to create quite large environments

with relative ease and speed.

42

Image 33. A modular building set for an unreleased Remedy project (Remedy Entertainment

2015b).

As with many things in the game industry, this part of the game that we had worked on

for several months got cut midway through the project. Ultimately the whole game

project got canceled, but even though a large part of the system we developed did end

up unused, at least for now, I learned a lot about different techniques related to

modular content creation. Making modular textures has allowed me to create high-

fidelity assets without making huge textures that hog all of the available memory.

43

Image 34. A church I made for an unreleased Remedy project. Instead of solely creating

textures that tile from the image edges, geometry has been used to create tiles that can be

repeated to build larger surfaces. (Remedy Entertainment 2015c.)

44

The challenge of modular environment creation is to hide the repetitiveness so the

player does not encounter visual fatigue. One of these methods is addressed in the

next chapter.

6.2 Decals

In case some smaller details like leaks or imperfections are needed for a scene to give

it more life or technical restrictions prohibit any kind of texture blending, the situation

might be solved with the help of decals. Generally a decal refers to a simple piece of

geometry that has some nature of transparency set in its texture, which allows for some

of the underlying surface to show through. Adding decals to a scene is rarely the only

method used for texturing an environment, but it can be a considerable help in

breaking up repetitiveness or adding variation and detail. The beauty of decals is that

they can be placed anywhere while freely being scaled and rotated in whichever way

the artist wishes. Decals can also easily be removed or added depending on the

situation without the need for redoing any textures. This makes them ideal in

conjunction with the use of modular environment workflows. (Cryengine Manual

2014c.)

The downside of decals is that they have a lot of alpha texture space that can have a

significant effect on performance, if too many of them are added. There are some

options for balancing the quality level and the effects on performance. Decals can be

configured to blend smoothly into the background surface via alpha blending. The

alpha blending uses the whole range of values stored in the alpha channel which

allows for smooth transitions and semitransparent surfaces. Alpha blending is quite

demanding on the hardware and issues with sorting can occur due to limitations of the

z-buffer. A simpler and less demanding way to render decals is by using the alpha

channel as a basis for a threshold that determines, if a pixel is rendered or not. This

method, called alpha testing, only renders a pixel either fully opaque or fully

transparent according to a user defined threshold and no smooth transitions or

semitransparent surfaces can be achieved. Despite the somewhat rugged look of this

method, there are no issues with sorting and it is therefore useful in many situations.

(McAnlis 2014; Second Life Wiki 2013; Marmoset LLC; Polycount Wiki 2015b.)

45

Image 35. Comparison between alpha blend and alpha test (Justafin 2013).

Both of the demonstrated methods of transparency have some benefits and

drawbacks. There are some additional methods for tackling the problem of transparent

surfaces that try to solve some of the previously stated issues. Methods include, for

example, alpha to coverage and hybrid solutions that combine alpha blending and

testing. (Marmoset LLC; Polycount Wiki 2015b.)

46

Image 36. Comparison between a modular scene without and with decals (Remedy

Entertainment 2015d).

Generally decals are placed very close to the surface they are meant to add detail to as

to avoid breaking the illusion of one continuous surface. The viewer should not be able

to tell that the decals are levitating above the surface. This can, however, lead to

another issue with the way the game engine determines which surfaces are rendered

on top of another in the camera frustum. The method for determining this in computer

graphics is limited in how accurate it is. Inaccuracies in these calculations might lead to

z-fighting. This error gets worse the further the in-game camera is from the problem

area in question, as the accuracy is dependent on the distance from the camera, the

near and far clipping planes as well as the bit-depth of the z-buffer. (Baker.)

47

6.3 Virtual Texturing

An interesting method of solving large texturing tasks is called megatexturing or more

recently, virtual texturing. Megatexturing refers to a method developed by id Software's

former technical director John Carmack where a single enormous texture is used for

texturing the terrain in a game level. Initially only static terrain used this technique, but

id Software has developed this technology further, which has allowed for an even

larger texture also accounting for model textures and sprites. This improved

megatexturing technology called virtual texturing has been used, for example, in the

first person shooter Rage. (id Software 2009; Youtube 2010a; Youtube 2010b;

Rendering Pipeline 2012; Wikipedia 2014.)

Image 37. Visualization of the virtual texture loading in Rage (Rage 2011a).

Since everything is mapped to an extremely large texture, every single object or area

can have uniquely textured surfaces, the only restriction being the maximum size of the

virtual texture. This limitation should not pose a problem, however, as the maximum

size of the virtual texture can be as large as 128 000 by 128 000 pixels. Naturally, all of

this texture can not be loaded into memory at the same time, so the engine only loads

the parts needed at the time into the GPU memory. The virtual texture is divided into

tiles that are loaded progressively from low resolution mip map levels to higher

resolution levels. The process of loading in higher mip levels as needed is called

texture streaming. The game editor used at id Software allows the artists to paint tiles

or stamp decals onto the terrain or objects freely without having to worry about texture

budgets or ugly tiling patterns. The methods used for creating game worlds at id

48

Software give an immense amount of flexibility and control to the artists as they are

able to paint intricate details wherever they wish almost without limits. (Hastings 2007;

id Software 2009; Youtube 2010a; Youtube 2010b; Rendering Pipeline 2012; Wikipedia

2014.)

Image 38. The rich world of Rage was created with the help of virtual texturing (Rage 2011b).

6.4 Procedural texturing

Procedural texturing is a very old method of using different kinds of mathematical

algorithms to generate patterns and noise that mimic various real life phenomenon.

These do not require any initial image sources, if preferred, but generates everything

mathematically with different algorithms. This means that the memory requirements for

this method are very low. However, using this method exclusively can lead to a lot of

difficulty in achieving specific details, as everything needs to be controlled by

algorithms instead of an artists eye and hand. An incredible amount of variation can be

achieved procedurally, but in some cases it can require highly complex algorithms that

could be easier to achieve with an image. (Animation supplement 2012.)

A more useful method of procedural texturing combines initial image sources with

mathematical algorithms to create complex textures with a wide range of flexibility and

modifiability. An example of a program that utilizes this method is called Substance

Designer, which has a node-based texturing system that allows the user to create

49

various textures with the help of built-in algorithms that treat the source textures in

different ways. Using these algorithms helps the artist create new interesting materials

without the need for a specific effect in an image. The artist is able to use an image

source that can be enhanced and modified in different ways by plugging in nodes that

affect the final output texture. The beauty of this system is that it is completely non-

destructive. Textures can be created entirely by procedural methods or an image can

be used as a base for everything. Having an image as a base allows the artist to create

all the additional modifications and additions procedurally which means that anything

can be changed whenever it is required without any of the definition or quality being

lost from the initial texture. Any changes can be made on the fly even after making the

first iteration of a final texture and changes to something down the line of production

are needed. (Allegorithmic 2015.)

Image 39. The node-based texturing of Substance Designer allows for a very flexible workflow

(Allegorithmic 2015).

A program mentioned earlier, World Machine, is also relevant in regards to procedural

texturing as the different kinds of terrain formations are generated procedurally. The

user can select and modify nodes that contain algorithms that produce the final terrain.

There are countless ways to create terrains and the user can even draw shapes to

affect the final outcome. The output from World Machine can be, for example, height

data, blend maps or color information. (World Machine Software LLC 2013.)

50

Image 40. The textures are created procedurally in World Machine.

51

6.5 Layered materials

Workflows have improved in many ways to allow a lot more flexibility in the process of

content creation. Even with traditional blend mapping methods a lot of textures would

require modifications in order to make changes to a specific material on a surface.

Blend mapping is also generally only used for terrains and not on smaller objects or

environments.

Epic Games has worked on a flexible method of producing content with multiple

materials that is a lot more flexible than traditional material blending thanks to their in-

engine material editor. The layered materials are basically materials within a material

that are blended together similarly to traditional blend mapping, but with a lot more fine

control. Different material functions can be created separately in any way needed and

they can then be combined in a layered material defined to blend between the

materials. The blending can be defined by masks, as in traditional blend mapping, or

different kinds of parameters such as world direction or position can be used. The real

benefit of the layered material system is that materials can be created and perfected on

their own. When the desired result has been achieved in an individual material, it can

be combined with other materials through a variety of available blending methods. This

system leads to a less cluttered material network as all the material functions for a

specific material are contained in its own material layer. (Youtube 2013; Unreal Engine

Docs 2014a.)

Image 41. Rockets demonstrating the layered materials available in Unreal Engine 4 (Unreal

Engine Docs 2014).

52

The example on the Unreal Engine Wiki for creating layered materials demonstrates

the creation of a metal material with snow on top of it. The blend between the materials

is defined according to the world direction so that the snow always stays on the top of

the mesh. The power of Epic Games's in-engine material editor allows for a lot of

changes inside the editor without the need for opening Photoshop to make changes.

This helps to avoid long iteration times and frustration during the process. (Unreal

Engine Wiki 2014.)

6.6 Photogrammetry

Photogrammetry is a technique that has been used extensively to model and measure

in fields like engineering, the film industry, accident scene forensics and more recently,

even in the game industry. The technique requires multiple photographs of a real world

object or environment from different angles that get stitched together by software that

try to match up the details in the photographs and calculate points in space to form a

3D representation of said object or environment. (Walford 2007; Eos Systems Inc.

2013; Youtube 2015.)

Image 42. By knowing the parameters of the cameras the location of a point in space can be

calculated with simple geometry (Eos Systems Inc. 2013).

The point cloud generated by photogrammetry software, like Agisoft's Photoscan, are

connected to form a polygonal mesh. The images used in the generation of the 3D

53

mesh then get projected onto the model to form the basis of the textures. (Poznanski

2014.)

Image 43. Photogrammetry generated boulders for The Vanishing of Ethan Carter. The process

requires several photographs shot from different angles of the subject to create the final mesh.

(The Astronauts 2014a.)

Image 44. The final in-game asset (The Astronauts 2014b).

54

The developers of The Vanishing of Ethan Carter, The Astronauts, used a lot of

photogrammetry-generated assets to create the breathtaking world for their game.

Even though a lot of the work is done by the software generating the 3D assets, there

are a lot of factors that can go wrong if the user is inexperienced. Techniques that are

valued in traditional photography can have negative consequences when working with

photogrammetry. Shallow depth of field, highlights and noise can absolutely ruin a

photogrammetry asset. Also, all of the lighting and shadows need to match, which

means that changing weather conditions can prove to be highly problematic. After all

pictures are shot, any errors that the software can not resolve need to be fixed. The

last step involves a lot of optimization until the final in-game asset is complete.

(Poznanski 2014.)

Image 45. A scene from The Vanishing of Ethan Carter (The Astronauts 2014c).

Although photogrammetry can produce excellent content, it can often look static, as all

the lighting and shadow information is baked into the textures. Epic Games have tried

to counter this effect by doing delighting algorithms with reference to the real world

lighting conditions, at the time of the shot, as a base. These lighting conditions are

matched digitally and then reversed in order to create a neutral delighted color surface

that can be used as a base for the textures. (Youtube 2015.)

55

Image 46. Epic Games's process of delighting a captured asset relies on recreating the lighting

as it was at the time of the shot (Moritz Weller CGI & Photography 2015).

https://moritzweller.wordpress.com/

56

7 Conclusion

Although the blend shader I developed ended up being quite simple, I am still of the

opinion that it could be of great help to anyone interested in gaining a deeper

understanding of the topic and that it could be used by anyone willing to learn the

somewhat unintuitive user interface (UI). The shader could be developed further in

many ways. One such improvement would be to account for a fourth channel in the

blend map, the alpha channel, available in certain image formats such as Targa. This

would allow for four different textures to be blended together instead of the previous

three, which naturally would lead to a more flexible way to add variation without having

to split the mesh into multiple materials by polygon groups. At the time of development,

I encountered a bug in the way Blender handles the alpha channel in the viewport, so

the result was less than useful for the real-time texturing workflow I was hoping for.

In addition, I would like to add support for actual visual feedback of materials instead of

simple diffuse textures. Having support for blending between materials would add even

more visual feedback and look more like the final product seen on-screen in-game. As

the point of the real-time preview was to improve the visual feedback, I think this is one

of the essential parts that could be improved to make the shader more useful. The

normalization and threshold values are improvements that would affect the final

outcome in a more intuitive manner as well.

I also find that the user-friendliness could be improved by hiding the unnecessary

components from the user to be less of a distraction while working with the shader. The

lack of a UI has proven problematic and it is something I believe would be necessary to

fix. I am of the opinion that currently the shader has a lot of potential, but is

unfortunately not pleasant to work with. An integrated color palette has been added in a

recent Blender version which was a change that made working with the shader a lot

less tedious.

Despite there being a lot of interest in the shader at Bugbear and some artists even

using it occasionally, discussions with an old colleague at Bugbear revealed that it is

currently not being used. I think the reason for this is partly due to the shader only

working inside Blender and the artists at Bugbear not being proficient in the software.

Another reason, which I think is the biggest hurdle, is the complexity of the process

57

involved with working with the shader due to the lack of a proper UI. Although the

blend shader could be improved further, I am more than happy with the result I

achieved. Blend maps and blend materials are techniques still used at Bugbear and an

in-house tool has recently been put into development, so I hope that they will

eventually have a user-friendly tool for the blend mapping process.

I consider blend mapping a highly efficient texturing technique, but it is getting outdated

as other, more refined and flexible technologies are available. There are a lot of

different ways to create textures nowadays that minimize the time wasted on recreating

things due to iteration and general guesswork. An immense amount of different

texturing techniques and alternatives to blend mapping are available and only some of

them were briefly addressed in this thesis, but I think it is safe to say that there are a

great deal of options to choose from for most texturing tasks. Procedural generation

combined with artistic skill is something that is incredibly powerful and which I believe

will take a stronger footing in the coming years, as more effort can be concentrated on

the actual artistic parts of the content creation instead of spending countless hours on

miniscule details such as painting scratches in the right places. I reckon that blend

mapping still has its uses, but the limitations of the shader at Bugbear were quite

severe compared to similar methods in Unreal Engine, for example.

Despite relying a lot on the experience I have gained working in the game industry, the

research I conducted for this thesis during my free time has taught me a great deal

regarding many topics, not just limited to texturing, and I believe a lot of people could

learn something from the techniques I have studied.

58

8 Sources

3D Buzz 2008. Blend Textures Via Texture Alphas. [video]
<https://www.3dbuzz.com/training/view/how-do-i-unreal/how-do-i/blend-textures-via-
texture-alphas> (watched 27.2.2015).

Allegorithmic 2015. Substance Designer 5. [web page]
<https://www.allegorithmic.com/products/substance-designer> (read 16.4.2015).

Animation Supplement 2012. History of texturing and shading. [web page]
<http://animationsupplement.com/content/content/Texture%20History.htm> (read
24.3.2015).

Baker, Steve n.d. Learning to Love your Z-buffer. [web page]
<http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html> (read 14.2.2015).

Blender Wiki 2011. Stencil. [web page]
<http://wiki.blender.org/index.php/Doc:2.4/Manual/Textures/Influence/Material#Stencil>
(read 23.4.2014).

Blender Wiki 2014. Nodes. [web page]
<http://wiki.blender.org/index.php/Doc:2.6/Manual/Materials/Nodes> (read 27.4.2015).

Burgess, Joel & Purkeypile, Nathan 2013. Skyrim's modular level design. [web page]
<http://blog.joelburgess.com/2013/04/skyrims-modular-level-design-gdc-2013.html>
(read 15.2.2015).

Computer Graphics Laboratory n.d. Mip Map Texturing. [web document]
<https://graphics.ethz.ch/teaching/former/vc_master_06/Downloads/Mipmaps_1.pdf>
(read 27.4.2015).

Cowley, Dana 2012. Amazing one texture environment. Unreal Engine Blog. [web
page]
<https://www.unrealengine.com/showcase/amazing-one-texture-enviroment> (read
10.11.2014).

Cryengine Manual 2014a. Blend Layer. [web page]
<http://docs.cryengine.com/display/SDKDOC2/Blend+Layer> (read 19.3.2015).

Cryengine Manual 2014b. Blend mapping in Cryengine. [web page]
<http://docs.cryengine.com/display/SDKDOC2/Blend+mapping+in+Cryengine> (read
19.3.2015).

Cryengine Manual 2014c. Creating Decal Textures and Materials. [web page]
<http://docs.cryengine.com/display/SDKDOC2/Creating+Decal+Textures+and+Material
s>
(read 4.4.2015).

DirectX.com n.d. Shader Overview – why shaders? [web page]
<http://web.archive.org/web/20050505141636/http://www.directx.com/shader/> (read
27.4.2015).

http://web.archive.org/web/20050505141636/http://www.directx.com/shader/
http://docs.cryengine.com/display/SDKDOC2/Creating+Decal+Textures+and+Materials
http://docs.cryengine.com/display/SDKDOC2/Creating+Decal+Textures+and+Materials
http://docs.cryengine.com/display/SDKDOC2/Blend+mapping+in+Cryengine
http://docs.cryengine.com/display/SDKDOC2/Blend+Layer
https://www.unrealengine.com/showcase/amazing-one-texture-enviroment
https://graphics.ethz.ch/teaching/former/vc_master_06/Downloads/Mipmaps_1.pdf
http://blog.joelburgess.com/2013/04/skyrims-modular-level-design-gdc-2013.html
http://wiki.blender.org/index.php/Doc:2.6/Manual/Materials/Nodes
http://wiki.blender.org/index.php/Doc:2.4/Manual/Textures/Influence/Material#Stencil
http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html
http://animationsupplement.com/content/content/Texture%20History.htm
https://www.allegorithmic.com/products/substance-designer
https://www.3dbuzz.com/training/view/how-do-i-unreal/how-do-i/blend-textures-via-texture-alphas
https://www.3dbuzz.com/training/view/how-do-i-unreal/how-do-i/blend-textures-via-texture-alphas

59

Eat 3D 2012. Vertex Painting in UDK. [video]
<http://eat3d.com/free/vertex_painting> (watched 18.3.2015).

Eat 3D 2013. UDK Modular Masterclass - Efficiently Creating and Entire Scene with
Tor Frick. [video]
<http://eat3d.com/udk_modular> (watched 29.4.2015).
Eos Systems Inc. 2013. How it works. PhotoModeler.com [web page]
<http://www.photomodeler.com/products/how-it-works.html> (read 20.3.2015).

Erdőkövy, Zoltán 2013. One-minute Dungeon: Behind The Scenes. [web page]
<http://www.zspline.net/blog/2013/12/16/one-minute-dungeon-behind-the-scenes/>
(read 3.4.2015).

GitHub 2013. Screen & viewport. [web page]
<https://github.com/libgdx/libgdx/wiki/Screen-%26-viewport> (read 30.4.2015).

Glasser, Nate 2005. Texture Splatting in Direct3D. Gamedev.net. [web page]
<http://www.gamedev.net/page/resources/_/technical/game-programming/texture-
splatting-in-direct3d-r2238> (read 8.4.2015).

Hastings, Al 2007. Texture Streaming. [web document]
<http://www.insomniacgames.com/tech/articles/1107/files/texture_streaming.pdf>
(read 16.7.2014).

id Software 2009. From Texture Virtualization to Massive Parallelization. [web
document]
<http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_Challenges.pdf> (read 16.3.2015).

L3DT documentation 2013. Texture Splatting. [web page]
<http://www.bundysoft.com/docs/doku.php?id=l3dt:algorithms:splatting> (read
24.4.2014).

Marmoset LLC n.d. Tutorial: The Miracle of Blending. [web page]
<https://www.marmoset.co/toolbag/learn/blending> (read 8.4.2015).

McAnlis, Colt 2014. Don't Alpha That Pixel!! [web page]
<http://mainroach.blogspot.fi/2014/04/dont-alpha-that-pixel.html> (read 4.4.2015).

McGuire, Max 2010. Blending Terrain Textures. [web page]
<http://web.archive.org/web/20140809193644/http://www.m4x0r.com/blog/2010/05/ble
nding-terrain-textures/> (read 19.3.2015).

Microsoft Developer Network 2015a. What Is a View Frustum? [web page]
<https://msdn.microsoft.com/en-us/library/ff634570.aspx> (read 27.4.2015).

Microsoft Developer Network 2015b. What Is a Depth Buffer? [web page]
<https://msdn.microsoft.com/en-us/library/bb976071.aspx> (read 27.4.2015).

Panda3D Manual n.d. Texture Management. [web page]
<https://www.panda3d.org/manual/index.php/Texture_Management#Monitoring_memo
ry_usage> (read 3.4.2015).

Polycount Wiki 2011. Vertex Color. [web page]
<http://wiki.polycount.com/wiki/Vertex_color> (read 19.5.2014).

http://wiki.polycount.com/wiki/Vertex_color
https://www.panda3d.org/manual/index.php/Texture_Management#Monitoring_memory_usage
https://www.panda3d.org/manual/index.php/Texture_Management#Monitoring_memory_usage
https://msdn.microsoft.com/en-us/library/bb976071.aspx
https://msdn.microsoft.com/en-us/library/ff634570.aspx
http://web.archive.org/web/20140809193644/http://www.m4x0r.com/blog/2010/05/blending-terrain-textures/
http://web.archive.org/web/20140809193644/http://www.m4x0r.com/blog/2010/05/blending-terrain-textures/
http://mainroach.blogspot.fi/2014/04/dont-alpha-that-pixel.html
https://www.marmoset.co/toolbag/learn/blending
http://www.bundysoft.com/docs/doku.php?id=l3dt:algorithms:splatting
http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_Challenges.pdf
http://www.insomniacgames.com/tech/articles/1107/files/texture_streaming.pdf
http://www.gamedev.net/page/resources/_/technical/game-programming/texture-splatting-in-direct3d-r2238
http://www.gamedev.net/page/resources/_/technical/game-programming/texture-splatting-in-direct3d-r2238
https://github.com/libgdx/libgdx/wiki/Screen-%26-viewport
http://www.zspline.net/blog/2013/12/16/one-minute-dungeon-behind-the-scenes/
http://www.photomodeler.com/products/how-it-works.html
http://eat3d.com/udk_modular
http://eat3d.com/free/vertex_painting

60

Polycount Wiki 2014. Tiling. [web page]
<http://wiki.polycount.com/wiki/Tiling> (read 28.4.2015).

Polycount Wiki 2015a. Texture Coordinates. [web page]
<http://wiki.polycount.com/wiki/Uv> (read 28.4.2015).

Polycount Wiki 2015b. Transparency map. [web page]
<http://wiki.polycount.com/wiki/Transparency_map> (read 8.4.2015).

Poznanski, Andrzej 2014. Visual Revolution of The Vanishing of Ethan Carter. The
Astronauts.com [web page]
<http://www.theastronauts.com/2014/03/visual-revolution-vanishing-ethan-carter/>
(read 20.3.2015).

Rendering Pipeline 2012. Megatextures in Rage. [web page]
<http://renderingpipeline.com/2012/03/megatextures-in-rage/> (read 16.3.2015).

Second Life Wiki 2013. Alpha Modes Do's and Don'ts. [web page]
<http://wiki.secondlife.com/wiki/Alpha_Modes_Do%27s_and_Don%27ts> (read
4.4.2015).

Shader Forge Wiki 2014. Texture Splatting. [web page]
<http://acegikmo.com/shaderforge/wiki/index.php?title=Texture_Splatting> (read
19.3.2015).

Smith, Ryan James n.d. Advanced mesh paint in UDK. 3dmotive.com. [video]
<http://3dmotive.com/series/advanced-mesh-paint-in-udk/129/941> (watched
14.3.2015).

Tamakuwala, Dhawal 2013. Pixel VS. Texel. [web page]
<http://dmtamakuwala.blogspot.fi/2013/07/pixel-vs-texel.html> (read 28.4.2015).

Unreal Engine Docs 2014a. Layered materials. [web page]
<https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/LayeredMaterial
s/index.html> (read 1.1.2015).

Unreal Engine Docs 2014b. Landscape Materials. [web page]
<https://docs.unrealengine.com/latest/INT/Engine/Landscape/Materials/index.html>
(read 29.4.2015).

Unreal Engine Wiki 2014. Creating layered materials. [web page]
<https://wiki.unrealengine.com/Creating_Layered_Materials_%28Tutorial%29> (read
1.1.2015).

Walford, Alan 2007. What is photogrammetry? Photogrammetry.com. [web page]
<http://www.photogrammetry.com/index.htm> (read 20.3.2015).

Wikipedia 2013. Texture Splatting. [web page]
<http://en.wikipedia.org/wiki/Texture_splatting> (read 24.4.2014).

Wikipedia 2014. Megatexture. [web page]
http://en.wikipedia.org/wiki/MegaTexture
(read 16.7.2014).

http://en.wikipedia.org/wiki/MegaTexture
http://en.wikipedia.org/wiki/Texture_splatting
http://www.photogrammetry.com/index.htm
https://wiki.unrealengine.com/Creating_Layered_Materials_(Tutorial)
https://docs.unrealengine.com/latest/INT/Engine/Landscape/Materials/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/LayeredMaterials/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/LayeredMaterials/index.html
http://dmtamakuwala.blogspot.fi/2013/07/pixel-vs-texel.html
http://3dmotive.com/series/advanced-mesh-paint-in-udk/129/941
http://acegikmo.com/shaderforge/wiki/index.php?title=Texture_Splatting
http://wiki.secondlife.com/wiki/Alpha_Modes_Do's_and_Don'ts
http://renderingpipeline.com/2012/03/megatextures-in-rage/
http://www.theastronauts.com/2014/03/visual-revolution-vanishing-ethan-carter/
http://wiki.polycount.com/wiki/Transparency_map
http://wiki.polycount.com/wiki/Uv
http://wiki.polycount.com/wiki/Tiling

61

World Machine Software LLC 2013. Latest update. [web page]
<http://www.world-machine.com/about.php?page=latest> (read 17.3.2015).

Yang, Robert 2013. Hacking blend transition masks into the Unity terrain shader.
Radiator Design Blog. [web page]
<http://www.blog.radiator.debacle.us/2013/09/hacking-blend-transition-masks-
into.html> (read 14.4.2015).

Youtube 2010a. Id Tech 5 Stage Demo footage Part 1. [video]
<https://www.youtube.com/watch?v=dbgZJPVbFAg> (watched 16.3.2015).

Youtube 2010b. Id Tech 5 Stage Demo footage Part 2. [video]
<https://www.youtube.com/watch?v=unLG8qY17DQ> (watched 16.3.2015).

Youtube 2013. Inside Unreal: Layered Materials. [video]
<https://www.youtube.com/watch?v=PjSFbPv3SLc> (watched 22.11.2014).

Youtube 2015. GDC 2015: Creating the Open World Kite Real-Time Demo in Unreal
Engine 4. [video] <https://www.youtube.com/watch?v=clakekAHQx0> (watched
18.3.2015).

Image Sources

Image 1. Bugbear Entertainment 2015a. <http://bugbear.fi/> (available 30.4.2015).

Image 2. Next Car Game: Wreckfest 2015a. Finland. Bugbear Entertainment.

Image 3. Remedy Entertainment 2015a. <http://remedygames.com/> (available
30.4.2015).

Image 4. GitHub 2013.
<https://raw.githubusercontent.com/wiki/libgdx/libgdx/images/screen-and-
viewport1.png> (available 30.4.2015).

Image 5. rouncer 2013. gamedev.net.
<http://img685.imageshack.us/img685/392/justuseblender.png> (available 30.4.2015).

Image 7. Thief II: The Metal Age 2000. United States. Looking Glass Studios.
<http://static1.gamespot.com/uploads/original/mig/7/3/1/9/267319-thief2_003.jpg>
(available 30.4.2015).

Image 11. Bugbear Entertainment 2013a.

Image 12. Next Car Game: Wreckfest 2015b. Finland. Bugbear Entertainment.

Image 13. Shader Forge Wiki 2014. Texture Splatting.
<http://acegikmo.com/shaderforge/wiki/index.php?title=File:Splatmap-blending-
example.png> (available 30.4.2015).

Image 14. Bugbear Entertainment 2013b.

http://acegikmo.com/shaderforge/wiki/index.php?title=File:Splatmap-blending-example.png
http://acegikmo.com/shaderforge/wiki/index.php?title=File:Splatmap-blending-example.png
http://static1.gamespot.com/uploads/original/mig/7/3/1/9/267319-thief2_003.jpg
http://img685.imageshack.us/img685/392/justuseblender.png
https://raw.githubusercontent.com/wiki/libgdx/libgdx/images/screen-and-viewport1.png
https://raw.githubusercontent.com/wiki/libgdx/libgdx/images/screen-and-viewport1.png
http://remedygames.com/
http://bugbear.fi/
https://www.youtube.com/watch?v=clakekAHQx0
https://www.youtube.com/watch?v=PjSFbPv3SLc
https://www.youtube.com/watch?v=unLG8qY17DQ
https://www.youtube.com/watch?v=dbgZJPVbFAg
http://www.blog.radiator.debacle.us/2013/09/hacking-blend-transition-masks-into.html
http://www.blog.radiator.debacle.us/2013/09/hacking-blend-transition-masks-into.html
http://www.world-machine.com/about.php?page=latest

62

Image 15. Bugbear Entertainment 2014a.

Image 16. Cryengine Manual 2014. Blend Layer.
<http://docs.cryengine.com/download/attachments/1048616/blend_layer_01.jpg?
version=1&modificationDate=1269272488000&api=v2> (available 30.4.2015).

Image 17. darktype 2012. Epic Games Community Forum.
<https://forums.epicgames.com/threads/893085-Vertex-Painting-Need-Help!?
p=30140394&viewfull=1#post30140394> (available 30.4.2015).

Image 18. Next Car Game: Wreckfest 2015c. Finland. Bugbear Entertainment.

Image 19. Bugbear Entertainment 2013a.

Image 22. Bugbear Entertainment 2014b.

Image 23. Bugbear Entertainment 2014c.

Image 24. Bugbear Entertainment 2014c.

Image 25. Bugbear Entertainment 2014d.

Image 30. Frick, Tor 2011. Amazing one-texture environment. Unreal Engine Blog.
<https://de45xmedrsdbp.cloudfront.net/Showcase/tor-frick1-960x482-1655951775.jpg>
(available 30.4.2015).

Image 31. Burgess, Joel & Purkeypile, Nathan 2013a. Skyrim's Modular Approach to
Level Design.
<http://2.bp.blogspot.com/-
q7M9ZyKUWpI/UXAcJT3pSUI/AAAAAAAAAak/FvXRSHtOsik/s1600/DwarvenKitShot.p
ng> (available 30.4.2015).

Image 32. Burgess, Joel & Purkeypile, Nathan 2013b. Skyrim's Modular Approach to
Level Design.
<http://4.bp.blogspot.com/-
9hZKU_VTTZg/UWuPbOKCo9I/AAAAAAAAAXc/6_J0zSHdBAs/s1600/Dwem01.png>
(available 30.4.2015).

Image 33. Remedy Entertainment 2015b.

Image 34. Remedy Entertainment 2015c.

Image 35. Justafin 2013. Alpha Test with Alpha Blend? Unity Forums.
<http://forum.unity3d.com/threads/alpha-test-with-alpha-blend.175877/#post-1203792>
(available 30.4.2015).

Image 36. Remedy Entertainment 2015d.

Image 37. Rage 2011. United States. id Software.
<http://renderingpipeline.com/wp-content/uploads/2012/03/virtualtextureloading.gif>
(available 30.4.2015).

Image 38. Rage 2011b. United States. id Software.
<http://images4.alphacoders.com/184/184744.jpg> (available 30.4.2015).

http://images4.alphacoders.com/184/184744.jpg
http://renderingpipeline.com/wp-content/uploads/2012/03/virtualtextureloading.gif
http://forum.unity3d.com/threads/alpha-test-with-alpha-blend.175877/#post-1203792
http://4.bp.blogspot.com/-9hZKU_VTTZg/UWuPbOKCo9I/AAAAAAAAAXc/6_J0zSHdBAs/s1600/Dwem01.png
http://4.bp.blogspot.com/-9hZKU_VTTZg/UWuPbOKCo9I/AAAAAAAAAXc/6_J0zSHdBAs/s1600/Dwem01.png
http://2.bp.blogspot.com/-q7M9ZyKUWpI/UXAcJT3pSUI/AAAAAAAAAak/FvXRSHtOsik/s1600/DwarvenKitShot.png
http://2.bp.blogspot.com/-q7M9ZyKUWpI/UXAcJT3pSUI/AAAAAAAAAak/FvXRSHtOsik/s1600/DwarvenKitShot.png
http://2.bp.blogspot.com/-q7M9ZyKUWpI/UXAcJT3pSUI/AAAAAAAAAak/FvXRSHtOsik/s1600/DwarvenKitShot.png
https://de45xmedrsdbp.cloudfront.net/Showcase/tor-frick1-960x482-1655951775.jpg
https://forums.epicgames.com/threads/893085-Vertex-Painting-Need-Help!?p=30140394&viewfull=1#post30140394
https://forums.epicgames.com/threads/893085-Vertex-Painting-Need-Help!?p=30140394&viewfull=1#post30140394
http://docs.cryengine.com/download/attachments/1048616/blend_layer_01.jpg?version=1&modificationDate=1269272488000&api=v2
http://docs.cryengine.com/download/attachments/1048616/blend_layer_01.jpg?version=1&modificationDate=1269272488000&api=v2

63

Image 39. Allegorithmic 2015. Substance Designer 5.
<https://www.allegorithmic.com/sites/default/files/sd_5_graph.jpg> (available
30.4.2015).

Image 41. Unreal Engine Docs 2014. Layered materials.
<https://docs.unrealengine.com/latest/images/Engine/Rendering/Materials/LayeredMat
erials/LayeredMaterials.jpg> (available 30.4.2015).

Image 42. Eos Systems Inc. 2013. How it works.
<http://www.photomodeler.com/products/images/howto/Img2TwoCams.jpg> (available
30.4.2015).

Image 43. The Astronauts 2014a. Visual Revolution of The Vanishing of Ethan Carter.
<http://i.imgur.com/HTxtvZI.jpg> (available 30.4.2015).

Image 44. The Astronauts 2014b. Visual Revolution of The Vanishing of Ethan Carter.
<http://i.imgur.com/5ttYL4J.jpg> (available 30.4.2015).

Image 45. The Astronauts 2014c. Visual Revolution of The Vanishing of Ethan Carter.
<http://www.theastronauts.com/wordpress/wp-
content/uploads/2014/03/The_Vanishing_of_Ethan_Carter_Church.jpg> (available
30.4.2015).

Image 46. Moritz Weller CGI & Photography. The Tech & Beauty behind Epic’s UE4
Open World Demo.
<https://moritzweller.files.wordpress.com/2015/03/epic_delighting_03.jpg> (available
30.4.2015).

https://moritzweller.files.wordpress.com/2015/03/epic_delighting_03.jpg
https://moritzweller.wordpress.com/
http://www.theastronauts.com/wordpress/wp-content/uploads/2014/03/The_Vanishing_of_Ethan_Carter_Church.jpg
http://www.theastronauts.com/wordpress/wp-content/uploads/2014/03/The_Vanishing_of_Ethan_Carter_Church.jpg
http://i.imgur.com/5ttYL4J.jpg
http://i.imgur.com/HTxtvZI.jpg
http://www.photomodeler.com/products/images/howto/Img2TwoCams.jpg
https://docs.unrealengine.com/latest/images/Engine/Rendering/Materials/LayeredMaterials/LayeredMaterials.jpg
https://docs.unrealengine.com/latest/images/Engine/Rendering/Materials/LayeredMaterials/LayeredMaterials.jpg
https://www.allegorithmic.com/sites/default/files/sd_5_graph.jpg

Appendix 1
1 (1)

Blend shader

The blend shader can be downloaded from the link below.

https://dl.dropboxusercontent.com/u/2344342/Blendshader.7z

https://dl.dropboxusercontent.com/u/2344342/Blendshader.7z

	1 Introduction 1
	2 Terminology 5
	3 Basics of texturing 8
	4 Texture blending 12
	4.1 Alpha maps 12
	4.2 Blend maps 16
	4.3 Blend mask 21
	4.4 Vertex blending 23

	5 Blend map workflow improvement 25
	5.1 Blend map creation workflow at Bugbear 25
	5.2 Blend shader development 27
	5.3 Blend shader dissection 29

	6 Other environment texturing techniques 39
	6.1 Modularity 39
	6.2 Decals 44
	6.3 Virtual Texturing 47
	6.4 Procedural texturing 48
	6.5 Layered materials 51
	6.6 Photogrammetry 52

	7 Conclusion 56
	8 Sources 58
	1 Introduction
	2 Terminology
	3 Basics of texturing
	4 Texture blending
	4.1 Alpha maps
	4.2 Blend maps
	4.3 Blend mask
	4.4 Vertex blending

	5 Blend map workflow improvement
	5.1 Blend map creation workflow at Bugbear
	5.2 Blend shader development
	5.3 Blend shader dissection

	6 Other environment texturing techniques
	6.1 Modularity
	6.2 Decals
	6.3 Virtual Texturing
	6.4 Procedural texturing
	6.5 Layered materials
	6.6 Photogrammetry

	7 Conclusion
	8 Sources

